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Abstract
Virtualization was invented more than thirty years ago to allow large expensive main-
frames to be easily shared among different application environments. As hardware prices
went down, the need for virtualization faded away. More recently, virtualization at all
levels (system, storage, and network) became important again as a way to improve sys-
tem security, reliability and availability, reduce costs, and provide greater flexibility. This
paper explains the basics of system virtualization and addresses performance issues re-
lated to modeling virtualized systems using analytic performance models. A case study
on server consolidation is used to illustrate the points.

1 Introduction
Exactly thirty years ago I was a Ph.D. student at UCLA

taking an operating systems course. The term project as-
signed to the class consisted of implementing a Virtual Ma-
chine Monitor (VMM) for a simulated architecture. At that
time, system virtualization was a hot topic of academic and
industrial research [5, 7], which saw the light of day in prod-
ucts such as IBM’s VM/370 [3].

System virtualization adds a hardware abstraction layer,
called the Virtual Machine Monitor (VMM), on top of the
bare hardware. This layer provides an interface that is func-
tionally equivalent to the actual hardware to a number of
virtual machines . These virtual machines may then run
regular operating systems, which would normally run di-
rectly on top of the actual hardware. This characterization
is a bit oversimplified. There are various virtualization tech-
niques as well as requirements for architectures to be virtu-
alizable [7]. The main motivation for virtualization in the
early 70’s was to increase the level of sharing and utilization
of expensive computing resources such as the mainframes.
The 80’s saw a decrease in hardware costs that caused a
significant portion of the computing needs of an organiza-
tion to be moved away from large centralized mainframes
to a collection of departmental minicomputers. The main
motivation for virtualization disappeared and with it their
commercial embodiments.

The advent of microcomputers in the late 80’s and their
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widespread adoption during the 90’s along with ubiquitous
networking brought the distribution of computing to new
grounds. Large number of client machines connected to nu-
merous servers of various types gave rise to new computa-
tional paradigms such as client-server and peer-to-peer sys-
tems. These new environments brought with them several
challenges and problems including reliability, security, in-
creased administration cost and complexity, increased floor
space, power consumption, and thermal dissipation require-
ments.

The recent rebirth of the use of virtualization techniques
in commodity, inexpensive servers and client machines is
poised to address these problems [4, 9] in a very elegant
way. This paper describes the basic concepts in virtualiza-
tion and explains how virtualization can be used to support
server consolidation efforts. A quantitative analysis of vir-
tualization performance and some numerical examples are
provided to illustrate the various issues.

2 Basic Concepts in Virtualization
Consider a production environment consisting of batch

jobs and online transactions that run on top of a Transac-
tion Processing Monitor (TPM). Developers need to test
new features of the system. A typical approach is to use
one machine for the production environment and another,
typically smaller, for development and testing. Virtualiza-
tion allows you to run the two environments on the same
machine (see Fig. 1) in such a way that these two envi-
ronments are completely isolated from one another. As the
figure shows, the production environment runs on top of op-



erating system OS1 and the test environment runs on top
of operating system OS2. Both operating systems run on
top of the Virtual Machine Monitor (VMM). The VMM vir-
tualizes all resources (e.g., processors, memory, secondary
storage, networks) and allocates them to the various virtual
machines that run on top of the VMM.
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Figure 1: Virtualization Basic Concepts.

I describe now in more detail what is known as virtual-
ization through direct execution [9]. Let us start with some
basic facts of computer architecture (see [6] for more de-
tails on computer architecture). The instruction set is gen-
erally divided into (at least) two categories: non-privileged
and priviliged instructions. The former instructions do not
change the allocation (and in some cases the state) of any
of the resources of the machine that are shared among the
various executing processes. Examples of such resources in-
clude processors, main memory, secondary storage devices,
network connections, timer, and special purpose registers
such as the program counter and mode bit. Privileged in-
structions include all those that are used to change the
allocation or state of a machine’s shared resources. Exam-
ples of such instructions include: halt the machine, set the
timer, set the program counter, change the value of mem-
ory allocation registers, set the mode bit, and I/O-related
instructions.

A machine operates in two modes: user and supervi-
sor. In supervisor mode, the entire instruction set can be
executed. This is the mode in which the operating system
runs. In user mode, only non-privileged instructions can be
executed. The operating system sets the mode bit to user
before giving control of the CPU back to a user program.
If a privileged instruction is executed in user mode, an in-
terrupt is generated and control is passed to an interrupt
handling routine, which is part of the operating system.
Most architectures have more than two levels of privilege.
For example, the x86 architectures has four levels, called
rings , numbered from 0 to 3. Ring 0 has the highest privi-
lege and this is the level at which the operating system runs
in non-virtualized environments.

In a virtual machine environment, the VMM runs in su-
pervisor mode and controls access to the resources shared
by all virtual machines and the virtual machines run in user
mode. The VMM schedules the virtual machines, in a man-
ner similar to how an operating system schedules processes,
and allocates processor cycles to them. Consider any given
virtual machine running on top of the VMM. Under the di-
rect execution technique, any non-privileged instruction ex-
ecuted by a virtual machine is executed directly by the hard-
ware. However, if the virtual machine executes a privileged
instruction because the OS of that virtual machine (called
guest OS )is executing, an interrupt is generated (because
the virtual machine runs in user mode). The VMM then
has to emulate the execution of the privileged instruction.
For example, if the instruction executed by a virtual ma-
chine is a halt instruction, the issuing virtual machine is
stopped, but all other virtual machines continue to run. If
a virtual machine issues an I/O operation, the VMM has to
map that I/O into an operation to be carried out at one of
the real devices that are used to support the virtual devices
seen by the virtual machines. This is illustrated in Fig. 2,
that shows that virtual disks VD-A and VD-B are mapped
to physical disk A and that virtual disks VD-C, VD-D, and
VD-E are mapped to physical disk B. The VMM keeps track
of the mapping information as part of a virtual machine’s
state.
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Figure 2: Mapping of Virtual to Physical Disks.

The slowdown, Sv, of running a virtual machine in the
direct execution approach is a function of the number of
privileged instructions executed by the guest OS and of
the number of instructions needed to emulate a privileged
instruction. Let fp be the fraction of privileged instructions
executed by a a virtual machine and let Ne be the average
number of instructions required by the VMM to emulate a



privileged instruction. Then,

Sv = fp × Ne + (1 − fp) = fp(Ne − 1) + 1. (1)

For example, if fp = 0.1% and Ne = 500 the slowdown
is Sv = 0.001 × 499 + 1 = 1.5. This means that applica-
tions running on virtual machines will see their CPU time
increased by 50%. That does not mean that the applica-
tion will run 50% times slower. The application slowdown
depends on the fraction of the application’s time spent in
I/O vs. CPU.

3 Advantages of Virtualization
There are several advantages to virtualization across

several dimensions:

• Security: by compartmentalizing environments with
different security requirements in different virtual ma-
chines one can select the guest operating system and
tools that are more appropriate for each environment.
For example, we may want to run the Apache web
server on top of a Linux guest operating system and
a backend MS SQL server on top of a guest Windows
XP operating system, all in the same physical plat-
form. A security attack on one virtual machine does
not compromise the others because of their isolation.

• Reliability and availability: A software failure in a
virtual machine does not affect other virtual machines.

• Cost: It is possible to achieve cost reductions by con-
solidation smaller servers into more powerful servers.
Cost reductions stem from hardware cost reductions
(economies of scale seen in faster servers), operations
cost reductions in terms of personnel, floor space, and
software licenses. VMware cites overall cost reductions
ranging from 29 to 64% [11].

• Adaptability to Workload Variations: Changes in work-
load intensity levels can be easily taken care of by
shifting resources and priority allocations among vir-
tual machines. Autonomic computing-based resource
allocation techniques, such as the ones in [2], can be
used to dynamically move processors from one virtual
machine to another.

• Load Balancing: Since the software state of an en-
tire virtual machine is completely encapsulated by the
VMM, it is relatively easy to migrate virtual machines
to other platforms in order to improve performance
through better load balancing [10].

• Legacy Applications: Even if an organization decides
to migrate to a different operating system, it is possible
to continue to run legacy applications on the old OS
running as a guest OS within a VM. This reduces the
migration cost.

4 Performance Modeling of Virtualized
Environments

I describe in this section how analytic queuing models
can be used to model virtualized environments. First, let us
briefly review the type of analytic models and the notation
used throughout the paper (for more details see [8]). An
analytic queuing network model (QN) is a representation of
computer systems that can be used to derive performance
metrics from the model’s input parameters. A QN is com-
posed of resources (also called queues) which may be of
three types: load independent (the service rate does not
depend on the queue length), load dependent (the service
rate is a function of the queue length), and delay resources
(there is no queuing). The unit of work that flows through
a QN is generally called a customer , and represents trans-
actions, requests, jobs, processes, etc.

A QN model may have more than one class of cus-
tomers. Multiple class models are used to represent situa-
tions in which customers may have different service times
at the various resources or different workload intensity lev-
els. The classes of a QN model may be open or closed.
The workload intensity of an open class r is specified as an
average arrival rate λr. The workload intensity of a closed
class r is specified as the concurrency level Nr of that class,
i.e., the number of concurrent customers of that class in the
system. QN models with both open and closed classes are
called mixed QN models.

The parameters of a QN are divided into two categories:
service demand , Di,r, of customers of class r at resource
i and workload intensity levels per class (arrival rates or
concurrency levels). The service demand Di,r is the total
service time of customers of class r at resource i. According
to the Service Demand Law [8], Di,r = Ui,r/X0,r where
Ui,r is the utilization of resource i by class r customers and
X0,r is the throughput of class r customers.

We illustrate the process of modeling a virtualized en-
vironment using the example of Fig. 1. First, let us dis-
cuss the issue of data collection in virtualized environments.
Consider that the system of Fig. 1 was monitored during 30
minutes and during that period measurements were taken
at various levels, i.e., by the VMM, by OS 1, by OS 2, and
by the Performance Monitor of the TPM. Table 1 shows
the values of the various metrics obtained at the various
layers of the virtualized environment. The notation for a
metric is in the form M layer

i,r where M is a metric which
can be T for total time, U for utilization, and N for num-
ber of IOs or transactions. The superscript indicates where
the measurement is taken, and i and r represent a resource
and customer class, respectively. For example, T tpm

cpu,query

stands for the total CPU time due to all query transactions
as measured by the Performance Monitor of the TPM.

The system has a single CPU and two physical disks, D1
and D2. Virtual machine 1 has three virtual disks, vd1, vd2,
and vd3, which are mapped to physical disk D1. Virtual



Metric Value

T vmm
cpu,vm1 420 sec

T vmm
cpu,vm2 220 sec

Uvmm
cpu 0.40

Uvmm
D1 0.35

Uvmm
D2 0.45

N tpm
query 5400 transactions

N tpm
updt 1200 transactions

T tpm
cpu,query 110 sec

T tpm
cpu,updt 150 sec

N tpm
vd1,query 6300 IOs

N tpm
vd2,query 8640 IOs

N tpm
vd1,updt 9450 IOs

N tpm
vd2,updt 9720 IOs

Nos1
vd3,batch 18390 IOs

T os1
cpu,batch 100 sec

T os1
cpu,tpm 290 sec

Nos2
vd4,testing 5400 IOs

Table 1: Measurement for the example of Fig. 1.

machine 2 has a single virtual disk, vd4, mapped to physical
disk D2. The problem now is how to obtain the input
parameters to a multiclass QN model where the classes
are Query (Q), Update (U), Batch (B), and Testing (T),
and the resource are CPU, D1, and D2. We illustrate the
procedure through a few examples starting with the CPU.
Let us obtain Ucpu,q, the utilization of the CPU due to
query transactions. From Table 1, we know that the total
CPU utilization as measured by the VMM, Uvmm

cpu , is 0.4.
In order to find which portion of that utilization is due
to virtual machine 1 (vm1), we use the total CPU time
measured by the VMM as an apportionment factor. Thus,
the CPU utilization of vm1 is given by

Uvmm
cpu ×

T vmm
cpu,vm1

T vmm
cpu,vm1 + T vmm

cpu,vm2

=

0.4 ×
420

420 + 220
= 0.2625. (2)

Note that if we tried to compute the CPU utilization of
vm1 as T vmm

cpu,vm1/1800 = 420/1800 we would get 0.2333
and not the 0.2625 obtained in Eq. (2). The difference,
i.e., 2.92% is due to the VMM overhead to manage the
workload of vm1.

The next step is to determine what fraction of vm1’s
CPU utilization is due to the TPM. We use the CPU times
measured by OS1 as an apportionment factor. Hence, the
CPU utilization of the TPM is given by

0.2625×
T os1

cpu,tpm

T os1
cpu,tpm + T os1

cpu,batch

=

0.2625×
290

290 + 100
= 0.1952. (3)

In order to obtain the CPU utilization due to query
transactions, we need to use CPU times measured by the
TPM as follows:

0.1952×
T tpm

cpu,query

T tpm
cpu,query + T tpm

cpu,updt

=

0.1952×
110

110 + 150
= 0.0826 (4)

So, putting it all together, the CPU utilization of query
transactions is given by

Ucpu,q = Uvmm
cpu ×

T vmm
cpu,vm1

T vmm
cpu,vm1 + T vmm

cpu,vm2

×

T os1
cpu,tpm

T os1
cpu,tpm + T os1

cpu,batch

×

T tpm
cpu,query

T tpm
cpu,query + T tpm

cpu,updt

. (5)

The throughput, X0,q, of query transactions is

X0,q =
N tpm

query

1800
= 5400/1800 = 3 tps (6)

and the service demand of query transactions at the CPU is
given by Dcpu,q = Ucpu,q/X0,q = 0.00826/3 = 0.0275 sec.

We now give an example of the computation of the
utilization, UD1,q, of disk D1 by query transactions. The
procedure used below is very similar to the one used for the
CPU except that instead of using total CPU times measured
at each layer as an apportionment factor, we use the total
number of IOs. The total number of IOs, ND1, on physical
disk D1 is given by the sum of IOs on all virtual disks
mapped to D1. Thus,

ND1 = N tpm
vd1,query + N tpm

vd2,query +

N tpm
vd1,updt + N tpm

vd2,updt + Nos1
vd3,batch

= 6300 + 8640 + 9450 + 9720 + 18390

= 52500 IOs. (7)

Hence,

UD1,q = Uvmm
D1 ×

N tpm
vd1,query + N tpm

vd2,query

ND1

= 0.35 ×
6300 + 8640

52500
= 0.0996. (8)

The service demand, DD1,q, of query transactions at disk
D1 is then given by DD1,q = UD1,q/X0,q = 0.0996/3 =
0.0332 sec. The procedure above assumes that the service
time per IO is the same for all classes. If this assumption is
not true, then an appropriate apportionment factor is the



ratio of the products of the total number of IOs multiplied
by the service time per IO.

Table 2 shows the results obtained by following the pro-
cedures outlined above for all classes and all resources.

Resource Query Updt Batch Test

CPU 0.0275 0.1689 0.0673 0.1375
D1 0.0332 0.1917 0.1226 0.0000
D2 0.0000 0.0000 0.0000 0.4500

Table 2: Service demands (in sec) for the example of
Fig. 1.

Once the model parameters are computed, one can use
well-known QN model solution techniques to obtain the
performance metrics of interest [8].

5 Server Consolidation Example
As indicated previously, virtualization may be used for

server consolidation. Figure 3(a) shows the typical archi-
tecture of an e-commerce site with separate machines for
Web servers, applications servers, and database servers.
Figure 3(b) shows these servers being consolidated on a
single, albeit more powerful, server.

We use QN models to compare these two alternatives.
In order to do that, we have to map the input parameters
used to model the situation in Fig. 3(a) to that of Fig. 3(b).
The service demand at the CPU for the consolidated envi-
ronment, Dcons

CPU,r is given by

Dcons
CPU,r =

S∑

s=1

DCPUs,r × Sv/Cs (9)

where CPUs stands for the CPU of the s-th individual
server being consolidated, Sv is the slowdown due to virtu-
alization already defined before, and Cs is the speedup of
the consolidated server with respect to individual server s.

We applied these conversions to a situation in which
the original site was an online auction site with three sep-
arate servers. Each one had a CPU and one disk. We
consolidated the three servers into a single server with two
disks. In the virtual environment, the Web server, appli-
cation server, and database server run on different virtual
machines. The virtual disks used by the virtual machines for
the Web server and application server are mapped to one
of the physical disks of the consolidated server. The virtual
disks of the virtual machine that runs the database server
is mapped to the second physical disk of the consolidated
server.

Figure 4 shows the ratio of the response time for the
View Bid class of requests under the consolidated scenario
over the response time obtained under the individual server
scenario. The x-axis is the consolidated server speedup, Cs.
We assume in that figure that the virtualization slowdown

is Sv = 1.5. As the figure indicates, if Cs = 1, the response
time of the consolidated server is 3.6 times higher than in
the original case. For a speedup of Cs = 2.5, the consoli-
dated server has a response time that is only 4% higher than
in the original case. For a speedup of Cs = 3.0, the consol-
idated server has a slightly smaller response time than the
three original servers. The consolidated case may still of-
fer reduced costs and improved manageability as discussed
before.

It should also be pointed out that the performance gain
of the consolidated environment decreases very fast at the
beginning and slower at the end as the processor no longer
is the bottleneck.

6 Concluding Remarks

Virtualization may bring several advantages to the de-
sign of modern computer systems including better secu-
rity, higher reliability and availability, reduced costs, better
adaptability to workload variations, easier migration of vir-
tual machines among physical machines, and easy coexis-
tence of legacy applications. Many vendors including Sun,
IBM, and Intel have already announced or already have
virtualization solutions. Intel has just announced a new ar-
chitecture, called Intel Virtualization Technology, that pro-
vides hardware support for virtualization allowing the vir-
tual machine monitor to run at a protection level below ring
0. Sun has introduced the concept of zones in Solaris 10,
which allows for many Solaris 10 instances to coexist on the
same machine (www.sun.com/bigadmin/content/zones/).
IBM provides Logical Partitioning (LPAR) technology on its
p, i, and z platforms. This technology was originally devel-
oped for its mainframes but is now available on its midrange
servers (www-03.ibm.com/servers/eserver/iseries/lpar/ and
www-03.ibm.com/servers/eserver/pseries/lpar/)

It is important to briefly discuss two major directions
for virtualization that can be encountered on the market.
One is called full virtualization and the other paravirtual-
ization. In the former case, the Virtual Machine Monitor
provides an identical abstraction of the underlying hardware
to the virtual machines. However, not all architectures are
virtualizable [7]. The x86 architecture is such an exam-
ple [9]. Paravirtualization can then be used to overcome
these situations by providing an “almost” identical abstrac-
tion of the underlying machine to the virtual machines.
This abstraction implements some new virtual instructions
so as to make the machine virtualizable. The drawback
is that the guest operating system has to be modified to
use these instructions while in the full virtualization case
this is not required. Paravirtualization provides better per-
formance than full virtualization since the guest operating
systems are aware that they running on a VM and therefore
can be optimized for that type of environment. Examples
of virtual machine monitors that use paravirtualization in-
clude the open source Xen [1] and Denali [12]. An example
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Figure 3: Server consolidation scenario.
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Figure 4: Performance comparison for server consolidation scenario.



of a virtual machine monitor that uses full virtualization is
VMware (www.vmware.com).

This paper presented some of the issues involved in us-
ing well-known queuing network models for virtualized en-
vironments. A case study on server consolidation was used
to illustrate the point.
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