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Chapter 1

Introduction

This ebook is a compilation of articles posted to
https://al.danial.org/posts/python is the ultimate matlab toolbox/
between May and November, 2022. The articles themselves are excerpts and variations of exam-
ples from my book, Python for MATLAB Development (PfMD). PfMD shows you how to enhance
MATLAB with Python solutions to a vast array of computational problems in science, engineering,
statistics, finance, and simulation. It is three books in one:

• A thorough Python tutorial that leverages your existing MATLAB knowledge with a com-
prehensive collection of MATLAB/Python equivalent expressions

• A reference guide to setting up and managing a Python environment that integrates cleanly
with MATLAB

• A collection of recipes that demonstrate Python solutions invoked directly from MATLAB

The demonstrated techniques and explanations will help you solve your own challenging prob-
lems in MATLAB using open source Python modules.

The book you’re reading now, Python is the Ultimate MATLAB Toolbox, is freely available
(Creative Commons license) in PDF and ePub formats from
https://github.com/AlDanial/matlab_with_python/ultimate_toolbox_book. It is a brief tour
of what Python can offer MATLAB developers.
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Chapter 2

Python Is The Ultimate MATLAB
Toolbox

2022/05/10

MATLAB’s ability to run Python code is fantastic—it extends MATLAB’s capabilities to en-
compass everything Python can do. Oddly, few MATLAB developers I know are aware of MAT-
LAB’s binary API to Python, or of the vast possibilities Python offers MATLAB developers. I wrote
Python for MATLAB Development to teach Python to MATLAB programmers and to demon-
strate many of the benefits Python can bring them. My presentation at the MATLAB EXPO 2022
(slides) shows the fundamentals of calling Python code from MATLAB.

Chapter 3 will help you set up a stable MATLAB+Python environment. The chapters after
that show how Python helps MATLAB to:

• Read and write YAML, ini, TOML files with pyyaml, configparser, toml (PfMD § 7.2-7.5).
Describes py2mat.m, mat2py.m, (PfMD § 6.5.7), df2t.m and t2df.m which greatly simplify
MATLAB/Python data conversions.

• Read and write SQLite databases in MATLAB with Python shows how to create, query, and
modify SQLite databases in MATLAB using Python’s sqlite3 module. (PfMD § 7.12)

• Write richly-formatted Excel spreadsheets with openpyxl (PfMD § 7.8)

• Interact with PostgreSQL using the psycopg2 Python module (PfMD § 7.20)

• Interact with MongoDB using the pymongo Python module (PfMD § 7.21)

• Set/get/subscribe to key-value data in Redis with pyredis(PfMD § 7.22)

• Solve global optimization problems with scipy.optimize.differential evolution()

(PfMD § 11.6)

3
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• Solve simultaneous nonlinear equations with scipy.optimize.root() (PfMD § 11.11)

• Solve integrals, derivatives, Laplace transforms, series summations symbolically with SymPy
(PfMD § 11.15, 11.16)

• Accelerate MATLAB with Python and Numba (PfMD § 14.10, 14.12)

• Distribute MATLAB Computations To Python Running on a Cluster with Dask dask

(PfMD § 14.14)

2.1 What about toolboxes from the MathWorks?

The MathWorks has a large collection of toolboxes that can perform most of the tasks above. Their
toolboxes are the preferred solutions because they offer

• unique capability: many MATLAB toolboxes solve such complex or specialized problems
that no alternatives–Python or otherwise–exist

• programming convenience: a solution coded entirely in MATLAB is easier to write, debug,
and maintain

• configuration convenience: you don’t need to create a special MATLAB-friendly Python
virtual environment or configure your MATLAB setup to use it

• stability: hybrid MATLAB/Python solutions are vulnerable to library compatibility prob-
lems caused by routine operating system updates. MathWorks toolboxes don’t have this
problem.

Python-based solutions become attractive if you don’t have timely access to to the necessary
MathWorks toolboxes. License procurement at large organizations often takes months and irritates
both budget managers and the people needing the toolbox. Software purchase requests are typically
challenged with questions like: Why was this need not anticipated? Which project’s funds should
we cut to pay for this? Can you justify raising our overhead rates with this purchase? Is this a
one-time need or will you need it again next year? If one can get organizational approval and can
wait a few months, then MathWorks toolboxes are the way to go.

2.2 What about the FileExchange?

The MathWorks’ code sharing site, FileExchange, hosts more than 40,000 freely available packages
to supplement MATLAB, including solutions to several of the Python-powered options listed above.
FileExchange solutions have advantages over Python, most notably that they are mostly pure
MATLAB and therefore easier to integrate to your code. However Python solutions also have
distinct advantages over FileExchange options:

4
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• Value-added Python distributions like Anaconda come bundled with a large collection of
popular modules for numeric, scientific, engineering, and financial computation. If your or-
ganization supports Anaconda, chances are good that Python modules you need to augment
your MATLAB work are already available.

• Organizations that have commercial support agreements with Python distributors like Ana-
conda and ActiveState, or Linux providers such as Red Hat, have access to security-vetted
packages from these vendors’ curated repositories. Installing Python modules from these
sources is a safer bet than pulling files from the FileExchange.

• The Python community is several times larger than MATLAB’s. This means popular Python
modules (including all listed above) see heavier use and so tend to be more extensively ex-
ercised and feature-rich than corresponding FileExchange options. Although project star
counts are crude proxies for popularity and use, compare the number of stars in two pop-
ular MySQL client interfaces: the MATLAB MySQL Database Connector has 32 stars on
the FileExchange while Python’s PyMySQL module (which itself is less popular than the
official MySQL connector released by the MySQL development team) has 6,800 stars on
Github.

• The overwhelming majority of Python modules are developed on code collaboration sites such
as Github, Gitlab, or SourceForge. The FileExchange offers Github integration and newer
projects have set up shop there as well. Projects on Github, et cetera, make it easy to get
insight on a project’s vitality, code content, or number of contributors. Older FileExchange
projects, however, essentially use FileExchange a storage location with options for comments
and so it is hard to get a feel for how active the project is.

5
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Chapter 3

Set up a MATLAB+Python
environment

2022/05/10

3.1 What you’ll need

• MATLAB version 2020b or newer (some MATLAB versions older than 2020b support Python,
but the farther back you go, the more more limitations and problems you’ll hit). The latest
release (2022b as of this writing) is definitely recommended.

• A Python installation supported by your version of MATLAB. I strongly recommend the
Anaconda Python distribution 1 for two reasons: 1) it comes with a deep stack of Python mod-
ules and external tools useful for scientific computing and 2) its conda command has the abil-
ity to create virtual environments with specific shared library versions. Control over shared
library versions in Python is invaluable for troubleshooting MATLAB errors (or crashes)
when importing complex modules such as NumPy, SciPy, and statsmodels (among others) in
MATLAB.

3.2 Step 1: pyenv

The first command to issue in a MATLAB console is pyenv. It will either come up empty, or it
will print information about the Python installation MATLAB found:

>> pyenv

ans =
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PythonEnvironment with properties:

Version: "3.9"

Executable: "/usr/local/anaconda3/2021.05/envs/matpy/bin/python"

Library: "/usr/local/anaconda3/2021.05/envs/matpy/lib/libpython3.9.so"

Home: "/usr/local/anaconda3/2021.05/envs/matpy"

Status: Loaded

ExecutionMode: InProcess

ProcessID: "840228"

If pyenv comes up empty, set 'Version' to the path of the Python executable you want to use:

>> pyenv('Version', "/usr/local/anaconda3/2021.05/envs/matpy/bin/python")

On a Windows computer you entry might be

>> pyenv('Version', "C:/ProgramData/Anaconda3/python.exe")

(Yes, forward slashes work in Windows too.)

The best way to have MATLAB recognize a specific virtual environment is to first activate the
virtual environment in a terminal, then start MATLAB from that terminal.

3.3 Step 2: Does it work?

A quick way to determine if your MATLAB and Python environments are compatible is to import
the NumPy module into MATLAB:

>> np = py.importlib.import_module('numpy')

NumPy and MATLAB have several shared libraries in common so importing NumPy into
MATLAB is a good litmus test for overall MATLAB/Python compatibility. Several things may
happen:

1. A long list of function names appears.

2. Python Error: ImportError
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3. Unable to resolve the name numpy

4. Segmentation violation detected

The first case indicates the import was successful. If you see the functions, congratulations, you
should be able to use MATLAB and Python together effectively.

The last three errors can be caused by a Python installation that is not version-consistent with,
or not visible to MATLAB; the Python installation does not have NumPy installed; or you need
to create a virtual environment configured with shared library versions that are consistent with
MATLAB’s shared libraries.

Possible work-arounds to library conflicts:

1. Change the ExecutionMode setting to OutOfProcess ExecutionMode: InProcess

>> pyenv("ExecutionMode","OutOfProcess")

2. Create a conda environment with library versions that more closely match MATLAB’s. Un-
fortunately there’s no obvious way to identify either the libraries or the versions so experi-
mentation is needed. The conda environment that works well for me with MATLAB 2020b
is

Linux (Ubuntu 20.04) + MATLAB 2020b

conda create --name matpy python=3.8.8 libgcc-devel_linux-64=8.4.0 \

libgcc-ng=8.4.0 geopandas matplotlib pulp cartopy austin faker \

pint poliastro psycopg2 pymongo pythran redis redis-py simanneal \

netCDF4 descartes h5py statsmodels pyyaml psutil lxml dask \

distributed paramiko sympy requests pyflakes uncertainties seaborn \

cython pytest scikit-umfpack ipython -c conda-forge

Windows 10 + MATLAB 2020b

conda create --name matpy python=3.8.8 geopandas matplotlib pulp ^

cartopy faker pint poliastro psycopg2 pymongo pythran redis ^

redis-py statsmodels simanneal netCDF4 descartes h5py pyyaml ^

psutil lxml dask distributed paramiko sympy requests pyflakes ^

cython uncertainties seaborn pytest ipython -c conda-forge

macOS (Catalina, Big Sur) + MATLAB 2020b
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conda create --name matpy python=3.8.8 geopandas matplotlib pulp \

cartopy austin faker intel-openmp=2021.2.0 llvm-openmp=10.0.0 \

libllvm10=10.0.1 llvmlite=0.36.0 \

pint poliastro psycopg2 pymongo pythran redis redis-py simanneal \

netCDF4 descartes h5py statsmodels pyyaml psutil lxml dask \

distributed paramiko sympy requests pyflakes uncertainties seaborn \

cython pytest ipython -c conda-forge

I’ve found MATLAB 2022a and 2022b to work cleanly with the base Anaconda 2021.05 instal-
lation; no finely-tuned conda environment needed.

10



Chapter 4

Read YAML, ini, TOML files in
MATLAB with Python

2022/05/27

4.1 YAML, TOML, ini: Convenient formats for program config-
uration data

As applications evolve, their inputs tend to become more complex. Parsing text files for program
configuration data is a hassle so I typically store such data in formats such as YAML, TOML, ini,
JSON, or XML. MATLAB natively supports JSON and XML but of the five listed options, these
are the least attractive to me. JSON does not support comments and XML is just an all-around
drag to view, edit, and code for. ini isn’t great either but suffices for simple inputs.

FileExchange options exist for reading YAML, TOML, and ini files. Alternatively you can use
Python to read and write files in these formats.

As an example, say you’re writing an optimization program in MATLAB and you want to load
your program’s configuration data into a struct, config, with these fields:

% MATLAB

config.max_iter = 1000;

config.newmark.alpha = 0.25;

config.newmark.beta = 0.5;

config.input_dir = "/xfer/sim_data/2022/05/28";

config.tune_coeff = [1.2e-4 -3.25 58.2];

One option is to store the above lines in a .m file then invoke the name of the file in your appli-
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cation. While convenient, this technique combines code and data—definitely not a best practice.
Instead, let’s store the data in YAML, ini, and TOML files then populate our config struct by
loading these files with Python.

4.2 Reading YAML

Hierarchy in YAML is defined by horizonal whitespace, just as in Python. This YAML file

# optim_config.yaml

max_iter : 1000

newmark :

alpha : 0.25

beta : 0.5

input_dir : "/xfer/sim_data/2022/05/28"

tune_coeff : [1.2e-4, -3.25, 58.2]

loads into a dictionary like this in Python:

# Python

In : import yaml

In : with open('optim_config.yaml') as fh:

: config = yaml.safe_load(fh)

In : print(config)

{'max_iter': 1000, 'newmark': {'alpha': 0.25, 'beta': 0.5},

'input_dir': '/xfer/sim_data/2022/05/28',

'tune_coeff': [0.00012, -3.25, 58.2]}

Let’s try it in MATLAB. If you haven’t already, set up your MATLAB+Python environment
(Chapter 3). Then try

% MATLAB

>> config = py.yaml.safe_load(py.open('optim_config.yaml'))

config =

Python dict with no properties.

{'max_iter': 1000, 'newmark': {'alpha': 0.25, 'beta': 0.5},

'input_dir': '/xfer/sim_data/2022/05/28',

'tune_coeff': [0.00012, -3.25, 58.2]}
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It worked! Sort of—config is a Python dictionary within MATLAB, not a MATLAB struct.
Individual values are accessible, but only in a clumsy manner:

% MATLAB

>> config.get('newmark').get('beta')

0.5000

What we really want is a native MATLAB struct, not a Python dictionary. Enter py2mat.m. . . .

4.3 py2mat.m

py2mat.m is a generic Python-to-MATLAB variable converter I wrote to simplify MATLAB/Python
interaction. We can use it to convert the Python dictionary returned by yaml.safe load() to a
native MATLAB struct:

% MATLAB

>> config = py2mat( py.yaml.safe_load(py.open('optim_config.yaml')) )

struct with fields:

max_iter: 1000

newmark: [1x1 struct]

input_dir: "/xfer/sim_data/2022/05/28"

tune_coeff: {[1.2000e-04] [-3.2500] [58.2000]}

and now we can access fields the way we intended all along:

% MATLAB

>> config.newmark.beta

0.5000

py2mat.m converts arbitrarily nested Python dictionaries, lists, tuples, sets, scalars, NumPy
arrays, SciPy sparse matrices—even datetimes with correct timezone handling—to corresponding
MATLAB structs and cell arrays containing scalars, strings, dense and sparse matrices, and MAT-
LAB datetimes.
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4.4 mat2py.m

The counterpart to py2mat.m is mat2py.m. It takes a native MATLAB variable and converts it
to equivalent native Python variable within MATLAB. This is handy for passing MATLAB data
into Python functions—as when using the Python yaml module to store a MATLAB variable in a
YAML file. We’ll use mat2py.m in the ‘Writing YAML’ section below.

4.5 df2t.m, t2df.m for Pandas Dataframes and MATLAB Tables

Do you work with Pandas dataframes or MATLAB tables? Artem Lenskiy wrote a pair of convert-
ers, df2t.m and t2df.m, that are the dataframe and table equivalents of py2mat.m and mat2py.m.
You can find df2t.m and t2df.m at his PandasToMatlab Github project.

4.6 Writing YAML

The dump() function from the Python yaml module needs two things to write a YAML file: a
variable whose contents are to be written and a file handle to write to. To do this from MAT-
LAB however, we’ll need to provide a Python variable and a Python file handle. We can get a
Python version of the MATLAB variable with mat2py() and a Python file handle simply by calling
py.open() instead of open(). This example echoes our current config variable to a new YAML
file:

% MATLAB

>> fh = py.open('new_config.yaml','w'); % Python, not MATLAB, file handle

>> py_config = mat2py(config)

Python dict with no properties.

{'max_iter': 1000, 'newmark': {'alpha': 0.25, 'beta': 0.5},

'input_dir': '/xfer/sim_data/2022/05/28',

'tune_coeff': [0.00012, -3.25, 58.2]}

>> py.yaml.dump(py_config, fh)

>> fh.close()

The newly written file, new config.yaml, looks like this:

input_dir: /xfer/sim_data/2022/05/28

max_iter: 1000
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newmark:

alpha: 0.25

beta: 0.5

tune_coeff:

- 0.00012

- -3.25

- 58.2

While the sequence of entries and layout differ from the original optim config.yaml file, the
data loads into the same structure in both Python and MATLAB.

4.7 Reading TOML

TOML files can store hierarchical data in text files like YAML without need for correctly-aligned
horizontal whitespace. Our configuration data can be stored in TOML like this:

# optim_config.toml

max_iter = 1000

input_dir = "/xfer/sim_data/2022/05/28"

tune_coeff = [1.2e-4, -3.25, 58.2]

[newmark]

alpha = 0.25

beta = 0.5

The toml module load function can take a file name directly so there’s no need for a separate
call to the file open(). The load function returns a dictionary:

# Python

In : import toml

In : config = toml.load('optim_config.toml')

In : print(config)

{'max_iter': 1000, 'input_dir': '/xfer/sim_data/2022/05/28',

'tune_coeff': [0.00012, -3.25, 58.2],

'newmark': {'alpha': 0.25, 'beta': 0.5}}

Loading TOML files in MATLAB is a one-line operation, just as it is in Python:

% MATLAB

>> config = py2mat(py.toml.load('optim_config.toml'))
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struct with fields:

max_iter: 1000

input_dir: "/xfer/sim_data/2022/05/28"

tune_coeff: {[1.2000e-04] [-3.2500] [58.2000]}

newmark: [1x1 struct]

>> config.newmark.alpha

0.2500

4.8 Reading ini

ini files are less versatile than YAML or TOML since 1) they don’t allow one to store arbitrarily
nested hierarchical data and 2) all values come in as strings. An additional nuisance is that the read
function in Python’s ini handling module, configparser, does not throw an error if the given file
cannot be read or parsed properly; the reader merely returns an empty list.

While somewhat resembling the TOML file, all values to the right of the equals sign are loaded
as strings. Even 1.2e-4, -3.25, 58.2 is a single string that we have to deal with ourselves by
separating the string into words then converting those words to numbers, Our configuration data
might be stored in ini like so:

; optim_config.ini

[max_iter]

value = 1000

[newmark]

alpha = 0.25

beta = 0.5

[input_dir]

value = /xfer/sim_data/2022/05/28

[tune_coeff]

value = 1.2e-4, -3.25, 58.2

Loading this file in Python involves considerably more work than loading YAML or TOML.

# Python

In : import configparser

In : parser = configparser.ConfigParser()

In : parser.read('optim_config.ini')

In : max_iter = int(parser.get('max_iter', 'value'))

In : newmark_alpha = float(parser.get('newmark', 'alpha'))
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In : newmark_beta = float(parser.get('newmark', 'beta'))

In : input_dir = parser.get('input_dir', 'value')

In : tune_coeff = [float(_) for _ in parser.get('tune_coeff', 'value').split(',')]

In : newmark_beta

Out: 0.5

In : tune_coeff

Out: [0.00012, -3.25, 58.2]

The MATLAB version is even messier:

% MATLAB

>> parser = py.configparser.ConfigParser();

>> parser.read('optim_config.ini');

>> max_iter = int64(py.int(parser.get('max_iter', 'value')));

>> newmark_alpha = double(py.float(parser.get('newmark', 'alpha')));

>> newmark_beta = double(py.float(parser.get('newmark', 'beta' )));

>> input_dir = string(parser.get('input_dir', 'value'));

>> tune_coeff = cellfun(@(x) double(x), ...

py2mat(parser.get('tune_coeff', 'value').split(',')));

>> newmark_beta

0.5000

>> tune_coeff

0.0001 -3.2500 58.2000
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Chapter 5

Read and write SQLite databases in
MATLAB with Python

2022/06/10

5.1 SQLite: the most widely deployed database on earth

Most likely the application you’re using to read this article is running SQLite because SQLite is
built into the Firefox, Chrome, and Safari web browsers. The computer you’re on most definitely
has it: SQLite is built into Android, iOS, macOS, Windows 10 and up, and is standard on Linux
distributions. In addition to being everywhere, SQLite is also blazingly fast.

Given its ubiquity and high performance for storing and retrieving data, you may want to use
SQLite in MATLAB. Your tool of choice for interacting with SQLite in MATLAB is MathWorks’
Database Toolbox. If you have access to the Database Toolbox, the rest of this post may not
interest you.

5.2 MATLAB + SQLite via Python

An alternative to the Database Toolbox is to use Python’s sqlite3 module in MATLAB.

In this article I’ll explore the CRUD—create, read, update, delete—operations with SQLite in
MATLAB with a simple database representing package deliveries between offices of a corporation.
The database has a table that stores each package’s type, weight, origin, and destination, and a
second table with price per unit weight for each type. Here are represetative values:
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orders table

origin item weight destination

Z66 tube 1.73 N51
O64 package 3.66 J43
U74 tube 4.73 U71
K54 letter 1.14 V08
W09 letter 2.58 D50
T89 package 2.53 H15
P70 tube 2.58 E95
L96 card 4.20 N56

rates table

item cost by weight

tube 0.46
package 0.65
letter 0.16
card 0.05

5.3 Create (and delete)

The “create” part of CRUD refers to three things: creating the database itself, creating tables within
the database, and populating the tables with rows. An SQLite database is a file, typically saved
with a .db extension, and is created the first time you attempt to “connect” to it. SQLite tables
are created by sending SQL “create table” commands to the connected database, and popualted
with SQL “insert” commands.

SQL table creation commands

Conventional SQL commands to create these two tables might look like this:

create table orders (origin text,

item text,

weight float,

dest text);

create table rates ( item text,

cost_by_weight float);

If you put the six lines above in a text file called make deliveries db.sql, you can create a
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SQLite database by piping the file into the sqlite3 command line tool:

cat make_deliveries_db.sql | sqlite3 deliveries.db # Linux, macOS

type make_deliveries_db.sql | sqlite3.exe deliveries.db # Windows

What we’re really after though is doing this in MATLAB. To get there we’ll start with a Python
version since Python will be our gateway to using SQLite in MATLAB. A complete Python program
to create the SQLite database file deliveries.db with our tables orders and rates is:

#!/usr/bin/env python

import sqlite3

conn = sqlite3.connect('deliveries.db') # creates this if it does not exist

cursor = conn.cursor()

cursor.execute("drop table if exists orders;")

cursor.execute("drop table if exists rates;")

create_orders = """create table orders (origin text,

item text,

weight float,

dest text);"""

create_rates = """create table rates ( item text,

cost_by_weight float);"""

cursor.execute(create_orders)

cursor.execute(create_rates)

conn.commit()

conn.close()

The two “drop table if exists” lines delete the named tables from the database if they are
already defined. If we didn’t include these lines, the second time we try to run the program we’ll
hit a “table already exists” error. By dropping the tables (if they exist) first, we’ll be able to rerun
without errors—very handy during development.

Next: same thing in MATLAB. If you haven’t already, set up your MATLAB+Python environ-
ment (Chapter 3). You’ll note the MATLAB code looks almost the same has the Python equivalent
above.

% MATLAB

sqlite3 = py.importlib.import_module('sqlite3');

conn = sqlite3.connect('deliveries.db'); % creates this if it does not exist

cursor = conn.cursor();

cursor.execute("drop table if exists rates");

cursor.execute("drop table if exists orders");

create_order_table = "create table orders (" + ...
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"origin text," + ...

"item text," + ...

"weight float," + ...

"dest text);";

cursor.execute(create_order_table);

cursor.execute("create table rates(item text, cost_by_weight float);");

conn.commit();

conn.close();

5.3.1 Inserts

Our tables are ready for content. Generic SQL commands to populate our two tables with the
representative data shown above look like this:

insert into orders values('Z66', 'tube' , 1.73, 'N51');

insert into orders values('O64',' package', 3.66, 'J43');

insert into orders values('U74',' tube' , 4.73, 'U71');

insert into orders values('K54',' letter' , 1.14, 'V08');

insert into orders values('W09',' letter' , 2.58, 'D50');

insert into orders values('T89',' package', 2.53, 'H15');

insert into orders values('P70',' tube' , 2.58, 'E95');

insert into orders values('L96',' card' , 4.20, 'N56');

insert into rates values('tube' , 0.46);

insert into rates values('package', 0.65);

insert into rates values('letter' , 0.16);

insert into rates values('card' , 0.05);

Row inserts can be done with Python’s sqlite3 module either individually or in bulk. After
you’ve created the cursor variable, the two forms of inserts can be done like this in Python:

# Python

# single row insert

row = [ 'Z66', 'tube' , 1.73, 'N51']

cursor.execute('insert into orders values (?,?,?,?)', row)

# multiple row insert

rows = [ [ 'O64',' package', 3.66, 'J43'],

[ 'U74',' tube' , 4.73, 'U71'],

[ 'K54',' letter' , 1.14, 'V08'],

[ 'W09',' letter' , 2.58, 'D50'],
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[ 'T89',' package', 2.53, 'H15'],

[ 'P70',' tube' , 2.58, 'E95'],

[ 'L96',' card' , 4.20, 'N56'], ]

cursor.executemany('insert into orders values (?,?,?,?)', rows)

The multiple row insertion is done in a single transaction and yields much higher performance
than single row inserts. The lines above look like this in MATLAB:

% MATLAB

% single row insert

row = { 'Z66', 'tube' , 1.73, 'N51'};

cursor.execute('insert into orders values (?,?,?,?)', row);

% multiple row insert

rows = { { 'O64',' package', 3.66, 'J43'}, ...

{ 'U74',' tube' , 4.73, 'U71'}, ...

{ 'K54',' letter' , 1.14, 'V08'}, ...

{ 'W09',' letter' , 2.58, 'D50'}, ...

{ 'T89',' package', 2.53, 'H15'}, ...

{ 'P70',' tube' , 2.58, 'E95'}, ...

{ 'L96',' card' , 4.20, 'N56'}, };

cursor.executemany('insert into orders values (?,?,?,?)', rows);

5.3.2 A data generator

A database whose biggest table has just eight rows underwhelms. This small MATLAB program
creates a file, orders.txt, containing an arbitrary number of rows of random entries for the orders
table (100,000 in this case). We can use it to produce a large database and test insert and query
performance.

Aside: Python’s Faker module is an excellent resource for generating arbitrary fake data for
testing.

% MATLAB

% file: fake_data.m

n_rows = 100000;

item = {'letter', 'card', 'tube', 'package'};

n_item = length(item);

fh = fopen('orders.txt','w');

for i = 1:n_rows

23

https://github.com/joke2k/faker


origin = char([64 + randi(26) 47 + randi(10,1,2)]);

obj = item{randi(n_item)};

weight = 5*rand();

dest = char([64 + randi(26) 47 + randi(10,1,2)]);

fprintf(fh,'%s %-8s %5.2f %s\n', origin, obj, weight, dest);

end

fclose(fh);

Output is a text file, orders.txt, with four columns of random values. The first few lines of
orders.txt might be

Y91 package 4.79 M81

R77 card 3.28 E70

H00 package 3.47 I90

L37 package 0.93 M46

S72 tube 3.28 E14

Y35 letter 3.76 G56

Order data saved to this text file needs to be loaded by our programs into a row major variable
suitable for use by cursor.executemany(). In other words, the first level index i to the variable
returns the i -th row of data. In Python this can be done with a list comprehension over lines of
the file, where each line is separated into a list of values:

# Python

import pathlib

P = pathlib.Path('orders.txt')

rows = [_.split() for _ in P.read_text().split('\n') if _]

MATLAB’s data loaders such as textscan() are column major so a bit of manipulation is
needed to coerce the required structure:

% MATLAB

fh = fopen('orders.txt');

cols = textscan(fh, '%s %s %f %s');

fclose(fh);

n_rows = length(cols{1});

rows = cell(1,n_rows);

for r = 1:n_rows

rows{r} = { cols{1}{r}, cols{2}{r}, cols{3}(r), cols{4}{r} };

end

24



Note the subtle indexing difference for column 3. Parentheses, rather than braces, must be used
to dereference numeric values within a cell.

Complete programs to create and populate our deliveries database using data from orders.txt

now look like this.

#!/usr/bin/env python

# file: make_db.py

import time

import sqlite3

import pathlib

conn = sqlite3.connect('deliveries.db') # creates if the file doesn't exist

cursor = conn.cursor()

# delete/create

cursor.execute("drop table if exists orders;")

cursor.execute("drop table if exists rates;")

cursor.execute("create table rates(item text, cost_by_weight float);");

create_orders_table = """create table orders (

origin text,

item text,

weight float,

dest text);"""

cursor.execute(create_orders_table)

rows = [ ['tube' , 0.46],

['package', 0.65],

['letter' , 0.16],

['card' , 0.05] ]

cursor.executemany('insert into rates values (?,?)', rows)

# load orders data from the text file

T_s = time.time()

P = pathlib.Path('orders.txt')

rows = [_.split() for _ in P.read_text().split('\n') if _]

print(f'Data read time = {time.time() - T_s} seconds')

T_s = time.time()

cursor.executemany('insert into orders values (?,?,?,?)', rows)

conn.commit()

print(f'Data insert time = {time.time() - T_s} seconds')

conn.close()

% MATLAB
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% make_db.m

sqlite3 = py.importlib.import_module('sqlite3');

conn = sqlite3.connect('deliveries.db'); % create if it does not exist

cursor = conn.cursor();

% delete/create

cursor.execute("drop table if exists rates");

cursor.execute("drop table if exists orders");

cursor.execute("create table rates(item text, cost_by_weight float);");

create_order_table = "create table orders (" + ...

"origin text," + ...

"item text," + ...

"weight float," + ...

"dest text);";

cursor.execute(create_order_table);

% populate the rates table

rows = { {'tube' , 0.46}, ...

{'package', 0.65}, ...

{'letter' , 0.16}, ...

{'card' , 0.05} };

cursor.executemany('insert into rates values (?,?)', rows);

% load orders data from the text file and insert to orders table

tic;

if (0)

% BEFORE -- MATLAB file read + transpose

fh = fopen('orders.txt');

cols = textscan(fh, '%s %s %f %s');

fclose(fh);

n_rows = length(cols{1});

rows = cell(1,n_rows);

for r = 1:n_rows

rows{r} = { cols{1}{r}, cols{2}{r}, cols{3}(r), cols{4}{r} };

end

else

% AFTER -- Python file read

rows = py.load_orders.readfile('orders.txt');

end

fprintf('Data read time = %.6f seconds\n', toc)

tic;

cursor.executemany('insert into orders values (?,?,?,?)', rows);

conn.commit();

fprintf('Data insert time = %.6f seconds\n', toc)
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conn.close();

5.3.3 Insert performance

Our programs’ insert performance depends on how rapidly they can ingest the data from files and
how long the bulk insert itself takes. Times in seconds on my Ubuntu 20.04 laptop using MATLAB
2022a and Python 3.8.8 are

n rows MATLAB read MATLAB insert Python read Python insert

100,000 1.10 0.68 0.10 0.20
1,000,000 6.47 4.65 2.36 2.15

MATLAB is slower, but it must also do more work: it has to 1) transpose the loaded data
from a column-major to a row-major container and 2) internally translate MATLAB strings and
numeric values to Python equivalents when calling cursor.executemany().

We can boost MATLAB’s speed by using Python to ease both of these issues simply by replacing
MATLAB’s file reading code with the Python reader. The Python reader creates a Python-native
variable that’s immediately ready for the bulk insert with cursor.executemany(). This bypasses
the MATLAB-to-Python impedance mismatch that MATLAB otherwise handles for us under the
hood—at a time expense, of course.

Here’s a small Python module with a function that implements the file loader we can call from
MATLAB:

# Python; file load_orders.py

# file load_orders.py

import pathlib

def readfile(File):

P = pathlib.Path(File)

return [_.split() for _ in P.read_text().split('\n') if _]

All that remains is to replace the MATLAB ingest code with a call to the above Python function.
Here are the before and after MATLAB lines, where the ‘before’ code is blocked via if (0) and
the ‘after’ code exists in the else block:

% MATLAB

if (0)

% BEFORE -- MATLAB file read + transpose

fh = fopen('orders.txt');

cols = textscan(fh, '%s %s %f %s');

fclose(fh);
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n_rows = length(cols{1});

rows = cell(1,n_rows);

for r = 1:n_rows

rows{r} = { cols{1}{r}, cols{2}{r}, cols{3}(r), cols{4}{r} };

end

else

% AFTER -- Python file read

rows = py.load_orders.readfile('orders.txt');

end

MATLAB’s performance with load orders.readfile() is much closer to Python’s:

n rows MATLAB+Python read MATLAB insert Python read Python insert

100,000 1.10 0.68 0.10 0.20
1,000,000 3.11 2.34 2.36 2.15

5.4 Read

Database reads are done with the SQL select statement. Here’s a query that computes the
cummulative cost of shipments by originating office:

select origin,sum(weight)*cost_by_weight from orders O, rates R

where O.item = R.item group by origin;

The query can be done programmatically in Python with

#!/usr/bin/env python

# file: select.py

import sqlite3

conn = sqlite3.connect('deliveries.db')

cursor = conn.cursor()

query = "select origin,sum(weight)*cost_by_weight from orders O, rates R" \

" where O.item = R.item group by origin order by origin;"

for row in cursor.execute(query).fetchall():

print(f'{row[0]} {row[1]:7.2f}')

conn.close()

and equivalently in MATLAB with
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% MATLAB

% file: select.m

sqlite3 = py.importlib.import_module('sqlite3');

conn = sqlite3.connect('deliveries.db');

cursor = conn.cursor();

query = "select origin,sum(weight)*cost_by_weight from orders O, rates R" + ...

" where O.item = R.item group by origin order by origin;";

for row = cursor.execute(query).fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

conn.close()

Query performance is essentially the same in Python and MATLAB.

5.5 Update

A database update modifies the content of existing rows. Say the scale used to weigh packages (as
opposed to the scale used for cards, letters, and tubes) was set to the wrong units, for example
kilograms instead of pounds. This SQL update scales the weight of packages by 2.2 while leaving
the wieghts of cards, letters, and tubes alone:

update orders set weight = weight*2.2 where item = 'package';

The programs below repeat the select statement from the previous section to show total cost
by origin. Next the programs apply the weight update for packages then repeat the query. The
programs below show how this is done programmatically in Python:

#!/usr/bin/env python

# file: select_update.py

import sqlite3

conn = sqlite3.connect('deliveries.db')

cursor = conn.cursor()

query = "select origin,sum(weight)*cost_by_weight from orders O, rates R" \

" where O.item = R.item group by origin order by origin;"

print('Original cost:')

for row in cursor.execute(query).fetchall():

print(f'{row[0]} {row[1]:7.2f}')
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# update: scale the weight of packages

cursor.execute("update orders set weight = weight*2.2 where item = 'package'")

print('After the weight correction:')

for row in cursor.execute(query).fetchall():

print(f'{row[0]} {row[1]:7.2f}')

conn.close()

and in MATLAB:

% MATLAB

% file: select_update.m

sqlite3 = py.importlib.import_module('sqlite3');

conn = sqlite3.connect('deliveries.db');

cursor = conn.cursor();

query = "select origin,sum(weight)*cost_by_weight from orders O, rates R" + ...

" where O.item = R.item group by origin order by origin;";

fprintf('Original cost:\n')

for row = cursor.execute(query).fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

% update: scale the weight of packages

cursor.execute("update orders set weight = weight*2.2 where item = 'package'");

fprintf('After the weight correction:\n')

for row = cursor.execute(query).fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

conn.close()
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Chapter 6

Create Excel files in MATLAB with
Python’s openpyxl module

2022/06/23

Your latest MATLAB masterpiece produced a goldmine of incisive data and now it’s time to
present the results to management. MATLAB Live Scripts are an excellent reporting mechanism
but these may not suit an organization’s workflow or documentation standards. Sometimes it’s
necessary to fall back to showing results in a basic tool like Microsoft Excel.

6.1 MATLAB + Excel = not easy

MATLAB’s ability to create Excel files is modest at best. The writecell(), writematrix(),
and writetable() functions can populate an Excel file with data, but only using the default
text style. If you want to change typefaces, fonts, colors, merge cells and so on, you’re in for
some hardship. Custom formatting is only supported on Windows using the COM layer (see
Write Data to Excel Spreadsheets, bottom of the page) and examples demonstrating this process
are hard to find.

If you’re using MATLAB on macOS or Linux, you’re completely out of luck writing rich Excel
files.

6.2 MATLAB + Python + Excel = easy!

If you include Python with your MATLAB setup (Chapter 3) on the otherhand, creating richly-
formatted Excel files on any platform is easy. Excel files can be created in MATLAB by calling
functions from the Python openpyxl module. The first step is to check if you have openpyxl and
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to install it if you don’t.

6.3 Install openpyxl

Check your Python installation to see if it has openpyxl by starting the Python command line
REPL and importing the module. If it imports successfully you can also check the version number:

> python

>>> import openpyxl

>>> openpyxl.__version__

'3.0.9'

If you get a ModuleNotFoundError, you’ll need to install it. That can be done on an Anaconda
Python installation with

> conda install openpyxl

or with

> python -m pip install openpyxl

using other Python distributions.

6.4 Start a new .xlsx file

The small program below creates an empty Excel file, my analysis.xlsx, containing two work-
sheets, or tabs, called “Amazing Results” and “Summary”. For special emphasis, the Summary
tab’s color is changed to green. Unfortunately colors in openpyxl must be provided as RGB or
aRGB (‘a’ = alpha, to control transparency) hex values rather than words like “green”.

Python:

#!/usr/bin/env python

# file: empty.py

import openpyxl as OP

book = OP.Workbook()

sheet_data = book.create_sheet("Amazing Results", 0)
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Figure 6.1: my analysis.xlsx created by empty.py or empty.m

sheet_summary = book.create_sheet("Summary", 1)

sheet_summary.sheet_properties.tabColor = "15AA15"

book.save("my_analysis.xlsx")

The MATLAB version is:

% MATLAB

% file: empty.m

OP = py.importlib.import_module('openpyxl');

book = OP.Workbook();

sheet_data = book.create_sheet("Amazing Results", int64(0));

sheet_summary = book.create_sheet("Summary", int64(1));

sheet_summary.sheet_properties.tabColor = "15AA15";

book.save("my_analysis.xlsx");

The create sheet() method’s arguments are the worksheet’s title and an optional position
in the tab sequence, where 0 is the leftmost tab. Note the presence of the ‘Sheet’ tab. This was
created by default and was pushed to the right when our sheets were added. The ‘Sheet’ tab can
be deleted like this:

# Python

del book['Sheet']

# - or -

existing_sheet = book['Sheet']

book.remove_sheet(existing_sheet)

# - or -
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existing_sheet = book.get_sheet_by_name('Sheet')

book.remove_sheet(existing_sheet)

MATLAB won’t let us use [ ] to index the Python book object so only the third option works
there:

% MATLAB

existing_sheet = book.get_sheet_by_name('Sheet');

book.remove_sheet(existing_sheet);

6.5 Avoiding bracket notation

As noted above, MATLAB won’t let us index Python objects with brackets. This prevents us
from using openpyxl shortcuts such as assigning a cell’s value using something like sheet['C8'] =

3.14159. In Section 7.8 of Python for MATLAB Development , I suggested using a bridge module
to overcome this interface limitation.

After the book came out, David Garrison at the MathWorks informed me that a bridge module
is unnecessary since openpyxl offers method- and attribute-based ways to achieve the same thing.
Setting cell C8’s value can also be done with

C8 = sheet.cell(3,8)

C8.value = 3.14159

All examples below use method and attribute access methods to accomodate MATLAB. The
code examples therefore don’t demonstrate the most idiomatic use of openpyxl, but they have the
benefits that Python and MATLAB code samples look almost identical, and that the MATLAB
implementation won’t need a bridge module.

6.6 Fill a cell with a value

To populate a cell with a number or string, get a handle to the cell using the worksheet’s .cell()
method, pass it the 1-based row and column indices, then set the handle’s .value attribute with
the number or string of interest.

These lines put the string “Total” in cell B9 which corresponds to row 2, column 9:

# Python

B9 = sheet_data.cell(2, 9)

B9.value = "Total"
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They look like this in MATLAB:

% MATLAB

B9 = sheet_data.cell(int64(2), int64(9));

B9.value = "Total";

The int64() type casts are necessary because numeric literals in MATLAB have type double

while the Python function expects integers.

6.7 Typeface size, font, color

A cell’s font can be modified by creating a “font style” with the Font class then applying this style
to the cell. The code example below creates a style, ft title, having a 14 point blue Arial typeface
with bold italics font.

# Python

import openpyxl.styles as styles

Font = styles.Font

ft_title = Font(name="Arial", size=14, color="0000FF",

bold=True, italics=True)

MATLAB 2021b and earlier use pyargs() to set keyword value pairs:

% MATLAB 2021b and newer

ft_title = Font( pyargs("name","Arial", "size",int64(14), ...

"color","0000FF", "bold",py.True, ...

"italics",py.True) );

MATLAB 2022a and newer can use pyargs() as above or, even better, let you assign keyword
values the same way as Python:

% MATLAB 2022a and newer

ft_title = Font(name=Arial, size=int64(14), color="0000FF", ...

bold=py.True, italics=py.True);

The font style can then be applied to the text in a cell by setting the cell’s .font attribute:
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# Python

B9 = sheet_data.cell(2, 9)

B9.value = "Total"

B9.font = ft_title

and

% MATLAB

B9 = sheet_data.cell(int64(2), int64(9));

B9.value = "Total";

B9.font = ft_title;

6.8 Alignment

Text in a cell can be aligned vertically and horizontally, rotated, indented, and shrunk to fit a
given container using the Alignment class. Text in merged cells looks good when it is centered both
horizontally and vertically. That can be done with

# Python

import openpyxl.styles as styles

Alignment = styles.Alignment

B9.alignment = Alignment(horizontal="center", vertical="center")

and in MATLAB with

% MATLAB 2021b and newer

B9.alignment = Alignment(pyargs("horizontal","center", ...

"vertical","center"));

% MATLAB 2022a and newer

B9.alignment = Alignment(horizontal="center", vertical="center");

6.9 Currency, percent, and other numeric formats

A cell can be formatted to show numeric values as currency or a percentage through the cell’s
.number format attribute. The numerical format notation is unusual in that it allows positive val-
ues to be formatted differently than negative values. If such a distinction is desired, a semicolon and
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the negative value format are appended to the postive value format. Financial ledgers sometimes
show negative values in red and/or in parentheses so these variations are shown in the example
below. Oddly, one may use words like ‘Red’ or ‘Blue’ to define the color within a .number format

but all other color definition options only allow hex values.

The .number format attribute also controls date format styles and scientific notation. See the
documentation for numeric styles for all options.

B9.number_format = '"$"#,##0.00;[Red]("$"#,##0.00)' # eg £12,345.67

B9.number_format = '0.0%;[Red]0.0%' # eg 98.7%

The dollar symbol can be replaced with other currency symbols simply by replacing "$" with
the desired character — "€" for example.

6.10 Cell background color

Cell backgrounds can be set to a variety of colors and patterns with the PatternFill class. Following
the same technique as with fonts and number styles, one first defines a pattern style then applies
this to a cell’s .fill attribute. The style bg green defines a solid lime green background color:

# Python

import openpyxl.styles as styles

PatternFill = styles.PatternFill

bg_green = PatternFill(fgColor="C5FD2F", fill_type="solid")

B9 = sheet_data.cell(2,9)

B9.value = "Total"

B9.font = ft_title

B9.fill = bg_green

% MATLAB 2020b and newer

bg_green = PatternFill(pyargs("fgColor","C5FD2F","fill_type","solid"));

B9 = sheet_data.cell(int64(2),int64(9));

B9.value = "Total";

B9.font = ft_title;

B9.fill = bg_green;

% MATLAB 2022a and newer

bg_green = PatternFill(fgColor="C5FD2F", fill_type="solid");

B9 = sheet_data.cell(int64(2),int64(9));

B9.value = "Total";

B9.font = ft_title;

B9.fill = bg_green;
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6.11 Merged cells

A block of adjacent cells can be coalessed into a single cell using a worksheet’s .merge cells()

method. The method takes a cell block range as an argument. The example below merges the
nine cells B2, B3, B4, C2, C3, C4, D2, D3, and D4 into one. After the merge, the cell’s handle is
accessed using the row and column coordinates of the top left cell:

# Python

sheet_data.merge_cells("B2:D4")

B2 = sheet_data.cell(2,2)

B2.value = "A Title"

B2.font = ft_title

B2.alignment = Alignment(horizontal="center", vertical="center")

% MATLAB 2020b and newer

sheet_data.merge_cells("B2:D4");

B2 = sheet_data.cell(int64(2),int64(2));

B2.value = "A Title";

B2.font = ft_title;

B2.alignment = Alignment(pyargs("horizontal","center", ...

"vertical","center");

% MATLAB 2022a and newer

sheet_data.merge_cells("B2:D4");

B2 = sheet_data.cell(int64(2),int64(2));

B2.value = "A Title";

B2.font = ft_title;

B2.alignment = Alignment(horizontal="center", vertical="center");

6.12 Equations

Equations are easily added to spreasheets as they are merely cells containing strings that begin
with an equals sign and an operator. For example, to add an equation that sums values in the cell
range E2:E50, one merely populates a cell with the string '=SUM(E2:E50)'.

B9.value = '=SUM(E2:E50)'
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Figure 6.2: worldwide sales.xlsx created by all together.py or all together.m. Note: values
are randomly generated and so will vary with each run.

6.13 Putting it all together

This spreadsheet includes all customizations described above:

Python:

#!/usr/bin/env python

# file: all_together.py

import numpy as np

import openpyxl as OP

import openpyxl.styles as styles

Font = styles.Font

Alignment = styles.Alignment

PatternFill = styles.PatternFill

book = OP.Workbook()

sheet_data = book.create_sheet("Profits 2022", 0)

sheet_data.sheet_properties.tabColor = "15AA15"

Region = ['N America', 'S America', 'Europe', 'Asia', 'Australia', 'Antarctica']

nR = len(Region)

profits = 10000 * (0.75 - np.random.rand(nR,2))

dollars = '"$"#,##0.00;[Red]("$"#,##0.00)'

pct = '0.0%;[Red]0.0%'
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sheet_data.merge_cells("B2:F3")

B2 = sheet_data.cell(2,2)

B2.value = 'Worldwide Sales'

B2.font = Font(name="Arial", size=16, color="4444FF", bold=True)

B2.alignment = Alignment(horizontal="center", vertical="center")

row, col = 5, 2

header_font = Font(name="Arial", size=12, bold=True)

region_cell = sheet_data.cell(row, 2) # B5

region_cell.value = "Region"

region_cell.font = header_font

last_year = sheet_data.cell(row, 3) # C5

last_year.value = "Last Year"

last_year.font = header_font

this_year = sheet_data.cell(row, 4) # D5

this_year.value = "This Year"

this_year.font = header_font

growth = sheet_data.cell(row, 5) # E5

growth.value = "Growth"

growth.font = header_font

rank = sheet_data.cell(row,6) # F5

rank.value = 'Rank'

rank.font = header_font

row += 1

highest_growth, highest_growth_row = -9.9e+99, 0

all_growth = np.zeros((nR,))

for r in range(nR):

where = sheet_data.cell(row+r, 2)

where.value = Region[r]

where.font = Font(name="Calibri", italic=True)

last_year = sheet_data.cell(row+r, 3)

this_year = sheet_data.cell(row+r, 4)

growth = sheet_data.cell(row+r, 5)

last_year.value = profits[r,0]

last_year.number_format = dollars

this_year.value = profits[r,1]

this_year.number_format = dollars

40



growth.value = (this_year.value - last_year.value)/abs(last_year.value)

all_growth[r] = growth.value

growth.number_format = pct

if growth.value > highest_growth:

highest_growth = growth.value

highest_growth_row = row + r

# highlight row with highest growth

highlight_color = PatternFill(fgColor="E4FF00",fill_type="solid")

for c in range(2,7): # columns B to F

cell = sheet_data.cell(highest_growth_row,c)

cell.fill = highlight_color

# add values in the ranking column

rank = nR - all_growth.argsort().argsort()

for r in range(nR):

cell = sheet_data.cell(row+r,6)

cell.value = rank[r]

# cummulative row

total = sheet_data.cell(row+nR, 2)

total.value = "Total"

total.font = header_font

for i,letter in enumerate(['C', 'D']):

cell = sheet_data.cell(row+nR,i+3)

cell.value = f'=SUM({letter}{row}:{letter}{row+nR-1})'

cell.number_format = dollars

# cummulative growth

row += nR

cell = sheet_data.cell(row,5)

cell.value = f'=(D{row} - C{row})/ABS(C{row})'

cell.number_format = pct

book.save("worldwide_sales.xlsx")

MATLAB 2020b & newer using pyargs():

% MATLAB 2020b & newer

% file: all_together_2020b.m

clear

OP = py.importlib.import_module('openpyxl');

styles = py.importlib.import_module('openpyxl.styles');

Font = styles.Font;
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Alignment = styles.Alignment;

PatternFill = styles.PatternFill;

book = OP.Workbook();

sheet_data = book.create_sheet("Profits 2022", int64(0));

sheet_data.sheet_properties.tabColor = "15AA15";

Region = {'N America', 'S America', 'Europe', 'Asia', 'Australia', 'Antarctica'};

nR = int64(length(Region));

profits = 10000 * (0.75 - rand(nR,2));

dollars = '"$"#,##0.00;[Red]("$"#,##0.00)';

pct = '0.0%;[Red]0.0%';

sheet_data.merge_cells("B2:E3");

B2 = sheet_data.cell(int64(2),int64(2));

B2.value = 'Worldwide Sales';

B2.font = Font(pyargs("name","Arial","size",int64(16),...

"color","4444FF","bold",py.True));

B2.alignment = Alignment(pyargs("horizontal","center","vertical","center"));

row = int64(5);

col = int64(2);

header_font = Font(pyargs("name","Arial","size",int64(12),"bold",py.True));

region_cell = sheet_data.cell(row, int64(2)); % B5

region_cell.value = "Region";

region_cell.font = header_font;

last_year = sheet_data.cell(row, int64(3)); % C5

last_year.value = "Last Year";

last_year.font = header_font;

this_year = sheet_data.cell(row, int64(4)); % D5

this_year.value = "This Year";

this_year.font = header_font;

growth = sheet_data.cell(row, int64(5)); % E5

growth.value = "Growth";

growth.font = header_font;

rank = sheet_data.cell(row, int64(6)); % F5

rank.value = "Rank";

rank.font = header_font;
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row = row + 1;

highest_growth = -9.9e+99;

highest_growth_row = int64(0);

all_growth = zeros(nR,1);

for r = 1:nR

where = sheet_data.cell(row+r, int64(2));

where.value = Region{r};

where.font = Font(pyargs("name","Calibri","italic",py.True));

last_year = sheet_data.cell(row+r, int64(3));

this_year = sheet_data.cell(row+r, int64(4));

growth = sheet_data.cell(row+r, int64(5));

last_year.value = profits(r,1);

last_year.number_format = dollars;

this_year.value = profits(r,2);

this_year.number_format = dollars;

growth.value = (this_year.value - last_year.value)/abs(last_year.value);

all_growth(r) = growth.value;

growth.number_format = pct;

if growth.value > highest_growth

highest_growth = growth.value;

highest_growth_row = row + r;

end

end

% highlight row with highest growth

highlight_color = PatternFill(pyargs("fgColor","E4FF00","fill_type","solid"));

for c = int64(2):int64(5)

cell = sheet_data.cell(highest_growth_row,c);

cell.fill = highlight_color;

end

% add values in the ranking column

[~, index] = sort(all_growth);

[~, rank] = sort(index);

rank = 1 + nR - int64(rank);

for r = 1:nR

cell = sheet_data.cell(row+r,int64(6));

cell.value = rank(r);

end

% cummulative row

row = row + int64(1);

total = sheet_data.cell(row+nR, int64(2));

total.value = "Total";

total.font = header_font;
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i = 0;

for letter = {'C', 'D'}

cell = sheet_data.cell(row+nR,int64(i+3));

cell.value = sprintf('=SUM(%s%d:%s%d)', ...

letter{1}, row, letter{1}, row+nR-1);

cell.number_format = dollars;

i = i + 1;

end

% cummulative growth

row = row + nR;

cell = sheet_data.cell(row,int64(5));

cell.value = sprintf('=(D%d - C%d)/ABS(C%d)', row, row, row);

cell.number_format = pct;

book.save("worldwide_sales.xlsx")

MATLAB 2022a & newer using x=y keyword argument assignments instead of pyargs():

% MATLAB 2022a & newer

% file: all_together.m

clear

OP = py.importlib.import_module('openpyxl');

styles = py.importlib.import_module('openpyxl.styles');

Font = styles.Font;

Alignment = styles.Alignment;

PatternFill = styles.PatternFill;

book = OP.Workbook();

sheet_data = book.create_sheet("Profits 2022", int64(0));

sheet_data.sheet_properties.tabColor = "15AA15";

Region = {'N America', 'S America', 'Europe', 'Asia', 'Australia', 'Antarctica'};

nR = int64(length(Region));

profits = 10000 * (0.75 - rand(nR,2));

dollars = '"$"#,##0.00;[Red]("$"#,##0.00)';

pct = '0.0%;[Red]0.0%';

sheet_data.merge_cells("B2:E3");

B2 = sheet_data.cell(int64(2),int64(2));

B2.value = 'Worldwide Sales';

B2.font = Font(name="Arial", size=int64(16), color="4444FF", bold=py.True);

B2.alignment = Alignment(horizontal="center", vertical="center");
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row = int64(5);

col = int64(2);

header_font = Font(name="Arial", size=int64(12), bold=py.True);

region_cell = sheet_data.cell(row, int64(2)); % B5

region_cell.value = "Region";

region_cell.font = header_font;

last_year = sheet_data.cell(row, int64(3)); % C5

last_year.value = "Last Year";

last_year.font = header_font;

this_year = sheet_data.cell(row, int64(4)); % D5

this_year.value = "This Year";

this_year.font = header_font;

growth = sheet_data.cell(row, int64(5)); % E5

growth.value = "Growth";

growth.font = header_font;

rank = sheet_data.cell(row, int64(6)); % F5

rank.value = "Rank";

rank.font = header_font;

row = row + 1;

highest_growth = -9.9e+99;

highest_growth_row = int64(0);

all_growth = zeros(nR,1);

for r = 1:nR

where = sheet_data.cell(row+r, int64(2));

where.value = Region{r};

where.font = Font(name="Calibri", italic=py.True);

last_year = sheet_data.cell(row+r, int64(3));

this_year = sheet_data.cell(row+r, int64(4));

growth = sheet_data.cell(row+r, int64(5));

last_year.value = profits(r,1);

last_year.number_format = dollars;

this_year.value = profits(r,2);

this_year.number_format = dollars;

growth.value = (this_year.value - last_year.value)/abs(last_year.value);

all_growth(r) = growth.value;

growth.number_format = pct;

if growth.value > highest_growth

highest_growth = growth.value;
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highest_growth_row = row + r;

end

end

% highlight row with highest growth

highlight_color = PatternFill(fgColor="E4FF00",fill_type="solid");

for c = int64(2):int64(5)

cell = sheet_data.cell(highest_growth_row,c);

cell.fill = highlight_color;

end

% add values in the ranking column

[~, index] = sort(all_growth);

[~, rank] = sort(index);

rank = 1 + nR - int64(rank);

for r = 1:nR

cell = sheet_data.cell(row+r,int64(6));

cell.value = rank(r);

end

% cummulative row

row = row + int64(1);

total = sheet_data.cell(row+nR, int64(2));

total.value = "Total";

total.font = header_font;

i = 0;

for letter = {'C', 'D'}

cell = sheet_data.cell(row+nR,int64(i+3));

cell.value = sprintf('=SUM(%s%d:%s%d)', ...

letter{1}, row, letter{1}, row+nR-1);

cell.number_format = dollars;

i = i + 1;

end

% cummulative growth

row = row + nR;

cell = sheet_data.cell(row,int64(5));

cell.value = sprintf('=(D%d - C%d)/ABS(C%d)', row, row, row);

cell.number_format = pct;

book.save("worldwide_sales.xlsx")
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6.14 openpyxl can do more

This chapter only demonstrated openpyxl’s ability to create Excel files. It can read Excel files as
well. Even among creation features, only a small fraction of openpyxl’s capabilities are demon-
strated here. This module can also create column filters, 2D and 3D stacked plots, 2D and 3D line plots
with optional log scales, bar charts, scatter plots, pie charts, donut charts, radar plots, stock plots
with high/low markers, 2D and 3D contour plots, and gauges.

Motivated MATLAB users will be able to make extraordinary Excel spreadsheets with openpyxl.
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Chapter 7

Work with PostgreSQL in MATLAB
Using the psycopg2 Python Module

2022/07/08

In Chapter 5 I showed how MATLAB can work with SQLite database files using the sqlite3

module from the Python standard library. Here I’ll demonstrate CRUD—create, read, update,
delete—operations using the PostgreSQL database engine and the psycopg2 Python module. The
best way to work with PostgreSQL in MATLAB is to use the MathWorks’ Database Toolbox. This
post may only interest you if you lack access to the Database Toolbox and you’re willing to include
Python in your MATLAB workflow (Chapter 3).

7.1 Install psycopg2

Unlike sqlite3, psycopg2 is not in the standard Python library. Check your Python installation
to see if it has psycopg2 by starting the Python command line REPL and importing the module.
If it imports successfully you can also check the version number:

> python

>>> import psycopg2

>>> psycopg2.__version__

'2.9.3 (dt dec pq3 ext lo64)'

If you get a ModuleNotFoundError, you’ll need to install it. That can be done on an Anaconda
Python installation with

> conda install psycopg2
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or with

> python -m pip install psycopg2

using other Python distributions.

7.2 Connecting to a PostgreSQL Database

The most challenging step in this post is setting up, configuring, and making an initial connection
to a PostgreSQL database service—all of which are beyond the scope of this post. Ideally you are
already familiar with the process, or have access to an existing database service, or know someone
who can get you set up. If not, follow the PostgreSQL getting started documentation. The rest of
this post assumes you have

• an account and password

• permission to create and delete databases

• network access

on or to a PostgreSQL server. Briefly, a PostgreSQL server administrator on a Linux computer
might issue commands such as

> sudo -u postgres psql

postgres=# create role Al with login password 'SuperSecret';

postgres=# create database deliveries;

postgres=# grant all privileges on database deliveries to Al;

postgres=# quit

to set me up.

Run this small Python program to check if you can connect to your PostgreSQL server:

#!/usr/bin/env python

# test_pg_connection.py

import psycopg2

conn = psycopg2.connect(host="big_db_server", port=5432, # default port

user="Al", password="SuperSecret",

database="deliveries")

conn.close()
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Of course change the hostname, username, password, and/or port number as appropriate for your
setup. All is well if the program runs without errors. If there are errors, they’ll likely be one of
these:

• psycopg2.OperationalError: could not connect to server: Connection refused

• psycopg2.OperationalError: FATAL: password authentication failed for user Al

• psycopg2.OperationalError: FATAL: database deliveries does not exist

The first means either the database service is down, or a network issue (such as a firewall) is
preventing access. The second and third errors show the database service is reachable, but the
account or database you want to use either does not exist or is not configured properly. You or
your database administrator will need to reexamine the setup.

7.3 Create (and delete)

As hinted by the deliveries database in the SQL commands above, I’ll repeat the package delivery
example from the earlier MATLAB+SQLite chapter. To start, I’ll run the same fake data.m

program in MATLAB (source listing in section 5.3.2) to create a text file, orders.txt, containing
100,000 lines of data to insert into the database.

MATLAB:

>> fake_data

>>

A Python program that reads orders.txt, creates and inserts the values into the orders table in
batches of 10,000 rows at a time looks like this:

#!/usr/bin/env python

# file: make_pg_db.py

import time

import psycopg2

import pathlib

conn = psycopg2.connect(host="localhost", port=5432,

user="Al", password="SuperSecret",

database="deliveries")

cursor = conn.cursor()
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# delete/create

cursor.execute("drop table if exists orders;")

cursor.execute("drop table if exists rates;")

cursor.execute("""create table rates(item varchar primary key,

cost_by_weight float);""")

create_orders_table = """create table orders (

origin varchar,

item varchar,

weight float,

dest varchar);"""

cursor.execute(create_orders_table)

rows = [ ['tube' , 0.46],

['package', 0.65],

['letter' , 0.16],

['card' , 0.05] ]

insert = "insert into rates (item,cost_by_weight) values(%s,%s)"

cursor.executemany(insert, rows)

# load orders data from the text file

T_s = time.time()

P = pathlib.Path('orders.txt')

rows = [_.split() for _ in P.read_text().split('\n') if _]

print(f'Data read time = {time.time() - T_s:.3f} seconds')

insert = "insert into orders (origin,item,weight,dest) values(%s,%s,%s,%s)"

T_s = time.time()

batch_size = 10_000 # insert this many rows at a time

for i in range(0, len(rows), batch_size):

rows_subset = rows[i:i+batch_size]

cursor.executemany(insert, rows_subset)

print(f'inserted {i+1} to {i+batch_size}')

conn.commit()

print(f'Data insert time = {time.time() - T_s:.3f} seconds')

conn.close()

I’m connecting to a PostgreSQL instance running on the same computer (2015 Dell XPS 13
laptop running Ubuntu 20.04) where I run make pg db.py. Insert performance is about 8,000
rows per second, 50x slower that SQLite inserts. I’m sure there are PostgreSQL configuration
optimizations I could make to increase insert performance if I knew more about this database
engine.

As with inserts to a SQLite database, MATLAB needs to store its insertion data row-major. We
already saw that reading and reshuffling orders.txt from column-major to row-major in MATLAB
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is slow (section 5.3.2) so our MATLAB implementation of the PostgreSQL insert program will use
the same load orders.py Python module used to speed up MATLAB in the SQLite example.

Two equivalent MATLAB insertion program appear below. The first relies on the Python
function keyword argument enhancements in 2022a.

1 g MATLAB 2022a and newer

2 % file: make_pg_db.m

3 % make_pg_db.m

4 psycopg2 = py.importlib.import_module('psycopg2');

5 conn = psycopg2.connect(host="localhost", port=int64(5432), ...

6 user="Al", password="SuperSecret", ...

7 database="deliveries");

8 cursor = conn.cursor();

9

10 % delete/create

11 cursor.execute("drop table if exists rates");

12 cursor.execute("drop table if exists orders");

13 cursor.execute("create table rates(item varchar primary key, " + ...

14 "cost_by_weight float);");

15 create_orders_table = "create table orders (" + ...

16 "origin varchar," + ...

17 "item varchar," + ...

18 "weight float," + ...

19 "dest varchar);";

20 cursor.execute(create_orders_table);

21

22 % populate the rates table

23 rows = { {'tube' , 0.46}, ...

24 {'package', 0.65}, ...

25 {'letter' , 0.16}, ...

26 {'card' , 0.05} };

27 insert = "insert into rates (item,cost_by_weight) values(%s,%s)";

28 cursor.executemany(insert, rows);

29

30 % load orders data from the text file and insert to orders table

31 tic;

32 rows = py.load_orders.readfile('orders.txt');

33 fprintf('Data read time = %.6f seconds\n', toc)

34

35 insert = "insert into orders (origin,item,weight,dest) values(%s,%s,%s,%s)";

36 tic

37 batch_size = 10000; % insert this many rows at a time

38 n_rows = length(rows);

39 for i = 1: batch_size:n_rows
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40 i_end = min(i+batch_size-1, n_rows);

41 rows_subset = rows(i:i_end);

42 cursor.executemany(insert, rows_subset)

43 fprintf('inserted %d to %d\n', i, i_end);

44 end

45 conn.commit();

46 fprintf('Data insert time = %.6f seconds\n', toc)

47 conn.close();

while the version below uses the older pyargs() function to wrap Python keyword arguments. It
works with MATLAB 2020b and newer. The two versions of this program differ only at lines 4, 5
and 6.

1 % MATLAB 2020b and newer

2 % file: make_pg_db_2020b.m

3 psycopg2 = py.importlib.import_module('psycopg2');

4 conn = psycopg2.connect(pyargs("host","localhost","port",int64(5432), ...

5 "user","Al","password","SuperSecret", ...

6 "database","deliveries"));

7 cursor = conn.cursor();

8

9 % delete/create

10 cursor.execute("drop table if exists rates");

11 cursor.execute("drop table if exists orders");

12 cursor.execute("create table rates(item varchar primary key, " + ...

13 "cost_by_weight float);");

14 create_orders_table = "create table orders (" + ...

15 "origin varchar," + ...

16 "item varchar," + ...

17 "weight float," + ...

18 "dest varchar);";

19 cursor.execute(create_orders_table);

20

21 % populate the rates table

22 rows = { {'tube' , 0.46}, ...

23 {'package', 0.65}, ...

24 {'letter' , 0.16}, ...

25 {'card' , 0.05} };

26 insert = "insert into rates (item,cost_by_weight) values(%s,%s)";

27 cursor.executemany(insert, rows);

28

29 % load orders data from the text file and insert to orders table

30 tic;

31 rows = py.load_orders.readfile('orders.txt');

32 fprintf('Data read time = %.6f seconds\n', toc)

54



33

34 insert = "insert into orders (origin,item,weight,dest) values(%s,%s,%s,%s)";

35 tic

36 batch_size = 10000; % insert this many rows at a time

37 n_rows = length(rows);

38 for i = 1: batch_size:n_rows

39 i_end = min(i+batch_size-1, n_rows);

40 rows_subset = rows(i:i_end);

41 cursor.executemany(insert, rows_subset)

42 fprintf('inserted %d to %d\n', i, i_end);

43 end

44 conn.commit();

45 fprintf('Data insert time = %.6f seconds\n', toc)

46 conn.close();

MATLAB insert performance matches Python’s, about 8,000 rows per second—in other words, not
great compared to SQLite inserts.

7.4 Read

This query computes the cummulative cost of shipments by originating office.

select origin,sum(weight*cost_by_weight) from orders O, rates R

where O.item = R.item group by origin;

Programmatic implementations of the query in Python and MATLAB resemble those in the
SQLite select example:

#!/usr/bin/env python

# file: select_pg.py

import psycopg2

conn = psycopg2.connect(host="localhost", port=5432,

user="Al", password="SuperSecret",

database="deliveries")

cursor = conn.cursor()

query = "select origin,sum(weight*cost_by_weight) from orders O, rates R" \

" where O.item = R.item group by origin order by origin;"

cursor.execute(query)

for row in cursor.fetchall():

print(f'{row[0]} {row[1]:7.2f}')
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conn.close()

and equivalently in MATLAB 2022a+ with

% MATLAB 2022a and newer

% file: select_pg.m

psycopg2 = py.importlib.import_module('psycopg2');

conn = psycopg2.connect(host="localhost", port=int64(5432), ...

user="Al", password="SuperSecret", ...

database="deliveries");

cursor = conn.cursor();

query = "select origin,sum(weight*cost_by_weight) from orders O, rates R" + ...

" where O.item = R.item group by origin order by origin;";

cursor.execute(query);

for row = cursor.fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

conn.close()

and in MATLAB 2020b+ with

% MATLAB 2020b and newer

% select_pg.m

psycopg2 = py.importlib.import_module('psycopg2');

conn = psycopg2.connect(pyargs("host","localhost","port",int64(5432), ...

"user","Al","password","SuperSecret", ...

"database","deliveries"));

cursor = conn.cursor();

query = "select origin,sum(weight*cost_by_weight) from orders O, rates R" + ...

" where O.item = R.item group by origin order by origin;";

cursor.execute(query);

for row = cursor.fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

conn.close()
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7.5 Update

As in the SQLite update example, this SQL update scales the weight of packages by 2.2 while
leaving the wieghts of cards, letters, and tubes alone:

update orders set weight = weight*2.2 where item = 'package';

The programs below repeat the select statement from the previous section to show total cost
by origin. The SQL update is implemente with line 17 of the Python program and lines 18 in
the two MATLAB versions. After updating the weight field the programs re-query for the new
cummulative costs:

#!/usr/bin/env python

# file: select_update_pg.py

import psycopg2

conn = psycopg2.connect(host="localhost", port=5432,

user="Al", password="SuperSecret",

database="deliveries")

cursor = conn.cursor()

query = "select origin,sum(weight*cost_by_weight) from orders O, rates R" \

" where O.item = R.item group by origin order by origin;"

print('Original cost:')

cursor.execute(query)

for row in cursor.fetchall():

print(f'{row[0]} {row[1]:7.2f}')

# update: scale the weight of packages

cursor.execute("update orders set weight = weight*2.2 where item = 'package'")

print('After the weight correction:')

cursor.execute(query)

for row in cursor.fetchall():

print(f'{row[0]} {row[1]:7.2f}')

conn.close()

MATLAB 2022a+:

% MATLAB 2022a and newer

% file: select_update_pg.m

psycopg2 = py.importlib.import_module('psycopg2');
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conn = psycopg2.connect(pyargs("host","localhost","port",int64(5432), ...

"user","Al","password","SuperSecret", ...

"database","deliveries"));

cursor = conn.cursor();

query = "select origin,sum(weight*cost_by_weight) from orders O, rates R" + ...

" where O.item = R.item group by origin order by origin;";

fprintf('Original cost:\n')

cursor.execute(query);

for row = cursor.fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

% update: scale the weight of packages

cursor.execute("update orders set weight = weight*2.2 where item = 'package'");

fprintf('After the weight correction:\n')

cursor.execute(query);

for row = cursor.fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

conn.close()

MATLAB 2020b+:

% MATLAB 2020b and newer

% file: select_update_pg_2020b.m

psycopg2 = py.importlib.import_module('psycopg2');

conn = psycopg2.connect(pyargs("host","localhost","port",int64(5432), ...

"user","Al","password","SuperSecret", ...

"database","deliveries"));

cursor = conn.cursor();

query = "select origin,sum(weight*cost_by_weight) from orders O, rates R" + ...

" where O.item = R.item group by origin order by origin;";

fprintf('Original cost:\n')

cursor.execute(query);

for row = cursor.fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

% update: scale the weight of packages

cursor.execute("update orders set weight = weight*2.2 where item = 'package'");
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fprintf('After the weight correction:\n')

cursor.execute(query);

for row = cursor.fetchall()

fprintf('%s %7.2f\n', string(row{1}{1}), row{1}{2});

end

conn.close()

59



60



Chapter 8

Work with MongoDB in MATLAB
Using the pymongo Python Module

2022/07/22

Earlier I showed how Python can help MATLAB interact with SQLite (Chapter 5) and Post-
greSQL (Chapter 7). I’ll conclude the database portion of this series with examples showing how to
work with MongoDB in MATLAB using the Python module pymongo. As with the other databases,
the best way to interact with MongoDB in MATLAB is to use the MathWorks’ Database Toolbox.
This post may only be useful to you if you can include Python in your MATLAB workflow (Chapter
3) and don’t have access to the Database Toolbox.

8.1 Install pymongo

You’ll need the pymongo Python module in your installation to call it from MATLAB. Check your
Python installation to see if it has pymongo by starting the Python command line REPL and
importing the module. If it imports successfully you can also check the version number:

> python

>>> import pymongo

>>> pymongo.__version__

'3.11.0'

If you get a ModuleNotFoundError, you’ll need to install it. That can be done on an Anaconda
Python installation with

> conda install pymongo
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or with

> python -m pip install pymongo

using other Python distributions.

8.2 Connecting to a MongoDB Database

As in the PostgreSQL chapter, probably the hardest step in this chapter involves making the initial
connection to a MongoDB server. That will only be successful if you have

• an account and password

• permission to create and delete databases

• network access to the MongoDB server (if it isn’t on your local computer)

To keep things simple, here I’ll work with a MongoDB instance running on my localhost. Refer
to instructions on starting a MongoDB database on Ubuntu, Red Hat, Windows, macOS if you’re
unfamiliar with the process. The mongo command line tool shows that the database engine is
running and that I’m able to connect to it:

> mongo

MongoDB shell version v3.6.8

connecting to: mongodb://127.0.0.1:27017

Implicit session: session { "id" : UUID("e629be9e-e016-4e37-872c-e3f4ea3eb739") }

MongoDB server version: 3.6.8

Server has startup warnings:

2022-07-08T09:40:01.686-0700 I STORAGE [initandlisten]

2022-07-08T09:40:03.337-0700 I CONTROL [initandlisten]

2022-07-08T09:40:03.337-0700 I CONTROL [initandlisten] ** WARNING: Access control is not enabled for the database.

2022-07-08T09:40:03.337-0700 I CONTROL [initandlisten] ** Read and write access to data and configuration

2022-07-08T09:40:03.337-0700 I CONTROL [initandlisten]

> show dbs;

admin 0.000GB

config 0.000GB

local 0.000GB

Connecting manually works so I’ll try it programmatically, first in Python, then in MATLAB:

Python:
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#!/usr/bin/env python

# file: mongo_connect.py

from pymongo import MongoClient

client = MongoClient('localhost:27017')

for db in client.list_databases():

# db is a dictionary with entries like

# {'name': 'admin', 'sizeOnDisk': 32768.0, 'empty': False}

print(db)

print(db['name'])

client.close()

Running this gives the same result as show dbs; in the mongo shell:

> ./mongo_connect.py

admin

config

local

Now in MATLAB:

% file: mongo_connect.m

pymongo = py.importlib.import_module('pymongo');

client = pymongo.MongoClient('localhost:27017');

for db = py.list(client.list_databases())

fprintf('%s\n', string(db{1}{'name'}))

end

client.close()

The MATLAB version is a bit more complex for a couple reasons:

1. The for loop cannot iterate over client.list databases() directly as Python can. At-
tempting to do that results in the error Array formation and parentheses-style indexing

with objects of class 'py.pymongo.command cursor.CommandCursor' is not allowed.

Use objects of class 'py.pymongo.command cursor.CommandCursor' only as scalars

or use a cell array. Error in mongo connect The work-around is to explicitly expand
this function call to a Python list.

2. The loop variable db is a single-item Python list containing the dictionary we expect. To get
to the dictionary we have to index the first (and only) item of this the list. That’s done with
the {1} index before the {'name'} key. Next, the database name returned by db{1}{'name'}
is a a Python string, but if we attempt to fprintf() that directly, MATLAB will print the
individual characters of the string. To get around that we have to explicitly convert the
Python string to a MATLAB version so we end up with string(db{1}{'name'}).
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MATLAB 2020b and higher then give the expected output:

>> mongo_connect

admin

config

local

While relatively simple, the issues we’re stumbling across using MongoDB in MATLAB with
pymongo foreshadow more challenges ahead.

8.3 Aside: connecting to a remote MongoDB Database

The client connection to a local MongoDB instance done with

client = MongoClient('localhost:27017')

takes a notably different form when connecting to a remote database that requires authentication.
In that case the connection string passed to the MongoClient() function is more involved:

Python:

db_user = 'al'

db_passwd = 'SuperSecret'

db_host = '413.198.231.158'

db_port = 27027

uri = "mongodb://%s:%s@%d/purchase_orders" % (

db_user, db_passwd, db_host, db_port)

client = MongoClient(uri)

MATLAB 2020b and higher:

db_user = 'al';

db_passwd = 'SuperSecret';

db_host = '413.198.231.158';

db_port = 27027;

uri = sprintf("mongodb://%s:%s@%s:%d/purchase_orders", ...

db_user, db_passwd, db_host, db_port);

client = pymongo.MongoClient(uri);
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8.4 Insert

I’ll insert the same package delivery data used for the SQLite+MATLAB (Chapter 5) and Post-
greSQL+MATLAB (Chapter 7) examples. Well, not exactly the same since NoSQL database
engines such as MongoDB don’t have a concept of tables. Rather than separating the delivery data
into orders and rates tables, all information will be inserted into documents (BSON records) of
a collection.

The first rows of each SQL table in the SQLite example are

orders table

origin item weight destination

Z66 tube 1.73 N51

rates table

item cost by weight

tube 0.46

These can be represented by the following JSON record (JSON is a subset of BSON):

{ "origin" : "Z66",

"item" : "tube",

"weight" : 1.73,

"dest" : "N51",

"cost_by_weight" : 0.46}

8.4.1 Inserting a single record

Creating a collection and inserting a document takes just a few lines of code. This is an expanded
form of the connection tester which inserts the record above:

Python:

#!/usr/bin/env python

# file: mongo_insert_one.py

from pymongo import MongoClient

client = MongoClient('localhost:27017')
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db = client.deliveries

record = { "origin" : "Z66", "item" : "tube",

"weight" : 1.73, "dest" : "N51",

"cost_by_weight" : 0.46}

db.deliveries.insert_one( record )

client.close()

Note that I didn’t pass a JSON string to the .insert one()method. Instead, I gave it a Python
dictionary. This is a convenience provided by the pymongo module which converts dictionaries to
JSON—or BSON if needed—for us. Once again the MATLAB version requires more effort as it
won’t create the deliveries collection for us automatically as in Python. Here we have to explicitly
spell out a database and a collection to create:

MATLAB:

% file: mongo_insert_one.m

pymongo = py.importlib.import_module('pymongo');

client = pymongo.MongoClient('localhost:27017');

deliveries = client.get_database('deliveries').get_collection('deliveries');

record = py.dict(pyargs( ...

"origin", "Z66", "item", "tube", ...

"weight", 1.73, "dest", "N51", ...

"cost_by_weight", 0.46));

deliveries.insert_one( record )

client.close()

Now that we’ve covered the basic mechanics of connecting to a MongoDB database and inserting
a record we can move on to a more realistic program that reads many records from a text file then
inserts them in bulk.

8.4.2 Inserting multiple records

Once again I’ll reuse the fake data.m m-file from the SQLite chapter (source listing in section
5.3.2) to create a text file of delivery data. Running it in MATLAB,

>> fake_data

>>

leaves me with the text file, orders.txt, which has 100,000 lines of delivery orders.

I’d also like to reuse the four line Python module load orders.py to speed up data in-
gest in MATLAB as I did for the SQLite and PostgreSQL examples but the output from its
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readfile() function isn’t well-suited for use with MongoDB. We saw that pymongo’s insert one()

method takes a Python dictionary as an input argument. The corresponding bulk insert method,
insert many(), takes a list of dictionaries. The load orders.readfile() function returns a list
of lists which would have to be manipulated further to a list of dictionaries. Rather than doing
that, I’ll implement a new file reader that directly returns the necessary structure. It looks like
this:

Python:

# file: load_orders_for_mongodb.py

import pathlib

def readfile(File):

cbw = {'tube' : 0.46, 'package': 0.65,

'letter' : 0.16, 'card' : 0.05}

P = pathlib.Path(File)

all_orders = []

rows = [_.split() for _ in P.read_text().split('\n') if _]

for origin, item, weight, dest in rows:

order = { 'origin' : origin, 'item' : item,

'weight' : float(weight), 'dest' : dest,

'cost_by_weight' : cbw[item] }

all_orders.append( order )

return all_orders

I’ll import this module and call its readfile() function in both Python and MATLAB bulk insert
programs:

Python:

#!/usr/bin/env python

# file: mongo_insert_many.py

from pymongo import MongoClient

from load_orders_for_mongodb import readfile

import time

client = MongoClient('localhost:27017')

db = client.deliveries

tic = time.time()

all_records = readfile('orders.txt')

toc = time.time() - tic

print(f'read {len(all_records)} took {toc:.3f} s')

# delete the deliveries collection if it already exists

if 'deliveries' in db.list_collection_names():
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db['deliveries'].drop()

tic = time.time()

db.deliveries.insert_many( all_records )

toc = time.time() - tic

print(f'insert {len(all_records)} took {toc:.3f} s')

client.close()

MATLAB:

% file: mongo_insert_many.m

pymongo = py.importlib.import_module('pymongo');

LO = py.importlib.import_module('load_orders_for_mongodb');

client = pymongo.MongoClient('localhost:27017');

db = client.get_database('deliveries');

deliveries = db.get_collection('deliveries');

tic;

all_records = LO.readfile('orders.txt');

fprintf('read %d took %.3f s\n', length(all_records), toc)

% delete the deliveries collection if it already exists

if db.list_collection_names().count('deliveries') > 0

db.drop_collection('deliveries');

end

tic;

deliveries.insert_many( all_records );

fprintf('insert %d took %.3f s\n', length(all_records), toc)

client.close()

Insert performance is fairly impressive. (Times in seconds; hardware is a 2015 Dell XPS 13
laptop running Ubuntu 20.04, Anaconda Python 2021.05, and MATLAB 2020b)

n rows MATLAB + Python read MATLAB insert Python read Python insert

100,000 0.33 1.41 0.18 1.30
1,000,000 2.89 15.15 2.23 14.87
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8.5 Query

The SQL statement

select origin,sum(weight*cost_by_weight) from orders O, rates R

where O.item = R.item group by origin;

used in the SQLite and PostgreSQL examples takes a starkly different form in MongoDB. There
the query can be expressed as

db.deliveries.aggregate([{$group :

{_id : {F1:'$origin', F2:'$dest'},

tot : {$sum : '$weight'} } } ])

which can be implemented like this in Python:

Python:

#!/usr/bin/env python

# file: mongo_query.py

from pymongo import MongoClient

client = MongoClient('localhost:27017')

db = client.deliveries

n_records = db.deliveries.count_documents({})

print(f'number of records in deliveries = {n_records}')

pipeline = [{'$group' : {'_id' : {'F1':'$origin', 'F2':'$dest'},

'tot' : {'$sum' : '$weight'}}}]

for x in db.deliveries.aggregate(pipeline=pipeline):

origin = x['_id']['F1']

dest = x['_id']['F2']

sum_weight = x['tot']

print(f'{origin} -> {dest} {sum_weight:6.2f}')

client.close()

Lines 10-13 in the MATLAB code below show the rather clumsy notation needed to express the
multiply-nested dictionaries of the aggregation pipeline:

MATLAB:
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1 % file: mongo_query.m

2 pymongo = py.importlib.import_module('pymongo');

3 client = pymongo.MongoClient('localhost:27017');

4 deliveries = client.get_database('deliveries').get_collection(...

5 'deliveries');

6

7 n_records = deliveries.count_documents(py.dict());

8 fprintf('number of records in deliveries = %d\n', n_records)

9

10 query = py.dict(pyargs('$group', py.dict(pyargs( ...

11 '_id', py.dict(pyargs('F1','$origin','F2','$dest')), ...

12 'tot', py.dict(pyargs('$sum','$weight')) )) ));

13 pipeline = py.list();

14 pipeline.append(query);

15

16 for x = py.list(deliveries.aggregate(pyargs('pipeline',pipeline)))

17 origin = string(x{1}{'_id'}{'F1'});

18 dest = string(x{1}{'_id'}{'F2'});

19 sum_weight = x{1}{'tot'};

20 fprintf('%s -> %s %6.2f\n', origin, dest, sum_weight)

21 end

22 client.close()

8.6 Update

In the SQLite and PostgreSQL examples I updated those respective databases by scaling the weight
of packages by 2.2 with this SQL statement:

update orders set weight = weight*2.2 where item = 'package';

The equivalent in MongoDB is considerably more complex with my setup as the version I’m
running, v3.6.8, does not support multiple record updates with operators (this is supported in
v4.2). My options are to write a loop over the single record update function update one(), or to
completely replace the records which have item = 'package' with new entries in Python. Looping
over a single record update function sounds slow so I’ll take the second approach.

Python:

#!/usr/bin/env python

# file: mongo_update.py

from pymongo import MongoClient
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def print_records(cursor):

for i,x in enumerate(cursor):

origin = x['origin']

item = x['item']

weight = x['weight']

dest = x['dest']

print(f'{i+1:3d}. {origin} {item:8s} {weight:10.6f} {dest}')

def heaviest_packages(n, db):

packages = { "item": { "$eq": "package" } }

return db.find(packages).sort([('weight', -1)]).limit(n)

client = MongoClient('localhost:27017')

db = client.deliveries

print('Before scaling weight of packages')

print_records(heaviest_packages(3, db.deliveries))

packages = { "item": { "$eq": "package" } }

package_records = db.deliveries.find(packages)

updated_packages = []

for record in package_records:

new_record = record

new_record['weight'] *= 2.2

del new_record['_id']

updated_packages.append(new_record)

db.deliveries.delete_many(packages)

db.deliveries.insert_many(updated_packages)

print('After scaling weight of packages')

print_records(heaviest_packages(3, db.deliveries))

client.close()

MATLAB:

% file: mongo_update.m

pymongo = py.importlib.import_module('pymongo');

client = pymongo.MongoClient('localhost:27017');

deliveries = client.get_database('deliveries').get_collection('deliveries');

fprintf('Before scaling weight of packages\n')

print_records(heaviest_packages(10, deliveries))
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packages = py.dict(pyargs("item",py.dict(pyargs("$eq","package"))));

% = { "item" : { "£eq" : "packages } }

package_records = deliveries.find(packages);

updated_packages = py.list();

for record = py.list(package_records)

new_record = record;

new_record{1}.update(pyargs('weight', new_record{1}{'weight'} * 2.2));

new_record{1}.pop('_id'); % == del new_record['_id']

updated_packages.append(new_record{1});

end

deliveries.delete_many(packages);

deliveries.insert_many(updated_packages);

fprintf('After scaling weight of packages\n')

print_records(heaviest_packages(3, deliveries))

client.close()

function print_records(cursor)

i = 0;

for x = py.list(cursor)

i = i + 1;

origin = string(x{1}{'origin'});

item = string(x{1}{'item'});

weight = x{1}{'weight'};

dest = string(x{1}{'dest'});

fprintf('%3d. %s %8s %10.6f %s\n', ...

i, origin, item, weight, dest)

end

end

function [cursor] = heaviest_packages(n, db)

packages = py.dict(pyargs("item",py.dict(pyargs("$eq","package"))));

by_weight = py.list({py.tuple({'weight', int64(-1)})});

cursor = db.find(packages).sort(by_weight).limit(int64(n));

end

As a sanity check, both programs print records having the three heaviest packages before and after
the update. The output from both is correct but also a bit disappointing:

Before scaling weight of packages

1. C30 package 5.000000 Q38

2. Y33 package 5.000000 E99

3. B72 package 5.000000 L20
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After scaling weight of packages

1. C30 package 11.000000 Q38

2. Y33 package 11.000000 E99

3. B72 package 11.000000 L20

There’s no variation in the weight because the fake data generator only used three significant
figures for weight. Consequently the maximum value of 5.00 appears many times in 100,000
records. A more convincing test is to work with a small database (for example, set n rows to 50 in
fake data.m) then print all records before and after.
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Chapter 9

Work with Redis in MATLAB Using
the redis-py Python Module

2022/08/05

Redis, the “remote dictionary server”, is a fast network-based in-memory database for key/value
pairs. In addition to its high performance and ability to store structured values, Redis implements
a publish/subscribe service so that applications can be notified of changes to keys they subscribe
to. The MATLAB Production Server has a Redis interface. Python does too—several, actually. In
this article I’ll demonstrate a MATLAB interface to Redis via the the redis-py Python module.

9.1 Why would a MATLAB user care about Redis?

Redis may prove useful to you if you have a MATLAB application that needs to share values rapidly
with other programs on your network. The programs involved use Redis as a remote memory
bank for shared variables. Interaction with a Redis server happens with the Redis communication
API which is available for more than 50 languages including Python—and therefore, by extension,
MATLAB as well. While that sounds complicated to set up, it is often easier than writing other
networking code, whether directly with TCP/IP sockets, or with a networking framework such as
MPI. It is certainly cleaner and faster than communicating through the file system.

Note: Redis stores all values as character (or byte) arrays. For this reason it is poorly-suited for
exchanging numeric arrays as might be needed by a computationally intensive parallel MATLAB
program. Stick with MPI from the Parallel Computing Toolbox for such applications (or use Dask
with MATLAB as shown in Chapter 14).

If your MATLAB projects work in isolation, that is, they don’t need to get or provide informa-
tion to other applications, chances are you won’t need a network-based key/value store. If that’s
the case, the rest of this article may not interest you.
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9.2 Install redis-py

You’ll need the redis-py Python module in your installation to call it from MATLAB.

NOTE: There’s a confusing overlap of names for the Python Redis package, the Redis
application, and Anaconda’s Redis bundle.

Is it redis or redis-py ?

• The primary Python Redis module is developed at https://github.com/redis/redis-py .
Although the name on Github is redis-py, once you install this module, you import it with
import redis (not import redis-py)

• In Anaconda distributions, this Python module is installed with conda install redis-py

(not conda install redis)

• In Anaconda distributions, the full-up Redis application including the server and command
line tools can be installed with conda install redis

• In other Python distributions, the module can be installed with python -m pip install

redis (not python -m pip install redis-py)

Check your installation

Check your Python installation to see if it has the redis-py Python module by starting the Python
command line REPL and importing it—with import redis, not import redis-py. If it imports
successfully you can also check the version number.

> python

>>> import redis

>>> redis.__version__

'3.5.3'

If you get a ModuleNotFoundError, you’ll need to install it using one of the methods listed
above.

9.3 Start a Redis server

Skip this section if you already have a Redis server running somewhere on your network (or on
your own computer).
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To begin, install the Redis application by following the Redis installation instructions, us-
ing your operating system’s package manager (for example on Ubuntu you’d need apt install

redis-tools redis-server) or, if you have the Anaconda Python installation, by installing Redis
with conda:

> conda install redis

This provides both the server, redis-server and command line tools such as the redis-cli client
program. Next, open a terminal and start the server:

> redis-server redis.conf --port 12987

The configuration file redis.conf and port value --port 12987 are optional. If you don’t
specify them the server will use a default configuration and run on port 6379. You’ll need to
create a config file if you want to add password protection and persist the memory database to
disk, among many other options.

If all is well you’ll see some ASCII art:

_._

_.-``__ ''-._

_.-`` `. `_. ''-._ Redis 5.0.3 (00000000/0) 64 bit

.-`` .-```. ```\/ _.,_ ''-._

( ' , .-` | `, ) Running in standalone mode

|`-._`-...-` __...-.``-._|'` _.-'| Port: 12987

| `-._ `._ / _.-' | PID: 2453308

`-._ `-._ `-./ _.-' _.-'

|`-._`-._ `-.__.-' _.-'_.-'|

| `-._`-._ _.-'_.-' | http://redis.io

`-._ `-._`-.__.-'_.-' _.-'

|`-._`-._ `-.__.-' _.-'_.-'|

| `-._`-._ _.-'_.-' |

`-._ `-._`-.__.-'_.-' _.-'

`-._ `-.__.-' _.-'

`-._ _.-'

`-.__.-'

2453308:M 30 Jul 2022 14:30:20.334 # Server initialized

2453308:M 30 Jul 2022 14:30:20.334 * Ready to accept connections
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9.4 Connect to a Redis server

We’ll use the redis-cli command line application to test our ability to interact with the Redis
server. It starts a read-evaluate-print loop (REPL) that accepts Redis commands:

(matpy) > redis-cli -h localhost -p 12987

localhost:12987>

The prompt above indicates a successful connection to the server running on the same computer.
Had the connection failed, perhaps because the server isn’t running, the prompt would look like
this:

(matpy) > redis-cli -h localhost -p 12987

Could not connect to Redis at localhost:12987: Connection refused

not connected>

The -h localhost switch is redundant as the default host is the current computer. It appears
here explicitly to give a sense of how one would connect to a Redis server on a different computer.
Also the -p 12987 can be omitted if your Redis server is using the default port (6379).

9.4.1 Add or update a key/value pair

Within a successfully-connected redis-cli session we can add new keys and values with the SET
command:

localhost:12987> set sensor_T712_temperature 23.4

OK

localhost:12987>

Any Redis-capable application on our network can now retrieve the value for
sensor T712 temperature. To update the value, simply set it again:

localhost:12987> set sensor_T712_temperature 37.9

OK

localhost:12987>
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9.4.2 Get a key’s value

We can retrieve a key’s value with the GET command

localhost:12987> get sensor_T712_temperature

"37.9"

localhost:12987>

Note that the return value is a character array, not a floating point number.

9.4.3 Batch redis-cli commands

Exit the redis-cli REPL session above with <ctrl>-c, <ctrl>-d, or by enterring either exit or
quit. The command line client program accepts complete Redis commands without needing to
enter the REPL. This makes it possible to write Redis-capable shell or Windows .bat scripts, or in
fact be used by any programming language capable of making a system call. We’ll start with the
ping command which merely tests the connection to the Redis service. A reply of PONG indicates
success:

> redis-cli -h localhost -p 12987 ping

PONG

> redis-cli -h localhost -p 12987 set sensor_T712_temperature 40.2

OK

> redis-cli -h localhost -p 12987 get sensor_T712_temperature

"37.9"

Now that we’ve checked that our Redis service is available and we can interact with it, let’s do
the interactions programmatically:

Python:

#!/usr/bin/env python

# file: set_get.py

import redis

R = redis.Redis(host='localhost',port=12987,decode_responses=True)

try:

R.ping()

except redis.exceptions.ConnectionError as e:
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print(f'Is Redis running? Unable to connect {e}')

sys.exit(1)

print(f'Connected to server.')

R.set('sensor_T712_temperature', 39.8)

retrieved_temp = R.get('sensor_T712_temperature')

print(f'sensor_T712_temperature = {retrieved_temp}')

print(f'(as a number) = {float(retrieved_temp):.3f}')

A note about the decode responses=True option: without it, programmatic reads of Redis
keys and values receive byte arrays. In most cases you’d rather have strings, not byte arrays.
You can get a string from a byte array by applying the .decode() method to the byte array, but
including the decode responses=True in the initial connection call spares you from having to add
.decode() to every Redis return variable.

In any event, you still have to explicitly typecast the string temperature value if you want to
use it numerically.

Running the Python program gives:

> ./set_get.py

Connected to server.

sensor_T712_temperature = 39.8

(as a number) = 39.800

The MATLAB version is:

% file: set_get.m

redis = py.importlib.import_module('redis');

R = redis.Redis(pyargs('host','localhost','port',int64(12987),...

'decode_responses',py.True));

try

R.ping();

fprintf('Connected to server.\n')

catch EO

fprintf('Is Redis running? Unable to connect: %s\n', EO.message)

end

R.set('sensor_T712_temperature', 39.8);

retrieved_temp = R.get('sensor_T712_temperature');

fprintf('sensor_T712_temperature = %s\n', string(retrieved_temp))

as_number = double(string(retrieved_temp));

fprintf('(as a number) = %6.3f\n', as_number)
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>> set_get

Connected to server.

sensor_T712_temperature = 39.8

(as a number) = 39.800

9.5 Set/get structured data

The ‘value’ part of a Redis key/value pair may be a structure. Supported structures are a string,
set, sorted set, list, hash, bitmap, bitfield, hyperloglog, stream, and geospatial index. The exam-
ple below demonstrates setting and getting a hash since conceptually this structure resembles a
MATLAB struct.

9.5.1 Add a hash from the command line

The Redis command HSET adds a hash. This command

> redis-cli -h localhost -p 12987 hset newmark alpha 0.25 beta 0.5 gamma 'is unset'

adds a key newmark with fields alpha, beta, and gamma corresponding to a struct like this in
MATLAB:

>> newmark

struct with fields:

alpha: 0.2500

beta: 0.5000

gamma: "is unset"

Bear in mind though the numeric values in the MATLAB struct are saved as strings in the
Redis hash. The Redis hash can be retrieved in its entirety with HGETALL

> redis-cli -h localhost -p 12987 hgetall newmark

1) "alpha"

2) "0.25"

3) "beta"

4) "0.5"

5) "gamma"

6) "is unset"

or selectively with HMGET (where M is for “multi-values”) by providing a list of the desired fields:
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> redis-cli -h localhost -p 12987 hmget newmark alpha gamma

1) "0.25"

2) "is unset"

Programmatically, the .hgetall() function returns a Python dictionary in both Python and
MATLAB. This is convenient when the values are strings but not that helpful if the values have to
be typecast to numbers. In that case it’s an equal amount of work to instead calling the .hmget()
method to just get back a list of values (once again, byte arrays) and convert those.

Python:

#!/usr/bin/env python

# file: get_hash.py

import redis

R = redis.Redis(host='localhost',port=12987,decode_responses=True)

try:

R.ping()

except redis.exceptions.ConnectionError as e:

print(f'Is Redis running? Unable to connect {e}')

sys.exit(1)

print(f'Connected to server.')

values = R.hmget('newmark', ['alpha', 'beta', 'gamma'])

newmark = { 'alpha' : float(values[0]),

'beta' : float(values[1]),

'gamma' : values[2] }

print(newmark)

Running it gives:

> get_hash.py

Connected to server.

{'alpha': 0.25, 'beta': 0.5, 'gamma': 'is unset'}

MATLAB:

% file: get_hash.m

redis = py.importlib.import_module('redis');

R = redis.Redis(pyargs('host','localhost','port',int64(12987),...

'decode_responses',py.True));

try
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R.ping();

fprintf('Connected to server.\n')

catch EO

fprintf('Is Redis running? Unable to connect: %s\n', EO.message)

end

values = R.hmget('newmark', {'alpha', 'beta', 'gamma'});

newmark = struct;

newmark.alpha = double(string(values{1}));

newmark.beta = double(string(values{2}));

newmark.gamma = string(values{3});

disp(newmark)

The result:

>> get_hash

Connected to server.

alpha: 0.2500

beta: 0.5000

gamma: "is unset"

9.6 Set/get performance

The following programs set, then get 100,000 keys with integer values from 0 to 99,999. The time
to .decode() the returned byte array is also included for the get time since this operation is nearly
always necessary. The MATLAB code is more than 2x slower on sets and a baffling 5x slower on
gets.

Python:

#!/usr/bin/env python

# file: set_get_speed.py

import redis

import time

R = redis.Redis(host='localhost',port=12987)

try:

R.ping()

except redis.exceptions.ConnectionError as e:

print(f'Is Redis running? Unable to connect {e}')

sys.exit(1)

print(f'Connected to server.')
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N = 100_000

T_s = time.time()

for i in range(N):

R.set(f'K_%06{i}', i)

T_e = time.time()

print(f'{N} sets for integer values took {T_e-T_s:.3f} s')

T_s = time.time()

for i in range(N):

v = R.get(f'K_%06{i}')

v = v.decode()

T_e = time.time()

print(f'{N} gets for integer values took {T_e-T_s:.3f} s')

MATLAB:

% file: set_get_speed.m

redis = py.importlib.import_module('redis');

R = redis.Redis(pyargs('host','localhost','port',int64(12987),...

'decode_responses',py.True));

try

R.ping();

fprintf('Connected to server.\n')

catch EO

fprintf('Is Redis running? Unable to connect: %s\n', EO.message)

end

N = 100000;

tic

for i = 1:N

key = sprintf('K_%06d', i-1);

R.set(key, i-1);

end

fprintf('%d sets for integer values took %.3f s\n', N, toc)

tic

for i = 1:N

key = sprintf('K_%06d', i-1);

v = R.get(key);

end

fprintf('%d gets for integer values took %.3f s\n', N, toc)
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Python:

> ./set_get_speed.py

Connected to server.

100000 sets for integer values took 8.377 s

100000 gets for integer values took 7.973 s

MATLAB:

>> set_get_speed

Connected to server.

100000 sets for integer values took 21.580 s

100000 gets for integer values took 44.525 s

Despite the lower performance, a MATLAB Redis set of a key with an integer value followed
by a get of that key takes less than a millisecond.

9.7 Subscribe to key changes

A Redis power-feature is its support for subscriptions. When a program subscribes to a key change,
Redis notifies the program each time the key’s value changes. The first step involves notifying Redis
that you wish to monitor “keyspace events”, namely, changes to keys as well as key expiration and
removal. The most common type of keyspace configuration option is “KEA”. It is set from the
command line like so:

redis-cli -h localhost -p 12987 config set notify-keyspace-events KEA

or programmatically like this in Python:

# Python

import redis

R = redis.Redis(host='localhost',port=12987,decode_responses=True)

R.config_set('notify-keyspace-events', 'KEA')

or this MATLAB:

redis = py.importlib.import_module('redis');

R = redis.Redis(pyargs('host','localhost','port',int64(12987),...

'decode_responses',py.True));

R.config_set('notify-keyspace-events', 'KEA')
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The next step is to define a string pattern that matches one or more keys to watch for. For this
example, say our Redis instance has a collection of keys storing temperature, humidity, and light
data from an array of sensors. Their names might be

sensor_T712_temperature

sensor_T714_temperature

sensor_T716_illumination

sensor_T712_humidity

To have our application to act on changes in any of the temperature keys, our subscription would
look like this:

Sub = R.pubsub()

Sub.psubscribe('__keyspace@0__:sensor_*_temperature')

After setting up the subscription, the code waits for notifications. The most direct way of doing
this is in a loop that sleeps (or does something else) when no notifications come in:

Python:

1 #!/usr/bin/env python

2 # file: subscribe.py

3 import time

4 import sys

5 import redis

6 R = redis.Redis(host='localhost',port=12987,decode_responses=True)

7

8 try:

9 R.ping()

10 except redis.exceptions.ConnectionError as e:

11 print(f'Is Redis running? Unable to connect {e}')

12 sys.exit(1)

13 print(f'Connected to server.')

14

15 # modify configuration to enable keyspace notification

16 R.config_set('notify-keyspace-events', 'KEA')

17

18 Sub = R.pubsub()

19 keys_to_match = 'sensor_*_temperature'

20 Sub.psubscribe('__keyspace@0__:' + keys_to_match)

21 while True:

22 try:
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23 message = Sub.get_message()

24 except redis.exceptions.ConnectionError:

25 print('lost connection to server')

26 sys.exit(1)

27 if message is None:

28 time.sleep(0.1)

29 continue

30 keyname = message['channel'].replace('__keyspace@0__:','')

31 if keyname == keys_to_match:

32 # initial subscription value

33 continue

34 # gets here if any of the matching keys was updated

35 value = R.get(keyname)

36 print(f'{keyname} = {value}')

MATLAB:

1 % file: subscribe.m

2 redis = py.importlib.import_module('redis');

3 R = redis.Redis(pyargs('host','localhost','port',int64(12987),...

4 'decode_responses',py.True));

5 try

6 R.ping();

7 fprintf('Connected to server.\n')

8 catch EO

9 fprintf('Is Redis running? Unable to connect: %s\n', EO.message)

10 end

11

12 % modify configuration to enable keyspace notification

13 R.config_set('notify-keyspace-events', 'KEA');

14

15 Sub = R.pubsub();

16 keys_to_match = "sensor_*_temperature";

17 Sub.psubscribe("__keyspace@0__:" + keys_to_match);

18

19 while 1

20 try

21 message = Sub.get_message();

22 catch EO

23 fprintf('lost connection to server: %s\n', EO.message)

24 break

25 end

26 if message == py.None

27 pause(0.1)

28 continue
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29 end

30 keyname = replace(message{'channel'}, '__keyspace@0__:','');

31 if keyname == keys_to_match

32 % initial subscription value

33 continue

34 end

35 % gets here if any of the matching keys was updated

36 value = string(R.get(keyname));

37 fprintf('%s = %s\n', string(keyname), value)

38 end

When these programs run, they spend most of their time sleeping (line 27 in both programs
for time.sleep(0.1) and pause(0.1)). Of course the sleeps should be replaced by calls to actual
work if your application has better things to do. Then, when the clients receive a notification
from Redis that any of the temperature sensors was updated (line 22 in Python and line 21 in
MATLAB), the message variable is populated with the new temperature and the print statements
at lines 35 (Python) and 37 (MATLAB) are executed.

The actual duration of the sleeps—or the other work done while not listening for the key
changes—is not important. Keyspace change notifications are buffered and the clients will still
be informed even if the clients call message = Sub.get message() long after the keys actually
changed.

We can run the Python and MATLAB programs simultaneously and watch them react to
command line updates of some keys. These key set commands

> redis-cli -p 12987

127.0.0.1:12987> set sensor_A_temperature 101.5

OK

127.0.0.1:12987> set sensor_B_temperature 101.6

OK

127.0.0.1:12987> set sensor_B_humidity 44.3

OK

127.0.0.1:12987> set sensor_C_temperature 101.7

OK

cause the running MATLAB program to produce

>> subscribe

Connected to server.

sensor_A_temperature = 101.5

sensor_B_temperature = 101.6

sensor_C_temperature = 101.7
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Note the program did not respond to a change to sensor B humidity since this key name
doesn’t match our pattern of sensor * temperature.
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Chapter 10

Solve Global Optimization Problems
in MATLAB with
differential evolution()

2022/09/03

MATLAB’s fminsearch() function finds local minima of unbounded multivariable functions.
With a lucky starting guess, it may even return the global minimum. For more rigorous searches of
global minima, or control over the search domain, you’ll need more powerful options such as those
in the Optimization Toolbox or the Global Optimization Toolbox. Alternatives to these toolboxes
include global optimizers from

1. the FileExchange, specifically a differential evolution solver as used in this chapter, or

2. the scipy.optimize module, provided that you’re willing to include Python in your MAT-
LAB workflow (Chapter 3) and implement your objective function in Python.

The first option is the most convenient for MATLAB users as it provides a pure MATLAB
solution. The second option may be necessary in corporate networks that restrict access to the
Internet but include Python on the same computers that have MATLAB. This post covers both
options.

10.1 Differential evolution

scipy.optimize has three global optimizers: shgo(), dual annealing(), and
differential evolution(). Of the three, the most powerful is arguably differential evolution()
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which implements the Storn and Price algorithm1 of the same name.

Briefly, the differential evolution algorithm works by starting with a population of random
guesses to the solution. Guesses which yield better answers to the cost function are combined
to form new guesses while poorly performing guesses are eliminated. The algorithm repeats this
process until the guesses converge.

10.2 An optimization problem: shape alignment

Say you have two images of a triangular widget, where the widget’s position in one image is offset
from the position in the other. After some image processing, perhaps with
OpenCV to identify only the corners, you’re left with these two images:

Figure 10.1: Target image on the left, known image on the right.

Our goal is to figure out how far to translate the shape on the right until it overlaps the one on
the left (we’ll ignore rotation and assume the widgets are always oriented the same way). Simple,
right? Just compute the horizontal and vertical differences of a common corner such as the upper
tip (Figure 10.2).

1Storn, R.; Price, K. (1997). “Differential evolution - a simple and efficient heuristic for global optimization
over continuous spaces”. Journal of Global Optimization. 11 (4): 341–359. doi:10.1023/A:1008202821328. S2CID
5297867.
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Figure 10.2: Alignment is obvious.

However if the widget on the left is on a noisy background and the corner identifcation code returns
many spurious points such as shown in Figure 10.3 then the problem is much harder since there’s
no clear way to determine which known point corresponds to which target point.

Figure 10.3: Alignment is not obvious at all (and may have multiple solutions).

There exist algorithms that can compute accurate offsets quickly but here we’ll take a lazy
approach and let an optimizer figure this out. The cost function can be the sum of distances from
each corner point of our known image to the nearest point on the target image. This sum should
be zero if all three corners of the known image perfectly overlay the three nearest target points.

We’ll start with three known points on a unit grid. To this we’ll add ten target points which
are made of three copies of the known points plus an offset of (-0.4, -0.2) and seven additional
random points. We want an optimizer to return the offset using only the locations of the original
three known points and the ten target points. The code below makes a 10 × 2 array of random
coordinates for the targets then arbitrarily replaces the 3rd, 6th, and 10th points with the known
points plus the offset.
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Python:

In : import numpy as np

In : known = np.array([[0.6, 0.5], [0.6, 0.9], [0.7,0.5]])

In : target = np.random.rand(10,2)

In : truth_offset = np.array([-0.4, -0.2])

In : target[2,:] = known[0,:] + truth_offset

In : target[5,:] = known[1,:] + truth_offset

In : target[9,:] = known[2,:] + truth_offset

MATLAB:

>> known = [0.6 0.5; 0.6 0.9; 0.7 0.5];

>> target = rand(10,2);

>> truth_offset = [-0.4 -0.2];

>> target( 3,:) = known(1,:) + truth_offset;

>> target( 6,:) = known(2,:) + truth_offset;

>> target(10,:) = known(3,:) + truth_offset;

Python and MATLAB will come up with different random target points which will make it
harder to compare solutions. To keep things consistent I’ll run the MATLAB version to produce a
set of values, then hard-code these into both MATLAB and Python test environments:

Python:

known = np.array([[0.6, 0.5], [0.6, 0.9], [0.7,0.5]])

target = np.array([[ 8.147236863931789e-01, 1.576130816775483e-01],

[ 9.057919370756192e-01, 9.705927817606157e-01],

[ 2.0e-01 , 3.0e-01 ],

[ 9.133758561390194e-01, 4.853756487228412e-01],

[ 6.323592462254095e-01, 8.002804688888001e-01],

[ 2.0e-01 , 7.0e-01 ],

[ 2.784982188670484e-01, 4.217612826262750e-01],

[ 5.468815192049838e-01, 9.157355251890671e-01],

[ 9.575068354342976e-01, 7.922073295595544e-01],

[ 3.0e-01 , 3.0e-01 ]])

MATLAB:

>> known = [0.6 0.5; 0.6 0.9; 0.7 0.5];

>> target = [ 8.147236863931789e-01, 1.576130816775483e-01;
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9.057919370756192e-01, 9.705927817606157e-01;

2.0e-01 , 3.0e-01 ;

9.133758561390194e-01, 4.853756487228412e-01;

6.323592462254095e-01, 8.002804688888001e-01;

2.0e-01 , 7.0e-01 ;

2.784982188670484e-01, 4.217612826262750e-01;

5.468815192049838e-01, 9.157355251890671e-01;

9.575068354342976e-01, 7.922073295595544e-01;

3.0e-01 , 3.0e-01 ];

Next we need to find the closest target point for each known point To do that we’ll need to
compute distances from all targets to all knowns then pick the target with the smallest distance
for each known point. The pairwise distance matrix computation is simple with NumPy arrays
in Python and matrices in MATLAB because both support broadcasting. With broadcasting,
subtracting a row vector with nR terms from a column vector with nC terms leaves us with an
nR× nC matrix of all pairwise differences:

MATLAB:

>> format short e

>> known(:,1)'

6.0000e-01 6.0000e-01 7.0000e-01

>> target(:,1)

8.1472e-01

9.0579e-01

2.0000e-01

9.1338e-01

6.3236e-01

2.0000e-01

2.7850e-01

5.4688e-01

9.5751e-01

3.0000e-01

then

MATLAB:

>> target(:,1) - known(:,1)'
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2.1472e-01 2.1472e-01 1.1472e-01

3.0579e-01 3.0579e-01 2.0579e-01

-4.0000e-01 -4.0000e-01 -5.0000e-01

3.1338e-01 3.1338e-01 2.1338e-01

3.2359e-02 3.2359e-02 -6.7641e-02

-4.0000e-01 -4.0000e-01 -5.0000e-01

-3.2150e-01 -3.2150e-01 -4.2150e-01

-5.3118e-02 -5.3118e-02 -1.5312e-01

3.5751e-01 3.5751e-01 2.5751e-01

-3.0000e-01 -3.0000e-01 -4.0000e-01

The same can be done with NumPy arrays but there one must explicitly add a second dimension
to one of the two column extracts with np.newaxis. Without this step, the arrays of x coordinates
are merely one dimensional arrays with no concept of row or column orientation. (A detailed
explanation can be found in section 11.1.12 of my book.)

Python:

In : target[:,0][:,np.newaxis] - known[:,0]

Out:

array([[ 0.21472369, 0.21472369, 0.11472369],

[ 0.30579194, 0.30579194, 0.20579194],

[-0.4 , -0.4 , -0.5 ],

[ 0.31337586, 0.31337586, 0.21337586],

[ 0.03235925, 0.03235925, -0.06764075],

[-0.4 , -0.4 , -0.5 ],

[-0.32150178, -0.32150178, -0.42150178],

[-0.05311848, -0.05311848, -0.15311848],

[ 0.35750684, 0.35750684, 0.25750684],

[-0.3 , -0.3 , -0.4 ]])

By extending the broadcasting idea to include the delta y computation then squaring and
summing, we can get the complete 10 × 3 array of squares of distances between known and target
points with just one (long) line of code:

Python:

In : dist2 = ( target[:,0][:,np.newaxis] - known[:,0] )**2 + \

: ( target[:,1][:,np.newaxis] - known[:,1] )**2

In : dist2

Out:

array([[0.16333506, 0.5972446 , 0.13039033],

[0.31496628, 0.09849205, 0.26380789],

96

https://www.apress.com/gp/book/9781484272220


[0.2 , 0.52 , 0.29 ],

[0.0984183 , 0.27011778, 0.04574313],

[0.09121548, 0.01099111, 0.09474363],

[0.2 , 0.2 , 0.29 ],

[0.10948469, 0.33207567, 0.18378505],

[0.1756576 , 0.00306918, 0.1962813 ],

[0.21319626, 0.1394304 , 0.15169489],

[0.13 , 0.45 , 0.2 ]])

MATLAB:

>> dist2 = ( target(:,1) - known(:,1)' ).^2 + ...

( target(:,2) - known(:,2)' ).^2

1.6334e-01 5.9724e-01 1.3039e-01

3.1497e-01 9.8492e-02 2.6381e-01

2.0000e-01 5.2000e-01 2.9000e-01

9.8418e-02 2.7012e-01 4.5743e-02

9.1215e-02 1.0991e-02 9.4744e-02

2.0000e-01 2.0000e-01 2.9000e-01

1.0948e-01 3.3208e-01 1.8379e-01

1.7566e-01 3.0692e-03 1.9628e-01

2.1320e-01 1.3943e-01 1.5169e-01

1.3000e-01 4.5000e-01 2.0000e-01

meaning, for example, the square of the distance between the 8th target point (== 8th row) and 3rd

known point (== 3rd column) is 1.9628e-01. All that remains is to take the square root of every
term.

10.3 Setting up the cost function

Now that we know how far apart each target point is from each known point, we just need to find
the closest ones then sum their distances. Taking the minumum over each column, then summing
gives us the cost function:

Python:

In : dist = np.sqrt( ( target[:,0][:,np.newaxis] - known[:,0] )**2 +

: ( target[:,1][:,np.newaxis] - known[:,1] )**2 )

In : np.min(dist, axis=0)
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Out: array([0.30201901, 0.05540018, 0.21387643])

In : np.min(dist, axis=0).sum()

Out: 0.5712956164197415

MATLAB:

>> dist = sqrt( ( target(:,1) - known(:,1)' ).^2 + ...

( target(:,2) - known(:,2)' ).^2 );

>> min(dist)

0.3020 0.0554 0.2139

>> sum(min(dist))

0.5713

Optimizers need to call the function that’s to be minimized so we’ll rewrite the expressions above
as functions called cost()2 We merely need to wrap the distance summation computation into a
function:

Python:

import numpy as np

def cost(known, target):

dist = np.sqrt( ( target[:,0][:,np.newaxis] - known[:,0] )**2 +

( target[:,1][:,np.newaxis] - known[:,1] )**2 )

return np.min(dist, axis=0).sum()

MATLAB:

function [sum_dist] = cost(known, target)

dist = sqrt( ( target(:,1) - known(:,1)' ).^2 + ...

( target(:,2) - known(:,2)' ).^2 );

sum_dist = sum(min(dist));

end

2If you are using the Audio Toolbox, Communications Toolbox, or DSP System Toolbox you’ll want to call the
function something other than cost() since these toolboxes also have a cost() function.
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10.4 Visualizing the cost function

It’s instructive to see how the cost function varies across the search domain but this is only practical
if the cost function has two or fewer independent variables and is inexpensive to compute. The cost
function chosen for this post was tailored to meet these criteria. I’d have liked to allow the target
shape to be oriented at an arbitrary angle but then the offset would consist of three independent
variables, x, y, and φ, and the cost function would need to be rendered as a 3D cube. That’s
possible but requires a visualization tool that supports cutting planes.

Here are functions to display a contour plot of the cost function across the search domain. Both
functions descretize the search domain of -1 <= x <= 1 and -1 <= y <= 1 into an evenly spaced
grid of 100 × 100 points then compute the cost function at each of these. Afterwards we’ll view
the 100 × 100 cost terms on a contour plot.

Python:

import numpy as np

import matplotlib.pyplot as plt

def plot_cost(known, target):

N = 100

[offset_x, offset_y] = np.meshgrid(np.linspace(-1,1,N),np.linspace(-1,1,N))

C = np.zeros_like(offset_x) # cost at each offset point

offset_target = np.zeros_like(target)

for r in range(N):

for c in range(N):

offset = np.array([offset_x[r,c], offset_y[r,c]])

offset_target = target + offset

C[r,c] = cost(known, offset_target)

fig, ax = plt.subplots()

plt.contourf(offset_x, offset_y, C, levels=20)

ax.set_aspect('equal')

ax.set_xlim([-1,1.0])

ax.set_xlabel('X offset')

ax.set_ylabel('Y offset')

ax.set_ylim([-1,1.0])

plt.colorbar()

plt.show()

MATLAB:

function plot_cost(known, target)

N = 100;

[offset_x, offset_y] = meshgrid(linspace(-1,1,N), linspace(-1,1,N));
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C = zeros(size(offset_x)); % cost at each offset point

offset_target = zeros(size(target));

for r = 1:N

for c = 1:N

offset = [offset_x(r,c), offset_y(r,c)];

offset_target = target + offset;

C(r,c) = cost(known, offset_target);

end

end

levels = 20;

contourf(offset_x, offset_y, C, levels)

colorbar()

end

For our first plot let’s start with the easy case with just three target points which are offset from
three known points:

Python:

import numpy as np

import matplotlib.pyplot as plt

known = np.array([[0.6, 0.5], [0.6, 0.9], [0.7,0.5]])

truth_offset = np.array([-0.4, -0.2])

target = known + truth_offset;

plot_cost(known, target)

Figure 10.6 shows a fairly distinct minimum around (0.4, 0.2). This is the amount I’d need to
add to our target points to make them overlay the known points. Looking at it from the other
direction, (-0.4, -0.2) was added to our known points to produce the targets. The cost function
is fairly smooth with a clear minimum and should not present much challenge for gradient-based
optimizers such as MATLAB’s fminsearch().

Now let’s plot the harder case of 10 target points—3 from shifting the known points, plus the
7 noise points:

Python:

import numpy as np

import matplotlib.pyplot as plt

known = np.array([[0.6, 0.5], [0.6, 0.9], [0.7,0.5]])

target = np.array([[ 8.147236863931789e-01, 1.576130816775483e-01],

[ 9.057919370756192e-01, 9.705927817606157e-01],

[ 2.0e-01 , 3.0e-01 ],
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Figure 10.4: Cost function for three targets, Python.

[ 9.133758561390194e-01, 4.853756487228412e-01],

[ 6.323592462254095e-01, 8.002804688888001e-01],

[ 2.0e-01 , 7.0e-01 ],

[ 2.784982188670484e-01, 4.217612826262750e-01],

[ 5.468815192049838e-01, 9.157355251890671e-01],

[ 9.575068354342976e-01, 7.922073295595544e-01],

[ 3.0e-01 , 3.0e-01 ]])

plot_cost(known, target)

The global minimum in Figure 10.7 is hard to identify. If we add even more noise points the
plot will have more local minima and the optimization problem becomes even more challenging.

For completeness the MATLAB versions of the two plots can be seen in Figures ?? and ??.

MATLAB:

known = [0.6 0.5; 0.6 0.9; 0.7 0.5];
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Figure 10.5: Cost function for ten targets, Python.

truth_offset = [-.4 -.2];

target3 = known + truth_offset;

plot_cost(known, target3)

MATLAB:

known = [0.6 0.5; 0.6 0.9; 0.7 0.5];

target = [ 8.147236863931789e-01, 1.576130816775483e-01;

9.057919370756192e-01, 9.705927817606157e-01;

2.0e-01 , 3.0e-01 ;

9.133758561390194e-01, 4.853756487228412e-01;

6.323592462254095e-01, 8.002804688888001e-01;

2.0e-01 , 7.0e-01 ;

2.784982188670484e-01, 4.217612826262750e-01;

5.468815192049838e-01, 9.157355251890671e-01;

9.575068354342976e-01, 7.922073295595544e-01;

3.0e-01 , 3.0e-01 ];

plot_cost(known, target)
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Figure 10.6: Cost function for three targets, MATLAB.

10.5 Finding the global minimum

We’re ready to put our optimizers to work. Before we jump to differential evolution, let’s try the
fminsearch() function in MATLAB, first with the three target points:

MATLAB:

>> start_offset = [0 0];

>> fn = @(offset) cost(known, target3 + offset);

>> fminsearch(fn, start_offset)

0.4000 0.2000

Looks good. Now the much harder case with the ten target points:

MATLAB:

>> start_offset = [0 0];
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Figure 10.7: Cost function for ten targets, MATLAB.

>> fn = @(offset) cost(known, target + offset);

>> fminsearch(fn, start_offset)

0.0285 -0.2725

Not so good—(0.0285, -0.2725) is one of the several local minima. The Optimization Toolbox has
functions to find the global minimum but if that’s not available, a good alternative is a differential
evolution based solver from the FileExchange or from scipy.optimize.

Python solution with scipy.optimize.differential evolution()

SciPy’s differential evolution() calling arguments are similar to MATLAB’s fminsearch()

but include an additional array of bounds on the independent variables (the x and y values of
the offset). The first argument is a handle to a function, we’ll call it fn() to match the @fn()

anonymous function used in MATLAB since it serves the same purpose—in both Python and
MATLAB, fn calls our cost function with trial values for independent variables plus other required
arguments, namely the known and target arrays, passed through with the keyword argument args.
Here’s what that looks like:

Python:
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def fn(independent_vars, *data):

x_offset, y_offset = independent_vars

known, target = data

offset_target = target + np.array([x_offset, y_offset])

return cost(known, offset_target)

bounds=([-1.0, 1.0], [ -1.0, 1.0])

result = differential_evolution(fn, bounds, args=(known, target))

Solutions for the three and ten point target cases return the correct global minimum for both:

Python:

In : differential_evolution(fn, bounds, args=(known, target3))

Out:

fun: 4.052626611931048e-16

message: 'Optimization terminated successfully.'

nfev: 3033

nit: 98

success: True

x: array([0.4, 0.2])

In : differential_evolution(fn, bounds, args=(known, target))

Out:

fun: 3.3664710476199897e-16

message: 'Optimization terminated successfully.'

nfev: 2913

nit: 94

success: True

x: array([0.4, 0.2])

Differential evolution involves random guesses for the independent variables so the number
of function evaluations (nfev in the solution structure) varies between runs. Oddly, in this in-
stance, the easier case of three target points required more evaluations than the harder case of
ten points. If the cost function is expensive—for example a structural analysis run using Ansys or
NASTRAN to find the maximum stress in a finite element model—you may want to modify the
differential evolution() optional parameters to find a suitable solution with fewer evaluations, or to
run on multiple processors.

Individual elements of the returned structure are accessed through dot notation, for example,

Python:
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In : result = differential_evolution(fn, bounds, args=(known, target3))

In : result.nfev

Out: 3213

In : result.x

Out: array([0.4, 0.2])

The complete Python program with all code above is optim_w_DE.py.

MATLAB solution with differential evolution() from the FileExchange

Markus Buehren posted a thorough implementation of differential evolution entirely in MATLAB
on the FileExchange. I didn’t spend enough time with it to learn how to pass arbitrary inputs to
the cost function so the implementation below embeds the known and target arrays directly in
cost().

I expanded the zip file to the directory /home/al/matlab/DE on my computer. To use Markus’s
solver this directory must be in the MATLAB search path so the script below begins with an
addpath() to this location.

MATLAB: optim_w_fileexchange.m

% file: optim_w_fileexchange.m

addpath('/home/al/matlab/DE'); % location of unzipped files

optimInfo.title = 'Shape alignment';

tolerance = 0.0001;

paramDefCell = {

'parameter1', [-1 1], tolerance % offset_x

'parameter2', [-1 1], tolerance % offset_y

};

objFctParams.offset_x = 0;

objFctParams.offset_y = 0;

objFctHandle = @cost;

DEParams = getdefaultparams;

DEParams.maxiter = 50;

objFctSettings = 100;

emailParams = []; % no email

[bestmem, bestval, bestFctParams, nrOfIterations, resultFileName] = ...

differentialevolution(DEParams, paramDefCell, objFctHandle, ...

objFctSettings, objFctParams, emailParams, optimInfo);

function [sum_dist] = cost(scale, params)

offset_x = params.parameter1(1);
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offset_y = params.parameter2(1);

known = [0.6 0.5; 0.6 0.9; 0.7 0.5];

target = [ 8.147236863931789e-01, 1.576130816775483e-01;

9.057919370756192e-01, 9.705927817606157e-01;

2.0e-01 , 3.0e-01 ;

9.133758561390194e-01, 4.853756487228412e-01;

6.323592462254095e-01, 8.002804688888001e-01;

2.0e-01 , 7.0e-01 ;

2.784982188670484e-01, 4.217612826262750e-01;

5.468815192049838e-01, 9.157355251890671e-01;

9.575068354342976e-01, 7.922073295595544e-01;

3.0e-01 , 3.0e-01 ];

offset_target = target + [offset_x, offset_y];

dist = sqrt( ( offset_target(:,1) - known(:,1)' ).^2 + ...

( offset_target(:,2) - known(:,2)' ).^2 );

sum_dist = scale*sum(min(dist));

end

Running this script yields the correct solution:

MATLAB:

:

'Shape alignment' finished after given maximum number of 50 iterations.

Elapsed time: 0.37 seconds

Number of function evaluations: 961

Mean function evaluation time: 0.0003928 seconds

Final result after 50 iteration(s).

Best member:

parameter1 = 0.4;

parameter2 = 0.2;

Evaluation value: 5.10014e-14

Results are saved in file cost_result_01.mat.

The code also creates plots and writes .mat files to the working directory.

MATLAB solution with scipy.optimize.differential evolution()

If the FileExchange implementation of differential evolution isn’t an option for you, use the im-
plementation in SciPy instead. Although scipy.optimize.differential evolution() can’t be

107



called fromMATLAB directly—it requires a Python evaluation function, the fn()mentioned above—
the call can be put in a Python wrapper and the wrapper called from MATLAB. This means,
however, the cost function must also be implemented in Python (or I suppose could use the
MATLAB engine in Python to call the MATLAB cost function from Python although I’ve never
attempted this). Here’s what the wrapper looks like for our problem:

Python: diffev_bridge.py

# file: diffev_bridge.py

import numpy as np

from scipy.optimize import differential_evolution

def cost(known, target):

dist = np.sqrt( ( target[:,0][:,np.newaxis] - known[:,0] )**2 +

( target[:,1][:,np.newaxis] - known[:,1] )**2 )

return np.min(dist, axis=0).sum()

def fn(independent_vars, *data):

x_offset, y_offset = independent_vars

known, target = data

offset_target = target + np.array([x_offset, y_offset])

return cost(known, offset_target)

def call_DE(bounds, known, target):

args = (known, target)

DE_result = differential_evolution(fn, bounds, args=args)

soln = { 'success' : DE_result.success,

'message' : DE_result.message,

'x' : DE_result.x,

'nfev' : DE_result.nfev,

}

return soln

The MATLAB invocation to this wrapper is

MATLAB (>= 2020b): optim_w_python.m

np = py.importlib.import_module('numpy');

diffev = py.importlib.import_module('diffev_bridge');

known = [0.6 0.5; 0.6 0.9; 0.7 0.5];

offset = [-.4 -.2];

target = [ 8.147236863931789e-01, 1.576130816775483e-01;

9.057919370756192e-01, 9.705927817606157e-01;
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2.0e-01 , 3.0e-01 ;

9.133758561390194e-01, 4.853756487228412e-01;

6.323592462254095e-01, 8.002804688888001e-01;

2.0e-01 , 7.0e-01 ;

2.784982188670484e-01, 4.217612826262750e-01;

5.468815192049838e-01, 9.157355251890671e-01;

9.575068354342976e-01, 7.922073295595544e-01;

3.0e-01 , 3.0e-01 ];

target3 = known + offset;

bounds = py.tuple({[-1, 1], [-1, 1]});

result = diffev.call_DE(bounds, np.array(known), np.array(target3))

result = diffev.call_DE(bounds, np.array(known), np.array(target))

running it returns a solution dictionary for the three point and ten point cases:

MATLAB (>= 2020b):

>> optim_w_python

result =

Python dict with no properties.

{'success': True,

'message': 'Optimization terminated successfully.',

'x': array([0.4, 0.2]),

'nfev': 3153}

result =

Python dict with no properties.

{'success': True,

'message': 'Optimization terminated successfully.',

'x': array([0.4, 0.2]),

'nfev': 3033}

Individual items from the solution dictionary can be accessed using the dictionary .get()

method. Alternatively, convert the dictionary to a native MATLAB struct with py2mat.m:

MATLAB (>= 2020b):

>> offset = double(result.get('x'))

0.4000 0.2000

>> soln = py2mat(result)
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struct with fields:

success: 1

message: "Optimization terminated successfully."

x: [0.4000 0.2000]

nfev: 2943

>> soln.x

0.4000 0.2000

Avoiding MATLAB crashes on Linux

MATLAB 2020b on Ubuntu 20.04 may crash at diffev.call DE() when running optim w python.m.
The solution is to start MATLAB from a suitably-configured Python environment and to include
these lines in startup.m:

MATLAB (>= 2020b):

py.sys.setdlopenflags(int32(10));

os = py.importlib.import_module('os');

os.environ.update(pyargs('KMP_DUPLICATE_LIB_OK','TRUE'))

10.6 Additional Python optimization packages

Optimization is a massive topic that spans problem classes that differential evolution cannot
solve. See Keivan Tafakkori’s list of optimization packages for Python for an overview of addi-
tional solvers.
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Chapter 11

Solve Systems of Nonlinear Equations
in MATLAB with
scipy.optimize.root()

2022/09/17

11.1 Introduction

Systems of nonlinear equations appear in many disciplines of science, engineering, and economics1.
Examples include mechanical linkages, power flow, heat transfer, and Calvo pricing. MATLAB’s
Optimization Toolbox has functions that can solve such equations. If you don’t have access to this
toolbox and you’re willing to include Python in your MATLAB workflow (Chapter 3), you can use
SciPy’s scipy.optimize.root() to find solutions to systems of nonlinear equations in MATLAB.

11.2 Example: The GPS Equations

Satellites in the global positioning system (GPS) constellation continuously transmit a
navigation message which includes information about their orbital positions and the precise time.
A GPS receiver that can get signals from at least four GPS satellites can compute its location
by solving the nonlinear algebraic equations defining the intersection of four spheres, where the
spheres’ radii are determined by how long it took the messages to reach the receiver while traveling
at the speed of light. Technically, only three spheres are needed to resolve two points in space, one

1Wolfgang Eichhorn & Winfried Gleißner, 2016. “Nonlinear Functions of Interest to Economics. Systems of
Nonlinear Equations,” Springer Texts in Business and Economics, in: Mathematics and Methodology for Economics,
edition 1, chapter 7, pages 301-371, Springer
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Figure 11.1: From https://gisgeography.com/trilateration-triangulation-gps/

of which can typically be rejected as a candidate based on its distance from the earth’s surface.
However, since GPS receivers’ clocks are inaccurate compared to the atomic clocks on the satellites,
using a fourth satellite provides an extra equation that lets us additionally solve for the receiver’s
clock error.

The four spheres problem can actually be simplified to a system of linear equations which is
much easier to solve. For the sake of this chapter, however, the nonlinear equations are solved
directly to demonstrate how such problems are set up in Python and MATLAB.

The equations for the four spheres are

(x−A1)
2 + (y −B1)

2 + (z − C1)
2 = (c(t1 − TR + e))2

(x−A2)
2 + (y −B2)

2 + (z − C2)
2 = (c(t2 − TR + e))2

(x−A3)
2 + (y −B3)

2 + (z − C3)
2 = (c(t3 − TR + e))2

(x−A4)
2 + (y −B4)

2 + (z − C4)
2 = (c(t4 − TR + e))2

where numeric subscripts denote the satellite; A, B, and C are earth-centered coordinates (such
as ECI or ECEF) of each satellite; t is the time when the satellite sent its navigation message; TR

is the receiver’s time; e is the error in the receiver’s clock; and c is the speed of light, 299,792.458
km/s. These values come from the GMU article:

satellite Ai [km] Bi [km] Ci [km] ∆i = ti − TR [seconds]

1 15600 7540 20140 0.07074
2 18760 2750 18610 0.07220
3 17610 14630 13480 0.07690
4 19170 610 18390 0.07242
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We’re solving for the receiver’s position, (x, y, z), and the error in its clock, e. Our location
(x, y, z) will be in the same coordinate system, ECEF or ECI, used to define the satellite positions
(Ai, Bi, Ci) and e will be in seconds.

11.3 Defining the function to solve

scipy.optimize.root()’s primary arguments are the function to solve and a starting guess. In
this context, “solve” means to find values for the function’s inputs so that the function returns
zeros for all outputs, in other words, to find the roots of the function. To this end we’ll rewrite our
equations so they equal zeros then write a Python function that returns the four computed values
of the left hand sides:

(x−A1)
2 + (y −B1)

2 + (z − C1)
2 − (c(t1 − TR + e))2 = 0

(x−A2)
2 + (y −B2)

2 + (z − C2)
2 − (c(t2 − TR + e))2 = 0

(x−A3)
2 + (y −B3)

2 + (z − C3)
2 − (c(t3 − TR + e))2 = 0

(x−A4)
2 + (y −B4)

2 + (z − C4)
2 − (c(t4 − TR + e))2 = 0

The input variables (x, y, z, e) need to be stored in a list or NumPy array. We’ll use the Python
variable x as a four item array so that (x, y, z, e) are stored in x[0] through x[3].

The function also needs each satellite’s position, (Ai, Bi, Ci), and the time difference between
the satellite’s clock and the receiver’s clock, ti − TR which we’ll store as Dt:

Python;

# file: gps_location.py

def F(x, A, B, C, Dt):

c_light = 299792.458 # km/s

return (

(x[0]-A[0])**2 + (x[1]-B[0])**2 + (x[2]-C[0])**2 - (c_light*(Dt[0] + x[3]))**2,

(x[0]-A[1])**2 + (x[1]-B[1])**2 + (x[2]-C[1])**2 - (c_light*(Dt[1] + x[3]))**2,

(x[0]-A[2])**2 + (x[1]-B[2])**2 + (x[2]-C[2])**2 - (c_light*(Dt[2] + x[3]))**2,

(x[0]-A[3])**2 + (x[1]-B[3])**2 + (x[2]-C[3])**2 - (c_light*(Dt[3] + x[3]))**2,

)

We’ll also call this function from MATLAB so it needs to be in a file we can import. The exam-
ples below, both Python and MATLAB, will use the above function F() from the file gps location.py.
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11.4 GPS Equations Solved in Python

We can solve for our position and clock error by populating arrays with satellite data then calling
SciPy’s multivariate root finder with a starting guess. The earth’s radius is about 6378 km so a
reasonable guess would be a random point near the earth’s surface, for example (6000, 0, 0). The
clock error should be much less than a second so we’ll use 0 as a guess for that term.

The Python function we’re finding roots of, F(), takes four additional arguments, namely the
three arrays of satellite position, and time deltas, in addition to the input vector x. These additional
arguments can be passed through to F() by giving them to scipy.optimize.root() via the args
keyword option:

Python;

#!/usr/bin/env python

import numpy as np

import scipy.optimize

from gps_function import F

A = np.array([15600, 18760, 17610, 19170.0]) # km

B = np.array([ 7540, 2750, 14630, 610.0]) # km

C = np.array([20140, 18610, 13480, 18390.0]) # km

Dt = np.array([0.07074, 0.07220, 0.07690, 0.07242]) # s

guess = [6000, 0, 0, 0]

location = scipy.optimize.root(F, guess, args=(A, B, C, Dt))

print(location)

The output includes a text string indicating whether or not the solution converged (.message),
the number of times the function was evaluated (.nfev), the 4×4 Jacobian matrix (.fjac) and the
4 terms of function at the computed solution (.fun). The solution itself is in the return variable’s
.x attribute:

fjac: array([[-0.42964552, -0.5286645 , -0.49262911, -0.54151189],

[ 0.20220688, -0.32707893, 0.75636015, -0.52919852],

[ 0.8684367 , -0.05711611, -0.42770859, -0.24417374],

[-0.14260014, 0.78119842, -0.0479713 , -0.60588199]])

fun: array([-1.19209290e-07, -5.96046448e-08,

-1.19209290e-07, -5.96046448e-08])

message: 'The solution converged.'

nfev: 14

qtf: array([ 3.35605879e-05, -1.62470220e-06,
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-2.25947450e-06, 2.73577863e-07])

r: array([ 6.38261526e+04, 2.49011922e+04,

3.81328894e+04, 2.78876134e+10,

-2.27583853e+04, 4.74674593e+03,

-1.98003469e+09, -1.01001959e+04,

-1.33002639e+09, 2.38095380e+08])

status: 1

success: True

x: array([-4.17727096e+01, -1.67891941e+01,

6.37005956e+03, 3.20156583e-03])

(-1.1920928955078125e-07, -5.960464477539063e-08,

-1.1920928955078125e-07, -5.960464477539063e-08)

From location.x we see that our GPS receiver is near the North Pole at (-41.772, -16.789,
6370.060) km and its clock is off by 3.20156583e-03 seconds. location.fun has the function’s value
at the solution. Since all values should be zero, this array represents the solution’s error.

11.5 GPS Equations Solved in MATLAB

MATLAB can call scipy.optimize.root() as easily as Python can, provided that the function
we’re finding the roots of is implemented in Python. (This is the same restriction we encountered
minimizing a function in MATLAB with scipy.optimize.differential evolution(), section
10.3). In our case we’ll reuse the function F() from gps function.py:

MATLAB 2020b+:

% file: solve_gps.m

so = py.importlib.import_module('scipy.optimize');

gps = py.importlib.import_module('gps_function');

A = [15600, 18760, 17610, 19170.0]; % km

B = [ 7540, 2750, 14630, 610.0]; % km

C = [20140, 18610, 13480, 18390.0]; % km

Dt = [0.07074, 0.07220, 0.07690, 0.07242]; % s

guess = [6000, 0, 0, 0];

ABCDt = py.tuple({A, B, C, Dt});

location = so.root(gps.F, guess, pyargs('args',ABCDt))

The location variable found in MATLAB is the same as the one found in Python:
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>> solve_gps

location =

Python OptimizeResult with no properties.

fjac: array([[-0.42964552, -0.5286645 , -0.49262911, -0.54151189],

[ 0.20220688, -0.32707893, 0.75636015, -0.52919852],

[ 0.8684367 , -0.05711611, -0.42770859, -0.24417374],

[-0.14260014, 0.78119842, -0.0479713 , -0.60588199]])

fun: array([-1.19209290e-07, -5.96046448e-08,

-1.19209290e-07, -5.96046448e-08])

message: 'The solution converged.'

nfev: 14

qtf: array([ 3.35605879e-05, -1.62470220e-06,

-2.25947450e-06, 2.73577863e-07])

r: array([ 6.38261526e+04, 2.49011922e+04,

3.81328894e+04, 2.78876134e+10,

-2.27583853e+04, 4.74674593e+03,

-1.98003469e+09, -1.01001959e+04,

-1.33002639e+09, 2.38095380e+08])

status: 1

success: True

x: array([-4.17727096e+01, -1.67891941e+01,

6.37005956e+03, 3.20156583e-03])

Note the object’s class: Python OptimizeResult. Extracting values from such an object is
possible but clumsy as the return values are also Python objects:

>> format long e

>> location.get('x')

ans =

Python ndarray:

-4.177270957085472e+01 -1.678919410652270e+01

6.370059559223343e+03 3.201565829594195e-03

Use details function to view the properties of the Python object.

Use double function to convert to a MATLAB array.
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We’d much prefer a native MATLAB struct. That’s easily done with py2mat.m2

>> loc = py2mat(location)

struct with fields:

x: [-4.177270957085472e+01 -1.678919410652270e+01

6.370059559223343e+03 3.201565829594195e-03]

success: 1

status: 1

nfev: 14

fjac: [4×4 double]

r: [6.382615261849605e+04 2.490119219503466e+04

3.813288936837602e+04 2.788761343528719e+10 ... ]

qtf: [3.356058790625163e-05 -1.624702195475986e-06

-2.259474496258976e-06 2.735778627939572e-07]

fun: [-1.192092895507812e-07 -5.960464477539062e-08

-1.192092895507812e-07 -5.960464477539062e-08]

message: "The solution converged."

2I added support for Python OptimizeResult objects in py2mat.m on 2022-09-16. Earlier versions will fail to
convert such objects.
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Chapter 12

Symbolic Math in MATLAB with
SymPy

2022/10/01

SymPy is a Python-based computer algebra system with capabilities similar to Maple, Maxima,
MATLAB’s Symbolic Math Toolbox, SageMath, and to a lesser extent, Mathematica. The most
natural way to work with mathematical expressions symbolically in MATLAB is with the Symbolic
Math Toolbox. If you don’t have access to this toolbox and you’re willing to include Python in
your MATLAB workflow (Chapter 3), SymPy may be an adequate alternative. SymPy is included
with the recommended Anaconda Python distribution.

SymPy’s capabilities are vast—the PDF version of its recent v1.11.1 documentation is a stag-
gering 3,184 pages—and this post merely covers the basics: defining symbolic variables, integrating,
taking derivatives, solving simultaneous equations, summing series, generating LaTeX markup, and
generating source code in MATLAB and other languages.

To give you a sense of SymPy’s depth, here are a few of its capabilities that aren’t covered in
this article: linear, time-invariant (LTI) controls, combinatorics, quaternions, sets, tensor products
and contraction, Pauli algebra, hydrogen wavefunctions, quantum harmonic oscillators, gamma
matrices, Gaussian optics, and continuum mechanics.

12.1 Defining symbolic variables and functions

The first steps to using SymPy are importing its various modules and defining symbolic variables
and functions. Symbolic variables can be defined three ways: 1) imported from sympy.abc, 2)
created with a call to sympy.symbols(), or 3) created with a call to sympy.Symbol(). The module
sympy.abc has a collection of predefined symbolic variables that include all lower- and uppercase
letters and words defining Greek letters such as omega. Multi-character variables can be defined
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with the sympy.symbols() or sympy.Symbol() functions. The latter allows one to add properties
to a variable indicating, for example, that it is an integer, or its value is always positive, or that it
is a constant, or must be real. The code below defines symbolic variables x, y, r, phi, u1, v1, and
Length using each of the methods:

Python:

from sympy import symbols, Symbol

from sympy.abc import x, y, r, phi # method 1

u1, v1 = symbols('u1 v1') # method 2

Length = Symbol('Length', positive=True, constant=True, real=True) # method 3

The constants pi, i, e, and ∞ must be imported to be used symbolically. i and e exist as
uppercase I and E, and ∞ is oo:

Python:

In : from sympy import Float, pi, I, E, oo

In : pi, I, E, oo

Out: (pi, I, E, oo)

In : Float(pi), Float(E), Float(oo)

Out: (3.14159265358979, 2.71828182845905, oo)

Float(I) doesn’t appear above because yields a TypeError.

Unlike π and e, infinity is not expanded to its IEEE 754 floating point representation even
though NumPy has an explicit term for it: np.inf.

Symbolic functions

In addition to symbolic variables, functions that operate on symbolic variables must also be explic-
itly requested from SymPy. Symbolic-capable functions include forward and inverse trignometric,
forward and inverse hyperbolic, logarithmic, and many others.

For example if your work involves symbolic computations with sine, cosine, and natural loga-
rithm functions, load the symbolic versions of these functions from SymPy with:

Python:

from sympy import sin, cos, ln

Examples of equivalent MATLAB imports appear in the integration and derivation sections
below.
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12.2 Solving equations

We’ll use the symbols defined above in some equations and have SymPy solve them. Here’s an easy
one to start: given the equation for a circle,

x2 + y2 = r2

express the circle in terms of x. There are two ways to set up the problem for SymPy. The first
involves recasting the equation to equal zero, as in

x2 + y2 − r2 = 0

then supplying the left hand side to solve(), along with the variable we want to solve for, namely
x:

Python:

In : from sympy.abc import x, y, r

In : from sympy import solve

In : solve(x**2 + y**2 - r**2, x)

Out: [-sqrt((r - y)*(r + y)), sqrt((r - y)*(r + y))]

While the answer is correct, it doesn’t resemble the expected form of

x = ±
√

r2 − y2

We can get the expected form by explicitly expanding the two parts of the solution:

Python:

In : from sympy.abc import x, y, r

In : from sympy import solve, expand

In : sol_minus, sol_plus = solve(x**2 + y**2 - r**2, x)

In : expand(sol_minus), expand(sol_plus)

Out: (-sqrt(r**2 - y**2), sqrt(r**2 - y**2))

. . . which raises the question of what does it mean for an equation to be “simplified” or
“expanded”? SymPy’s opinion in this case is the opposite of my understanding of these terms.

The second way to solve an equation is to create an explicit equation object with the Eq()

function then pass the equation to solve(). Eq() takes two input arguments which are the left
and right sides of the equation:

Python:
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In : from sympy.abc import x, y, r

In : from sympy import Eq

In : circle_eqn = Eq(x**2 + y**2, r**2) # x^2 + y^2 = r^2

In : solve(circle_eqn, x)

Out: [-sqrt((r - y)*(r + y)), sqrt((r - y)*(r + y))]

Intersection of a circle and line in Python

So far we haven’t really solved anything, we’ve just reordered terms of an equation. Next we’ll
add the equation of a line to the mix and have SymPy figure out the points of intersection. The
equations are

x2 + y2 = r2

y = mx+ b

This is a nonlinear system of equations so we’ll need SymPy’s nonlinsolve() function:

Python:

In : from sympy import Eq, nonlinsolve

In : from sympy.abc import x, y, r, m, b

In : circle_eqn = Eq(x**2 + y**2, r**2) # x^2 + y^2 = r^2

In : line_eqn = Eq(y, m*x + b) # y = m x + b

In : nonlinsolve([circle_eqn, line_eqn], [x, y])

Out: {((-b + b/(m**2 + 1) - m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))/m,

b/(m**2 + 1) - m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1)),

((-b + b/(m**2 + 1) + m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))/m,

b/(m**2 + 1) + m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))}

SymPy returns two pairs of (x, y) values representing the points of intersection—if these exist,
of course. The actual values of b, m, and r will determine whether the solution has real or imaginary
values.

In the previous chapter I showed how SciPy can find numeric solutions to systems of nonlinear
equations. How does SymPy fare on the intersection of four spheres problem described there?
Unfortunately, not well. The program below assembles the problem but nonlinearsolve() doesn’t
return after running for more than an hour.

Python:

#!/usr/bin/env python

# file: four_spheres.py
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# Don't try this at home; the nonlinsolve() step hangs.

from sympy import Eq, nonlinsolve, symbols

from sympy.abc import x, y, z, c, e

A1, A2, A3, A4 = symbols('A1 A2 A3 A4')

B1, B2, B3, B4 = symbols('B1 B2 B3 B4')

C1, C2, C3, C4 = symbols('C1 C2 C3 C4')

Dt1, Dt2, Dt3, Dt4 = symbols('Dt1 Dt2 Dt3 Dt4')

s1 = Eq( (x-A1)**2 + (y-B1)**2 + (z-C1)**2 , (c*(Dt1 + e) )**2 )

s2 = Eq( (x-A2)**2 + (y-B2)**2 + (z-C2)**2 , (c*(Dt2 + e) )**2 )

s3 = Eq( (x-A3)**2 + (y-B3)**2 + (z-C3)**2 , (c*(Dt3 + e) )**2 )

s4 = Eq( (x-A4)**2 + (y-B4)**2 + (z-C4)**2 , (c*(Dt4 + e) )**2 )

soln = nonlinsolve([s1, s2, s3, s4], [x, y, z, e]) # hangs

Intersection of a circle and line in MATLAB

The MATLAB version of the circle/line intersection problem looks like this:

MATLAB (2020b and newer):

sympy = py.importlib.import_module('sympy');

abc = py.importlib.import_module('sympy.abc');

x = abc.x;

y = abc.y;

r = abc.r;

m = abc.m;

b = abc.b;

Two = int64(2);

circle_eqn = sympy.Eq(x^Two + y^Two, r^Two); % x^2 + y^2 = r^2

line_eqn = sympy.Eq(y, m*x + b); % y = m*x + b

soln = sympy.nonlinsolve(py.list({circle_eqn, line_eqn}), ...

py.list({x, y}))

Note: In MATLAB, exponents for squares, cubes, and so on should be explicitly cast
to integers in the SymPy expression. If this is not done, the notation “^2” given to
SymPy will use the default MATLAB type of double which greatly complicates — and
often defeats — the SymPy evaluator.

The solution in MATLAB appears with the full complement of attributes in addition to just
the equations we’re after. This is a truncated portion of the output:

MATLAB:
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>> soln

Python FiniteSet with properties:

args: [1x2 py.tuple]

assumptions0: [1x1 py.dict]

boundary: [1x1 py.sympy.sets.sets.FiniteSet]

:

is_transcendental: [1x1 py.NoneType]

is_zero: [1x1 py.NoneType]

measure: [1x1 py.int]

{((-b + b/(m**2 + 1) - m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))/m,

b/(m**2 + 1) - m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1)),

((-b + b/(m**2 + 1) + m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))/m,

b/(m**2 + 1) + m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))}

The string containing just the two (x, y) pairs is in soln.char:

MATLAB:

>> soln.char

'{((-b + b/(m**2 + 1) - m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))/m,

b/(m**2 + 1) - m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1)),

((-b + b/(m**2 + 1) + m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))/m,

b/(m**2 + 1) + m*sqrt(-b**2 + m**2*r**2 + r**2)/(m**2 + 1))}'

12.3 Solution as LaTeX

The SymPy text results we’ve seen so far look awkward. If you want to publish the results they’ll
look much more elegant rendered with LaTeX. Simple expressions are easy to write manually but
SymPy’s output can get lengthy so its LaTeX generator comes in handy:

Python:

In : from sympy.printing.latex import print_latex

In : from sympy import Eq, nonlinsolve

In : from sympy.abc import x, y, r, m, b

In : circle_eqn = Eq(x**2 + y**2, r**2) # x^2 + y^2 = r^2

In : line_eqn = Eq(y, m*x + b) # y = m x + b

In : soln = nonlinsolve([circle_eqn, line_eqn], [x, y])

In : print_latex(soln)
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The last line produces this output

\left\{\left( \frac{- b + \frac{b}{m^{2} + 1} - \frac{m \sqrt{- b^{2} + m^{2} r^{2}
+ r^{2}}}{m^{2} + 1}}{m}, \ \frac{b}{m^{2} + 1} - \frac{m \sqrt{- b^{2} + m^{2} r^{2}
+ r^{2}}}{m^{2} + 1}\right), \left( \frac{- b + \frac{b}{m^{2} + 1} + \frac{m \sqrt{-
b^{2} + m^{2} r^{2} + r^{2}}} {m^{2} + 1 }}{m}, \ \frac{b}{m^{2} + 1} + \frac{m \sqrt{-
b^{2} + m^{2} r^{2} + r^{2}}}{m^{2} + 1}\right)\right\}

which renders as

(

−b+ b
m2+1

− m
√

−b2+m2r2+r2

m2+1

m
,

b

m2 + 1
− m

√
−b2 +m2r2 + r2

m2 + 1

)

,

(

−b+ b
m2+1

+ m
√

−b2+m2r2+r2

m2+1

m
,

b

m2 + 1
+

m
√
−b2 +m2r2 + r2

m2 + 1

)

12.4 Solution as MATLAB / Python / C / Fortran / etc source
code

In addition to LaTeX, SymPy can express solutions as computer source code in a dozen languages.
The sympy.printing module has these emitters:

Language sympy.printing function

C ccode()

C++ cxxcode()

Fortran fcode()

GLSL glsl code()

JavaScript jscode()

Julia julia code()

Maple maple code()

Mathematica mathematica code()

MATLAB octave code()

Python pycode()

R rcode()

Rust rust code()

The code blocks below repeat the circle/line intersection, this time emitting MATLAB source
code instead of LaTeX. In MATLAB, the call to octave code() returns a Python string so this is
converted to a MATLAB string before printing.

Python:
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#!/usr/bin/env python

from sympy import Eq, nonlinsolve

from sympy.abc import x, y, r, m, b

from sympy.printing import octave_code

circle_eqn = Eq(x**2 + y**2, r**2) # x^2 + y^2 = r^2

line_eqn = Eq(y, m*x + b) # y = m x + b

soln = nonlinsolve([circle_eqn, line_eqn], [x, y])

print(soln)

print(octave_code(soln))

MATLAB (2020b and newer):

sympy = py.importlib.import_module('sympy');

abc = py.importlib.import_module('sympy.abc');

sym_code = py.importlib.import_module('sympy.printing');

x = abc.x;

y = abc.y;

r = abc.r;

m = abc.m;

b = abc.b;

Two = int64(2);

circle_eqn = sympy.Eq(x^Two + y^Two, r^Two); % x^2 + y^2 = r^2

line_eqn = sympy.Eq(y, m*x + b); % y = m*x + b

soln = sympy.nonlinsolve(py.list({circle_eqn, line_eqn}), ...

py.list({x, y}));

fprintf('%s\n', string(sym_code.octave_code(soln)) )

Both versions produce this output:

"{{(-b + b./(m.^2 + 1) - m.*sqrt(-b.^2 + m.^2.*r.^2 + r.^2)./(m.^2 + 1))./m,

b./(m.^2 + 1) - m.*sqrt(-b.^2 + m.^2.*r.^2 + r.^2)./(m.^2 + 1)},

{(-b + b./(m.^2 + 1) + m.*sqrt(-b.^2 + m.^2.*r.^2 + r.^2)./(m.^2 + 1))./m,

b./(m.^2 + 1) + m.*sqrt(-b.^2 + m.^2.*r.^2 + r.^2)./(m.^2 + 1)}}"

Replacing octave code() with jscode() produces much lengthier JavaScript code:

{((-b + b/(Math.pow(m, 2) + 1) - m*Math.sqrt(-Math.pow(b, 2) +

Math.pow(m, 2)*Math.pow(r, 2) + Math.pow(r, 2))/(Math.pow(m, 2) + 1))/m,

b/(Math.pow(m, 2) + 1) - m*Math.sqrt(-Math.pow(b, 2) +

Math.pow(m, 2)*Math.pow(r, 2) + Math.pow(r, 2))/(Math.pow(m, 2) + 1)),

((-b + b/(Math.pow(m, 2) + 1) + m*Math.sqrt(-Math.pow(b, 2) +

Math.pow(m, 2)*Math.pow(r, 2) + Math.pow(r, 2))/(Math.pow(m, 2) + 1))/m,

b/(Math.pow(m, 2) + 1) + m*Math.sqrt(-Math.pow(b, 2) +

Math.pow(m, 2)*Math.pow(r, 2) + Math.pow(r, 2))/(Math.pow(m, 2) + 1))}
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12.5 Definite and indefinite integrals

Integration is done with SymPy’s integrate() function. Here’s a tricky one:
∫

cos(πnx)

(

1 + sin2
(

3πnx

2

))

dx

In addition to the integrate() function we’ll also need to import symbolic versions of the sine
and cosine functions. Constraining n and x to be real, and n to be positive yields a cleaner result.

The Python and MATLAB solutions are

Python:

#!/usr/bin/env python

from sympy import pi, sin, cos, integrate, Symbol

from sympy.printing.latex import print_latex

from sympy.printing import octave_code

n = Symbol('n', real=True, positive=True, integer=True)

x = Symbol('x', real=True)

soln = integrate(cos(pi*n*x)*(1 + sin(3*pi*n*x/2)**2), (x))

at_x_n = soln.evalf(subs={x : 1.5, n : 1})

print(f'solution at x=1.5, n=1 is {at_x_n}')

MATLAB:

sympy = py.importlib.import_module('sympy');

printing = py.importlib.import_module('sympy.printing');

n = sympy.Symbol('n', pyargs('real',py.True, ...

'positive',py.True,'integer',py.True));

x = sympy.Symbol('x', pyargs('real',py.True));

Pi = sympy.pi; % uppercase to be distinct from matlab's pi

Sin = sympy.sin; % uppercase to be distinct from matlab's sin()

Cos = sympy.cos; % uppercase to be distinct from matlab's cos()

soln = sympy.integrate(Cos(Pi*n*x)*(1 + Sin(3*Pi*n*x/2)^int64(2)), ...

py.tuple({x}));

fprintf('%s\n', soln.char)

printing.print_latex(soln)

Note: In the MATLAB solution, SymPy versions of π and sine and cosine functions are
imported with a leading uppercase character to make them distinct from MATLAB’s
pi, sin(), and cos(). If you import pi, sin, and cos from SymPy using the identical
names, they will be SymPy objects that cannot be used in conventional MATLAB
expressions.
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The text version of the solution, minus the obligatory constant, from Python is

7*sin(pi*n*x)*sin(3*pi*n*x/2)**2/(16*pi*n) +

9*sin(pi*n*x)*cos(3*pi*n*x/2)**2/(16*pi*n) + sin(pi*n*x)/(pi*n) -

3*sin(3*pi*n*x/2)*cos(pi*n*x)*cos(3*pi*n*x/2)/(8*pi*n)

while LaTeX version renders as:

7 sin (πnx) sin2
(

3πnx
2

)

16πn
+

9 sin (πnx) cos2
(

3πnx
2

)

16πn
+

sin (πnx)

πn
− 3 sin

(

3πnx
2

)

cos (πnx) cos
(

3πnx
2

)

8πn

The MATLAB result looks quite different

0.4375*sin(pi*n*x)*sin(3*pi*n*x/2)**2/(pi*n) +

0.5625*sin(pi*n*x)*cos(3*pi*n*x/2)**2/(pi*n) + 1.0*sin(pi*n*x)/(pi*n) -

0.375*sin(3*pi*n*x/2)*cos(pi*n*x)*cos(3*pi*n*x/2)/(pi*n)

but, as shown with numeric evaluation in the next section, both yield the same results.

Numeric evaluation of symbolic results

One way to convince ourselves that two starkly different equations are equivalent is to substitute
numeric values for the variables. SymPy equations have a .evalf() method to facilitate this
substitution. The method accepts a dictionary of substitutions and returns a numeric value. If we
append these lines to the Python code above,

Python:

at_x_n = soln.evalf(subs={x : 1.5, n : 1})

print(f'solution at x=1.5, n=1 is {at_x_n}')

we’ll additionally get

solution at x=1.5, n=1 is -0.477464829275686

Replicatiing the .evalf()'s subs= expression in MATLAB doesn’t work though:

128



>> soln.evalf(pyargs('subs',py.dict(pyargs(x,1.5,n,1))))

Error using pyargs

Field names must be string scalars or character vectors.

Instead, to compare the results of the two integrals, I generated MATLAB source code for each
and substituted arrays of values and confirmed both Python and MATLAB solutions agree.

Definite integrals

Definite integrals can be found with the integrate() function by supplying lower and upper bounds
after the variable of integration. The value of the same integral shown earlier going from x = 0 to
x = 1

π
for n = 1, in other words

∫ 1

π

0
cos(πx)

(

1 + sin2
(

3πx

2

))

dx

is solved like this in Python and MATLAB:

Python:

#!/usr/bin/env python

from sympy import pi, sin, cos, integrate, Symbol, simplify

from sympy.printing.latex import print_latex

from sympy.printing import octave_code

x = Symbol('x', real=True)

soln = integrate(cos(pi*x)*(1 + sin(3*pi*x/2)**2), (x, 0, 1/pi))

print_latex(simplify(soln))

MATLAB:

sympy = py.importlib.import_module('sympy');

printing = py.importlib.import_module('sympy.printing');

x = sympy.Symbol('x', pyargs('real',py.True));

Pi = sympy.pi; % uppercase to be distinct from matlab's pi

Sin = sympy.sin; % uppercase to be distinct from matlab's sin()

Cos = sympy.cos; % uppercase to be distinct from matlab's cos()

soln = sympy.integrate(Cos(Pi*x)*(1 + Sin(3*Pi*x/2)^int64(2)), ...

py.tuple({x, 0, 1/Pi}));

printing.print_latex(soln)

fprintf('%s\n', soln.evalf().char)
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Once again, the Python and MATLAB symbolic solutions differ but both evaluate to the same
number:

Python:

−2 sin (2)− sin (4) + 24 sin (1)

16π
= 0.380649112305801

MATLAB:
1.19584445481538

π
= 0.380649112305801

In this case .evalf() works in MATLAB because there are no variables to substitute.

12.6 Derivatives

Derivatives are computed with the diff() function. If we start with a function

y = sin2(πx)e−ix

we can get dy
dx

with

Python:

#!/usr/bin/env python

from sympy import I, pi, sin, exp, diff

from sympy.abc import x, y

from sympy.printing.latex import print_latex

soln = diff(sin(pi*x)**2 * exp(-I*x), x)

print_latex(soln)

MATLAB:

sympy = py.importlib.import_module('sympy');

abc = py.importlib.import_module('sympy.abc');

printing = py.importlib.import_module('sympy.printing');

x = abc.x;

y = abc.y;

I = sympy.I;

Pi = sympy.pi; % uppercase to be distinct from matlab's pi
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Sin = sympy.sin; % uppercase to be distinct from matlab's sin()

Exp = sympy.exp; % uppercase to be distinct from matlab's exp()

Two = int64(2);

soln = sympy.diff(Sin(Pi*x)^Two * Exp(-I*x), x);

fprintf('%s\n', soln.char)

printing.print_latex(soln)

Both give this LaTeX representation of the solution:

dy

dx
= −ie−ix sin2 (πx) + 2πe−ix sin (πx) cos (πx)

Partial derivatives

diff() can also return partial derivatives. Say you have a surface such as

z(x, y) = 4x4 − 17x3y + 3x2y2 − y3 − y4

and you want to compute the matrix of second order derivatives

[

∂2z
∂2x

∂2z
∂x∂y

∂2z
∂y∂x

∂2z
∂2y

]

you could do it with

Python:

#!/usr/bin/env python

from sympy import diff

from sympy.abc import x, y, z

from sympy.printing.latex import print_latex

z = 4*x**4 - 17*x**3*y + 3*x**2*y**2 - y**3 - y**4

dzz_dxx = diff(z, x, x)

dzz_dxy = diff(z, x, y)

dzz_dyx = diff(z, y, x)

dzz_dyy = diff(z, y, y)

print_latex(dzz_dxx)

print_latex(dzz_dxy)

print_latex(dzz_dyx)

print_latex(dzz_dyy)
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MATLAB:

sympy = py.importlib.import_module('sympy');

abc = py.importlib.import_module('sympy.abc');

printing = py.importlib.import_module('sympy.printing');

x = abc.x;

y = abc.y;

z = abc.z;

E2 = int64(2);

E3 = int64(3);

E4 = int64(4);

z = 4*x^E4 - 17*x^E3*y + 3*x^E2*y^E2 - y^E3 - y^E4;

dzz_dxx = diff(z, x, x);

dzz_dxy = diff(z, x, y);

dzz_dyx = diff(z, y, x);

dzz_dyy = diff(z, y, y);

printing.print_latex(dzz_dxx)

printing.print_latex(dzz_dxy)

printing.print_latex(dzz_dyx)

printing.print_latex(dzz_dyy)

Python and MATLAB return different arrangements of the same result:

Python:
[

6 ·
(

8x2 − 17xy + y2
)

3x (−17x+ 4y)
3x (−17x+ 4y) 6

(

x2 − 2y2 − y
)

]

MATLAB:
[

48.0x2 − 102.0xy + 6.0y2 x (−51.0x+ 12.0y)
x (−51.0x+ 12.0y) 6.0x2 − 12y2 − 6y

]

12.7 Summing series

SymPy has support for Fourier series, power series, series summation, and series expansion. This
example shows how the closed-form sum can be found:

N+1
∑

k=1

eikπ

N2

Python:
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#!/usr/bin/env python

from sympy import I, Sum, exp, pi

from sympy.abc import k, N

from sympy.printing.latex import print_latex

s = Sum( exp(I*k*pi)/N**2, (k, 1, N+1))

soln = s.doit()

print_latex(soln)

MATLAB:

sympy = py.importlib.import_module('sympy');

abc = py.importlib.import_module('sympy.abc');

printing = py.importlib.import_module('sympy.printing');

k = abc.k;

N = abc.N;

I = sympy.I;

Pi = sympy.pi; % uppercase to be distinct from matlab's pi

Exp = sympy.exp; % uppercase to be distinct from matlab's exp()

Sum = sympy.Sum;

Two = int64(2);

s = Sum( Exp(I*k*Pi)/(N^Two), py.tuple({k, 1, N+1}));

soln = s.doit();

printing.print_latex(soln)

Both give an answer of

− (−1)N+2

2 − 1
2

N2

12.8 Laplace transforms

The laplace transform() function in SymPy resembles the laplace() function in MATLAB’s
Symbolic Toolbox. Here we’ll use it to compute the transform of

f(t) = e−at cosωt

Python:

#!/usr/bin/env python

from sympy import exp, cos, laplace_transform, symbols

from sympy.printing.latex import print_latex

s = symbols('s')
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t = symbols('t')

a = symbols('a', real=True, positive=True)

omega = symbols('omega', real=True)

f = exp(-a*t)*cos(omega*t)

L = laplace_transform(f, t, s)

print_latex(L[0])

MATLAB:

sympy = py.importlib.import_module('sympy');

printing = py.importlib.import_module('sympy.printing.latex');

s = sympy.symbols('s');

t = sympy.symbols('t');

a = sympy.symbols('a', pyargs('real','True', 'positive','True'));

omega = sympy.symbols('omega', pyargs('real','True'));

f = sympy.exp(-a*t)*sympy.cos(omega*t);

L = sympy.laplace_transform(f, t, s); % a tuple, solution in 1st position

printing.print_latex(L{1})

Both produce LaTeX that renders as

a+ s

ω2 + (a+ s)2
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Chapter 13

Accelerate MATLAB with Python
and Numba

2022/10/28

Figure 13.1: Upper panel: air flow computed with MATLAB 2022b using a Navier-Stokes solver
by Jamie Johns. Lower panel: air flow computed with MATLAB 2022b calling the same code
translated to Python with Numba. It repeats the simulation more than three times in the amount
of time it takes the MATLAB-only solver to do this once. Animation on YouTube
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13.1 Introduction

MATLAB’s number crunching power is impressive. If you’re working with a compute-bound appli-
cation though, you probably want it to run even faster. After you’ve exhausted the obvious speed
enhancements like using more efficient algorithms, vectorizing all operations, and running on faster
hardware, your last hope may be to to rewrite the slow parts in a compiled language linked to
MATLAB through mex. This is no easy task though. Re-implementing a MATLAB function in
C++, Fortran, or Java is tedious at best, and completley impractical at worst if the code to be
rewritten calls complex MATLAB or Toolbox functions.

In this chapter I show how Python and Numba can greatly improve MATLAB performance
with less effort, and with greater flexibility, than using mex with C++, Fortran, or Java. You’ll
need to include Python in your MATLAB workflow (Chapter 3), but that’s no more difficult than
installing compilers and configuring mex build environments.

Two examples demonstrate the performance boost Python and Numba can bring MATLAB:
a simple Mandelbrot set computation, and a much more involved Navier-Stokes solver for incom-
pressible fluid flow. In both cases, the Python augmentation makes the MATLAB application run
several times faster.

13.2 Python+Numba as an alternative to mex

The mex compiler front-end enables the creation of functions written in C, C++, Fortran, Java,
and .Net that can be called directly from MATLAB. To use it effectively, you’ll need to be proficient
in one of these languages and have a supported compiler. With those in place, the fastest way to
begin writing a mex-compiled function is to start with existing working code such as any of the
MathWorks’ mex examples and modifying it to your needs.

A big challenge to translating MATLAB code is that one line of MATLAB can translate to
dozens of lines in a compiled language. Standard MATLAB statements such as

MATLAB:

y = max((A\b)*v',[],'all');

become a logistical headache in the compiled languages. Do you have access to an optimized
linear algebra library? Do you know how to set up the calling arguments to the various solvers?
What if the inputs are complex? What if A is rectangular? It is not straightforward.

Python, on the otherhand, can often match MATLAB expressions one-to-one (although the
Python expressions are usually longer). The Python version of the line above is

Python:
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y = np.max((np.linalg.solve(A,b).dot(v.T))

where np. is the prefix for the NumPy module.

If you’re familiar with Python and its ecosystem of numeric and scientific modules, you’ll be
able to translate a MATLAB function to Python much faster than you can translate MATLAB to
any compiled language.

For the most part, numerically intensive codes run at comparable speeds in MATLAB and
Python. Simply translating MATLAB to Python will rarely give you a worthwhile performance
boost. To see real acceleration you’ll need to additionally use a Python code compiler such as
Cython, Pythran, f2py, or Numba.

Numba offers the most bang for the buck—the greatest performance for the least amount of
effort—and is the focus of this post.

13.3 What is Numba?

From the Numba project’s Overview:

Numba is a compiler for Python array and numerical functions that gives you the
power to speed up your applications with high performance functions written directly
in Python.

Numba generates optimized machine code from pure Python code using the LLVM
compiler infrastructure. With a few simple annotations, array-oriented and math-heavy
Python code can be just-in-time optimized to performance similar as C, C++ and
Fortran, without having to switch languages or Python interpreters.

13.4 Type casting Python function arguments

Three steps are needed to turn a conventional Python function into a much faster Numba-compiled
function:

1. Import the jit function and all data types you plan to use from the Numba module. Also
import the prange function if you plan to run for loops in parallel.

2. Precede your function definition with @jit()

3. Pass to @jit() type declarations for of each input argument and return value
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The steps are illustrated below with a simple function that accepts a 2D array of 32 bit floating
point numbers and a 64 bit floating point tolerance, then returns an unsigned 64 bit integer con-
taining the count of terms in the array that are less than the tolerance. We’ll ignore the fact that
this is a simple operation in both MATLAB (sum(A < tol)) and Python (np.sum(A < tol)).)

First the plain Python version:

def n_below(A, tol):

count = 0

nR, nC = A.shape

for r in range(nR):

for c in range(nC):

if A[r,c] < tol:

count += 1

return count

Now Python with Numba:

1 from numba import jit, uint64, float32, float64

2 @jit(uint64(float32[:,:], float64), nopython=True)

3 def n_below_numba(A, tol):

4 count = 0

5 nR, nC = A.shape

6 for r in range(nR):

7 for c in range(nC):

8 if A[r,c] < tol:

9 count += 1

10 return count

Aside from the function’s name change, only the two highlighted lines are added; the body of
the function remains the same. Let’s see what the two extra lines buy us:

In : A = np.random.rand(2000,3000).astype(np.float32)

In : tol = 0.5

In : %timeit n_below(A, tol) # conventional Python

11.3 s +/- 72.3 ms per loop (mean +/- std. dev. of 7 runs, 1 loop each)

In : %timeit n_below_numba(A, tol) # Python+Numba

9.92 ms +/- 251 µs per loop (mean +/- std. dev. of 7 runs, 100 loops each)

Time dropped from 11.3 seconds to 9.92 milliseconds, a factor of more than 1,000. While
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this probably says more about how slow Python 3.8 is for this problem 1, the Numba version is
impressive. It is in fact even a bit faster than the native NumPy version:

In : %timeit np.sum(A < tol)

10.2 ms +/- 193 µs per loop (mean +/- std. dev. of 7 runs, 100 loops each)

For completeness, MATLAB 2022b does this about as quickly as NumPy:

>> A = single(rand(2000,3000));

>> tol = 0.5;

>> tic; sum(A < tol); toc

Repeating the last line a few times gives a peak (that is, minimum) time of 0.011850 seconds
(11.85 ms), about the same as NumPy’s 10.2 ms. Both are marginally slower than Numba’s 9.92
ms.

13.5 @jit() Options

The @jit() decorator has a number of options that affect how Python code is compiled. All four of
the options below appear on every @jit() instance in the Navier-Stokes code. Here’s an example
from one of the functions in the solver:

@jit(float64[:,:](float64[:,:], float64),

nopython=True, fastmath=True, parallel=True, cache=True)

def DX2(a,dn):

# finite difference for Laplace of operator in two dimensions

# (second deriv x + second deriv ystaggered grid)

return (a[:-2,1:-1] + a[2:,1:-1] + a[1:-1,2:] + a[1:-1,:-2] -

4*a[1:-1,1:-1])/(dn**2)

13.5.1 nopython=True

Numba compiled functions can work either in object mode, where the code can interact with the
Python interpreter, or in nopython mode where the Python interpeter is not used. nopython

mode excludes the Python interpreter and results in higher performance, but at the cost of
not being able to handle calls to modules Numba doesn’t support. As an example, the assign-
ment u = datetime.datetime.now() inside a @jit()-prefixed function will fail to compile with
nopython=True. Instead one must use forceobj=True—and suffer the performance hit.

1Python has an impressive performance road-map ahead
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13.5.2 fastmath=True

This option matches the -Ofast optimization switch used by compilers in the Gnu Compiler Collec-
tion. It allows the compiler to resequence floating point computations in a non-IEEE 754 compliant
manner—enabling significant speed increases at the risk of generating incorrect (!) results.

To use this option with confidence, compare solutions produced with and without it. Obviously
if the results differ appreciably you shouldn’t use this option.

13.5.3 parallel=True

This option tells Numba to attempt automatic parallelization of code blocks in jit compiled func-
tions. Parallelization may be possible even if these functions do not explicitly call the prange() to
make a for loop run in parallel.

Let’s try this out on the simple n below() function shown above:

Python:

from numba import jit, prange, uint64, float32, float64

@jit(uint64(float32[:,:], float64), nopython=True, parallel=True)

def n_below_parallel(A, tol):

count = 0

nR, nC = A.shape

for r in prange(nR): # <- parallel for loop

for c in range(nC):

if A[r,c] < tol:

count += 1

return count

By parallelizing the rows of A over cores I get twice the performance on my 4 core laptop:

In : %timeit n_below_parallel(A, tol)

5.96 ms ± 299 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Even more impressively, the Navier-Stokes solver runs nearly 2x more quickly with parallel=True
(again, on my 4 core laptop) even though it has no parallel for loops.
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13.5.4 cache=True

A program that includes Numba-enhanced Python functions may start more slowly because the jit
compiler needs a noticeable to compile the functions before the program can begin running. The
delay is barely noticable with small functions.

That’s not the case for the more complicated jit-compiled functions in the Navier-Stokes solver.
These impose a 10 second start-up delay on my laptop. The cache=True option tells Numba
to cache the result of its compilations for immediate use on subsequent runs. The code is only
recompiled if any of the @jit decorated functions change.

13.6 Hardware, OS details

The examples were run on a 2015 Dell XPS13 laptop with 4 cores of a i5-5200U CPU @ 2.2 GHz
and 8 GB memory. The OS is Ubuntu 20.04. MATLAB 2022b was used but the code will run with
any MATLAB version from 2020b onward.

Anaconda Python 2020.07 with Python 3.8.8 was used to permit running on older versions of
MATLAB, specifically 2020b. (While Python 3.11 in general runs more quickly than 3.8, NumPy-
dominated performance has stayed about the same [as we’ll see below]. MATLAB 2022b only
supports Python 3.8, 3.9, and 3.10 though.)

13.7 Example 1: Mandelbrot set

This example comes from the High Performance Computing chapter of my book. There I imple-
mented eight versions of code that computes terms of the Mandelbrot set: MATLAB, Python,
Python with multiprocessing, Python with Cython, Python with Pythran, Python with f2py,
Python with Numba, and finally MATLAB calling the Python/Numba functions.

The baseline MATLAB version 2 is much faster than the baseline Python implementation.
However, employing any of the compiler-augmented tools like Cython, Pythran, f2py, or Numba
turns the tables and makes the Python solutions much faster than MATLAB.

Baseline MATLAB2 :

% file: MB_main.m

main()

function [i]=nIter(c, imax)

2Mike Croucher at the MathWorks provided code tweaks to improve the performance of this implementation.
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z = complex(0,0);

for i = 0:imax-1

z = z^2 + c;

if (real(z)^2 + imag(z)^2) > 4

break

end

end

end

function [img]=MB(Re,Im,imax)

nR = size(Im,2);

nC = size(Re,2);

img = zeros(nR, nC, 'uint8');

% parfor i = 1:nR % gives worse performance

for i = 1:nR

for j = 1:nC

c = complex(Re(j),Im(i));

img(i,j) = nIter(c,imax);

end

end

end

function [] = main()

imax = 255;

for N = [500 1000 2000 5000]

tic

nR = N; nC = N;

Re = linspace(-0.7440, -0.7433, nC);

Im = linspace( 0.1315, 0.1322, nR);

img = MB(Re, Im, imax);

fprintf('%5d %.3f\n',N,toc);

end

end

Baseline Python:

#!/usr/bin/env python3

# file: MB.py

import numpy as np

import time

def nIter(c, imax):

z = complex(0, 0)

for i in range(imax):

z = z*z + c

if z.real*z.real + z.imag*z.imag > 4:
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break

return np.uint8(i)

def MB(Re, Im, imax):

nR = len(Im)

nC = len(Re)

img = np.zeros((nR, nC), dtype=np.uint8)

for i in range(nR):

for j in range(nC):

c = complex(Re[j], Im[i])

img[i,j] = nIter(c,imax)

return img

def main():

imax = 255

for N in [500,1000,2000,5000]:

T_s = time.time()

nR, nC = N, N

Re = np.linspace(-0.7440, -0.7433, nC)

Im = np.linspace( 0.1315, 0.1322, nR)

img = MB(Re, Im, imax)

print(N, time.time() - T_s)

if __name__ == '__main__': main()

The Python-with-Numba version is the same as the baseline Python version with five additional
Numba-specific lines. An explanation of each highlighted line appears below the code:

Python with Numba:

1 #!/usr/bin/env python3

2 # file: MB_numba.py

3 import numpy as np

4 import time

5 from numba import jit, prange, uint8, int64, float64, complex128

6 @jit(uint8(complex128,int64), nopython=True, fastmath=True)

7 def nIter(c, imax):

8 z = complex(0, 0)

9 for i in range(imax):

10 z = z*z + c

11 if z.real*z.real + z.imag*z.imag > 4:

12 break

13 return i

14
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15 @jit(uint8[:,:](float64[:], float64[:],int64), nopython=True,

16 fastmath=True, parallel=True)

17 def MB(Re, Im, imax):

18 nR = len(Im)

19 nC = len(Re)

20 img = np.zeros((nR, nC), dtype=np.uint8)

21 for i in prange(nR):

22 for j in range(nC):

23 c = complex(Re[j], Im[i])

24 img[i,j] = nIter(c,imax)

25 return img

26

27 def main():

28 imax = 255

29 for N in [500, 1000, 2000, 5000]:

30 T_s = time.time()

31 nR, nC = N, N

32 Re = np.linspace(-0.7440, -0.7433, nC)

33 Im = np.linspace( 0.1315, 0.1322, nR)

34 img = MB(Re, Im, imax)

35 print(N, time.time() - T_s)

36

37 if __name__ == '__main__': main()

Line 5 imports the necessary items from the numba module: jit() is a decorator that precedes
functions we want Numba to compile. prange() is a parallel version of the Python range()

function, conceptually identical to MATLAB’s parfor. It turns regular for loops into parallel for
loops where work is automatically distributed over the cores of your computer. The remaining
items from uint8 to complex128 define data types that will be employed in function signatures.

Line 6 defines the signature of the nIter() function as taking a complex scalar and a 64 bit
integer as inputs and returning an unsigned 8 bit integer. (The remaining keyword arguments like
nopython= were explained above.)

Lines 15 and 16 define the signature of the MB() function as taking a pair of 1D double precision
arrays and a scalar 64 bit integer and returning a 2D array of unsigned 8 bit integers.

Line 21 implements a parallel for loop; iterations for different values of i are distributed over the
cores.

What have we gained with the five extra Numba lines? This table shows how our three codes
perform for different image sizes; times are in seconds.

N MATLAB 2022b Python 3.8.8 Python 3.8.8 + Numba

500 0.70 8.22 0.04
1000 2.29 32.70 0.14
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2000 9.04 127.84 0.61
5000 56.77 795.41 3.51

The Python+Numba performance borders on the unbelievable—but don’t take my word for it,
run the three implementations yourself!

One “cheat” the Python+Numba solution enjoys is that its parallel for loop takes advantage of
the four cores on my laptop. I tried MATLAB’s parfor parallel for loop construct but, inexplicably,
it runs slower than a conventional sequential for loop. Evidently multiple cores are only used if
you have a license for the Parallel Computing Toolbox (which I don’t).

13.8 MATLAB + Python + Numba

If Python can run faster with Numba, MATLAB can too. All we need to do is import the MB numba

module shown in the previous section and call its jit-compiled MB() function from MATLAB:

MATLAB:

% file: MB_python_numba.m

np = py.importlib.import_module('numpy');

MB_numba = py.importlib.import_module('MB_numba');

imax = int64(255);

for N = [500 1000 2000 5000]

tic

nR = N; nC = N;

Re = np.array(linspace(-0.7440, -0.7433, nC));

Im = np.array(linspace( 0.1315, 0.1322, nR));

img = py2mat(MB_numba.MB(Re, Im, imax));

fprintf('%5d %.3f\n',N,toc);

end

MB() from MB numba.py is a Python function so it returns a Python result. To make the
benchmark against the baseline MATLAB version fair, the program includes conversion of the
NumPy img array to a MATLAB matrix (using py2mat.m) in the elapsed time. The table below
repeats the MATLAB baseline times from the previous table. Numeric values in the middle and
right column are elapsed time in seconds.

N MATLAB 2022b MATLAB 2022b + Python 3.8.8 + Numba

500 0.70 0.18
1000 2.29 0.17
2000 9.04 0.64
5000 56.77 3.85
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13.9 Visualizing the result

Call MATLAB’s imshow() or imagesc() functions on the img matrix if you want to see what the
matrix looks like. For example,

MATLAB:

% file: MB_view.m

np = py.importlib.import_module('numpy');

MB_numba = py.importlib.import_module('MB_numba');

imax = int64(255);

nR = 2000; nC = 2000;

Re = np.array(linspace(-0.7440, -0.7433, nC));

Im = np.array(linspace( 0.1315, 0.1322, nR));

img = py2mat(MB_numba.MB(Re, Im, imax));

imagesc(img)

Similarly, in Python:

#!/usr/bin/env python3

# file: MB_view.py

import numpy as np

from MB_numba import MB

import matplotlib.pyplot as plt

imax = 255

nR, nC = 2000, 2000

Re = np.linspace(-0.7440, -0.7433, nC)

Im = np.linspace( 0.1315, 0.1322, nR)

img = MB(Re, Im, imax)

plt.imshow(img)

plt.show()

The image produced by matplotlib can be seen in Figure 13.2.

13.10 Example 2: incompressible fluid flow

The Mandelbrot example is useful for demonstrating how to use Numba and for giving insight to
the performance boosts it can give. But useful as a computational pattern resembling real work?
Not so much.
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Figure 13.2: Mandelbrot set image made with matplotlib.

The second example represents computations as might appear in a realistic scientific applica-
tion. It demonstrates MATLAB+Python+Numba with a two dimensional Navier-Stokes solver for
incompressible fluid flow. I chose an implementation by Jamie Johns which shows MATLAB at
its peak performance using fully vectorized code. While this code only computes flow in 2D, the
sequence of calculations and memory access patterns are representative of realistic scientific and
engineering applications. Jamie Johns’ YouTube channel has interesting videos produced with his
code.

13.11 Boundary conditions

A clever aspect of Jamie Johns’ code is that boundary conditions are defined graphically. You
create an image, for example a PNG, where colors define properties at each grid point: black =
boundary, red= outflow (source), and green = inflow (sink). The image borders, if they aren’t
already black, also define boundaries.

This image in Figure 13.3, which can be found in the original code’s Github repository as
scenario sphere2.png, represents flow moving from left to right around a circle, a canonical fluid
dynamics problem I studied as an undergrad:

Of course, if boundary conditions are supplied as images, they can be arbitrarily complex. I
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Figure 13.3: Boundary condition image for flow around a cylinder.

Figure 13.4: Maxell’s ‘Blown away guy’

recalled an amusing commercial by Maxell, “Blown Away Guy”, from my youth. With a bit of
photo editing I converted the photo in Figure 13.4

to the boundary conditions image of Figure 13.5.

The domain dimensions are 15 meters × 3.22 meters and the CFD mesh has 400 × 86 grid
points, giving a relatively coarse resolution of 3.7 cm between points. My memory-limited (8 GB)
laptop can’t handle a finer mesh.

Figure 13.5: ‘Blown away guy’ as fluid flow boundary conditions.
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13.12 Initial conditions

• time step: 0.003 seconds

• number of iterations: 12,900

• air density = 1 kg/m3

• dynamic viscosity = 0.001 kg/(m s)

• air speed leaving the speaker: 0.45 m/s

The low air speed is admittedly contrived and certainly lower than the commercial’s video
suggests (my guess is for that is at least 2 m/s). The solver fails to converge, then exits with an
error, if the flow speed is too high. Same thing for number of iterations—too many and the solver
diverges. Trial and error brought me to 0.45 m/s and 12,900 iterations as values that produce the
longest animation.

I don’t understand the reason of the failure (mesh too coarse?) and haven’t been motivated
to figure out what’s going on. This is, after all, an exercise in performance tweaking rather than
studying turbulence or computing coefficients of drag.

13.13 Running the code

My modifications to Jamie Johns’ MATLAB code and the translation to Python + Numba can be
found at https://github.com/AlDanial/matlab_with_python/, under performance/fluid flow

(MIT license). The code there can be run three ways: entirely in MATLAB, entirely in Python, or
with MATLAB calling Python.

One thing to note is that the computational codes are purely batch programs that write .mat

and .npy data files. No graphics appear. The flow can be visualized with a separate post-processing
step (section 13.9 below) after the flow speeds are saved as files.

13.13.1 MATLAB (2020b through 2022b)

Start MATLAB and enter the name of the main program, Main, at the prompt. I had to start
MATLAB with -nojvm to suppress the GUI (and close all other applications, notably web browsers)
to give the fluid flow solver enough memory.

>> Main
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13.13.2 Python + Numba

On Linux and macOS, just type ./py Main.py in a console.

On Windows, open a Python-configured terminal (such as the Anaconda console) and enter
python py Main.py.

13.13.3 MATLAB + Python + Numba

Edit Main.m and change the value of Run Python Solver to true. Save it, then run Main and the
MATLAB prompt.

13.13.4 Operation

Regardless of how you run the code (MATLAB / Python / MATLAB + Python), the steps of
operation are the same: the application creates a subdirectory called NS velocity then populates
it with .npy files (Python and MATLAB+Python) or .mat files (pure MATLAB). These files
contain the x and y components of the flow speed at each grid point for a batch of iterations.

The first time the Python or MATLAB+Python program starts, expect to see delay of about
30 seconds while Numba compiles the @jit decorated functions in navier stokes functions.py.
This is a one-time cost though; subsequent runs will start much more quickly.

13.13.5 Performance

MATLAB runs more than three times faster using the Python+Numba Navier-Stokes solver. More
surprisingly, Python without Numba also runs faster than MATLAB. I updated the performance
table on 2022-10-30 following a LinkedIn post by Artem Lenksy asking how the recently released
3.11 version fares on this problem. Numba is not yet available for 3.11 so I reran without @jit

decorators—and threw in a 3.8.8 run without Numba as well:

Solver Elapsed seconds

MATLAB 2022b 458.35
Python 3.11.0 238.95
Python 3.8.8 237.46
MATLAB 2022b + Python 3.8.8 + Numba 128.89
Python 3.8.8 + Numba 126.99

Two surprises here: plain Python + NumPy is faster than MATLAB, and Python 3.11.0 is no
faster than 3.8.8 for this compute-bound problem.
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13.14 Visualization

The program animate navier stokes.py generates an animation of flow computed earlier with
py Main.py or Main.m. The most direct way to use it is by giving it the directory (NS velocity

by default) containing flow velocity files and whether you want to see *.mat files generated by
MATLAB (use --matlab) or *.npy files generated by either Python or the MATLAB+Python
combination (use --python). (Note: the program loads many Python modules and takes a long
time to start the first time.)

./animate_navier_stokes.py --python NS_velocity

With this command the program first loads all *.npy files in the NS velocity directory, then
writes a large merged file (merged frames.npy, 1.7 GB) containing the entire solution in one file.
You can later load the merged file much more quickly than reading the individual *.npy files.

The first thing you’ll notice is the animation proceeds slowly. To speed things up, skip a few
frames. The next command reads from the merged frame file and only shows every 50th frame:

./animate_navier_stokes.py --npy merged_frames.npy --incr 50

Use the --png-dir switch to write individual frames to PNG files in the given directory. For
example

./animate_navier_stokes.py --npy merged_frames.npy --png-dir PNG --incr 400

will create the directory PNG then populate it with 33 files with names like PNG/frame 08000.png.
I created the animation shown at the start of this chapter by saving individual frames, overlaying
the Maxell image on each, then generating an MP4 file with ffmpeg.
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Chapter 14

Distribute MATLAB Computations
to Python Running on a Cluster with
Dask

2022/11/12

14.1 Introduction

The previous chapter showed how compute-bound MATLAB applications can be made to run
faster if slow MATLAB operations are rewritten in Python. If the resulting speed improvement
isn’t enough, different hardware architectures like GPUs or a cluster of computers may be your
only recourse for even higher performance. MATLAB has both of these nailed—if you have the
Parallel Computing Toolbox and the necessary hardware.

If you don’t have access to this toolbox but you do have ssh access to a collection of computers
and you’re willing to include Python in your MATLAB workflow (Chapter 3), the dask module
can help your MATLAB application tap into those computers’ collective CPU power.

14.2 Prerequisites

Although dask can run on the cores of a single computer, in this article I’ll cover dask’s ability
to send computations to, and collect results from a group of remote computers. This raises a few
complications: to use dask with a remote computer you’ll need to have an account on it and be able
to send commands to it without entering a password. Further, the remote computer should have
enough network, file storage, memory, and CPU resources necessary to run your computations. In
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Figure 14.1: MATLAB can run Python functions on remote computers.

particular, do you need to share the remote computer with others?

Many organizations with sizeable engineering or research departments operate compute clusters
explicitly to enable large scale parallel computations. Access and resource sharing are done with
job schedulers such as LSF, PBS, or Slurm. Dask has interfaces to these but here I’ll work with
the most simple setup of all, a group of individual computers on which I have accounts and can
access through ssh. Here’s the full list of prerequisites for all remote computers:

• compatible (preferrably identical) Python installations including dask, distributed, and
paramiko modules

• the same path to the Python executable

• the same account name for the user setting up and using the cluster

• uniform bi-directional, key-based ssh access

• same ssh port

• firewall rules that allow ssh and the dask scheduler and metrics ports (8786 and 8787 by
default)

14.3 Start the dask cluster

Each computer that is to participate in your computations needs to have a dask worker process
running on it. Additionally, one of the computers must run the dask scheduler process. These
processes can be started with ssh, Kubernetes, Helm, or any of the job schedulers (LSF, etc)
mentioned above. Any method other than ssh, however, will likely require help from a cluster
administrator or tech support expert.

I’ll avoid complications and only describe the ssh method.
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Note: the method described below of starting a dask cluster with dask-ssh --hostfile

is insecure because anyone with access to the computers and knowledge of the dask port
can submit jobs as though they were you. The secure way to set up a dask cluster is
with a dask gateway.

Start by creating a text file with each host’s IP address (or hostname, if name resolution works)
on a single line. The file might look like this

# file: my_hosts.txt

127.0.0.1

192.168.1.39

192.168.1.40

192.168.1.41

192.168.1.65

Hostnames may be repeated. I typically run with a file that defines only localhost entries such as

# file: my_hosts.txt

127.0.0.1

127.0.0.1

127.0.0.1

while I’m developing a parallel program. I only submit to remote computers after I’m convinced
the code works locally.

Next, pass the file of host names to the dask-ssh command to start the worker on each node,
and also a scheduler:

dask-ssh --hostfile my_hosts.txt

You’ll see a stream of messages resembling

---------------------------------------------------------------

Dask.distributed v2022.7.0

Worker nodes: 3

0: 127.0.0.1

1: 127.0.0.1

2: 127.0.0.1

scheduler node: 127.0.0.1:8786

---------------------------------------------------------------
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.

Figure 14.2: Dask Worker tab.

/usr/local/anaconda3/2021.05/lib/python3.8/site-packages/paramiko/transport.py:219: CryptographyDeprecationWarning:

"class": algorithms.Blowfish,

[ scheduler 127.0.0.1:8786 ] : /usr/local/anaconda3/2021.05/bin/python -m distributed.cli.dask_scheduler --port 8786

:

(lines deleted)

:

INFO - Register worker <WorkerState 'tcp://127.0.0.1:37661', status: init, memory: 0, processing: 0>

[ scheduler 127.0.0.1:8786 ] : 2022-11-07 20:58:36,128 - distributed.scheduler - INFO - Starting worker compute stream,

[ scheduler 127.0.0.1:8786 ] : 2022-11-07 20:58:36,129 - distributed.core - INFO - Starting established connection

Note line of output with scheduler node: 127.0.0.1:8786. This is the host and port where
the scheduler listens for instructions. We’ll need this value to create a dask client (described below).

The dask-ssh command will tie up your terminal until the cluster is shut down. That can be
done by entering ctrl -c in the terminal.

The dask scheduler runs a web server that shows lots of useful information about the state of
your cluster. View it by entering your scheduler node’s hostname or IP address followed by :8787

as a URL in your browser. In my case that’s http://127.0.0.1:8787 or http://localhost:8787.
The view under the Workers tab looks like the image in Figure 14.3.

Track your compute nodes on this web page while dask is cranking away at one of the following
examples, all of which come from the High Performance Computing chapter of my book.

156

http://127.0.0.1:8787
http://localhost:8787
https://www.apress.com/gp/book/9781484272220


14.4 Example 1: sum of prime factors

I’ll start with a simple example to demonstrate the mechanics of using dask. The Python and
MATLAB programs below compute the sum of unique prime factors of all numbers in a given range.
The hard part, computing the prime factors themselves, is done with SymPy’s primefactors()

function, comparable to MATLAB’s factor()1.

Here are sequential implementations:

Python:

#!/usr/bin/env python3

# file: prime_seq.py

from sympy import primefactors

import time

def my_fn(a, b, incr):

Ts = time.time()

s = 0

for x in range(a,b,incr):

s += sum(primefactors(x))

return s, time.time() - Ts

def main():

A = 2

B = 10_000_000

incr = 1

S, dT = my_fn(A, B, incr)

print(f'A={A} B={B} {dT:.4f} sec')

print(f'S={S}')

if __name__ == "__main__": main()

MATLAB:

% file: prime_seq.m

A = 2;

B = 10000000;

incr = 1;

[S, dT] = my_fn(A, B, incr);

fprintf('A=%d B=%d, %.3f sec\n', A, B, dT);

fprintf('S=%ld\n', S);

function [S, dT]=my_fn(A, B, incr)

tic;

S = 0;

for i = A:incr:B-1

S = S + sum(unique(factor(i)));

157



end

dT = toc;

end

Performance looks like this on my laptop:

Language Elapsed seconds Computed sum

MATLAB 2022b 546.737 5495501355056
Python 3.8.8 519.531 5495501355056

Calls to the compute intensive function my fn() are independent and can be called in any order,
or even simultaneously. We’ll do exactly that with dask, using three cores of the local machine. To
spread the load evenly we merely need to offset the first number in the sequence by the job number,
0 to N-1 for N jobs, then stride through the sequence in steps of N. For example if we compute
prime factors for numbers between 2 and 20 and want to spread the work evenly over three jobs,
the assignments will be

In : list(range(2,21)) # original set

Out: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

In : list(range(2+0,21,3)) # for processor 1 (does job 0)

Out: [2, 5, 8, 11, 14, 17, 20]

In : list(range(2+1,21,3)) # for processor 2 (does job 1)

Out: [3, 6, 9, 12, 15, 18]

In : list(range(2+2,21,3)) # for processor 3 (does job 2)

Out: [4, 7, 10, 13, 16, 19]

or, equivalently in MATLAB,

>> 2+0:3:20 % for processor 1 (does job 0)

2 5 8 11 14 17 20

>> 2+1:3:20 % for processor 2 (does job 1)

3 6 9 12 15 18

>> 2+2:3:20 % for processor 3 (does job 2)

4 7 10 13 16 19

The dask-enabled version of the prime factor summation program on the local computer, split-
ting up the work to three tasks that are to run simultaneously, looks like this:
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1 #!/usr/bin/env python3

2 # file: prime_dask.py

3 from sympy import primefactors

4 import time

5 import dask

6 from dask.distributed import Client

7

8 def my_fn(a, b, incr):

9 Ts = time.time()

10 s = 0

11 for x in range(a,b,incr):

12 s += sum(primefactors(x))

13 return s, time.time() - Ts

14

15 def main():

16 client = Client('127.0.0.1:8786')

17 tasks = []

18 main_T_start = time.time()

19 n_jobs = 3

20 A = 2

21 B = 10_000_000

22 incr = n_jobs

23 for i in range(n_jobs):

24 job = dask.delayed(my_fn)(A+i, B, incr)

25 tasks.append(job)

26 results = dask.compute(*tasks)

27 client.close()

28 total_sum = 0

29 for i in range(len(results)):

30 partial_sum, T_el = results[i]

31 print(f'job {i}: sum= {partial_sum} T= {T_el:.3f}')

32 total_sum += partial_sum

33 print(f'total sum={total_sum}')

34 elapsed = time.time() - main_T_start

35 print(f'main took {elapsed:.3f} sec')

36 if __name__ == "__main__": main()

Lines 5, 6 import the dask module and the Client class

Line 16 Creates a Client object that connects to the dask scheduler on the cluster we set up in
section 14.3.

Line 17 Initializes an empty list that will later store “tasks”, basically a unit of work made of a
function to call and its input arguments.

Line 19 defines the number of chucks we’ll subdivide the work into. This number should match or
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exceed the number of dask workers, in other words, the number of remote computers we can run
on.

Lines 23-25 populate the list tasks. Each entry, “job”, is an invocation of my fn() with input
arguments that stride between A and B so as to span a unique collection of numbers.

Line 26 tells the scheduler to send the tasks to the workers to begin performing the computations.
The return value from each task comes back as the list results.

Line 27 is reached when the last worker has finished.

Lines 28-32 fetch the solutions for each task and adds them to the global sum variable.

With the scheduler and workers running in the background, we can now run the dask-enabled
prime factor summation program prime dask.py. It runs faster than the sequential version, but
not by much:

3 worker processes, 3 dask jobs:

job 0: sum= 2418248946959 T= 327.969

job 1: sum= 659400211060 T= 206.228

job 2: sum= 2417852197037 T= 327.709

total sum=5495501355056

main took 328.852 sec

Performance disappoints for two reasons. First, the workload is clearly imbalanced since one
job took around 200 seconds, while the other two took more than 320. Evidently, terms of the
sequence 3, 6, 9 . . . can be factored much more rapidly than terms in 2, 5, 8 . . . and 4, 7, 10
. . .—who knew? The second reason is less obvious. It is that the sum of individual core times,
328.0 + 206.2 + 327.7 = 861.9 seconds, is 66% higher than the single-core time of 519.5 seconds.
Clearly there’s a non-trivial overhead to using dask.

14.4.1 Parallel prime factor summation in MATLAB

Now that we can run our Python program in parallel with dask, we can do the same thing in
MATLAB—with a couple of restrictions:

1. Tasks submitted to dask must be Python functions. Therefore our MATLAB main program
will need to send the Python version of the compute function, my fn() in this example, to
the remote workers.

2. MATLAB cannot call the dask.delayed() and dask.compute() functions directly. In par-
ticular, the asterisk in the call to dask.compute() (see line 26 in the listing above) is not legal
MATLAB syntax. We’ll need a small Python bridge module to overcome these limitations.
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The first restriction isn’t a big deal for this example; we merely need to import my fn() from
prime seq.py or prime dask.py. For a more substantial MATLAB application, though, this could
mean translating a lot of MATLAB code to Python.

14.4.2 Aside: bridge dask.py

The second restriction is easily resolved with just a few lines of Python:

# file: bridge_dask.py

import dask

def delayed(Fn, *args):

return dask.delayed(Fn)(*args);

def compute(delayed_tasks):

return dask.compute(*delayed_tasks)

This simple module provides wrappers to dask.delayed() and dask.compute() in a form
suitable for MATLAB.

14.4.3 Parallel prime factor summation in MATLAB, continued

We now have the pieces in place to have MATLAB send the Python-based prime factor computation
and summation work to a cluster of workers. The solution looks like this:

1 % file: prime_dask.m

2 ddist = py.importlib.import_module('dask.distributed');

3 prime_seq = py.importlib.import_module('prime_seq');

4 br_dask = py.importlib.import_module('bridge_dask');

5

6 A = int64(2);

7 B = int64(10000000);

8 n_jobs = int64(3);

9

10 tic;

11 client = ddist.Client('127.0.0.1:8786');

12 client.upload_file('prime_seq.py');

13

14 % submit the jobs to the cluster

15 tasks = py.list({});

16 incr = n_jobs;

17 for i = 0:n_jobs-1

18 task = br_dask.delayed(prime_seq.my_fn, A+i, B, incr);
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19 tasks.append(task);

20 end

21 results = br_dask.compute(tasks); % start the computations,

22 client.close() % worker's solution to the list 'results'

23 % gets here after all remote workers have finished

24

25 % post-processing: aggregate the partial solutions

26 S = 0;

27 mat_results = py2mat(results);

28 for i = 1:length(mat_results)

29 partial_sum = mat_results{i}{1};

30 S = S + partial_sum;

31 fprintf('Job %d took %.3f sec\n', i-1, mat_results{i}{2});

32 end

33 dT = toc;

34 fprintf('A=%d B=%d, %.3f sec\n', A, B, dT);

35 fprintf('S=%ld\n', S);

Line 12 has an important command we didn’t need in the pure Python solution: it uploads our
Python module file to the workers. This wasn’t necessary in Python because the the program we
were running already contained all needed functions. Keep in mind that the workers do not share
memory or file resources with the main program and therefore need to be given all items, whether
input data or our code files, to function properly. (Incidentally, the upload file() function will
only send source files to the workers. A different function, demonstrated in Example 3, is needed
for data files.)

Our bridge module functions are called at lines 18 and 21. Line 26 calls the py2mat.m
function to convert the Python solution list into a MATLAB cell array.

MATLAB’s parallel performance matches Python’s—mediocre, not great:

>> prime_dask

Job 0 took 345.014 sec

Job 1 took 219.340 sec

Job 2 took 344.900 sec

A=2 B=10000000, 345.164 sec

S=5495501355056

Nonetheless we’ve established the mechanics of sending computations from a MATLAB main
program to a collection of Python workers and getting the results back as native MATLAB variables.
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14.5 Example 2: gigapixel Mandelbrot image

My second example does a bit more interesting work in a bit more interesting fashion: I’ll scale up
the Mandelbrot set example from 5,000 × 5,000 pixels to 35,000 × 35,000—more than 1.2 billion
pixels. This is 49x larger than the 5k × 5k image so we can expect it to take 49x longer—several
minutes instead of several seconds. This time I’ll farm the work out to actual remote computers, a
collection of 18 virtual machine instances from DigitalOcean2. Foolishly, perhaps, I start the dask
cluster when I need it using the insecure dask-ssh --hostname method.

I had to restructure the solution to work on the memory limited workers. Instead of simply
subdividing my 35,000 × 35,000 frame across the 18 workers, I had to go an extra step and first
break each frame into smaller slices, spread each slice across the 18 workers, harvest the results
from the slice, then send the next slice out. The code below uses the term group to refer to a slice:

MATLAB:

1 % file: MB_dask.m

2 ddist = py.importlib.import_module('dask.distributed');

3 np = py.importlib.import_module('numpy');

4 MB_py = py.importlib.import_module('MB_numba_dask');

5 br_dask = py.importlib.import_module('bridge_dask');

6

7 N = int64( 35000 );

8 imax = int64(255);

9 Tc = tic;

10 nR = N; nC = N;

11 Re_limits = np.array({-0.7440, -0.7433});

12 Im_limits = np.array({ 0.1315, 0.1322});

13 n_groups = 16;

14 n_jobs_per_group = 18;

15 n_jobs = n_jobs_per_group*n_groups;

16 client = ddist.Client('127.0.0.1:8786'); % replace with scheduler IP

17 client.upload_file('MB_numba_dask.py');

18 results = py.list({});

19 for c = 1:n_groups

20 tasks = py.list({});

21 Tcs = tic;

22 for i = 1:n_jobs_per_group

23 job_id = int64((c-1)*n_jobs_per_group+i-1);

24 task = br_dask.delayed(MB_py.MB, nC, Re_limits, ...

25 nR, Im_limits, imax, job_id, n_jobs);

26 tasks.append(task);

27 end

28 results.extend( br_dask.compute(tasks) );

29 Tce = toc(Tcs);
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30 fprintf('group %2d took %.3f sec\n', c-1, Tce)

31 end

32 client.close();

33

34 % reassemble the image

35 img = zeros(N,N, 'uint8');

36 Tps = tic;

37 for i = 1:length(results)

38 my_rows = py2mat(results{i}{1}) + 1; % 0-indexing to 1

39 img_rows = py2mat(results{i}{2});

40 img(my_rows,:) = img_rows;

41 end

42 Tpe = toc(Tps);

43 fprintf('py2mat conversion took %.3f\n', Tpe);

44 Te = toc(Tc);

45 fprintf('%.3f %5d\n', Te, N);

46 imshow(img)

Line 4 imports the Numba-powered Mandelbrot functions from the file MB numba dask.py. The
MB() function in this file differs a bit from the one in the previous chapter. This MB() figures out
which rows of the slice to stride over then returns the indices of these rows to the caller so that the
caller can reassemble the overall frame more easily.

Line 16 shows the IP address of the localhost. In reality, I use the IP address of the DigitalOcean
instance running my dask scheduler. I won’t advertise this address to keep my instances from
unnecessary attention.

Line 17 uploads the MB numba dask.py module file to the workers.

Line 19 begins the loop which iterates over the 16 slices of each frame. I further divide each slice
across 18 workers so a worker at any one time is only doing math on 35000/(18*16), or roughly
122 rows at a time (each of which has 35000 columns).

Line 28 collects the results for the slice from the 18 workers, then the loop continues to the next
slice.

Line 38 and 39 convert the Python numeric solution into native MATLAB variables. This is an
expensive step because more than a gigabyte of data will be copied.

Line 46 displays the resulting image, which doesn’t seem noteworthy. It is, though. MATLAB
on an 8 GB laptop can comfortably render the gigapixal image whereas matplotlib’s equivalent
command, plt.imshow() crashes.

Here are performance numbers for a typical run:

>> MB_numba_dask
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group 0 took 5.658 sec

group 1 took 6.278 sec

group 2 took 4.812 sec

group 3 took 5.495 sec

group 4 took 4.746 sec

group 5 took 5.028 sec

group 6 took 4.982 sec

group 7 took 5.098 sec

group 8 took 4.911 sec

group 9 took 5.036 sec

group 10 took 4.923 sec

group 11 took 4.790 sec

group 12 took 4.946 sec

group 13 took 4.530 sec

group 14 took 4.528 sec

group 15 took 5.192 sec

py2mat conversion took 30.253

111.463 35000

In other words, just under 2 minutes to get results when running on 18 computers compared to
an estimated 46 minutes for a pure MATLAB solution running on a single computer (56.77 seconds
for 5k × 5k * 49 larger problem / 60 sec/min, ref. section 13.7). True, much of the performance
comes just from Numba. However the DigitalOcean virtual machines have just one core each and
these run much slower than the cores of my laptop. I can’t run MATLAB on the virtual machines
so it isn’t possible to get an accurate estimate of parallel efficiency.

14.6 Example 3: finite element frequency domain response

Few real-world problems are as clean to set up and solve as the previous two examples. Realistic
tasks typically involve substantial amounts of input data and then create volumes of new data.
Figuring out how to split, transfer, then reassemble data efficiently can be as difficult as designing
algorithms that can run in parallel. Often, as in this next example, you have to decide whether
to transfer data from the main program to the remote workers or have all the workers perform
duplicate work to generate the same data. The problem is compounded when using MATLAB
with dask because you’ll also need to decide how much of your MATLAB code you’re willing to
reimplement in Python for execution on the remote computers.

This example comes from the field of structural dynamics. It solves a system of equations
involving stiffness (K), damping (C), and mass (M) matrices from a finite element discretization
of a structure at many frequencies ωk, where k = 1 .. N :

Kxk + iωkCxk − ω2
kMxk = P (ωk)b
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N is typically in the hundreds but can exceed a thousand if the frequency content of the load
spectrum, P (ωk), spans a wide range. The vector b holds the load vector orientation.

If the finite element model is large, each individual solution will take minutes (or worse!). Scale
that by N and you’ll be waiting a while for answers, possibly a very long while. The problem
is easily divided among processors, however, since each frequency’s solution is independent of the
other frequencies.

The first design decision to make is should we 1) compute K, C, and M in the main program,
written in MATLAB, then copy the matrices to the remote computers for solution in Python, or
2) send the model description to the remote computers and have them independently regenerate
K, C, and M , then solve them at a subset of frequencies?

The first method puts a big load on the network to transfer the large matrices to many remote
computers but it also means there’s little extra code to write; Python already has fast linear
equation solvers for dense and sparse matrices. The second method involves much less network
traffic but it also means translating the MATLAB finite element generation and assembly routines
to Python. I’ll choose the lazy “write less code” option, method 1, in this case.

Chapter 14 of my book describes the full finite element solver using sparse matrices implemented
in both MATLAB and Python and includes representative models of a notional satellite with
>600,000 degrees of freedom (DOF). The elements are merely 2D rods; I made no attempt to
emulate a realistic structure. Multiple mesh discretizations were created with triangle. A 7,600
DOF version (satellite.2.ele and satellite.2.node) looks like this:

Figure 14.3: Finite element mesh for a notional 2D satellite.

The load represents an explosive bolt in the elbow of the solar array deployment structure on
the left. Its time history and spectral content are seen in Figure 14.6.

Rather than repeating the details here, I’ll describe problems I encountered trying to solve the
600k DOF model in MATLAB + dask across 2,048 frequencies using 100 remote workers of Coiled’s
cloud.
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Figure 14.4: Temporal and load and its spectral content.

14.6.1 Aside: Coiled

Coiled is a company created by dask’s founders. It offers dask as a cloud service. Using this service
is much easier path than creating a roll-your-own cluster as I did with my 18 anemic DigitalOcean
virtual machines. In addition to providing computationally powerful computers, Coiled offers users
10,000 hours of free CPU each month.

I ran this example on Coiled’s cloud.

14.6.2 Sending large amounts of input data to remote workers

If we have a function that takes two input arguments:

result = my_function(argument_1, argument_2)

we can send multiple copies of it to run simultaneously on remote computers with

tasks = []

task = client.submit(my_function, argument_1, argument_2)

tasks.append(task)

task = client.submit(my_function, argument_3, argument_4)
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tasks.append(task)

# :

# and so on

# :

results = client.gather(tasks)

Dask does many things behind the scenes to make this work. It

1. finds an idle worker to run the function

2. serializes the function arguments then transmits them over the network to the worker

3. deserialized the arguments then instructs the worker to call the function with these arguments

4. captures the return values from the function, serializes them, then transmits them back to
the main program where it deserializes them and adds them to the results list

The second step is problematic when the input arguments are massive and don’t change between
function calls. In our case the input matrices K, C, M , P , and b are invariant and should only be
sent over the network once.

Dask has a function for this situation called scatter() which sends the given arguments to all
remote computers. It works best when these workers are ready to receive data, so we’ll use another
convenience function, wait for workers(). The before and after calls are arranged like this:

Python (regular way, without scatter):

tasks = []

client = Client(cluster)

for i in range(n_jobs):

task = client.submit(solve, K, C, M, b, omega_subset[i])

tasks.append(task)

results = client.gather(tasks)

Python (with scatter):

tasks = []

client = Client(cluster)

client.wait_for_workers(n_jobs)

KCMb_dist = client.scatter([K, C, M, b], broadcast=True)

for i in range(n_jobs):

task = client.submit(solve, KCMb_dist, omega_subset[i])

tasks.append(task)

results = client.gather(tasks)
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14.6.3 MATLAB client disconnects

The next problem I encountered was disconnects between the Python worker processes on the
remote computers and the dask client in the MATLAB main program on my local computer. I still
don’t know the cause for these disconnects although they may be related to the amount of time
the computations took on the remote workers.

The solution I came up with was another Python bridge module that contained all dask objects
and function calls. Once all dask activity happened in Python, the MATLAB main program ran
successfully.

14.6.4 Source code

The MATLAB code to compute the finite element matrices and run the direct frequency domain
problem along with the Python bridge module and equation solver are too lengthy to list here.
Instead you can find them at my book’s Github repository in these locations:

Operation source file name

MATLAB main program code/dask/run fr dask.m

Python main program code/dask/run fr dask.py

bridge module + solver code/dask/pysolve.py

compute K,M code/mesh/FE model.m

compute K,M code/mesh/Node.m

compute K,M code/mesh/Rod Elem.m

compute K,M code/mesh/load model.m

compute K,M code/mesh/run fem.m

satellite FE model satellite

14.6.5 Performance and cost

The time to solve 2048 frequencies on my 600k DOF model on a single computer in MATLAB is
about 8.5 hours. When the MATLAB program distributes the matrices and equation solving step
to 100 workers on Coiled’s cloud, the time drops to about 15 minutes, a 33x speed increase.

Number of Workers Number of Frequencies Time [seconds] Cost [US$]
3 16 402.1 0.02
64 64 472.1 0.50
100 100 628.0 0.88
100 1024 743.0 0.95
100 2048 940.2 1.60
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14.6.6 Concluding remarks

Dask does a lot of work under the hood to make it easy to send work to remote computers. It
manages network transmissions of data to and from the workers and balances the load to keep all
workers busy. The price for this convenience is a relatively high overhead when tasks are short,
that is, less than 10 seconds each. Examples 1 and 2 fall in this relatively wimpy problem class
and don’t show dask at its best.

Dask shines on large problems that would otherwise overwhelm a single computer.
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