
Julia Language

#julia-lang

Table of Contents

About 1

Chapter 1: Getting started with Julia Language 2

Versions 2

Examples 2

Hello, World! 2

Chapter 2: @goto and @label 4

Syntax 4

Remarks 4

Examples 4

Input validation 4

Error cleanup 5

Chapter 3: Arithmetic 6

Syntax 6

Examples 6

Quadratic Formula 6

Sieve of Eratosthenes 6

Matrix Arithmetic 7

Sums 7

Products 8

Powers 8

Chapter 4: Arrays 10

Syntax 10

Parameters 10

Examples 10

Manual construction of a simple array 10

Array types 11

Arrays of Arrays - Properties and Construction 12

Initialize an Empty Array 13

Vectors 13

Concatenation 14

Horizontal Concatenation 14

Vertical Concatenation 15

Chapter 5: Closures 17

Syntax 17

Remarks 17

Examples 17

Function Composition 17

Implementing Currying 18

Introduction to Closures 19

Chapter 6: Combinators 21

Remarks 21

Examples 21

The Y or Z Combinator 21

The SKI Combinator System 22

A Direct Translation from Lambda Calculus 22

Showing SKI Combinators 23

Chapter 7: Comparisons 25

Syntax 25

Remarks 25

Examples 25

Chained Comparisons 25

Ordinal Numbers 27

Standard Operators 28

Using ==, ===, and isequal 29

When to use == 29

When to use === 30

When to use isequal 31

Chapter 8: Comprehensions 33

Examples 33

Array comprehension 33

Basic Syntax 33

Conditional Array Comprehension 33

Multidimensional array comprehensions 34

Generator Comprehensions 34

Function Arguments 35

Chapter 9: Conditionals 36

Syntax 36

Remarks 36

Examples 36

if...else expression 36

if...else statement 37

if statement 37

Ternary conditional operator 37

Short-circuit operators: && and || 38

For branching 38

In conditions 38

if statement with multiple branches 39

The ifelse function 39

Chapter 10: Cross-Version Compatibility 41

Syntax 41

Remarks 41

Examples 41

Version numbers 41

Using Compat.jl 42

Unified String type 42

Compact broadcasting syntax 43

Chapter 11: Dictionaries 44

Examples 44

Using Dictionaries 44

Chapter 12: Enums 45

Syntax 45

Remarks 45

Examples 45

Defining an enumerated type 45

Using symbols as lightweight enums 46

Chapter 13: Expressions 48

Examples 48

Intro to Expressions 48

Creating Expressions 48

Fields of Expression Objects 50

Interpolation and Expressions 52

External References on Expressions 52

Chapter 14: for Loops 54

Syntax 54

Remarks 54

Examples 54

Fizz Buzz 54

Find smallest prime factor 55

Multidimensional iteration 55

Reduction and parallel loops 56

Chapter 15: Functions 57

Syntax 57

Remarks 57

Examples 57

Square a number 57

Recursive functions 58

Simple recursion 58

Working with trees 58

Introduction to Dispatch 58

Optional Arguments 59

Parametric Dispatch 60

Writing Generic Code 61

Imperative factorial 62

Anonymous functions 63

Arrow syntax 63

Multiline syntax 63

Do block syntax 64

Chapter 16: Higher-Order Functions 65

Syntax 65

Remarks 65

Examples 65

Functions as arguments 65

Map, filter, and reduce 66

Chapter 17: Input 68

Syntax 68

Parameters 68

Examples 68

Reading a String from Standard Input 68

Reading Numbers from Standard Input 70

Reading Data from a File 72

Reading strings or bytes 72

Reading structured data 73

Chapter 18: Iterables 74

Syntax 74

Parameters 74

Examples 74

New iterable type 74

Combining Lazy Iterables 76

Lazily slice an iterable 76

Lazily shift an iterable circularly 77

Making a multiplication table 77

Lazily-Evaluated Lists 78

Chapter 19: JSON 80

Syntax 80

Remarks 80

Examples 80

Installing JSON.jl 80

Parsing JSON 80

Serializing JSON 81

Chapter 20: Metaprogramming 82

Syntax 82

Remarks 82

Examples 82

Reimplementing the @show macro 82

Until loop 83

QuoteNode, Meta.quot, and Expr(:quote) 84

The difference between Meta.quot and QuoteNode, explained 85

What about Expr(:quote)? 89

Guide 89

's Metaprogramming bits & bobs 89

Symbol 90

Expr (AST) 91

multiline Exprs using quote 92

quote -ing a quote 93

Are $ and :(…) somehow inverses of one another? 93

Is $foo the same as eval(foo) ? 93

macro s 93

Let's make our own @show macro: 94

expand to lower an Expr 94

esc() 95

Example: swap macro to illustrate esc() 95

Example: until macro 97

Interpolation and assert macro 98

A fun hack for using { } for blocks 98

ADVANCED 99

Scott's macro: 99

junk / unprocessed ... 101

view/dump a macro 101

How to understand eval(Symbol("@M"))? 102

Why doesn't code_typed display params? 102

??? 104

Module Gotcha 104

Python `dict`/JSON like syntax for `Dict` literals. 105

Introduction 105

Macro definition 105

Usage 106

Misusage 107

Chapter 21: Modules 108

Syntax 108

Examples 108

Wrap Code in a Module 108

Using Modules to Organize Packages 109

Chapter 22: Packages 110

Syntax 110

Parameters 110

Examples 110

Install, use, and remove a registered package 110

Check out a different branch or version 111

Install an unregistered package 112

Chapter 23: Parallel Processing 113

Examples 113

pmap 113

@parallel 113

@spawn and @spawnat 115

When to use @parallel vs. pmap 117

@async and @sync 118

Adding Workers 122

Chapter 24: Reading a DataFrame from a file 123

Examples 123

Reading a dataframe from delimiter separated data 123

Handling different comment comment marks 123

Chapter 25: Regexes 124

Syntax 124

Parameters 124

Examples 124

Regex literals 124

Finding matches 124

Capture groups 125

Chapter 26: REPL 127

Syntax 127

Remarks 127

Examples 127

Launch the REPL 127

On Unix Systems 127

On Windows 127

Using the REPL as a Calculator 127

Dealing with Machine Precision 129

Using REPL Modes 130

The Help Mode 130

The Shell Mode 131

Chapter 27: Shell Scripting and Piping 132

Syntax 132

Examples 132

Using Shell from inside the REPL 132

Shelling out from Julia code 132

Chapter 28: String Macros 133

Syntax 133

Remarks 133

Examples 133

Using string macros 133

@b_str 134

@big_str 134

@doc_str 134

@html_str 135

@ip_str 135

@r_str 135

@s_str 136

@text_str 136

@v_str 136

@MIME_str 136

Symbols that are not legal identifiers 136

Implementing interpolation in a string macro 137

Manual parsing 137

Julia parsing 138

Command macros 138

Chapter 29: String Normalization 140

Syntax 140

Parameters 140

Examples 140

Case-Insensitive String Comparison 140

Diacritic-Insensitive String Comparison 140

Chapter 30: Strings 142

Syntax 142

Parameters 142

Examples 142

Hello, World! 142

Graphemes 143

Convert numeric types to strings 144

String interpolation (insert value defined by variable into string) 145

Using sprint to Create Strings with IO Functions 146

Chapter 31: sub2ind 147

Syntax 147

Parameters 147

Remarks 147

Examples 147

Convert subscripts to linear indices 147

Pits & Falls 147

Chapter 32: Time 149

Syntax 149

Examples 149

Current Time 149

Chapter 33: Tuples 151

Syntax 151

Remarks 151

Examples 151

Introduction to Tuples 151

Tuple types 153

Dispatching on tuple types 154

Multiple return values 155

Chapter 34: Type Stability 157

Introduction 157

Examples 157

Write type-stable code 157

Chapter 35: Types 158

Syntax 158

Remarks 158

Examples 158

Dispatching on Types 158

Is the list empty? 159

How long is the list? 160

Next steps 160

Immutable Types 160

Singleton types 160

Wrapper types 161

True composite types 162

Chapter 36: Unit Testing 163

Syntax 163

Remarks 163

Examples 163

Testing a Package 163

Writing a Simple Test 164

Writing a Test Set 164

Testing Exceptions 167

Testing Floating Point Approximate Equality 168

Chapter 37: while Loops 170

Syntax 170

Remarks 170

Examples 170

Collatz sequence 170

Run once before testing condition 170

Breadth-first search 171

Credits 174

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: julia-language

It is an unofficial and free Julia Language ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official Julia Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/julia-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Julia
Language

Versions

Version Release Date

0.6.0-dev 2017-06-01

0.5.0 2016-09-19

0.4.0 2015-10-08

0.3.0 2014-08-21

0.2.0 2013-11-17

0.1.0 2013-02-14

Examples

Hello, World!

println("Hello, World!")

To run Julia, first get the interpreter from the website’s download page. The current stable release
is v0.5.0, and this version is recommended for most users. Certain package developers or power
users may choose to use the nightly build, which is far less stable.

When you have the interpreter, write your program in a file named hello.jl. It can then be run
from a system terminal as:

$ julia hello.jl
Hello, World!

Julia can also be run interactively, by running the julia program. You should see a header and
prompt, as follows:

 _
 _ _ _(_)_ | A fresh approach to technical computing
 (_) | (_) (_) | Documentation: http://docs.julialang.org
 _ _ _| |_ __ _ | Type "?help" for help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 0.4.2 (2015-12-06 21:47 UTC)
 _/ |__'_|_|_|__'_| | Official http://julialang.org/ release

https://riptutorial.com/ 2

http://julialang.org/downloads/

|__/ | x86_64-w64-mingw32

julia>

You can run any Julia code in this REPL, so try:

julia> println("Hello, World!")
Hello, World!

This example makes use of a string, "Hello, World!", and of the println function—one of many in
the standard library. For more information or help, try the following sources:

The REPL has an integrated help mode to access documentation.•
The official documentation is quite comprehensive.•
Stack Overflow has a small but growing collection of examples.•
Users on Gitter are happy to help with small questions.•
The primary online discussion venue for Julia is the Discourse forum at
discourse.julialang.org. More involved questions should be posted here.

•

A collection of tutorials and books can be found here.•

Read Getting started with Julia Language online: https://riptutorial.com/julia-lang/topic/485/getting-
started-with-julia-language

https://riptutorial.com/ 3

http://www.riptutorial.com/julia-lang/topic/5739/repl
http://www.riptutorial.com/julia-lang/topic/5562/strings
http://www.riptutorial.com/julia-lang/topic/3079/functions
http://www.riptutorial.com/julia-lang/example/20290/using-repl-modes
http://docs.julialang.org/en/stable/
https://gitter.im/JuliaLang/julia
https://discourse.julialang.org/
http://julialang.org/learning/
https://riptutorial.com/julia-lang/topic/485/getting-started-with-julia-language
https://riptutorial.com/julia-lang/topic/485/getting-started-with-julia-language

Chapter 2: @goto and @label

Syntax

@goto label•
@label label•

Remarks

Overuse or inappropriate use of advanced control flow makes code hard to read. @goto or its
equivalents in other languages, when used improperly, leads to unreadable spaghetti code.

Similar to languages like C, one cannot jump between functions in Julia. This also means that
@goto is not possible at the top-level; it will only work within a function. Furthermore, one cannot
jump from an inner function to its outer function, or from an outer function to an inner function.

Examples

Input validation

Although not traditionally considered loops, the @goto and @label macros can be used for more
advanced control flow. One use case is when the failure of one part should lead to the retry of an
entire function, often useful in input validation:

function getsequence()
 local a, b

@label start
 print("Input an integer: ")
 try
 a = parse(Int, readline())
 catch
 println("Sorry, that's not an integer.")
 @goto start
 end

 print("Input a decimal: ")
 try
 b = parse(Float64, readline())
 catch
 println("Sorry, that doesn't look numeric.")
 @goto start
 end

 a, b
end

However, this use case is often more clear using recursion:

https://riptutorial.com/ 4

function getsequence()
 local a, b

 print("Input an integer: ")
 try
 a = parse(Int, readline())
 catch
 println("Sorry, that's not an integer.")
 return getsequence()
 end

 print("Input a decimal: ")
 try
 b = parse(Float64, readline())
 catch
 println("Sorry, that doesn't look numeric.")
 return getsequence()
 end

 a, b
end

Although both examples do the same thing, the second is easier to understand. However, the first
one is more performant (because it avoids the recursive call). In most cases, the cost of the call
does not matter; but in limited situations, the first form is acceptable.

Error cleanup

In languages such as C, the @goto statement is often used to ensure a function cleans up
necessary resources, even in the event of an error. This is less important in Julia, because
exceptions and try-finally blocks are often used instead.

However, it is possible for Julia code to interface with C code and C APIs, and so sometimes
functions still need to be written like C code. The below example is contrived, but demonstrates a
common use case. The Julia code will call Libc.malloc to allocate some memory (this simulates a
C API call). If not all allocations succeed, then the function should free the resources obtained so
far; otherwise, the allocated memory is returned.

using Base.Libc
function allocate_some_memory()
 mem1 = malloc(100)
 mem1 == C_NULL && @goto fail
 mem2 = malloc(200)
 mem2 == C_NULL && @goto fail
 mem3 = malloc(300)
 mem3 == C_NULL && @goto fail
 return mem1, mem2, mem3

@label fail
 free(mem1)
 free(mem2)
 free(mem3)
end

Read @goto and @label online: https://riptutorial.com/julia-lang/topic/5564/-goto-and--label

https://riptutorial.com/ 5

https://riptutorial.com/julia-lang/topic/5564/-goto-and--label

Chapter 3: Arithmetic

Syntax

+x•
-x•
a + b•
a - b•
a * b•
a / b•
a ^ b•
a % b•
4a•
sqrt(a)•

Examples

Quadratic Formula

Julia uses similar binary operators for basic arithmetic operations as does mathematics or other
programming languages. Most operators can be written in infix notation (that is, placed in between
the values being computed). Julia has an order of operations that matches the common
convention in mathematics.

For instance, the below code implements the quadratic formula, which demonstrates the +, -, *,
and / operators for addition, subtraction, multiplication, and division respectively. Also shown is
implicit multiplication, where a number can be placed directly before a symbol to mean
multiplication; that is, 4a means the same as 4*a.

function solvequadratic(a, b, c)
 d = sqrt(b^2 - 4a*c)
 (-b - d) / 2a, (-b + d) / 2a
end

Usage:

julia> solvequadratic(1, -2, -3)
(-1.0,3.0)

Sieve of Eratosthenes

The remainder operator in Julia is the % operator. This operator behaves similarly to the % in
languages such as C and C++. a % b is the signed remainder left over after dividing a by b.

This operator is very useful for implementing certain algorithms, such as the following

https://riptutorial.com/ 6

https://en.wikipedia.org/wiki/Quadratic_formula

implementation of the Sieve of Eratosthenes.

iscoprime(P, i) = !any(x -> i % x == 0, P)

function sieve(n)
 P = Int[]
 for i in 2:n
 if iscoprime(P, i)
 push!(P, i)
 end
 end
 P
end

Usage:

julia> sieve(20)
8-element Array{Int64,1}:
 2
 3
 5
 7
 11
 13
 17
 19

Matrix Arithmetic

Julia uses the standard mathematical meanings of arithmetic operations when applied to matrices.
Sometimes, elementwise operations are desired instead. These are marked with a full stop (.)
preceding the operator to be done elementwise. (Note that elementwise operations are often not
as efficient as loops.)

Sums

The + operator on matrices is a matrix sum. It is similar to an elementwise sum, but it does not
broadcast shape. That is, if A and B are the same shape, then A + B is the same as A .+ B;
otherwise, A + B is an error, whereas A .+ B may not necessarily be.

julia> A = [1 2
 3 4]
2×2 Array{Int64,2}:
 1 2
 3 4

julia> B = [5 6
 7 8]
2×2 Array{Int64,2}:
 5 6
 7 8

julia> A + B
2×2 Array{Int64,2}:

https://riptutorial.com/ 7

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

 6 8
 10 12

julia> A .+ B
2×2 Array{Int64,2}:
 6 8
 10 12

julia> C = [9, 10]
2-element Array{Int64,1}:
 9
 10

julia> A + C
ERROR: DimensionMismatch("dimensions must match")
 in promote_shape(::Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}, ::Tuple{Base.OneTo{Int64}}) at
./operators.jl:396
 in promote_shape(::Array{Int64,2}, ::Array{Int64,1}) at ./operators.jl:382
 in _elementwise(::Base.#+, ::Array{Int64,2}, ::Array{Int64,1}, ::Type{Int64}) at
./arraymath.jl:61
 in +(::Array{Int64,2}, ::Array{Int64,1}) at ./arraymath.jl:53

julia> A .+ C
2×2 Array{Int64,2}:
 10 11
 13 14

Likewise, - computes a matrix difference. Both + and - can also be used as unary operators.

Products

The * operator on matrices is the matrix product (not the elementwise product). For an
elementwise product, use the .* operator. Compare (using the same matrices as above):

julia> A * B
2×2 Array{Int64,2}:
 19 22
 43 50

julia> A .* B
2×2 Array{Int64,2}:
 5 12
 21 32

Powers

The ^ operator computes matrix exponentiation. Matrix exponentiation can be useful for computing
values of certain recurrences quickly. For instance, the Fibonacci numbers can be generated by
the matrix expression

fib(n) = (BigInt[1 1; 1 0]^n)[2]

As usual, the .^ operator can be used where elementwise exponentiation is the desired operation.

https://riptutorial.com/ 8

https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication#Powers_of_matrices
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number#Matrix_form

Read Arithmetic online: https://riptutorial.com/julia-lang/topic/3848/arithmetic

https://riptutorial.com/ 9

https://riptutorial.com/julia-lang/topic/3848/arithmetic

Chapter 4: Arrays

Syntax

[1,2,3]•
[1 2 3]•
[1 2 3; 4 5 6; 7 8 9]•
Array(type, dims...)•
ones(type, dims...)•
zeros(type, dims...)•
trues(type, dims...)•
falses(type, dims...)•
push!(A, x)•
pop!(A)•
unshift!(A, x)•
shift!(A)•

Parameters

Parameters Remarks

For push!(A, x), unshift!(A, x)

A The array to add to.

x The element to add to the array.

Examples

Manual construction of a simple array

One can initialize a Julia array by hand, using the square-brackets syntax:

julia> x = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

The first line after the command shows the size of the array you created. It also shows the type of
its elements and its dimensionality (int this case Int64 and 1, repectively). For a two-dimensional
array, you can use spaces and semi-colon:

julia> x = [1 2 3; 4 5 6]
2x3 Array{Int64,2}:

https://riptutorial.com/ 10

 1 2 3
 4 5 6

To create an uninitialized array, you can use the Array(type, dims...) method:

julia> Array(Int64, 3, 3)
3x3 Array{Int64,2}:
 0 0 0
 0 0 0
 0 0 0

The functions zeros, ones, trues, falses have methods that behave exactly the same way, but
produce arrays full of 0.0, 1.0, True or False, respectively.

Array types

In Julia, Arrays have types parametrized by two variables: a type T and a dimensionality D (
Array{T, D}). For a 1-dimensional array of integers, the type is:

julia> x = [1, 2, 3];
julia> typeof(x)
Array{Int64, 1}

If the array is a 2-dimensional matrix, D equals to 2:

julia> x = [1 2 3; 4 5 6; 7 8 9]
julia> typeof(x)
Array{Int64, 2}

The element type can also be abstract types:

julia> x = [1 2 3; 4 5 "6"; 7 8 9]
3x3 Array{Any,2}:
 1 2 3
 4 5 "6"
 7 8 9

Here Any (an abstract type) is the type of the resulting array.

Specifying Types when Creating Arrays

When we create an Array in the way described above, Julia will do its best to infer the proper type
that we might want. In the initial examples above, we entered inputs that looked like integers, and
so Julia defaulted to the default Int64 type. At times, however, we might want to be more specific.
In the following example, we specify that we want the type to be instead Int8:

x1 = Int8[1 2 3; 4 5 6; 7 8 9]
typeof(x1) ## Array{Int8,2}

We could even specify the type as something such as Float64, even if we write the inputs in a way

https://riptutorial.com/ 11

that might otherwise be interpreted as integers by default (e.g. writing 1 instead of 1.0). e.g.

x2 = Float64[1 2 3; 4 5 6; 7 8 9]

Arrays of Arrays - Properties and Construction

In Julia, you can have an Array that holds other Array type objects. Consider the following
examples of initializing various types of Arrays:

A = Array{Float64}(10,10) # A single Array, dimensions 10 by 10, of Float64 type objects

B = Array{Array}(10,10,10) # A 10 by 10 by 10 Array. Each element is an Array of unspecified
type and dimension.

C = Array{Array{Float64}}(10) ## A length 10, one-dimensional Array. Each element is an
Array of Float64 type objects but unspecified dimensions

D = Array{Array{Float64, 2}}(10) ## A length 10, one-dimensional Array. Each element of is
an 2 dimensional array of Float 64 objects

Consider for instance, the differences between C and D here:

julia> C[1] = rand(3)
3-element Array{Float64,1}:
 0.604771
 0.985604
 0.166444

julia> D[1] = rand(3)
ERROR: MethodError:

rand(3) produces an object of type Array{Float64,1}. Since the only specification for the elements
of C are that they be Arrays with elements of type Float64, this fits within the definition of C. But, for
D we specified that the elements must be 2 dimensional Arrays. Thus, since rand(3) does not
produce a 2 dimensional array, we cannot use it to assign a value to a specific element of D

Specify Specific Dimensions of Arrays within an Array

Although we can specify that an Array will hold elements which are of type Array, and we can
specify that, e.g. those elements should be 2-dimensional Arrays, we cannot directly specify the
dimenions of those elements. E.g. we can't directly specify that we want an Array holding 10
Arrays, each of which being 5,5. We can see this from the syntax for the Array() function used to
construct an Array:

Array{T}(dims)

constructs an uninitialized dense array with element type T. dims may be a tuple or a
series of integer arguments. The syntax Array(T, dims) is also available, but
deprecated.

The type of an Array in Julia encompasses the number of the dimensions but not the size of those

https://riptutorial.com/ 12

dimensions. Thus, there is no place in this syntax to specify the precise dimensions. Nevertheless,
a similar effect could be achieved using an Array comprehension:

E = [Array{Float64}(5,5) for idx in 1:10]

Note: this documentation mirrors the following SO Answer

Initialize an Empty Array

We can use the [] to create an empty Array in Julia. The simplest example would be:

A = [] # 0-element Array{Any,1}

Arrays of type Any will generally not perform as well as those with a specified type. Thus, for
instance, we can use:

B = Float64[] ## 0-element Array{Float64,1}
C = Array{Float64}[] ## 0-element Array{Array{Float64,N},1}
D = Tuple{Int, Int}[] ## 0-element Array{Tuple{Int64,Int64},1}

See Initialize an Empty Array of Tuples in Julia for source of last example.

Vectors

Vectors are one-dimensional arrays, and support mostly the same interface as their multi-
dimensional counterparts. However, vectors also support additional operations.

First, note that Vector{T} where T is some type means the same as Array{T,1}.

julia> Vector{Int}
Array{Int64,1}

julia> Vector{Float64}
Array{Float64,1}

One reads Array{Int64,1} as "one-dimensional array of Int64".

Unlike multi-dimensional arrays, vectors can be resized. Elements can be added or removed from
the front or back of the vector. These operations are all constant amortized time.

julia> A = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> push!(A, 4)
4-element Array{Int64,1}:
 1
 2
 3

https://riptutorial.com/ 13

http://stackoverflow.com/a/39335125/3541976
http://stackoverflow.com/questions/19419124/initialize-an-empty-array-of-tuples-in-julia
https://stackoverflow.com/questions/200384/constant-amortized-time

 4

julia> A
4-element Array{Int64,1}:
 1
 2
 3
 4

julia> pop!(A)
4

julia> A
3-element Array{Int64,1}:
 1
 2
 3

julia> unshift!(A, 0)
4-element Array{Int64,1}:
 0
 1
 2
 3

julia> A
4-element Array{Int64,1}:
 0
 1
 2
 3

julia> shift!(A)
0

julia> A
3-element Array{Int64,1}:
 1
 2
 3

As is convention, each of these functions push!, pop!, unshift!, and shift! ends in an exclamation
mark to indicate that they are mutate their argument. The functions push! and unshift! return the
array, whereas pop! and shift! return the element removed.

Concatenation

It is often useful to build matrices out of smaller matrices.

Horizontal Concatenation

Matrices (and vectors, which are treated as column vectors) can be horizontally concatenated
using the hcat function.

julia> hcat([1 2; 3 4], [5 6 7; 8 9 10], [11, 12])
2×6 Array{Int64,2}:

https://riptutorial.com/ 14

 1 2 5 6 7 11
 3 4 8 9 10 12

There is convenience syntax available, using square bracket notation and spaces:

julia> [[1 2; 3 4] [5 6 7; 8 9 10] [11, 12]]
2×6 Array{Int64,2}:
 1 2 5 6 7 11
 3 4 8 9 10 12

This notation can closely match the notation for block matrices used in linear algebra:

julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
 1 2
 3 4

julia> B = [5 6; 7 8]
2×2 Array{Int64,2}:
 5 6
 7 8

julia> [A B]
2×4 Array{Int64,2}:
 1 2 5 6
 3 4 7 8

Note that you cannot horizontally concatenate a single matrix using the [] syntax, as that would
instead create a one-element vector of matrices:

julia> [A]
1-element Array{Array{Int64,2},1}:
 [1 2; 3 4]

Vertical Concatenation

Vertical concatenation is like horizontal concatenation, but in the vertical direction. The function for
vertical concatenation is vcat.

julia> vcat([1 2; 3 4], [5 6; 7 8; 9 10], [11 12])
6×2 Array{Int64,2}:
 1 2
 3 4
 5 6
 7 8
 9 10
 11 12

Alternatively, square bracket notation can be used with semicolons ; as the delimiter:

julia> [[1 2; 3 4]; [5 6; 7 8; 9 10]; [11 12]]
6×2 Array{Int64,2}:

https://riptutorial.com/ 15

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12

Vectors can be vertically concatenated too; the result is a vector:

julia> A = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> B = [4, 5]
2-element Array{Int64,1}:
 4
 5

julia> [A; B]
5-element Array{Int64,1}:
 1
 2
 3
 4
 5

Horizontal and vertical concatenation can be combined:

julia> A = [1 2
 3 4]
2×2 Array{Int64,2}:
 1 2
 3 4

julia> B = [5 6 7]
1×3 Array{Int64,2}:
 5 6 7

julia> C = [8, 9]
2-element Array{Int64,1}:
 8
 9

julia> [A C; B]
3×3 Array{Int64,2}:
 1 2 8
 3 4 9
 5 6 7

Read Arrays online: https://riptutorial.com/julia-lang/topic/5437/arrays

https://riptutorial.com/ 16

http://www.riptutorial.com/julia-lang/example/25049/vectors
https://riptutorial.com/julia-lang/topic/5437/arrays

Chapter 5: Closures

Syntax

x -> [body]•
(x, y) -> [body]•
(xs...) -> [body]•

Remarks

0.4.0

In older versions of Julia, closures and anonymous functions had a runtime performance penalty.
This penalty has been eliminated in 0.5.

Examples

Function Composition

We can define a function to perform function composition using anonymous function syntax:

f ∘ g = x -> f(g(x))

Note that this definition is equivalent to each of the following definitions:

∘(f, g) = x -> f(g(x))

or

function ∘(f, g)
 x -> f(g(x))
end

recalling that in Julia, f ∘ g is just syntax sugar for ∘(f, g).

We can see that this function composes correctly:

julia> double(x) = 2x
double (generic function with 1 method)

julia> triple(x) = 3x
triple (generic function with 1 method)

julia> const sextuple = double ∘ triple
(::#17) (generic function with 1 method)

julia> sextuple(1.5)

https://riptutorial.com/ 17

https://en.wikipedia.org/wiki/Function_composition
http://www.riptutorial.com/julia-lang/example/10470/anonymous-functions

9.0

0.5.0

In version v0.5, this definition is very performant. We can look into the LLVM code generated:

julia> @code_llvm sextuple(1)

define i64 @"julia_#17_71238"(i64) #0 {
top:
 %1 = mul i64 %0, 6
 ret i64 %1
}

It is clear that the two multiplications have been folded into a single multiplication, and that this
function is as efficient as is possible.

How does this higher-order function work? It creates a so-called closure, which consists of not just
its code, but also keeps track of certain variables from its scope. All functions in Julia that are not
created at top-level scope are closures.

0.5.0

One can inspect the variables closed over through the fields of the closure. For instance, we see
that:

julia> (sin ∘ cos).f
sin (generic function with 10 methods)

julia> (sin ∘ cos).g
cos (generic function with 10 methods)

Implementing Currying

One application of closures is to partially apply a function; that is, provide some arguments now
and create a function that takes the remaining arguments. Currying is a specific form of partial
application.

Let's start with the simple function curry(f, x) that will provide the first argument to a function, and
expect additional arguments later. The definition is fairly straightforward:

curry(f, x) = (xs...) -> f(x, xs...)

Once again, we use anonymous function syntax, this time in combination with variadic argument
syntax.

We can implement some basic functions in tacit (or point-free) style using this curry function.

julia> const double = curry(*, 2)
(::#19) (generic function with 1 method)

https://riptutorial.com/ 18

https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Currying
http://www.riptutorial.com/julia-lang/example/10470/anonymous-functions
https://en.wikipedia.org/wiki/Tacit_programming

julia> double(10)
20

julia> const simon_says = curry(println, "Simon: ")
(::#19) (generic function with 1 method)

julia> simon_says("How are you?")
Simon: How are you?

Functions maintain the generism expected:

julia> simon_says("I have ", 3, " arguments.")
Simon: I have 3 arguments.

julia> double([1, 2, 3])
3-element Array{Int64,1}:
 2
 4
 6

Introduction to Closures

Functions are an important part of Julia programming. They can be defined directly within
modules, in which case the functions are referred to as top-level. But functions can also be defined
within other functions. Such functions are called "closures".

Closures capture the variables in their outer function. A top-level function can only use global
variables from their module, function parameters, or local variables:

x = 0 # global
function toplevel(y)
 println("x = ", x, " is a global variable")
 println("y = ", y, " is a parameter")
 z = 2
 println("z = ", z, " is a local variable")
end

A closure, on the other hand, can use all those in addition to variables from outer functions that it
captures:

x = 0 # global
function toplevel(y)
 println("x = ", x, " is a global variable")
 println("y = ", y, " is a parameter")
 z = 2
 println("z = ", z, " is a local variable")

 function closure(v)
 println("v = ", v, " is a parameter")
 w = 3
 println("w = ", w, " is a local variable")
 println("x = ", x, " is a global variable")
 println("y = ", y, " is a closed variable (a parameter of the outer function)")
 println("z = ", z, " is a closed variable (a local of the outer function)")
 end

https://riptutorial.com/ 19

http://www.riptutorial.com/julia-lang/topic/3079/functions
https://en.wikipedia.org/wiki/Closure_(computer_programming)

end

If we run c = toplevel(10), we see the result is

julia> c = toplevel(10)
x = 0 is a global variable
y = 10 is a parameter
z = 2 is a local variable
(::closure) (generic function with 1 method)

Note that the tail expression of this function is a function in itself; that is, a closure. We can call the
closure c like it was any other function:

julia> c(11)
v = 11 is a parameter
w = 3 is a local variable
x = 0 is a global variable
y = 10 is a closed variable (a parameter of the outer function)
z = 2 is a closed variable (a local of the outer function)

Note that c still has access to the variables y and z from the toplevel call — even though toplevel
has already returned! Each closure, even those returned by the same function, closes over
different variables. We can call toplevel again

julia> d = toplevel(20)
x = 0 is a global variable
y = 20 is a parameter
z = 2 is a local variable
(::closure) (generic function with 1 method)

julia> d(22)
v = 22 is a parameter
w = 3 is a local variable
x = 0 is a global variable
y = 20 is a closed variable (a parameter of the outer function)
z = 2 is a closed variable (a local of the outer function)

julia> c(22)
v = 22 is a parameter
w = 3 is a local variable
x = 0 is a global variable
y = 10 is a closed variable (a parameter of the outer function)
z = 2 is a closed variable (a local of the outer function)

Note that despite d and c having the same code, and being passed the same arguments, their
output is different. They are distinct closures.

Read Closures online: https://riptutorial.com/julia-lang/topic/5724/closures

https://riptutorial.com/ 20

https://riptutorial.com/julia-lang/topic/5724/closures

Chapter 6: Combinators

Remarks

Although combinators have limited practical use, they are a useful tool in education to understand
how programming is fundamentally linked to logic, and how very simple building blocks can
combine to create very complex behaviour. In the context of Julia, learning how to create and use
combinators will strengthen an understanding of how to program in a functional style in Julia.

Examples

The Y or Z Combinator

Although Julia is not a purely functional language, it has full support for many of the cornerstones
of functional programming: first-class functions, lexical scope, and closures.

The fixed-point combinator is a key combinator in functional programming. Because Julia has
eager evaluation semantics (as do many functional languages, including Scheme, which Julia is
heavily inspired by), Curry's original Y-combinator will not work out of the box:

Y(f) = (x -> f(x(x)))(x -> f(x(x)))

However, a close relative of the Y-combinator, the Z-combinator, will indeed work:

Z(f) = x -> f(Z(f), x)

This combinator takes a function and returns a function that when called with argument x, gets
passed itself and x. Why would it be useful for a function to be passed itself? This allows recursion
without actually referencing the name of the function at all!

fact(f, x) = x == 0 ? 1 : x * f(x)

Hence, Z(fact) becomes a recursive implementation of the factorial function, despite no recursion
being visible in this function definition. (Recursion is evident in the definition of the Z combinator, of
course, but that is inevitable in an eager language.) We can verify that our function indeed works:

julia> Z(fact)(10)
3628800

Not only that, but it is as fast as we can expect from a recursive implementation. The LLVM code
demonstrates that the result is compiled into a plain old branch, subtract, call, and multiply:

julia> @code_llvm Z(fact)(10)

define i64 @"julia_#1_70252"(i64) #0 {

https://riptutorial.com/ 21

http://www.riptutorial.com/julia-lang/topic/3079/functions
http://www.riptutorial.com/julia-lang/topic/5724/closures
https://en.wikipedia.org/wiki/Fixed-point_combinator
https://en.wikipedia.org/wiki/Eager_evaluation

top:
 %1 = icmp eq i64 %0, 0
 br i1 %1, label %L11, label %L8

L8: ; preds = %top
 %2 = add i64 %0, -1
 %3 = call i64 @"julia_#1_70060"(i64 %2) #0
 %4 = mul i64 %3, %0
 br label %L11

L11: ; preds = %top, %L8
 %"#temp#.0" = phi i64 [%4, %L8], [1, %top]
 ret i64 %"#temp#.0"
}

The SKI Combinator System

The SKI combinator system is sufficient to represent any lambda calculus terms. (In practice, of
course, lambda abstractions blow up to exponential size when they are translated into SKI.) Due
to the simplicity of the system, implementing the S, K, and I combinators is extraordinarily simple:

A Direct Translation from Lambda Calculus

const S = f -> g -> z -> f(z)(g(z))
const K = x -> y -> x
const I = x -> x

We can confirm, using the unit testing system, that each combinator has the expected behaviour.

The I combinator is easiest to verify; it should return the given value unchanged:

using Base.Test
@test I(1) === 1
@test I(I) === I
@test I(S) === S

The K combinator is also fairly straightforward: it should discard its second argument.

@test K(1)(2) === 1
@test K(S)(I) === S

The S combinator is the most complex; its behaviour can be summarized as applying the first two
arguments to the third argument, the applying the first result to the second. We can most easily
test the S combinator by testing some of its curried forms. S(K), for instance, should simply return
its second argument and discard its first, as we see happens:

@test S(K)(S)(K) === K
@test S(K)(S)(I) === I

S(I)(I) should apply its argument to itself:

https://riptutorial.com/ 22

https://en.wikipedia.org/wiki/SKI_combinator_calculus
http://www.riptutorial.com/julia-lang/topic/5632/unit-testing

@test S(I)(I)(I) === I
@test S(I)(I)(K) === K(K)
@test S(I)(I)(S(I)) === S(I)(S(I))

S(K(S(I)))(K) applies its second argument to its first:

@test S(K(S(I)))(K)(I)(I) === I
@test S(K(S(I)))(K)(K)(S(K)) === S(K)(K)

The I combinator described above has a name in standard Base Julia: identity. Thus, we could
have rewritten the above definitions with the following alternative definition of I:

const I = identity

Showing SKI Combinators

One weakness with the approach above is that our functions do not show as nicely as we might
like. Could we replace

julia> S
(::#3) (generic function with 1 method)

julia> K
(::#9) (generic function with 1 method)

julia> I
(::#13) (generic function with 1 method)

with some more informative displays? The answer is yes! Let's restart the REPL, and this time
define how each function is to be shown:

const S = f -> g -> z -> f(z)(g(z));
const K = x -> y -> x;
const I = x -> x;
for f in (:S, :K, :I)
 @eval Base.show(io::IO, ::typeof($f)) = print(io, $(string(f)))
 @eval Base.show(io::IO, ::MIME"text/plain", ::typeof($f)) = show(io, $f)
end

It's important to avoid showing anything until we have finished defining functions. Otherwise, we
risk invalidating the method cache, and our new methods will not seem to immediately take effect.
This is why we have put semicolons in the above definitions. The semicolons suppress the REPL's
output.

This makes the functions display nicely:

julia> S
S

julia> K
K

https://riptutorial.com/ 23

julia> I
I

However, we still run into problems when we try to display a closure:

julia> S(K)
(::#2) (generic function with 1 method)

It would be nicer to display that as S(K). To do that, we must exploit that the closures have their
own individual types. We can access these types and add methods to them through reflection,
using typeof and the primary field of the name field of the type. Restart the REPL again; we will
make further changes:

const S = f -> g -> z -> f(z)(g(z));
const K = x -> y -> x;
const I = x -> x;
for f in (:S, :K, :I)
 @eval Base.show(io::IO, ::typeof($f)) = print(io, $(string(f)))
 @eval Base.show(io::IO, ::MIME"text/plain", ::typeof($f)) = show(io, $f)
end
Base.show(io::IO, s::typeof(S(I)).name.primary) = print(io, "S(", s.f, ')')
Base.show(io::IO, s::typeof(S(I)(I)).name.primary) =
 print(io, "S(", s.f, ')', '(', s.g, ')')
Base.show(io::IO, k::typeof(K(I)).name.primary) = print(io, "K(", k.x, ')')
Base.show(io::IO, ::MIME"text/plain", f::Union{
 typeof(S(I)).name.primary,
 typeof(S(I)(I)).name.primary,
 typeof(K(I)).name.primary
}) = show(io, f)

And now, at last, things display as we would like them to:

julia> S(K)
S(K)

julia> S(K)(I)
S(K)(I)

julia> K
K

julia> K(I)
K(I)

julia> K(I)(K)
I

Read Combinators online: https://riptutorial.com/julia-lang/topic/5758/combinators

https://riptutorial.com/ 24

https://riptutorial.com/julia-lang/topic/5758/combinators

Chapter 7: Comparisons

Syntax

x < y # if x is strictly less than y•
x > y # if x is strictly greater than y•
x == y # if x is equal to y•
x === y # alternatively x ≡ y, if x is egal to y•
x ≤ y # alternatively x <= y, if x is less than or equal to y•

x ≥ y # alternatively x >= y, if x is greater than or equal to y•

x ≠ y # alternatively x != y, if x is not equal to y•

x ≈ y # if x is approximately equal to y•

Remarks

Be careful about flipping comparison signs around. Julia defines many comparison functions by
default without defining the corresponding flipped version. For instance, one can run

julia> Set(1:3) ⊆ Set(0:5)
true

but it does not work to do

julia> Set(0:5) ⊇ Set(1:3)
ERROR: UndefVarError: ⊇ not defined

Examples

Chained Comparisons

Multiple comparison operators used together are chained, as if connected via the && operator. This
can be useful for readable and mathematically concise comparison chains, such as

same as 0 < i && i <= length(A)
isinbounds(A, i) = 0 < i ≤ length(A)

same as Set() != x && issubset(x, y)
isnonemptysubset(x, y) = Set() ≠ x ⊆ y

However, there is an important difference between a > b > c and a > b && b > c; in the latter, the
term b is evaluated twice. This does not matter much for plain old symbols, but could matter if the
terms themselves have side effects. For instance,

julia> f(x) = (println(x); 2)
f (generic function with 1 method)

https://riptutorial.com/ 25

http://www.riptutorial.com/julia-lang/example/15211/short-circuit-operators-----and---
http://www.riptutorial.com/julia-lang/example/15211/short-circuit-operators-----and---

julia> 3 > f("test") > 1
test
true

julia> 3 > f("test") && f("test") > 1
test
test
true

Let’s take a deeper look at chained comparisons, and how they work, by seeing how they are
parsed and lowered into expressions. First, consider the simple comparison, which we can see is
just a plain old function call:

julia> dump(:(a > b))
Expr
 head: Symbol call
 args: Array{Any}((3,))
 1: Symbol >
 2: Symbol a
 3: Symbol b
 typ: Any

Now if we chain the comparison, we notice that the parsing has changed:

julia> dump(:(a > b >= c))
Expr
 head: Symbol comparison
 args: Array{Any}((5,))
 1: Symbol a
 2: Symbol >
 3: Symbol b
 4: Symbol >=
 5: Symbol c
 typ: Any

After parsing, the expression is then lowered to its final form:

julia> expand(:(a > b >= c))
:(begin
 unless a > b goto 3
 return b >= c
 3:
 return false
 end)

and we note indeed that this is the same as for a > b && b >= c:

julia> expand(:(a > b && b >= c))
:(begin
 unless a > b goto 3
 return b >= c
 3:
 return false
 end)

https://riptutorial.com/ 26

http://www.riptutorial.com/julia-lang/topic/5805/expressions

Ordinal Numbers

We will look at how to implement custom comparisons by implementing a custom type, ordinal
numbers. To simplify the implementation, we will focus on a small subset of these numbers: all
ordinal numbers up to but not including ε₀. Our implementation is focused on simplicity, not speed;
however, the implementation is not slow either.

We store ordinal numbers by their Cantor normal form. Because ordinal arithmetic is not
commutative, we will take the common convention of storing most significant terms first.

immutable OrdinalNumber <: Number
 βs::Vector{OrdinalNumber}
 cs::Vector{Int}
end

Since the Cantor normal form is unique, we may test equality simply through recursive equality:

0.5.0

In version v0.5, there is a very nice syntax for doing this compactly:

import Base: ==
α::OrdinalNumber == β::OrdinalNumber = α.βs == β.βs && α.cs == β.cs

0.5.0

Otherwise, define the function as is more typical:

import Base: ==
==(α::OrdinalNumber, β::OrdinalNumber) = α.βs == β.βs && α.cs == β.cs

To finish our order, because this type has a total order, we should overload the isless function:

import Base: isless
function isless(α::OrdinalNumber, β::OrdinalNumber)
 for i in 1:min(length(α.cs), length(β.cs))
 if α.βs[i] < β.βs[i]
 return true
 elseif α.βs[i] == β.βs[i] && α.cs[i] < β.cs[i]
 return true
 end
 end
 return length(α.cs) < length(β.cs)
end

To test our order, we can create some methods to make ordinal numbers. Zero, of course, is
obtained by having no terms in the Cantor normal form:

const ORDINAL_ZERO = OrdinalNumber([], [])
Base.zero(::Type{OrdinalNumber}) = ORDINAL_ZERO

https://riptutorial.com/ 27

https://en.wikipedia.org/wiki/Ordinal_number
https://en.wikipedia.org/wiki/Ordinal_number
https://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form

We can defined an expω to compute ω^α, and use that to compute 1 and ω:

expω(α) = OrdinalNumber([α], [1])
const ORDINAL_ONE = expω(ORDINAL_ZERO)
Base.one(::Type{OrdinalNumber}) = ORDINAL_ONE
const ω = expω(ORDINAL_ONE)

We now have a fully functional ordering function on ordinal numbers:

julia> ORDINAL_ZERO < ORDINAL_ONE < ω < expω(ω)
true

julia> ORDINAL_ONE > ORDINAL_ZERO
true

julia> sort([ORDINAL_ONE, ω, expω(ω), ORDINAL_ZERO])

4-element Array{OrdinalNumber,1}:

OrdinalNumber(OrdinalNumber[],Int64[])

OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])

OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])],[1])

OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])],[1])],[1])

In the last example, we see that the printing of ordinal numbers could be better, but the result is as
expected.

Standard Operators

Julia supports a very large set of comparison operators. These include

All of the following unicode sequences: > < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊
∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ � ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ � ≙ ≚ � ≜ � � � ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺
≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ � � ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ � �
�
�
�
� � ⊢ ⊣;

1.

All symbols in point 1, preceded by a dot (.) to be made elementwise;2.
The operators <:, >:, .!, and in, which cannot be preceded by a dot (.).3.

Not all of these have a definition in the standard Base library. However, they are available for other
packages to define and use as appropriate.

In everyday use, most of these comparison operators are not relevant. The most common ones
used are the standard mathematical functions for ordering; see the Syntax section for a list.

Like most other operators in Julia, comparison operators are functions and can be called as
functions. For instance, (<)(1, 2) is identical in meaning to 1 < 2.

https://riptutorial.com/ 28

http://www.riptutorial.com/julia-lang/topic/3079/functions

Using ==, ===, and isequal

There are three equality operators: ==, ===, and isequal. (The last is not really an operator, but it is
a function and all operators are functions.)

When to use ==

== is value equality. It returns true when two objects represent, in their present state, the same
value.

For instance, it is obvious that

julia> 1 == 1
true

but furthermore

julia> 1 == 1.0
true

julia> 1 == 1.0 + 0.0im
true

julia> 1 == 1//1
true

The right hand sides of each equality above are of a different type, but they still represent the
same value.

For mutable objects, like arrays, == compares their present value.

julia> A = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> B = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> C = [1, 3, 2]
3-element Array{Int64,1}:
 1
 3
 2

julia> A == B
true

julia> A == C
false

https://riptutorial.com/ 29

http://www.riptutorial.com/julia-lang/topic/5467/types
http://www.riptutorial.com/julia-lang/topic/5437/arrays

julia> A[2], A[3] = A[3], A[2] # swap 2nd and 3rd elements of A
(3,2)

julia> A
3-element Array{Int64,1}:
 1
 3
 2

julia> A == B
false

julia> A == C
true

Most of the time, == is the right choice.

When to use ===

=== is a far stricter operation than ==. Instead of value equality, it measures egality. Two objects
are egal if they cannot be distinguished from each other by the program itself. Thus we have

julia> 1 === 1
true

as there is no way to tell a 1 apart from another 1. But

julia> 1 === 1.0
false

because although 1 and 1.0 are the same value, they are of different types, and so the program
can tell them apart.

Furthermore,

julia> A = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> B = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> A === B
false

julia> A === A
true

https://riptutorial.com/ 30

which may at first seem surprising! How could the program distinguish between the two vectors A
and B? Because vectors are mutable, it could modify A, and then it would behave differently from B.
But no matter how it modifies A, A will always behave the same as A itself. So A is egal to A, but not
egal to B.

Continuing along this vein, observe

julia> C = A
3-element Array{Int64,1}:
 1
 2
 3

julia> A === C
true

By assigning A to C, we say that C has aliased A. That is, it has become just another name for A.
Any modifications done to A will be observed by C also. Therefore, there is no way to tell the
difference between A and C, so they are egal.

When to use isequal

The difference between == and isequal is very subtle. The biggest difference is in how floating
point numbers are handled:

julia> NaN == NaN
false

This possibly surprising result is defined by the IEEE standard for floating point types (IEEE-754).
But this is not useful in some cases, such as sorting. isequal is provided for those cases:

julia> isequal(NaN, NaN)
true

On the flip side of the spectrum, == treats IEEE negative zero and positive zero as the same value
(also as specified by IEEE-754). These values have distinct representations in memory, however.

julia> 0.0
0.0

julia> -0.0
-0.0

julia> 0.0 == -0.0
true

Again for sorting purposes, isequal distinguishes between them.

julia> isequal(0.0, -0.0)
false

https://riptutorial.com/ 31

https://stackoverflow.com/questions/1565164/what-is-the-rationale-for-all-comparisons-returning-false-for-ieee754-nan-values

Read Comparisons online: https://riptutorial.com/julia-lang/topic/5563/comparisons

https://riptutorial.com/ 32

https://riptutorial.com/julia-lang/topic/5563/comparisons

Chapter 8: Comprehensions

Examples

Array comprehension

Basic Syntax

Julia's array comprehensions use the following syntax:

[expression for element = iterable]

Note that as with for loops, all of =, in, and ∈ are accepted for the comprehension.

This is roughly equivalent to creating an empty array and using a for loop to push! items to it.

result = []
for element in iterable
 push!(result, expression)
end

however, the type of an array comprehension is as narrow as possible, which is better for
performance.

For example, to get an array of the squares of the integers from 1 to 10, the following code may be
used.

squares = [x^2 for x=1:10]

This is a clean, concise replacement for the longer for-loop version.

squares = []
for x in 1:10
 push!(squares, x^2)
end

Conditional Array Comprehension

Before the Julia 0.5, there is no way to use conditions inside the array comprehensions. But, it is
no longer true. In Julia 0.5 we can use the conditions inside conditions like the following:

julia> [x^2 for x in 0:9 if x > 5]
4-element Array{Int64,1}:
 36
 49
 64
 81

https://riptutorial.com/ 33

http://www.riptutorial.com/julia-lang/topic/4355/for-loops
http://www.riptutorial.com/julia-lang/topic/4355/for-loops

Source of the above example can be found here.

If we would like to use nested list comprehension:

julia>[(x,y) for x=1:5 , y=3:6 if y>4 && x>3]
4-element Array{Tuple{Int64,Int64},1}:
 (4,5)
 (5,5)
 (4,6)
 (5,6)

Multidimensional array comprehensions

Nested for loops may be used to iterate over a number of unique iterables.

result = []
for a = iterable_a
 for b = iterable_b
 push!(result, expression)
 end
end

Similarly, multiple iteration specifications may be supplied to an array comprehension.

[expression for a = iterable_a, b = iterable_b]

For example, the following may be used to generate the Cartesian product of 1:3 and 1:2.

julia> [(x, y) for x = 1:3, y = 1:2]
3×2 Array{Tuple{Int64,Int64},2}:
 (1,1) (1,2)
 (2,1) (2,2)
 (3,1) (3,2)

Flattened multidimensional array comprehensions are similar, except that they lose the shape. For
example,

julia> [(x, y) for x = 1:3 for y = 1:2]
6-element Array{Tuple{Int64,Int64},1}:
 (1, 1)
 (1, 2)
 (2, 1)
 (2, 2)
 (3, 1)
 (3, 2)

is a flattened variant of the above. The syntactic difference is that an additional for is used instead
of a comma.

Generator Comprehensions

Generator comprehensions follow a similar format to array comprehensions, but use parentheses

https://riptutorial.com/ 34

http://stackoverflow.com/a/38947888/5223033

() instead of square brackets [].

(expression for element = iterable)

Such an expression returns a Generator object.

julia> (x^2 for x = 1:5)
Base.Generator{UnitRange{Int64},##1#2}(#1,1:5)

Function Arguments

Generator comprehensions may be provided as the only argument to a function, without the need
for an extra set of parentheses.

julia> join(x^2 for x = 1:5)
"1491625"

However, if more than one argument is provided, the generator comprehension requries its own
set of parentheses.

julia> join(x^2 for x = 1:5, ", ")
ERROR: syntax: invalid iteration specification

julia> join((x^2 for x = 1:5), ", ")
"1, 4, 9, 16, 25"

Read Comprehensions online: https://riptutorial.com/julia-lang/topic/5477/comprehensions

https://riptutorial.com/ 35

https://riptutorial.com/julia-lang/topic/5477/comprehensions

Chapter 9: Conditionals

Syntax

if cond; body; end•
if cond; body; else; body; end•
if cond; body; elseif cond; body; else; end•
if cond; body; elseif cond; body; end•
cond ? iftrue : iffalse•
cond && iftrue•
cond || iffalse•
ifelse(cond, iftrue, iffalse)•

Remarks

All conditional operators and functions involve using boolean conditions (true or false). In Julia,
the type of booleans is Bool. Unlike some other languages, other kinds of numbers (like 1 or 0),
strings, arrays, and so forth cannot be used directly in conditionals.

Typically, one uses either predicate functions (functions that return a Bool) or comparison
operators in the condition of a conditional operator or function.

Examples

if...else expression

The most common conditional in Julia is the if...else expression. For instance, below we
implement the Euclidean algorithm for computing the greatest common divisor, using a conditional
to handle the base case:

mygcd(a, b) = if a == 0
 abs(b)
else
 mygcd(b % a, a)
end

The if...else form in Julia is actually an expression, and has a value; the value is the expression in
tail position (that is, the last expression) on the branch that is taken. Consider the following sample
input:

julia> mygcd(0, -10)
10

Here, a is 0 and b is -10. The condition a == 0 is true, so the first branch is taken. The returned
value is abs(b) which is 10.

https://riptutorial.com/ 36

http://www.riptutorial.com/julia-lang/topic/5563/comparisons
http://www.riptutorial.com/julia-lang/topic/5563/comparisons
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Greatest_common_divisor

julia> mygcd(2, 3)
1

Here, a is 2 and b is 3. The condition a == 0 is false, so the second branch is taken, and we
compute mygcd(b % a, a), which is mygcd(3 % 2, 2). The % operator returns the remainder when 3 is
divided by 2, in this case 1. Thus we compute mygcd(1, 2), and this time a is 1 and b is 2. Once
again, a == 0 is false, so the second branch is taken, and we compute mygcd(b % a, a), which is
mygcd(0, 1). This time, a == 0 at last and so abs(b) is returned, which gives the result 1.

if...else statement

name = readline()
if startswith(name, "A")
 println("Your name begins with A.")
else
 println("Your name does not begin with A.")
end

Any expression, such as the if...else expression, can be put in statement position. This ignores its
value but still executes the expression for its side effects.

if statement

Like any other expression, the return value of an if...else expression can be ignored (and hence
discarded). This is generally only useful when the body of the expression has side effects, such as
writing to a file, mutating variables, or printing to the screen.

Furthermore, the else branch of an if...else expression is optional. For instance, we can write the
following code to output to screen only if a particular condition is met:

second = Dates.second(now())
if iseven(second)
 println("The current second, $second, is even.")
end

In the example above, we use time and date functions to get the current second; for instance, if it
is currently 10:55:27, the variable second will hold 27. If this number is even, then a line will be
printed to screen. Otherwise, nothing will be done.

Ternary conditional operator

pushunique!(A, x) = x in A ? A : push!(A, x)

The ternary conditional operator is a less wordy if...else expression.

The syntax specifically is:

[condition] ? [execute if true] : [execute if false]

https://riptutorial.com/ 37

http://www.riptutorial.com/julia-lang/topic/5812/time

In this example, we add x to the collection A only if x is not already in A. Otherwise, we just leave A
unchanged.

Ternary operator References:

Julia Documentation•
Wikibooks•

Short-circuit operators: && and ||

For branching

The short-circuiting conditional operators && and || can be used as lightweight replacements for
the following constructs:

x && y is equivalent to x ? y : x•
x || y is equivalent to x ? x : y•

One use for short-circuit operators is as a more concise way to test a condition and perform a
certain action depending on that condition. For instance, the following code uses the && operator to
throw an error if the argument x is negative:

function mysqrt(x)
 x < 0 && throw(DomainError("x is negative"))
 x ^ 0.5
end

The || operator can also be used for error checking, except that it triggers the error unless a
condition holds, instead of if the condition holds:

function halve(x::Integer)
 iseven(x) || throw(DomainError("cannot halve an odd number"))
 x ÷ 2
end

Another useful application of this is to supply a default value to an object, only if it is not previously
defined:

isdefined(:x) || (x = NEW_VALUE)

Here, this checks if the symbol x is defined (i.e. if there is an value assigned to the object x). If so,
then nothing happens. But, if not, then x will be assigned NEW_VALUE. Note that this example will only
work at toplevel scope.

In conditions

The operators are also useful because they can be used to test two conditions, the second of
which is only evaluated depending on the result of the first condition. From the Julia

https://riptutorial.com/ 38

http://docs.julialang.org/en/release-0.4/manual/control-flow/#man-conditional-evaluation
https://en.wikibooks.org/wiki/Introducing_Julia/Controlling_the_flow#Ternary_expressions

documentation:

In the expression a && b, the subexpression b is only evaluated if a evaluates to true

In the expression a || b, the subexpression b is only evaluated if a evaluates to false

Thus, while both a & b and a && b will yield true if both a and b are true, their behavior if a is false
is different.

For instance, suppose we wish to check if an object is a positive number, where it is possible that
it might not even be a number. Consider the differences between these two attempted
implementations:

CheckPositive1(x) = (typeof(x)<:Number) & (x > 0) ? true : false
CheckPositive2(x) = (typeof(x)<:Number) && (x > 0) ? true : false

CheckPositive1("a")
CheckPositive2("a")

CheckPositive1() will yield an error if a non-numeric type is supplied to it as an argument. This is
because it evaluates both expressions, regardless of the result of the first, and the second
expression will yield an error when one tries to evaluate it for a non-numeric type.

CheckPositive2(), however, will yield false (rather than an error) if a non-numeric type is supplied
to it, since the second expression is only evaluated if the first is true.

More than one short-circuit operator can be strung together. E.g.:

1 > 0 && 2 > 0 && 3 > 5

if statement with multiple branches

d = Dates.dayofweek(now())
if d == 7
 println("It is Sunday!")
elseif d == 6
 println("It is Saturday!")
elseif d == 5
 println("Almost the weekend!")
else
 println("Not the weekend yet...")
end

Any number of elseif branches may be used with an if statement, possibly with or without a final
else branch. Subsequent conditions will only be evaluated if all prior conditions have been found to
be false.

The ifelse function

shift(x) = ifelse(x > 10, x + 1, x - 1)

https://riptutorial.com/ 39

http://docs.julialang.org/en/release-0.4/manual/control-flow/#man-short-circuit-evaluation

Usage:

julia> shift(10)
9

julia> shift(11)
12

julia> shift(-1)
-2

The ifelse function will evaluate both branches, even the one that is not selected. This can be
useful either when the branches have side effects that must be evaluated, or because it can be
faster if both branches themselves are cheap.

Read Conditionals online: https://riptutorial.com/julia-lang/topic/4356/conditionals

https://riptutorial.com/ 40

https://riptutorial.com/julia-lang/topic/4356/conditionals

Chapter 10: Cross-Version Compatibility

Syntax

using Compat•
Compat.String•
Compat.UTF8String•
@compat f.(x, y)•

Remarks

It is sometimes very difficult to get new syntax to play well with multiple versions. As Julia is still
undergoing active development, it is often useful simply to drop support for older versions and
instead target just the newer ones.

Examples

Version numbers

Julia has a built-in implementation of semantic versioning exposed through the VersionNumber type.

To construct a VersionNumber as a literal, the @v_str string macro can be used:

julia> vers = v"1.2.0"
v"1.2.0"

Alternatively, one can call the VersionNumber constructor; note that the constructor accepts up to
five arguments, but all except the first are optional.

julia> vers2 = VersionNumber(1, 1)
v"1.1.0"

Version numbers can be compared using comparison operators, and thus can be sorted:

julia> vers2 < vers
true

julia> v"1" < v"0"
false

julia> sort([v"1.0.0", v"1.0.0-dev.100", v"1.0.1"])
3-element Array{VersionNumber,1}:
 v"1.0.0-dev.100"
 v"1.0.0"
 v"1.0.1"

Version numbers are used in several places across Julia. For instance, the VERSION constant is a

https://riptutorial.com/ 41

http://semver.org/
http://www.riptutorial.com/julia-lang/topic/5817/string-macros
http://www.riptutorial.com/julia-lang/topic/5563/comparisons

VersionNumber:

julia> VERSION
v"0.5.0"

This is commonly used for conditional code evaluation, depending on the Julia version. For
example, to run different code on v0.4 and v0.5, one can do

if VERSION < v"0.5"
 println("v0.5 prerelease, v0.4 or older")
else
 println("v0.5 or newer")
end

Each installed package is also associated with a current version number:

julia> Pkg.installed("StatsBase")
v"0.9.0"

Using Compat.jl

The Compat.jl package enables using some new Julia features and syntax with older versions of
Julia. Its features are documented on its README, but a summary of useful applications is given
below.

0.5.0

Unified String type

In Julia v0.4, there were many different types of strings. This system was considered overly
complex and confusing, so in Julia v0.5, there remains only the String type. Compat allows using
the String type and constructor on version 0.4, under the name Compat.String. For example, this
v0.5 code

buf = IOBuffer()
println(buf, "Hello World!")
String(buf) # "Hello World!\n"

can be directly translated to this code, which works on both v0.5 and v0.4:

using Compat
buf = IOBuffer()
println(buf, "Hello World!")
Compat.String(buf) # "Hello World!\n"

Note that there are some caveats.

On v0.4, Compat.String is typealiased to ByteString, which is Union{ASCIIString, UTF8String}.
Thus, types with String fields will not be type stable. In these situations, Compat.UTF8String is

•

https://riptutorial.com/ 42

http://www.riptutorial.com/julia-lang/topic/5815/packages
https://github.com/JuliaLang/Compat.jl
http://www.riptutorial.com/julia-lang/topic/5562/strings

advised, as it will mean String on v0.5, and UTF8String on v0.4, both of which are concrete
types.
One has to be careful to use Compat.String or import Compat: String, because String itself
has a meaning on v0.4: it is a deprecated alias for AbstractString. A sign that String was
accidentally used instead of Compat.String is if at any point, the following warnings appear:

•

WARNING: Base.String is deprecated, use AbstractString instead.
 likely near no file:0
WARNING: Base.String is deprecated, use AbstractString instead.
 likely near no file:0

Compact broadcasting syntax

Julia v0.5 introduces syntactic sugar for broadcast. The syntax

f.(x, y)

is lowered to broadcast(f, x, y). Examples of using this syntax include sin.([1, 2, 3]) to take the
sine of multiple numbers at once.

On v0.5, the syntax can be used directly:

julia> sin.([1.0, 2.0, 3.0])
3-element Array{Float64,1}:
 0.841471
 0.909297
 0.14112

However, if we try the same on v0.4, we get an error:

julia> sin.([1.0, 2.0, 3.0])
ERROR: TypeError: getfield: expected Symbol, got Array{Float64,1}

Luckily, Compat makes this new syntax usable from v0.4 also. Once again, we add using Compat.
This time, we surround the expression with the @compat macro:

julia> using Compat

julia> @compat sin.([1.0, 2.0, 3.0])
3-element Array{Float64,1}:
 0.841471
 0.909297
 0.14112

Read Cross-Version Compatibility online: https://riptutorial.com/julia-lang/topic/5832/cross-version-
compatibility

https://riptutorial.com/ 43

https://riptutorial.com/julia-lang/topic/5832/cross-version-compatibility
https://riptutorial.com/julia-lang/topic/5832/cross-version-compatibility

Chapter 11: Dictionaries

Examples

Using Dictionaries

Dictionaries can be constructed by passing it any number of pairs.

julia> Dict("A"=>1, "B"=>2)
Dict{String,Int64} with 2 entries:
 "B" => 2
 "A" => 1

You can get entries in a dictionary putting the key in square brackets.

julia> dict = Dict("A"=>1, "B"=>2)
Dict{String,Int64} with 2 entries:
 "B" => 2
 "A" => 1

julia> dict["A"]
1

Read Dictionaries online: https://riptutorial.com/julia-lang/topic/9028/dictionaries

https://riptutorial.com/ 44

https://riptutorial.com/julia-lang/topic/9028/dictionaries

Chapter 12: Enums

Syntax

@enum EnumType val=1 val val•
:symbol•

Remarks

It is sometimes useful to have enumerated types where each instance is of a different type (often a
singleton immutable type); this can be important for type stability. Traits are typically implemented
with this paradigm. However, this results in additional compile-time overhead.

Examples

Defining an enumerated type

An enumerated type is a type that can hold one of a finite list of possible values. In Julia,
enumerated types are typically called "enum types". For instance, one could use enum types to
describe the seven days of the week, the twelve months of the year, the four suits of a standard
52-card deck, or other similar situations.

We can define enumerated types to model the suits and ranks of a standard 52-card deck. The
@enum macro is used to define enum types.

@enum Suit ♣ ♦ ♥ ♠
@enum Rank ace=1 two three four five six seven eight nine ten jack queen king

This defines two types: Suit and Rank. We can check that the values are indeed of the expected
types:

julia> ♦
♦::Suit = 1

julia> six
six::Rank = 6

Note that each suit and rank has been associated with a number. By default, this number starts at
zero. So the second suit, diamonds, was assigned the number 1. In the case of Rank, it may make
more sense to start the number at one. This was achieved by annotating the definition of ace with
a =1 annotation.

Enumerated types come with a lot of functionality, such as equality (and indeed identity) and
comparisons built in:

https://riptutorial.com/ 45

http://www.riptutorial.com/julia-lang/example/22879/immutable-types
https://en.wikipedia.org/wiki/Enumerated_type
http://www.riptutorial.com/julia-lang/topic/5467/types
https://en.wikipedia.org/wiki/Standard_52-card_deck
https://en.wikipedia.org/wiki/Standard_52-card_deck

julia> seven === seven
true

julia> ten ≠ jack
true

julia> two < three
true

Like values of any other immutable type, values of enumerated types can also be hashed and
stored in Dicts.

We can complete this example by defining a Card type that has a Rank and a Suit field:

immutable Card
 rank::Rank
 suit::Suit
end

and hence we can create cards with

julia> Card(three, ♣)
Card(three::Rank = 3,♣::Suit = 0)

But enumerated types also come with their own convert methods, so we can indeed simply do

julia> Card(7, ♠)
Card(seven::Rank = 7,♠::Suit = 3)

and since 7 can be directly converted to Rank, this constructor works out of the box.

We might wish to define syntactic sugar for constructing these cards; implicit multiplication
provides a convenient way to do it. Define

julia> import Base.*

julia> r::Int * s::Suit = Card(r, s)
* (generic function with 156 methods)

and then

julia> 10♣
Card(ten::Rank = 10,♣::Suit = 0)

julia> 5♠
Card(five::Rank = 5,♠::Suit = 3)

once again taking advantage of the in-built convert functions.

Using symbols as lightweight enums

https://riptutorial.com/ 46

http://www.riptutorial.com/julia-lang/example/22879/immutable-types

Although the @enum macro is quite useful for most use cases, it can be excessive in some use
cases. Disadvantages of @enum include:

It creates a new type•
It is a little harder to extend•
It comes with functionality such as conversion, enumeration, and comparison, which may be
superfluous in some applications

•

In cases where a lighter-weight alternative is desired, the Symbol type can be used. Symbols are
interned strings; they represent sequences of characters, much like strings do, but they are
uniquely associated with numbers. This unique association enables fast symbol equality
comparison.

We may again implement a Card type, this time using Symbol fields:

const ranks = Set([:ace, :two, :three, :four, :five, :six, :seven, :eight, :nine,
 :ten, :jack, :queen, :king])
const suits = Set([:♣, :♦, :♥, :♠])
immutable Card
 rank::Symbol
 suit::Symbol
 function Card(r::Symbol, s::Symbol)
 r in ranks || throw(ArgumentError("invalid rank: $r"))
 s in suits || throw(ArgumentError("invalid suit: $s"))
 new(r, s)
 end
end

We implement the inner constructor to check for any incorrect values passed to the constructor.
Unlike in the example using @enum types, Symbols can contain any string, and so we must be careful
about what kinds of Symbols we accept. Note here the use of the short-circuit conditional operators.

Now we can construct Card objects like we expect:

julia> Card(:ace, :♦)
Card(:ace,:♦)

julia> Card(:nine, :♠)
Card(:nine,:♠)

julia> Card(:eleven, :♠)
ERROR: ArgumentError: invalid rank: eleven
 in Card(::Symbol, ::Symbol) at ./REPL[17]:5

julia> Card(:king, :X)
ERROR: ArgumentError: invalid suit: X
 in Card(::Symbol, ::Symbol) at ./REPL[17]:6

A major benefit of Symbols is their runtime extensibility. If at runtime, we wish to accept (for
example) :eleven as a new rank, it suffices to simply run push!(ranks, :eleven). Such runtime
extensibility is not possible with @enum types.

Read Enums online: https://riptutorial.com/julia-lang/topic/7104/enums

https://riptutorial.com/ 47

https://en.wikipedia.org/wiki/String_interning
http://www.riptutorial.com/julia-lang/topic/5562/strings
http://www.riptutorial.com/julia-lang/example/15211/short-circuit-operators-----and---
https://riptutorial.com/julia-lang/topic/7104/enums

Chapter 13: Expressions

Examples

Intro to Expressions

Expressions are a specific type of object in Julia. You can think of an expression as representing a
piece of Julia code that has not yet been evaluated (i.e. executed). There are then specific
functions and operations, like eval() which will evaluate the expression.

For instance, we could write a script or enter into the interpreter the following: julia> 1+1 2

One way to create an expression is using the :() syntax. For example:

julia> MyExpression = :(1+1)
:(1 + 1)
julia> typeof(MyExpression)
Expr

We now have an Expr type object. Having just been formed, it doesn't do anything - it just sits
around like any other object until it is acted upon. In this case, we can evaluate that expression
using the eval() function:

julia> eval(MyExpression)
2

Thus, we see that the following two are equivalent:

1+1
eval(:(1+1))

Why would we want to go through the much more complicated syntax in eval(:(1+1)) if we just
want to find what 1+1 equals? The basic reason is that we can define an expression at one point
in our code, potentially modify it later on, and then evaluate it at a later point still. This can
potentially open up powerful new capabilities to the Julia programmer. Expressions are a key
component of metaprogramming in Julia.

Creating Expressions

There are a number of different methods that can be used to create the same type of expression.
The expressions intro mentioned the :() syntax. Perhaps the best place to start, however is with
strings. This helps to reveal some of the fundamental similarities between expressions and strings
in Julia.

Create Expression from String

From the Julia documentation:

https://riptutorial.com/ 48

http://www.riptutorial.com/julia-lang/topic/1945/metaprogramming
http://www.riptutorial.com/julia-lang/example/20456/intro-to-expressions
http://docs.julialang.org/en/release-0.4/manual/metaprogramming/

Every Julia program starts life as a string

In other words, any Julia script is simply written in a text file, which is nothing but a string of
characters. Likewise, any Julia command entered into an interpreter is just a string of characters.
The role of Julia or any other programming language then is to interpret and evaluate strings of
characters in a logical, predictable way so that those strings of characters can be used to describe
what the programmer wants the computer to accomplish.

Thus, one way to create an expression is to use the parse() function as applied to a string. The
following expression, once it is evaluated, will assign the value of 2 to the symbol x.

MyStr = "x = 2"
MyExpr = parse(MyStr)
julia> x
ERROR: UndefVarError: x not defined
eval(MyExpr)
julia> x
2

Create Expression Using :() Syntax

MyExpr2 = :(x = 2)
julia> MyExpr == MyExpr2
true

Note that with this syntax, Julia will automatically treat the names of objects as referring to
symbols. We can see this if we look at the args of the expression. (See Fields of Expression
Objects for more details on the args field in an expression.)

julia> MyExpr2.args
2-element Array{Any,1}:
 :x
 2

Create Expression using the Expr() Function

MyExpr3 = Expr(:(=), :x, 2)
MyExpr3 == MyExpr

This syntax is based on prefix notation. In other words, the first argument of the specified to the
Expr() function is the head or prefix. The remaining are the arguments of the expression. The head
determines what operations will be performed on the arguments.

For more details on this, see Fields of Expression Objects

When using this syntax, it is important to distinguish between using objects and symbols for
objects. For instance, in the above example, the expression assigns the value of 2 to the symbol
:x, a perfectly sensible operation. If we used x itself in an expression such as that, we would get
the nonsensical result:

https://riptutorial.com/ 49

http://www.riptutorial.com/julia-lang/example/20458/fields-of-expression-objects
http://www.riptutorial.com/julia-lang/example/20458/fields-of-expression-objects
https://en.wikipedia.org/wiki/Polish_notation
http://www.riptutorial.com/julia-lang/example/20458/fields-of-expression-objects

julia> Expr(:(=), x, 5)
:(2 = 5)

Similarly, if we examine the args we see:

julia> Expr(:(=), x, 5).args
2-element Array{Any,1}:
 2
 5

Thus, the Expr() function does not perform the same automatic transformation into symbols as the
:() syntax for creating expressions.

Create multi-line Expressions using quote...end

MyQuote =
quote
 x = 2
 y = 3
end
julia> typeof(MyQuote)
Expr

Note that with quote...end we can create expressions that contain other expressions in their args
field:

julia> typeof(MyQuote.args[2])
Expr

See Fields of Expression Objects for more on this args field.

More on Creating Expressions

This Example just gives the basics for creating expressions. See also, for example, Interpolation
and Expressions and Fields of Expression Objects for more information on creating more complex
and advanced expressions.

Fields of Expression Objects

As mentioned in the Intro to Expressions expressions are a specific type of object in Julia. As
such, they have fields. The two most used fields of an expression are its head and its args. For
instance, consider the expression

MyExpr3 = Expr(:(=), :x, 2)

discussed in Creating Expressions. We can see the head and args as follows:

julia> MyExpr3.head
:(=)

https://riptutorial.com/ 50

http://www.riptutorial.com/julia-lang/example/20458/fields-of-expression-objects
http://www.riptutorial.com/julia-lang/example/20459/interpolation-and-expressions
http://www.riptutorial.com/julia-lang/example/20459/interpolation-and-expressions
http://www.riptutorial.com/julia-lang/example/20458/fields-of-expression-objects
http://www.riptutorial.com/julia-lang/example/20456/intro-to-expressions
http://www.riptutorial.com/julia-lang/example/20457/creating-expressions

julia> MyExpr3.args
2-element Array{Any,1}:
 :x
 2

Expressions are based on prefix notation. As such, the head generally specifies the operation that
is to be performed on the args. The head must be of Julia type Symbol.

When an expression is to assign a value (when it gets evaluated), it will generally use a head of
:(=). There are of course obvious variations to this that can be employed, e.g.:

ex1 = Expr(:(+=), :x, 2)

:call for expression heads

Another common head for expressions is :call. E.g.

ex2 = Expr(:call, :(*), 2, 3)
eval(ex2) ## 6

Following the conventions of prefix notation, operators are evaluated from left to right. Thus, this
expression here means that we will call the function that is specified on the first element of args on
the subsequent elements. We similarly could have:

julia> ex2a = Expr(:call, :(-), 1, 2, 3)
:(1 - 2 - 3)

Or other, potentially more interesting functions, e.g.

julia> ex2b = Expr(:call, :rand, 2,2)
:(rand(2,2))

julia> eval(ex2b)
2x2 Array{Float64,2}:
 0.429397 0.164478
 0.104994 0.675745

Automatic determination of head when using :() expression creation notation

Note that :call is implicitly used as the head in certain constructions of expressions, e.g.

julia> :(x + 2).head
:call

Thus, with the :() syntax for creating expressions, Julia will seek to automatically determine the
correct head to use. Similarly:

julia> :(x = 2).head
:(=)

https://riptutorial.com/ 51

https://en.wikipedia.org/wiki/Polish_notation

In fact, if you aren't certain what the right head to use for an expression that you are forming using,
for instance, Expr() this can be a helpful tool to get tips and ideas for what to use.

Interpolation and Expressions

Creating Expressions mentions that expressions are closely related to strings. As such, the
principles of interpolation within strings are also relevant for Expressions. For instance, in basic
string interpolation, we can have something like:

n = 2
julia> MyString = "there are $n ducks"
"there are 2 ducks"

We use the $ sign to insert the value of n into the string. We can use the same technique with
expressions. E.g.

a = 2
ex1 = :(x = 2*$a) ## :(x = 2 * 2)
a = 3
eval(ex1)
x # 4

Contrast this this:

a = 2
ex2 = :(x = 2*a) # :(x = 2a)
a = 3
eval(ex2)
x # 6

Thus, with the first example, we set in advance the value of a that will be used at the time that the
expression is evaluated. With the second example, however, the Julia compiler will only look to a
to find its value at the time of evaluation for our expression.

External References on Expressions

There are a number of useful web resources that can help further your knowledge of expressions
in Julia. These include:

Julia Docs - Metaprogramming•
Wikibooks - Julia Metaprogramming•
Julia’s macros, expressions, etc. for and by the confused, by Gray Calhoun•
Month of Julia - Metaprogramming, by Andrew Collier•
Symbolic Differentiation in Julia, by John Myles White•

SO Posts:

What is a "symbol" in Julia? Answer by Stefan Karpinski•
Why does julia express this expression in this complex way?•
Explanation of Julia expression interpolation example•

https://riptutorial.com/ 52

http://www.riptutorial.com/julia-lang/example/20457/creating-expressions
http://docs.julialang.org/en/release-0.4/manual/metaprogramming/
https://en.wikibooks.org/wiki/Introducing_Julia/Metaprogramming
http://gray.clhn.org/dl/macros_etc.pdf
http://www.juliabloggers.com/monthofjulia-day-11-metaprogramming/
http://www.johnmyleswhite.com/notebook/2013/01/07/symbolic-differentiation-in-julia/
http://stackoverflow.com/questions/23480722/what-is-a-symbol-in-julia
http://stackoverflow.com/questions/33494019/why-does-julia-express-this-expression-in-this-complex-way
http://stackoverflow.com/questions/31147928/explanation-of-julia-expression-interpolation-example

Read Expressions online: https://riptutorial.com/julia-lang/topic/5805/expressions

https://riptutorial.com/ 53

https://riptutorial.com/julia-lang/topic/5805/expressions

Chapter 14: for Loops

Syntax

for i in iter; ...; end•
while cond; ...; end•
break•
continue•
@parallel (op) for i in iter; ...; end•
@parallel for i in iter; ...; end•
@goto label•
@label label•

Remarks

Whenever it makes code shorter and easier to read, consider using higher-order functions, such
as map or filter, instead of loops.

Examples

Fizz Buzz

A common use case for a for loop is to iterate over a predefined range or collection, and do the
same task for all its elements. For instance, here we combine a for loop with a conditional if-
elseif-else statement:

for i in 1:100
 if i % 15 == 0
 println("FizzBuzz")
 elseif i % 3 == 0
 println("Fizz")
 elseif i % 5 == 0
 println("Buzz")
 else
 println(i)
 end
end

This is the classic Fizz Buzz interview question. The (truncated) output is:

1
2
Fizz
4
Buzz
Fizz
7
8

https://riptutorial.com/ 54

http://www.riptutorial.com/julia-lang/example/15212/if-statement-with-multiple-branches
http://www.riptutorial.com/julia-lang/example/15212/if-statement-with-multiple-branches
http://www.riptutorial.com/julia-lang/example/15212/if-statement-with-multiple-branches
http://www.riptutorial.com/julia-lang/example/15212/if-statement-with-multiple-branches
http://www.riptutorial.com/julia-lang/example/15212/if-statement-with-multiple-branches
http://www.riptutorial.com/julia-lang/example/15212/if-statement-with-multiple-branches
https://en.wikipedia.org/wiki/Fizz_buzz

Find smallest prime factor

In some situations, one might want to return from a function before finishing an entire loop. The
return statement can be used for this.

function primefactor(n)
 for i in 2:n
 if n % i == 0
 return i
 end
 end
 @assert false # unreachable
end

Usage:

julia> primefactor(100)
2

julia> primefactor(97)
97

Loops can also be terminated early with the break statement, which terminates just the enclosing
loop instead of the entire function.

Multidimensional iteration

In Julia, a for loop can contain a comma (,) to specify iterating over multiple dimensions. This acts
similarly to nesting a loop within another, but can be more compact. For instance, the below
function generates elements of the Cartesian product of two iterables:

function cartesian(xs, ys)
 for x in xs, y in ys
 produce(x, y)
 end
end

Usage:

julia> collect(@task cartesian(1:2, 1:4))
8-element Array{Tuple{Int64,Int64},1}:
 (1,1)
 (1,2)
 (1,3)
 (1,4)
 (2,1)
 (2,2)
 (2,3)
 (2,4)

However, indexing over arrays of any dimension should be done with eachindex, not with a
multidimensional loop (if possible):

https://riptutorial.com/ 55

https://en.wikipedia.org/wiki/Cartesian_product

s = zero(eltype(A))
for ind in eachindex(A)
 s += A[ind]
end

Reduction and parallel loops

Julia provides macros to simplify distributing computation across multiple machines or workers.
For instance, the following computes the sum of some number of squares, possibly in parallel.

function sumofsquares(A)
 @parallel (+) for i in A
 i ^ 2
 end
end

Usage:

julia> sumofsquares(1:10)
385

For more on this topic, see the example on @parallel within the Parallel Processesing topic.

Read for Loops online: https://riptutorial.com/julia-lang/topic/4355/for-loops

https://riptutorial.com/ 56

http://www.riptutorial.com/julia-lang/example/15916/-parallel
http://www.riptutorial.com/julia-lang/topic/4542/parallel-processing
https://riptutorial.com/julia-lang/topic/4355/for-loops

Chapter 15: Functions

Syntax

f(n) = ...•
function f(n) ... end•
n::Type•
x -> ...•
f(n) do ... end•

Remarks

Aside from generic functions (which are most common), there are also built-in functions. Such
functions include is, isa, typeof, throw, and similar functions. Built-in functions are typically
implemented in C instead of Julia, so they cannot be specialized on argument types for dispatch.

Examples

Square a number

This is the easiest syntax to define a function:

square(n) = n * n

To call a function, use round brackets (without spaces in between):

julia> square(10)
100

Functions are objects in Julia, and we can show them in the REPL as with any other objects:

julia> square
square (generic function with 1 method)

All Julia functions are generic (otherwise known as polymorphic) by default. Our square function
works just as well with floating point values:

julia> square(2.5)
6.25

...or even matrices:

julia> square([2 4
 2 1])
2×2 Array{Int64,2}:

https://riptutorial.com/ 57

http://www.riptutorial.com/julia-lang/topic/5739/repl
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
http://www.riptutorial.com/julia-lang/topic/5437/arrays

 12 12
 6 9

Recursive functions

Simple recursion

Using recursion and the ternary conditional operator, we can create an alternative implementation
of the built-in factorial function:

myfactorial(n) = n == 0 ? 1 : n * myfactorial(n - 1)

Usage:

julia> myfactorial(10)
3628800

Working with trees

Recursive functions are often most useful on data structures, especially tree data structures. Since
expressions in Julia are tree structures, recursion can be quite useful for metaprogramming. For
instance, the below function gathers a set of all heads used in an expression.

heads(ex::Expr) = reduce(∪, Set((ex.head,)), (heads(a) for a in ex.args))
heads(::Any) = Set{Symbol}()

We can check that our function is working as intended:

julia> heads(:(7 + 4x > 1 > A[0]))
Set(Symbol[:comparison,:ref,:call])

This function is compact and uses a variety of more advanced techniques, such as the reduce
higher order function, the Set data type, and generator expressions.

Introduction to Dispatch

We can use the :: syntax to dispatch on the type of an argument.

describe(n::Integer) = "integer $n"
describe(n::AbstractFloat) = "floating point $n"

Usage:

julia> describe(10)
"integer 10"

julia> describe(1.0)

https://riptutorial.com/ 58

http://www.riptutorial.com/julia-lang/example/15210/ternary-conditional-operator
http://www.riptutorial.com/julia-lang/topic/5805/expressions
http://www.riptutorial.com/julia-lang/topic/1945/metaprogramming
http://www.riptutorial.com/julia-lang/topic/6955/higher-order-functions
http://www.riptutorial.com/julia-lang/topic/5467/types

"floating point 1.0"

Unlike many languages, which typically provide either static multiple dispatch or dynamic single
dispatch, Julia has full dynamic multiple dispatch. That is, functions can be specialized for more
than one argument. This comes in handy when defining specialized methods for operations on
certain types, and fallback methods for other types.

describe(n::Integer, m::Integer) = "integers n=$n and m=$m"
describe(n, m::Integer) = "only m=$m is an integer"
describe(n::Integer, m) = "only n=$n is an integer"

Usage:

julia> describe(10, 'x')
"only n=10 is an integer"

julia> describe('x', 10)
"only m=10 is an integer"

julia> describe(10, 10)
"integers n=10 and m=10"

Optional Arguments

Julia allows functions to take optional arguments. Behind the scenes, this is implemented as
another special case of multiple dispatch. For instance, let's solve the popular Fizz Buzz problem.
By default, we will do it for numbers in the range 1:10, but we will allow a different value if
necessary. We will also allow different phrases to be used for Fizz or Buzz.

function fizzbuzz(xs=1:10, fizz="Fizz", buzz="Buzz")
 for i in xs
 if i % 15 == 0
 println(fizz, buzz)
 elseif i % 3 == 0
 println(fizz)
 elseif i % 5 == 0
 println(buzz)
 else
 println(i)
 end
 end
end

If we inspect fizzbuzz in the REPL, it says that there are four methods. One method was created
for each combination of arguments allowed.

julia> fizzbuzz
fizzbuzz (generic function with 4 methods)

julia> methods(fizzbuzz)
4 methods for generic function "fizzbuzz":
fizzbuzz() at REPL[96]:2

https://riptutorial.com/ 59

http://www.riptutorial.com/julia-lang/example/15201/fizz-buzz

fizzbuzz(xs) at REPL[96]:2
fizzbuzz(xs, fizz) at REPL[96]:2
fizzbuzz(xs, fizz, buzz) at REPL[96]:2

We can verify that our default values are used when no parameters are provided:

julia> fizzbuzz()
1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz

but that the optional parameters are accepted and respected if we provide them:

julia> fizzbuzz(5:8, "fuzz", "bizz")
bizz
fuzz
7
8

Parametric Dispatch

It is frequently the case that a function should dispatch on parametric types, such as Vector{T} or
Dict{K,V}, but the type parameters are not fixed. This case can be dealt with by using parametric
dispatch:

julia> foo{T<:Number}(xs::Vector{T}) = @show xs .+ 1
foo (generic function with 1 method)

julia> foo(xs::Vector) = @show xs
foo (generic function with 2 methods)

julia> foo([1, 2, 3])
xs .+ 1 = [2,3,4]
3-element Array{Int64,1}:
 2
 3
 4

julia> foo([1.0, 2.0, 3.0])
xs .+ 1 = [2.0,3.0,4.0]
3-element Array{Float64,1}:
 2.0
 3.0
 4.0

julia> foo(["x", "y", "z"])
xs = String["x","y","z"]
3-element Array{String,1}:

https://riptutorial.com/ 60

http://www.riptutorial.com/julia-lang/example/25049/vectors

 "x"
 "y"
 "z"

One may be tempted to simply write xs::Vector{Number}. But this only works for objects whose type
is explicitly Vector{Number}:

julia> isa(Number[1, 2], Vector{Number})
true

julia> isa(Int[1, 2], Vector{Number})
false

This is due to parametric invariance: the object Int[1, 2] is not a Vector{Number}, because it can
only contain Ints, whereas a Vector{Number} would be expected to be able to contain any kinds of
numbers.

Writing Generic Code

Dispatch is an incredibly powerful feature, but frequently it is better to write generic code that
works for all types, instead of specializing code for each type. Writing generic code avoids code
duplication.

For example, here is code to compute the sum of squares of a vector of integers:

function sumsq(v::Vector{Int})
 s = 0
 for x in v
 s += x ^ 2
 end
 s
end

But this code only works for a vector of Ints. It will not work on a UnitRange:

julia> sumsq(1:10)
ERROR: MethodError: no method matching sumsq(::UnitRange{Int64})
Closest candidates are:
 sumsq(::Array{Int64,1}) at REPL[8]:2

It will not work on a Vector{Float64}:

julia> sumsq([1.0, 2.0])
ERROR: MethodError: no method matching sumsq(::Array{Float64,1})
Closest candidates are:
 sumsq(::Array{Int64,1}) at REPL[8]:2

A better way to write this sumsq function should be

function sumsq(v::AbstractVector)
 s = zero(eltype(v))

https://riptutorial.com/ 61

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)#Arrays

 for x in v
 s += x ^ 2
 end
 s
end

This will work on the two cases listed above. But there are some collections that we might want to
sum the squares of that aren't vectors at all, in any sense. For instance,

julia> sumsq(take(countfrom(1), 100))
ERROR: MethodError: no method matching sumsq(::Base.Take{Base.Count{Int64}})
Closest candidates are:
 sumsq(::Array{Int64,1}) at REPL[8]:2
 sumsq(::AbstractArray{T,1}) at REPL[11]:2

shows that we cannot sum the squares of a lazy iterable.

An even more generic implementation is simply

function sumsq(v)
 s = zero(eltype(v))
 for x in v
 s += x ^ 2
 end
 s
end

Which works in all cases:

julia> sumsq(take(countfrom(1), 100))
338350

This is the most idiomatic Julia code, and can handle all sorts of situations. In some other
languages, removing type annotations may affect performance, but that is not the case in Julia;
only type stability is important for performance.

Imperative factorial

A long-form syntax is available for defining multi-line functions. This can be useful when we use
imperative structures such as loops. The expression in tail position is returned. For instance, the
below function uses a for loop to compute the factorial of some integer n:

function myfactorial(n)
 fact = one(n)
 for m in 1:n
 fact *= m
 end
 fact
end

Usage:

https://riptutorial.com/ 62

http://www.riptutorial.com/julia-lang/example/23900/combining-lazy-iterables
http://www.riptutorial.com/julia-lang/topic/6084/type-stability
http://www.riptutorial.com/julia-lang/topic/4355/for-loops
http://www.riptutorial.com/julia-lang/topic/4355/for-loops
https://en.wikipedia.org/wiki/Factorial

julia> myfactorial(10)
3628800

In longer functions, it is common to see the return statement used. The return statement is not
necessary in tail position, but it is still sometimes used for clarity. For instance, another way of
writing the above function would be

function myfactorial(n)
 fact = one(n)
 for m in 1:n
 fact *= m
 end
 return fact
end

which is identical in behaviour to the function above.

Anonymous functions

Arrow syntax

Anonymous functions can be created using the -> syntax. This is useful for passing functions to
higher-order functions, such as the map function. The below function computes the square of each
number in an array A.

squareall(A) = map(x -> x ^ 2, A)

An example of using this function:

julia> squareall(1:10)
10-element Array{Int64,1}:
 1
 4
 9
 16
 25
 36
 49
 64
 81
 100

Multiline syntax

Multiline anonymous functions can be created using function syntax. For instance, the following
example computes the factorials of the first n numbers, but using an anonymous function instead
of the built in factorial.

julia> map(function (n)
 product = one(n)

https://riptutorial.com/ 63

http://www.riptutorial.com/julia-lang/topic/6955/higher-order-functions
http://www.riptutorial.com/julia-lang/example/23486/map--filter--and-reduce
http://www.riptutorial.com/julia-lang/topic/5437/arrays
http://www.riptutorial.com/julia-lang/example/10468/imperative-factorial

 for i in 1:n
 product *= i
 end
 product
 end, 1:10)
10-element Array{Int64,1}:
 1
 2
 6
 24
 120
 720
 5040
 40320
 362880
 3628800

Do block syntax

Because it is so common to pass an anonymous function as the first argument to a function, there
is a do block syntax. The syntax

map(A) do x
 x ^ 2
end

is equivalent to

map(x -> x ^ 2, A)

but the former can be more clear in many situations, especially if a lot of computation is being
done in the anonymous function. do block syntax is especially useful for file input and output for
resource management reasons.

Read Functions online: https://riptutorial.com/julia-lang/topic/3079/functions

https://riptutorial.com/ 64

http://www.riptutorial.com/julia-lang/example/24052/reading-data-from-a-file
https://riptutorial.com/julia-lang/topic/3079/functions

Chapter 16: Higher-Order Functions

Syntax

foreach(f, xs)•
map(f, xs)•
filter(f, xs)•
reduce(f, v0, xs)•
foldl(f, v0, xs)•
foldr(f, v0, xs)•

Remarks

Functions can be accepted as parameters and can also be produced as return types. Indeed,
functions can be created inside the body of other functions. These inner functions are known as
closures.

Examples

Functions as arguments

Functions are objects in Julia. Like any other objects, they can be passed as arguments to other
functions. Functions that accept functions are known as higher-order functions.

For instance, we can implement an equivalent of the standard library's foreach function by taking a
function f as the first parameter.

function myforeach(f, xs)
 for x in xs
 f(x)
 end
end

We can test that this function indeed works as we expect:

julia> myforeach(println, ["a", "b", "c"])
a
b
c

By taking a function as the first parameter, instead of a later parameter, we can use Julia's do
block syntax. The do block syntax is just a convenient way to pass an anonymous function as the
first argument to a function.

julia> myforeach([1, 2, 3]) do x
 println(x^x)

https://riptutorial.com/ 65

http://www.riptutorial.com/julia-lang/topic/5724/closures
http://www.riptutorial.com/julia-lang/topic/3079/functions
https://en.wikipedia.org/wiki/Higher-order_function
http://www.riptutorial.com/julia-lang/example/10470/anonymous-functions

 end
1
4
27

Our implementation of myforeach above is roughly equivalent to the built-in foreach function. Many
other built-in higher order functions also exist.

Higher-order functions are quite powerful. Sometimes, when working with higher-order functions,
the exact operations being performed become unimportant and programs can become quite
abstract. Combinators are examples of systems of highly abstract higher-order functions.

Map, filter, and reduce

Two of the most fundamental higher-order functions included in the standard library are map and
filter. These functions are generic and can operate on any iterable. In particular, they are well-
suited for computations on arrays.

Suppose we have a dataset of schools. Each school teaches a particular subject, has a number of
classes, and an average number of students per class. We can model a school with the following
immutable type:

immutable School
 subject::Symbol
 nclasses::Int
 nstudents::Int # average no. of students per class
end

Our dataset of schools will be a Vector{School}:

dataset = [School(:math, 3, 30), School(:math, 5, 20), School(:science, 10, 5)]

Suppose we wish to find the number of students in total enrolled in a math program. To do this, we
require several steps:

we must narrow the dataset down to only schools that teach math (filter)•
we must compute the number of students at each school (map)•
and we must reduce that list of numbers of students to a single value, the sum (reduce)•

A naïve (not most performant) solution would simply be to use those three higher-order functions
directly.

function nmath(data)
 maths = filter(x -> x.subject === :math, data)
 students = map(x -> x.nclasses * x.nstudents, maths)
 reduce(+, 0, students)
end

and we verify there are 190 math students in our dataset:

https://riptutorial.com/ 66

http://www.riptutorial.com/julia-lang/topic/5758/combinators
http://www.riptutorial.com/julia-lang/topic/5466/iterables
http://www.riptutorial.com/julia-lang/topic/5437/arrays
http://www.riptutorial.com/julia-lang/example/22879/immutable-types

julia> nmath(dataset)
190

Functions exist to combine these functions and thus improve performance. For instance, we could
have used the mapreduce function to perform the mapping and reduction in one step, which would
save time and memory.

The reduce is only meaningful for associative operations like +, but occasionally it is useful to
perform a reduction with a non-associative operation. The higher-order functions foldl and foldr
are provided to force a particular reduction order.

Read Higher-Order Functions online: https://riptutorial.com/julia-lang/topic/6955/higher-order-
functions

https://riptutorial.com/ 67

https://en.wikipedia.org/wiki/Associativity
https://riptutorial.com/julia-lang/topic/6955/higher-order-functions
https://riptutorial.com/julia-lang/topic/6955/higher-order-functions

Chapter 17: Input

Syntax

readline()•
readlines()•
readstring(STDIN)•
chomp(str)•
open(f, file)•
eachline(io)•
readstring(file)•
read(file)•
readcsv(file)•
readdlm(file)•

Parameters

Parameter Details

chomp(str) Remove up to one trailing newline from a string.

str
The string to strip a trailing newline from. Note that strings are immutable by
convention. This function returns a new string.

open(f,
file) Open a file, call the function, and close the file afterward.

f The function to call on the IO stream opening the file generates.

file The path of the file to open.

Examples

Reading a String from Standard Input

The STDIN stream in Julia refers to standard input. This can represent either user input, for
interactive command-line programs, or input from a file or pipeline that has been redirected into
the program.

The readline function, when not provided any arguments, will read data from STDIN until a newline
is encountered, or the STDIN stream enters the end-of-file state. These two cases can be
distinguished by whether the \n character has been read as the final character:

julia> readline()
some stuff

https://riptutorial.com/ 68

http://www.riptutorial.com/julia-lang/topic/5562/strings
https://en.wikipedia.org/wiki/Standard_streams#Standard_input_.28stdin.29
http://www.riptutorial.com/bash/topic/5485/pipelines

"some stuff\n"

julia> readline() # Ctrl-D pressed to send EOF signal here
""

Often, for interactive programs, we do not care about the EOF state, and just want a string. For
instance, we may prompt the user for input:

function askname()
 print("Enter your name: ")
 readline()
end

This is not quite satisfactory, however, because of the additional newline:

julia> askname()
Enter your name: Julia
"Julia\n"

The chomp function is available to remove up to one trailing newline off a string. For example:

julia> chomp("Hello, World!")
"Hello, World!"

julia> chomp("Hello, World!\n")
"Hello, World!"

We may therefore augment our function with chomp so that the result is as expected:

function askname()
 print("Enter your name: ")
 chomp(readline())
end

which has a more desirable result:

julia> askname()
Enter your name: Julia
"Julia"

Sometimes, we may wish to read as many lines as is possible (until the input stream enters the
end-of-file state). The readlines function provides that capability.

julia> readlines() # note Ctrl-D is pressed after the last line
A, B, C, D, E, F, G
H, I, J, K, LMNO, P
Q, R, S
T, U, V
W, X
Y, Z
6-element Array{String,1}:
 "A, B, C, D, E, F, G\n"
 "H, I, J, K, LMNO, P\n"

https://riptutorial.com/ 69

 "Q, R, S\n"
 "T, U, V\n"
 "W, X\n"
 "Y, Z\n"

0.5.0

Once again, if we dislike the newlines at the end of lines read by readlines, we can use the chomp
function to remove them. This time, we broadcast the chomp function across the entire array:

julia> chomp.(readlines())
A, B, C, D, E, F, G
H, I, J, K, LMNO, P
Q, R, S
T, U, V
W, X
Y, Z
6-element Array{String,1}:
 "A, B, C, D, E, F, G"
 "H, I, J, K, LMNO, P"
 "Q, R, S"
 "T, U, V"
 "W, X "
 "Y, Z"

Other times, we may not care about lines at all, and simply want to read as much as possible as a
single string. The readstring function accomplishes this:

julia> readstring(STDIN)
If music be the food of love, play on,
Give me excess of it; that surfeiting,
The appetite may sicken, and so die. # [END OF INPUT]
"If music be the food of love, play on,\nGive me excess of it; that surfeiting,\nThe appetite
may sicken, and so die.\n"

(the # [END OF INPUT] is not part of the original input; it has been added for clarity.)

Note that readstring must be passed the STDIN argument.

Reading Numbers from Standard Input

Reading numbers from standard input is a combination of reading strings and parsing such strings
as numbers.

The parse function is used to parse a string into the desired number type:

julia> parse(Int, "17")
17

julia> parse(Float32, "-3e6")
-3.0f6

The format expected by parse(T, x) is similar to, but not exactly the same, as the format Julia

https://riptutorial.com/ 70

http://www.riptutorial.com/julia-lang/topic/6955/higher-order-functions

expects from number literals:

julia> -00000023
-23

julia> parse(Int, "-00000023")
-23

julia> 0x23 |> Int
35

julia> parse(Int, "0x23")
35

julia> 1_000_000
1000000

julia> parse(Int, "1_000_000")
ERROR: ArgumentError: invalid base 10 digit '_' in "1_000_000"
 in tryparse_internal(::Type{Int64}, ::String, ::Int64, ::Int64, ::Int64, ::Bool) at
./parse.jl:88
 in parse(::Type{Int64}, ::String) at ./parse.jl:152

Combining the parse and readline functions allows us to read a single number from a line:

function asknumber()
 print("Enter a number: ")
 parse(Float64, readline())
end

which works as expected:

julia> asknumber()
Enter a number: 78.3
78.3

The usual caveats about floating-point precision apply. Note that parse can be used with BigInt
and BigFloat to remove or minimize loss of precision.

Sometimes, it is useful to read more than one number from the same line. Typically, the line can
be split with whitespace:

function askints()
 print("Enter some integers, separated by spaces: ")
 [parse(Int, x) for x in split(readline())]
end

which can be used as follows:

julia> askints()
Enter some integers, separated by spaces: 1 2 3 4
4-element Array{Int64,1}:
 1
 2

https://riptutorial.com/ 71

http://www.riptutorial.com/julia-lang/topic/3848/arithmetic
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

 3
 4

Reading Data from a File

Reading strings or bytes

Files can be opened for reading using the open function, which is often used together with do block
syntax:

open("myfile") do f
 for (i, line) in enumerate(eachline(f))
 print("Line $i: $line")
 end
end

Suppose myfile exists and its contents are

What's in a name? That which we call a rose
By any other name would smell as sweet.

Then, this code would produce the following result:

Line 1: What's in a name? That which we call a rose
Line 2: By any other name would smell as sweet.

Note that eachline is a lazy iterable over the lines of the file. It is preferred to readlines for
performance reasons.

Because do block syntax is just syntactic sugar for anonymous functions, we can pass named
functions to open too:

julia> open(readstring, "myfile")
"What's in a name? That which we call a rose\nBy any other name would smell as sweet.\n"

julia> open(read, "myfile")
84-element Array{UInt8,1}:
 0x57
 0x68
 0x61
 0x74
 0x27
 0x73
 0x20
 0x69
 0x6e
 0x20
 ⋮
 0x73
 0x20
 0x73
 0x77

https://riptutorial.com/ 72

http://www.riptutorial.com/julia-lang/example/10470/anonymous-functions
http://www.riptutorial.com/julia-lang/example/10470/anonymous-functions
http://www.riptutorial.com/julia-lang/topic/5466/iterables

 0x65
 0x65
 0x74
 0x2e
 0x0a

The functions read and readstring provide convenience methods that will open a file automatically:

julia> readstring("myfile")
"What's in a name? That which we call a rose\nBy any other name would smell as sweet.\n"

Reading structured data

Suppose we had a CSV file with the following contents, in a file named file.csv:

Make,Model,Price
Foo,2015A,8000
Foo,2015B,14000
Foo,2016A,10000
Foo,2016B,16000
Bar,2016Q,20000

Then we may use the readcsv function to read this data into a Matrix:

julia> readcsv("file.csv")
6×3 Array{Any,2}:
 "Make" "Model" "Price"
 "Foo" "2015A" 8000
 "Foo" "2015B" 14000
 "Foo" "2016A" 10000
 "Foo" "2016B" 16000
 "Bar" "2016Q" 20000

If the file were instead delimited with tabs, in a file named file.tsv, then the readdlm function can
be used instead, with the delim argument set to '\t'. More advanced workloads should use the
CSV.jl package.

Read Input online: https://riptutorial.com/julia-lang/topic/7201/input

https://riptutorial.com/ 73

http://www.riptutorial.com/csv/topic/7030/getting-started-with-csv
https://github.com/JuliaData/CSV.jl
http://www.riptutorial.com/julia-lang/example/20488/install--use--and-remove-a-registered-package
https://riptutorial.com/julia-lang/topic/7201/input

Chapter 18: Iterables

Syntax

start(itr)•
next(itr, s)•
done(itr, s)•
take(itr, n)•
drop(itr, n)•
cycle(itr)•
Base.product(xs, ys)•

Parameters

Parameter Details

For All Functions

itr The iterable to operate on.

For next and done

s An iterator state describing the current position of the iteration.

For take and drop

n The number of elements to take or drop.

For Base.product

xs The iterable to take first elements of pairs from.

ys The iterable to take second elements of pairs from.

...
(Note that product accepts any number of arguments; if more than two are
provided, it will construct tuples of length greater than two.)

Examples

New iterable type

In Julia, when looping through an iterable object I is done with the for syntax:

for i = I # or "for i in I"
 # body

https://riptutorial.com/ 74

http://www.riptutorial.com/julia-lang/topic/4355/for-loops

end

Behind the scenes, this is translated to:

state = start(I)
while !done(I, state)
 (i, state) = next(I, state)
 # body
end

Therefore, if you want I to be an iterable, you need to define start, next and done methods for its
type. Suppose you define a type Foo containing an array as one of the fields:

type Foo
 bar::Array{Int,1}
end

We instantiate a Foo object by doing:

julia> I = Foo([1,2,3])
Foo([1,2,3])

julia> I.bar
3-element Array{Int64,1}:
 1
 2
 3

If we want to iterate through Foo, with each element bar being returned by each iteration, we define
the methods:

import Base: start, next, done

start(I::Foo) = 1

next(I::Foo, state) = (I.bar[state], state+1)

function done(I::Foo, state)
 if state == length(I.bar)
 return true
 end
 return false
end

Note that since these functions belong to the Base module, we must first import their names before
adding new methods to them.

After the methods are defined, Foo is compatible with the iterator interface:

julia> for i in I
 println(i)
 end

https://riptutorial.com/ 75

http://www.riptutorial.com/julia-lang/topic/5467/types
http://www.riptutorial.com/julia-lang/topic/5437/arrays
http://www.riptutorial.com/julia-lang/topic/3079/functions

1
2
3

Combining Lazy Iterables

The standard library comes with a rich collection of lazy iterables (and libraries such as Iterators.jl
provide even more). Lazy iterables can be composed to create more powerful iterables in constant
time. The most important lazy iterables are take and drop, from which many other functions can be
created.

Lazily slice an iterable

Arrays can be sliced with slice notation. For instance, the following returns the 10th to 15th
elements of an array, inclusive:

A[10:15]

However, slice notation does not work with all iterables. For instance, we cannot slice a generator
expression:

julia> (i^2 for i in 1:10)[3:5]
ERROR: MethodError: no method matching getindex(::Base.Generator{UnitRange{Int64},##1#2},
::UnitRange{Int64})

Slicing strings may not have the expected Unicode behaviour:

julia> "αααα"[2:3]
ERROR: UnicodeError: invalid character index
 in getindex(::String, ::UnitRange{Int64}) at ./strings/string.jl:130

julia> "αααα"[3:4]
"α"

We can define a function lazysub(itr, range::UnitRange) to do this kind of slicing on arbitrary
iterables. This is defined in terms of take and drop:

lazysub(itr, r::UnitRange) = take(drop(itr, first(r) - 1), last(r) - first(r) + 1)

The implementation here works because for UnitRange value a:b, the following steps are
performed:

drops the first a-1 elements•
takes the ath element, a+1th element, and so forth, until the a+(b-a)=bth element•

In total, b-a elements are taken. We can confirm our implementation is correct in each case above:

julia> collect(lazysub("αααα", 2:3))
2-element Array{Char,1}:

https://riptutorial.com/ 76

https://github.com/JuliaLang/Iterators.jl
http://docs.julialang.org/en/release-0.5/stdlib/collections/#Base.take
http://www.riptutorial.com/julia-lang/topic/5562/strings

 'α'
 'α'

julia> collect(lazysub((i^2 for i in 1:10), 3:5))
3-element Array{Int64,1}:
 9
 16
 25

Lazily shift an iterable circularly

The circshift operation on arrays will shift the array as if it were a circle, then relinearize it. For
example,

julia> circshift(1:10, 3)
10-element Array{Int64,1}:
 8
 9
 10
 1
 2
 3
 4
 5
 6
 7

Can we do this lazily for all iterables? We can use the cycle, drop, and take iterables to implement
this functionality.

lazycircshift(itr, n) = take(drop(cycle(itr), length(itr) - n), length(itr))

Along with lazy types being more performant in many situations, this lets us do circshift-like
functionality on types that would otherwise not support it:

julia> circshift("Hello, World!", 3)
ERROR: MethodError: no method matching circshift(::String, ::Int64)
Closest candidates are:
 circshift(::AbstractArray{T,N}, ::Real) at abstractarraymath.jl:162
 circshift(::AbstractArray{T,N}, ::Any) at abstractarraymath.jl:195

julia> String(collect(lazycircshift("Hello, World!", 3)))
"ld!Hello, Wor"

0.5.0

Making a multiplication table

Let's make a multiplication table using lazy iterable functions to create a matrix.

The key functions to use here are:

https://riptutorial.com/ 77

https://en.wikipedia.org/wiki/Multiplication_table

Base.product, which computes a Cartesian product.•
prod, which computes a regular product (as in multiplication)•
:, which creates a range•
map, which is a higher order function applying a function to each element of a collection•

The solution is:

julia> map(prod, Base.product(1:10, 1:10))
10×10 Array{Int64,2}:
 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 4 8 12 16 20 24 28 32 36 40
 5 10 15 20 25 30 35 40 45 50
 6 12 18 24 30 36 42 48 54 60
 7 14 21 28 35 42 49 56 63 70
 8 16 24 32 40 48 56 64 72 80
 9 18 27 36 45 54 63 72 81 90
 10 20 30 40 50 60 70 80 90 100

Lazily-Evaluated Lists

It's possible to make a simple lazily-evaluated list using mutable types and closures. A lazily-
evaluated list is a list whose elements are not evaluated when it's constructed, but rather when it is
accessed. Benefits of lazily evaluated lists include the possibility of being infinite.

import Base: getindex
type Lazy
 thunk
 value
 Lazy(thunk) = new(thunk)
end

evaluate!(lazy::Lazy) = (lazy.value = lazy.thunk(); lazy.value)
getindex(lazy::Lazy) = isdefined(lazy, :value) ? lazy.value : evaluate!(lazy)

import Base: first, tail, start, next, done, iteratorsize, HasLength, SizeUnknown
abstract List
immutable Cons <: List
 head
 tail::Lazy
end
immutable Nil <: List end

macro cons(x, y)
 quote
 Cons($(esc(x)), Lazy(() -> $(esc(y))))
 end
end

first(xs::Cons) = xs.head
tail(xs::Cons) = xs.tail[]
start(xs::Cons) = xs
next(::Cons, xs) = first(xs), tail(xs)
done(::List, ::Cons) = false
done(::List, ::Nil) = true

https://riptutorial.com/ 78

https://en.wikipedia.org/wiki/CartesianProduct
http://www.riptutorial.com/julia-lang/example/23486/map--filter--and-reduce
http://www.riptutorial.com/julia-lang/topic/5724/closures

iteratorsize(::Nil) = HasLength()
iteratorsize(::Cons) = SizeUnknown()

Which indeed works as it would in a language like Haskell, where all lists are lazily-evaluated:

julia> xs = @cons(1, ys)
Cons(1,Lazy(false,#3,#undef))

julia> ys = @cons(2, xs)
Cons(2,Lazy(false,#5,#undef))

julia> [take(xs, 5)...]
5-element Array{Int64,1}:
 1
 2
 1
 2
 1

In practice, it is better to use the Lazy.jl package. However, the implementation of the lazy list
above sheds lights into important details about how to construct one's own iterable type.

Read Iterables online: https://riptutorial.com/julia-lang/topic/5466/iterables

https://riptutorial.com/ 79

http://www.riptutorial.com/haskell/topic/2281/lists
https://github.com/MikeInnes/Lazy.jl
https://riptutorial.com/julia-lang/topic/5466/iterables

Chapter 19: JSON

Syntax

using JSON•
JSON.parse(str)•
JSON.json(obj)•
JSON.print(io, obj, indent)•

Remarks

Since neither Julia Dict nor JSON objects are inherently ordered, it's best not to rely on the order
of key-value pairs in a JSON object.

Examples

Installing JSON.jl

JSON is a popular data interchange format. The most popular JSON library for Julia is JSON.jl. To
install this package, use the package manager:

julia> Pkg.add("JSON")

The next step is to test whether the package is working on your machine:

julia> Pkg.test("JSON")

If all tests passed, then the library is ready for use.

Parsing JSON

JSON that has been encoded as a string can easily be parsed into a standard Julia type:

julia> using JSON

julia> JSON.parse("""{
 "this": ["is", "json"],
 "numbers": [85, 16, 12.0],
 "and": [true, false, null]
 }""")
Dict{String,Any} with 3 entries:
 "this" => Any["is","json"]
 "numbers" => Any[85,16,12.0]
 "and" => Any[true,false,nothing]

There are a few immediate properties of JSON.jl of note:

https://riptutorial.com/ 80

https://github.com/JuliaLang/JSON.jl

JSON types map to sensible types in Julia: Object becomes Dict, array becomes Vector,
number becomes Int64 or Float64, boolean becomes Bool, and null becomes nothing::Void.

•

JSON is an untyped container format: Thus returned Julia vectors are of type Vector{Any},
and returned dictionaries are of type Dict{String, Any}.

•

JSON standard does not distinguish between integers and decimal numbers, but JSON.jl
does. A number without a decimal point or scientific notation is parsed into Int64, whereas a
number with a decimal point is parsed into Float64. This matches closely with the behavior of
JSON parsers in many other languages.

•

Serializing JSON

The JSON.json function serializes a Julia object into a Julia String containing JSON:

julia> using JSON

julia> JSON.json(Dict(:a => :b, :c => [1, 2, 3.0], :d => nothing))
"{\"c\":[1.0,2.0,3.0],\"a\":\"b\",\"d\":null}"

julia> println(ans)
{"c":[1.0,2.0,3.0],"a":"b","d":null}

If a string is not desired, JSON can be printed directly to an IO stream:

julia> JSON.print(STDOUT, [1, 2, true, false, "x"])
[1,2,true,false,"x"]

Note that STDOUT is the default, and can be omitted in the above call.

Prettier printing can be achieved by passing the optional indent parameter:

julia> JSON.print(STDOUT, Dict(:a => :b, :c => :d), 4)
{
 "c": "d",
 "a": "b"
}

There is a sane default serialization for complex Julia types:

julia> immutable Point3D
 x::Float64
 y::Float64
 z::Float64
 end

julia> JSON.print(Point3D(1.0, 2.0, 3.0), 4)
{
 "y": 2.0,
 "z": 3.0,
 "x": 1.0
}

Read JSON online: https://riptutorial.com/julia-lang/topic/5468/json

https://riptutorial.com/ 81

https://riptutorial.com/julia-lang/topic/5468/json

Chapter 20: Metaprogramming

Syntax

macro name(ex) ... end•
quote ... end•
:(...)•
$x•
Meta.quot(x)•
QuoteNode(x)•
esc(x)•

Remarks

Julia’s metaprogramming features are heavily inspired by those of Lisp-like languages, and will
seem familiar to those with some Lisp background. Metaprogramming is very powerful. When
used correctly, it can lead to more concise and readable code.

The quote ... end is quasiquote syntax. Instead of the expressions within being evaluated, they
are simply parsed. The value of the quote ... end expression is the resulting Abstract Syntax Tree
(AST).

The :(...) syntax is similar to the quote ... end syntax, but it is more lightweight. This syntax is
more concise than quote ... end.

Inside a quasiquote, the $ operator is special and interpolates its argument into the AST. The
argument is expected to be an expression which is spliced directly into the AST.

The Meta.quot(x) function quotes its argument. This is often useful in combination with using $ for
interpolation, as it allows expressions and symbols to be spliced literally into the AST.

Examples

Reimplementing the @show macro

In Julia, the @show macro is often useful for debugging purposes. It displays both the expression to
be evaluated and its result, finally returning the value of the result:

julia> @show 1 + 1
1 + 1 = 2
2

It is straightforward to create our own version of @show:

julia> macro myshow(expression)

https://riptutorial.com/ 82

 quote
 value = $expression
 println($(Meta.quot(expression)), " = ", value)
 value
 end
 end

To use the new version, simply use the @myshow macro:

julia> x = @myshow 1 + 1
1 + 1 = 2
2

julia> x
2

Until loop

We're all used to the while syntax, that executes its body while the condition is evaluated to true.
What if we want to implement an until loop, that executes a loop until the condition is evaluated to
true?

In Julia, we can do this by creating a @until macro, that stops to execute its body when the
condition is met:

macro until(condition, expression)
 quote
 while !($condition)
 $expression
 end
 end |> esc
end

Here we have used the function chaining syntax |>, which is equivalent to calling the esc function
on the entire quote block. The esc function prevents macro hygiene from applying to the contents of
the macro; without it, variables scoped in the macro will be renamed to prevent collisions with
outside variables. See the Julia documentation on macro hygiene for more details.

You can use more than one expression in this loop, by simply putting everything inside a begin ...
end block:

julia> i = 0;

julia> @until i == 10 begin
 println(i)
 i += 1
 end
0
1
2
3
4
5

https://riptutorial.com/ 83

http://docs.julialang.org/en/stable/manual/metaprogramming/#hygiene

6
7
8
9

julia> i
10

QuoteNode, Meta.quot, and Expr(:quote)

There are three ways to quote something using a Julia function:

julia> QuoteNode(:x)
:(:x)

julia> Meta.quot(:x)
:(:x)

julia> Expr(:quote, :x)
:(:x)

What does "quoting" mean, and what is it good for? Quoting allows us to protect expressions from
being interpreted as special forms by Julia. A common use case is when we generate expressions
that should contain things that evaluate to symbols. (For example, this macro needs to return a
expression that evaluates to a symbol.) It doesn't work simply to return the symbol:

julia> macro mysym(); :x; end
@mysym (macro with 1 method)

julia> @mysym
ERROR: UndefVarError: x not defined

julia> macroexpand(:(@mysym))
:x

What's going on here? @mysym expands to :x, which as an expression becomes interpreted as the
variable x. But nothing has been assigned to x yet, so we get an x not defined error.

To get around this, we must quote the result of our macro:

julia> macro mysym2(); Meta.quot(:x); end
@mysym2 (macro with 1 method)

julia> @mysym2
:x

julia> macroexpand(:(@mysym2))
:(:x)

Here, we have used the Meta.quot function to turn our symbol into a quoted symbol, which is the
result we want.

What is the difference between Meta.quot and QuoteNode, and which should I use? In almost all

https://riptutorial.com/ 84

http://www.riptutorial.com/julia-lang/topic/5805/expressions
http://www.riptutorial.com/julia-lang/example/20504/symbols-that-are-not-legal-identifiers

cases, the difference does not really matter. It is perhaps a little safer sometimes to use QuoteNode
instead of Meta.quot. Exploring the difference is informative into how Julia expressions and macros
work, however.

The difference between Meta.quot and QuoteNode, explained

Here's a rule of thumb:

If you need or want to support interpolation, use Meta.quot;•
If you can't or don't want to allow interpolation, use QuoteNode.•

In short, the difference is that Meta.quot allows interpolation within the quoted thing, while QuoteNode
protects its argument from any interpolation. To understand interpolation, it is important to mention
the $ expression. There is a kind of expression in Julia called a $ expression. These expressions
allow for escaping. For instance, consider the following expression:

julia> ex = :(x = 1; :($x + $x))
quote
 x = 1
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))
end

When evaluated, this expression will evaluate 1 and assign it to x, then construct an expression of
the form _ + _ where the _ will be replaced by the value of x. Thus, the result of this should be the
expression 1 + 1 (which is not yet evaluated, and so distinct from the value 2). Indeed, this is the
case:

julia> eval(ex)
:(1 + 1)

Let's say now that we're writing a macro to build these kinds of expressions. Our macro will take
an argument, which will replace the 1 in the ex above. This argument can be any expression, of
course. Here is something that is not quite what we want:

julia> macro makeex(arg)
 quote
 :(x = $(esc($arg)); :($x + $x))
 end
 end
@makeex (macro with 1 method)

julia> @makeex 1
quote
 x = $(Expr(:escape, 1))
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))
end

julia> @makeex 1 + 1
quote
 x = $(Expr(:escape, 2))
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))
end

https://riptutorial.com/ 85

The second case is incorrect, because we ought to keep 1 + 1 unevaluated. We fix that by quoting
the argument with Meta.quot:

julia> macro makeex2(arg)
 quote
 :(x = $$(Meta.quot(arg)); :($x + $x))
 end
 end
@makeex2 (macro with 1 method)

julia> @makeex2 1 + 1
quote
 x = 1 + 1
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))
end

Macro hygiene does not apply to the contents of a quote, so escaping is not necessary in this case
(and in fact not legal) in this case.

As mentioned earlier, Meta.quot allows interpolation. So let's try that out:

julia> @makeex2 1 + $(sin(1))
quote
 x = 1 + 0.8414709848078965
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))
end

julia> let q = 0.5
 @makeex2 1 + $q
 end
quote
 x = 1 + 0.5
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))
end

From the first example, we see that interpolation allows us to inline the sin(1), instead of having
the expression be a literal sin(1). The second example shows that this interpolation is done in the
macro invocation scope, not the macro's own scope. That's because our macro hasn't actually
evaluated any code; all it's doing is generating code. The evaluation of the code (which makes its
way into the expression) is done when the expression the macro generates is actually run.

What if we had used QuoteNode instead? As you may guess, since QuoteNode prevents interpolation
from happening at all, this means it won't work.

julia> macro makeex3(arg)
 quote
 :(x = $$(QuoteNode(arg)); :($x + $x))
 end
 end
@makeex3 (macro with 1 method)

julia> @makeex3 1 + $(sin(1))
quote
 x = 1 + $(Expr(:$, :(sin(1))))
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))

https://riptutorial.com/ 86

end

julia> let q = 0.5
 @makeex3 1 + $q
 end
quote
 x = 1 + $(Expr(:$, :q))
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))
end

julia> eval(@makeex3 $(sin(1)))
ERROR: unsupported or misplaced expression $
 in eval(::Module, ::Any) at ./boot.jl:234
 in eval(::Any) at ./boot.jl:233

In this example, we might agree that Meta.quot gives greater flexibility, as it allows interpolation. So
why might we ever consider using QuoteNode? In some cases, we may not actually desire
interpolation, and actually want the literal $ expression. When would that be desirable? Let's
consider a generalization of @makeex where we can pass additional arguments determining what
comes to the left and right of the + sign:

julia> macro makeex4(expr, left, right)
 quote
 quote
 $$(Meta.quot(expr))
 :($$$(Meta.quot(left)) + $$$(Meta.quot(right)))
 end
 end
 end
@makeex4 (macro with 1 method)

julia> @makeex4 x=1 x x
quote # REPL[110], line 4:
 x = 1 # REPL[110], line 5:
 $(Expr(:quote, :($(Expr(:$, :x)) + $(Expr(:$, :x)))))
end

julia> eval(ans)
:(1 + 1)

A limitation of our implementation of @makeex4 is that we can't use expressions as either the left and
right sides of the expression directly, because they get interpolated. In other words, the
expressions may get evaluated for interpolation, but we might want them preserved. (Since there
are many levels of quoting and evaluation here, let us clarify: our macro generates code that
constructs an expression that when evaluated produces another expression. Phew!)

julia> @makeex4 x=1 x/2 x
quote # REPL[110], line 4:
 x = 1 # REPL[110], line 5:
 $(Expr(:quote, :($(Expr(:$, :(x / 2))) + $(Expr(:$, :x)))))
end

julia> eval(ans)
:(0.5 + 1)

https://riptutorial.com/ 87

We ought to allow the user to specify when interpolation is to happen, and when it shouldn't.
Theoretically, that's an easy fix: we can just remove one of the $ signs in our application, and let
the user contribute their own. What this means is that we interpolate a quoted version of the
expression entered by the user (which we've already quoted and interpolated once). This leads to
the following code, which can be a little confusing at first, due to the multiple nested levels of
quoting and unquoting. Try to read and understand what each escape is for.

julia> macro makeex5(expr, left, right)
 quote
 quote
 $$(Meta.quot(expr))
 :($$(Meta.quot($(Meta.quot(left)))) + $$(Meta.quot($(Meta.quot(right)))))
 end
 end
 end
@makeex5 (macro with 1 method)

julia> @makeex5 x=1 1/2 1/4
quote # REPL[121], line 4:
 x = 1 # REPL[121], line 5:
 $(Expr(:quote, :($(Expr(:$, :($(Expr(:quote, :(1 / 2)))))) + $(Expr(:$, :($(Expr(:quote,
:(1 / 4)))))))))
end

julia> eval(ans)
:(1 / 2 + 1 / 4)

julia> @makeex5 y=1 $y $y
ERROR: UndefVarError: y not defined

Things started well, but something has gone wrong. The macro's generated code is trying to
interpolate the copy of y in the macro invocation scope; but there is no copy of y in the macro
invocation scope. Our error is allowing interpolation with the second and third arguments in the
macro. To fix this error, we must use QuoteNode.

julia> macro makeex6(expr, left, right)
 quote
 quote
 $$(Meta.quot(expr))
 :($$(Meta.quot($(QuoteNode(left)))) + $$(Meta.quot($(QuoteNode(right)))))
 end
 end
 end
@makeex6 (macro with 1 method)

julia> @makeex6 y=1 1/2 1/4
quote # REPL[129], line 4:
 y = 1 # REPL[129], line 5:
 $(Expr(:quote, :($(Expr(:$, :($(Expr(:quote, :(1 / 2)))))) + $(Expr(:$, :($(Expr(:quote,
:(1 / 4)))))))))
end

julia> eval(ans)
:(1 / 2 + 1 / 4)

julia> @makeex6 y=1 $y $y
quote # REPL[129], line 4:

https://riptutorial.com/ 88

 y = 1 # REPL[129], line 5:
 $(Expr(:quote, :($(Expr(:$, :($(Expr(:quote, :($(Expr(:$, :y)))))))) + $(Expr(:$,
:($(Expr(:quote, :($(Expr(:$, :y)))))))))))
end

julia> eval(ans)
:(1 + 1)

julia> @makeex6 y=1 1+$y $y
quote # REPL[129], line 4:
 y = 1 # REPL[129], line 5:
 $(Expr(:quote, :($(Expr(:$, :($(Expr(:quote, :(1 + $(Expr(:$, :y)))))))) + $(Expr(:$,
:($(Expr(:quote, :($(Expr(:$, :y)))))))))))
end

julia> @makeex6 y=1 $y/2 $y
quote # REPL[129], line 4:
 y = 1 # REPL[129], line 5:
 $(Expr(:quote, :($(Expr(:$, :($(Expr(:quote, :($(Expr(:$, :y)) / 2)))))) + $(Expr(:$,
:($(Expr(:quote, :($(Expr(:$, :y)))))))))))
end

julia> eval(ans)
:(1 / 2 + 1)

By using QuoteNode, we have protected our arguments from interpolation. Since QuoteNode only has
the effect of additional protections, it is never harmful to use QuoteNode, unless you desire
interpolation. However, understanding the difference makes it possible to understand where and
why Meta.quot could be a better choice.

This long exercise is with an example that is plainly too complex to show up in any reasonable
application. Therefore, we have justified the following rule of thumb, mentioned earlier:

If you need or want to support interpolation, use Meta.quot;•
If you can't or don't want to allow interpolation, use QuoteNode.•

What about Expr(:quote)?

Expr(:quote, x) is equivalent to Meta.quot(x). However, the latter is more idiomatic and is
preferred. For code that heavily uses metaprogramming, a using Base.Meta line is often used,
which allows Meta.quot to be referred to as simply quot.

Guide

π's Metaprogramming bits & bobs

Goals:

Teach through minimal targeted functional/useful/non-abstract examples (e.g. @swap or
@assert) that introduce concepts in suitable contexts

•

https://riptutorial.com/ 89

Prefer to let the code illustrate/demonstrate the concepts rather than paragraphs of
explanation

•

Avoid linking 'required reading' to other pages -- it interrupts the narrative•

Present things in a sensible order that will making learning easiest•

Resources:

julialang.org
wikibook (@Cormullion)
5 layers (Leah Hanson)
SO-Doc Quoting (@TotalVerb)
SO-Doc -- Symbols that are not legal identifiers (@TotalVerb)
SO: What is a Symbol in Julia (@StefanKarpinski)
Discourse thread (@p-i-) Metaprogramming

Most of the material has come from the discourse channel, most of that has come from fcard...
please prod me if I had forgotten attributions.

Symbol

julia> mySymbol = Symbol("myName") # or 'identifier'
:myName

julia> myName = 42
42

julia> mySymbol |> eval # 'foo |> bar' puts output of 'foo' into 'bar', so 'bar(foo)'
42

julia> :($mySymbol = 1) |> eval
1

julia> myName
1

Passing flags into functions:

function dothing(flag)
 if flag == :thing_one
 println("did thing one")
 elseif flag == :thing_two
 println("did thing two")
 end
end
julia> dothing(:thing_one)
did thing one

julia> dothing(:thing_two)
did thing two

A hashkey example:

https://riptutorial.com/ 90

http://docs.julialang.org/en/release-0.5/manual/metaprogramming/
https://en.wikibooks.org/w/index.php?title=Introducing_Julia/Metaprogramming
http://blog.leahhanson.us/post/julia/julia-introspects.html
http://www.riptutorial.com/julia-lang/example/24364/quotenode--meta-quot--and-expr--quote-
http://www.riptutorial.com/julia-lang/example/20504/symbols-that-are-not-legal-identifiers
http://stackoverflow.com/questions/23480722/what-is-a-symbol-in-julia
https://discourse.julialang.org/t/simple-metaprogramming-exercises-challenges
http://www.riptutorial.com/julia-lang/topic/1945/metaprogramming

number_names = Dict{Symbol, Int}()
number_names[:one] = 1
number_names[:two] = 2
number_names[:six] = 6

(Advanced) (@fcard) :foo a.k.a. :(foo) yields a symbol if foo is a valid identifier, otherwise an
expression.

NOTE: Different use of ':' is:
julia> :mySymbol = Symbol('hello world')

#(You can create a symbol with any name with Symbol("<name>"),
which lets us create such gems as:
julia> one_plus_one = Symbol("1 + 1")
Symbol("1 + 1")

julia> eval(one_plus_one)
ERROR: UndefVarError: 1 + 1 not defined
...

julia> valid_math = :($one_plus_one = 3)
:(1 + 1 = 3)

julia> one_plus_one_plus_two = :($one_plus_one + 2)
:(1 + 1 + 2)

julia> eval(quote
 $valid_math
 @show($one_plus_one_plus_two)
 end)
1 + 1 + 2 = 5
...

Basically you can treat Symbols as lightweight strings. That's not what they're for, but you can do
it, so why not. Julia's Base itself does it, print_with_color(:red, "abc") prints a red-colored abc .

Expr (AST)

(Almost) everything in Julia is an expression, i.e. an instance of Expr, which will hold an AST.

when you type ...
julia> 1+1
2

Julia is doing: eval(parse("1+1"))
i.e. First it parses the string "1+1" into an `Expr` object ...
julia> ast = parse("1+1")
:(1 + 1)

... which it then evaluates:
julia> eval(ast)
2

An Expr instance holds an AST (Abstract Syntax Tree). Let's look at it:
julia> dump(ast)
Expr

https://riptutorial.com/ 91

http://docs.julialang.org/en/latest/devdocs/ast/

 head: Symbol call
 args: Array{Any}((3,))
 1: Symbol +
 2: Int64 1
 3: Int64 1
 typ: Any

TRY: fieldnames(typeof(ast))

julia> :(a + b*c + 1) ==
 parse("a + b*c + 1") ==
 Expr(:call, :+, :a, Expr(:call, :*, :b, :c), 1)
true

Nesting Exprs:

julia> dump(:(1+2/3))
Expr
 head: Symbol call
 args: Array{Any}((3,))
 1: Symbol +
 2: Int64 1
 3: Expr
 head: Symbol call
 args: Array{Any}((3,))
 1: Symbol /
 2: Int64 2
 3: Int64 3
 typ: Any
 typ: Any

Tidier rep'n using s-expr
julia> Meta.show_sexpr(:(1+2/3))
(:call, :+, 1, (:call, :/, 2, 3))

multiline Exprs using quote

julia> blk = quote
 x=10
 x+1
 end
quote # REPL[121], line 2:
 x = 10 # REPL[121], line 3:
 x + 1
end

julia> blk == :(begin x=10; x+1 end)
true

Note: contains debug info:
julia> Meta.show_sexpr(blk)
(:block,
 (:line, 2, Symbol("REPL[121]")),
 (:(=), :x, 10),
 (:line, 3, Symbol("REPL[121]")),
 (:call, :+, :x, 1)
)

https://riptutorial.com/ 92

... unlike:
julia> noDbg = :(x=10; x+1)
quote
 x = 10
 x + 1
end

... so quote is functionally the same but provides extra debug info.

(*) TIP: Use let to keep x within the block

quote -ing a quote

Expr(:quote, x) is used to represent quotes within quotes.

Expr(:quote, :(x + y)) == :(:(x + y))

Expr(:quote, Expr(:$, :x)) == :(:($x))

QuoteNode(x) is similar to Expr(:quote, x) but it prevents interpolation.

eval(Expr(:quote, Expr(:$, 1))) == 1

eval(QuoteNode(Expr(:$, 1))) == Expr(:$, 1)

(Disambiguate the various quoting mechanisms in Julia metaprogramming

Are $ and :(…) somehow inverses of one another?

:(foo) means "don't look at the value, look at the expression" $foo means "change the expression
to its value"

:($(foo)) == foo. $(:(foo)) is an error. $(...) isn't an operation and doesn't do anything by itself,
it's an "interpolate this!" sign that the quoting syntax uses. i.e. It only exists within a quote.

Is $foo the same as eval(foo) ?

No! $foo is exchanged for the compile-time value eval(foo) means to do that at runtime

eval will occur in the global scope interpolation is local

eval(:<expr>) should return the same as just <expr> (assuming <expr> is a valid expression in the
current global space)

eval(:(1 + 2)) == 1 + 2

eval(:(let x=1; x + 1 end)) == let x=1; x + 1 end

https://riptutorial.com/ 93

http://stackoverflow.com/questions/41089019/disambiguate-the-various-quoting-mechanisms-in-julia-metaprogramming)

macro s

Ready? :)

let's try to make this!
julia> x = 5; @show x;
x = 5

Let's make our own @show macro:

macro log(x)
 :(
 println("Expression: ", $(string(x)), " has value: ", $x)
)
end

u = 42
f = x -> x^2
@log(u) # Expression: u has value: 42
@log(42) # Expression: 42 has value: 42
@log(f(42)) # Expression: f(42) has value: 1764
@log(:u) # Expression: :u has value: u

expand to lower an Expr

5 layers (Leah Hanson) <-- explains how Julia takes source code as a string, tokenizes it into an
Expr-tree (AST), expands out all the macros (still AST), lowers (lowered AST), then converts into
LLVM (and beyond -- at the moment we don't need to worry what lies beyond!)

Q: code_lowered acts on functions. Is it possible to lower an Expr? A: yup!

function -> lowered-AST
julia> code_lowered(*,(String,String))
1-element Array{LambdaInfo,1}:
 LambdaInfo template for *(s1::AbstractString, ss::AbstractString...) at strings/basic.jl:84

Expr(i.e. AST) -> lowered-AST
julia> expand(:(x ? y : z))
:(begin
 unless x goto 3
 return y
 3:
 return z
 end)

julia> expand(:(y .= x.(i)))
:((Base.broadcast!)(x,y,i))

'Execute' AST or lowered-AST
julia> eval(ast)

If you want to only expand macros you can use macroexpand:

https://riptutorial.com/ 94

http://blog.leahhanson.us/post/julia/julia-introspects.html

AST -> (still nonlowered-)AST but with macros expanded:
julia> macroexpand(:(@show x))
quote
 (Base.println)("x = ",(Base.repr)(begin # show.jl, line 229:
 #28#value = x
 end))
 #28#value
end

...which returns a non-lowered AST but with all macros expanded.

esc()

esc(x) returns an Expr that says "don't apply hygiene to this", it's the same as Expr(:escape, x).
Hygiene is what keeps a macro self-contained, and you esc things if you want them to "leak". e.g.

Example: swap macro to illustrate esc()

macro swap(p, q)
 quote
 tmp = $(esc(p))
 $(esc(p)) = $(esc(q))
 $(esc(q)) = tmp
 end
end

x,y = 1,2
@swap(x,y)
println(x,y) # 2 1

$ allows us to 'escape out of' the quote. So why not simply $p and $q? i.e.

 # FAIL!
 tmp = $p
 $p = $q
 $q = tmp

Because that would look first to the macro scope for p, and it would find a local p i.e. the parameter
p (yes, if you subsequently access p without esc-ing, the macro considers the p parameter as a
local variable).

So $p = ... is just a assigning to the local p. it's not affecting whatever variable was passed-in in
the calling context.

Ok so how about:

 # Almost!
 tmp = $p # <-- you might think we don't
 $(esc(p)) = $q # need to esc() the RHS
 $(esc(q)) = tmp

So esc(p) is 'leaking' p into the calling context. "The thing that was passed into the macro that we
receive as p"

https://riptutorial.com/ 95

julia> macro swap(p, q)
 quote
 tmp = $p
 $(esc(p)) = $q
 $(esc(q)) = tmp
 end
 end
@swap (macro with 1 method)

julia> x, y = 1, 2
(1,2)

julia> @swap(x, y);

julia> @show(x, y);
x = 2
y = 1

julia> macroexpand(:(@swap(x, y)))
quote # REPL[34], line 3:
 #10#tmp = x # REPL[34], line 4:
 x = y # REPL[34], line 5:
 y = #10#tmp
end

As you can see tmp gets the hygiene treatment #10#tmp, whereas x and y don't. Julia is making a
unique identifier for tmp, something you can manually do with gensym, ie:

julia> gensym(:tmp)
Symbol("##tmp#270")

But: There is a gotcha:

julia> module Swap
 export @swap

 macro swap(p, q)
 quote
 tmp = $p
 $(esc(p)) = $q
 $(esc(q)) = tmp
 end
 end
 end
Swap

julia> using Swap

julia> x,y = 1,2
(1,2)

julia> @swap(x,y)
ERROR: UndefVarError: x not defined

Another thing julia's macro hygiene does is, if the macro is from another module, it makes any
variables (that were not assigned inside the macro's returning expression, like tmp in this case)
globals of the current module, so $p becomes Swap.$p, likewise $q -> Swap.$q.

https://riptutorial.com/ 96

In general, if you need a variable that is outside the macro's scope you should esc it, so you
should esc(p) and esc(q) regardless if they are on the LHS or RHS of a expression, or even by
themselves.

people have already mentioned gensyms a few times and soon you will be seduced by the dark side
of defaulting to escaping the whole expression with a few gensyms peppered here and there, but...
Make sure to understand how hygiene works before trying to be smarter than it! It's not a
particularly complex algorithm so it shouldn't take too long, but don't rush it! Don't use that power
until you understand all the ramifications of it... (@fcard)

Example: until macro

(@Ismael-VC)

"until loop"
macro until(condition, block)
 quote
 while ! $condition
 $block
 end
 end |> esc
end

julia> i=1; @until(i==5, begin; print(i); i+=1; end)
1234

(@fcard) |> is controversial, however. I am surprised a mob hasn't come to argue yet. (maybe
everyone is just tired of it). There is a recommendation of having most if not all of the macro just
be a call to a function, so:

macro until(condition, block)
 esc(until(condition, block))
end

function until(condition, block)
 quote
 while !$condition
 $block
 end
 end
end

...is a safer alternative.

##@fcard's simple macro challenge

Task: Swap the operands, so swaps(1/2) gives 2.00 i.e. 2/1

macro swaps(e)
 e.args[2:3] = e.args[3:-1:2]
 e
end

https://riptutorial.com/ 97

@swaps(1/2)
2.00

More macro challenges from @fcard here

Interpolation and assert macro

http://docs.julialang.org/en/release-0.5/manual/metaprogramming/#building-an-advanced-macro

macro assert(ex)
 return :($ex ? nothing : throw(AssertionError($(string(ex)))))
end

Q: Why the last $? A: It interpolates, i.e. forces Julia to eval that string(ex) as execution passes
through the invocation of this macro. i.e. If you just run that code it won't force any evaluation. But
the moment you do assert(foo) Julia will invoke this macro replacing its 'AST token/Expr' with
whatever it returns, and the $ will kick into action.

A fun hack for using { } for blocks

(@fcard) I don't think there is anything technical keeping {} from being used as blocks, in fact one
can even pun on the residual {} syntax to make it work:

julia> macro c(block)
 @assert block.head == :cell1d
 esc(quote
 $(block.args...)
 end)
 end
@c (macro with 1 method)

julia> @c {
 print(1)
 print(2)
 1+2
 }
123

*(unlikely to still work if/when the {} syntax is repurposed)

So first Julia sees the macro token, so it will read/parse tokens until the matching end, and
create what? An Expr with .head=:macro or something? Does it store "a+1" as a string or does
it break it apart into :+(:a, 1)? How to view?

?

(@fcard) In this case because of lexical scope, a is undefined in @Ms scope so it uses the global
variable... I actually forgot to escape the flipplin' expression in my dumb example, but the "only
works within the same module" part of it still applies.

https://riptutorial.com/ 98

https://gist.github.com/fcard/b735e642e6613feffad2d00f3c4298bd
http://docs.julialang.org/en/release-0.5/manual/metaprogramming/#building-an-advanced-macro

julia> module M
 macro m()
 :(a+1)
 end
 end
M

julia> a = 1
1

julia> M.@m
ERROR: UndefVarError: a not defined

The reason being that, if the macro is used in any module other than the one it was defined in, any
variables not defined within the code-to-be-expanded are treated as globals of the macro's
module.

julia> macroexpand(:(M.@m))
:(M.a + 1)

ADVANCED

###@Ismael-VC

@eval begin
 "do-until loop"
 macro $(:do)(block, until::Symbol, condition)
 until ≠ :until &&
 error("@do expected `until` got `$until`")
 quote
 let
 $block
 @until $condition begin
 $block
 end
 end
 end |> esc
 end
end
julia> i = 0
0

julia> @do begin
 @show i
 i += 1
 end until i == 5
i = 0
i = 1
i = 2
i = 3
i = 4

Scott's macro:

https://riptutorial.com/ 99

"""
Internal function to return captured line number information from AST

##Parameters
- a: Expression in the julia type Expr

##Return

- Line number in the file where the calling macro was invoked
"""
_lin(a::Expr) = a.args[2].args[1].args[1]

"""
Internal function to return captured file name information from AST

##Parameters
- a: Expression in the julia type Expr

##Return
- The name of the file where the macro was invoked
"""
_fil(a::Expr) = string(a.args[2].args[1].args[2])

"""
Internal function to determine if a symbol is a status code or variable
"""
function _is_status(sym::Symbol)
 sym in (:OK, :WARNING, :ERROR) && return true
 str = string(sym)
 length(str) > 4 && (str[1:4] == "ERR_" || str[1:5] == "WARN_" || str[1:5] == "INFO_")
end

"""
Internal function to return captured error code from AST

##Parameters
- a: Expression in the julia type Expr

##Return
- Error code from the captured info in the AST from the calling macro
"""
_err(a::Expr) =
 (sym = a.args[2].args[2] ; _is_status(sym) ? Expr(:., :Status, QuoteNode(sym)) : sym)

"""
Internal function to produce a call to the log function based on the macro arguments and the
AST from the ()->ERRCODE anonymous function definition used to capture error code, file name
and line number where the macro is used

##Parameters
- level: Loglevel which has to be logged with macro
- a: Expression in the julia type Expr
- msgs: Optional message

##Return
- Statuscode
"""
function _log(level, a, msgs)
 if isempty(msgs)
 :(log($level, $(esc(:Symbol))($(_fil(a))), $(_lin(a)), $(_err(a)))
 else

https://riptutorial.com/ 100

 :(log($level, $(esc(:Symbol))($(_fil(a))), $(_lin(a)), $(_err(a)),
message=$(esc(msgs[1]))))
 end
end

macro warn(a, msgs...) ; _log(Warning, a, msgs) ; end

junk / unprocessed ...

view/dump a macro

(@p-i-) Suppose I just do macro m(); a+1; end in a fresh REPL. With no a defined. How can I ‘view’
it? like, is there some way to ‘dump’ a macro? Without actually executing it

(@fcard) All the code in macros are actually put into functions, so you can only view their lowered
or type-inferred code.

julia> macro m() a+1 end
@m (macro with 1 method)

julia> @code_typed @m
LambdaInfo for @m()
:(begin
 return Main.a + 1
 end)

julia> @code_lowered @m
CodeInfo(:(begin
 nothing
 return Main.a + 1
 end))
^ or: code_lowered(eval(Symbol("@m")))[1] # ouf!

Other ways to get a macro's function:

julia> macro getmacro(call) call.args[1] end
@getmacro (macro with 1 method)

julia> getmacro(name) = getfield(current_module(), name.args[1])
getmacro (generic function with 1 method)

julia> @getmacro @m
@m (macro with 1 method)

julia> getmacro(:@m)
@m (macro with 1 method)

julia> eval(Symbol("@M"))
@M (macro with 1 method)

julia> dump(eval(Symbol("@M")))
@M (function of type #@M)

julia> code_typed(eval(Symbol("@M")))

https://riptutorial.com/ 101

1-element Array{Any,1}:
 LambdaInfo for @M()

julia> code_typed(eval(Symbol("@M")))[1]
LambdaInfo for @M()
:(begin
 return $(Expr(:copyast, :($(QuoteNode(:(a + 1))))))
 end::Expr)

julia> @code_typed @M
LambdaInfo for @M()
:(begin
 return $(Expr(:copyast, :($(QuoteNode(:(a + 1))))))
 end::Expr)

^ looks like I can use code_typed instead

How to understand eval(Symbol("@M"))?

(@fcard) Currently, every macro has a function associated with it. If you have a macro called M,
then the macro's function is called @M. Generally you can get a function's value with e.g.
eval(:print) but with a macro's function you need to do Symbol("@M"), since just :@M becomes an
Expr(:macrocall, Symbol("@M")) and evaluating that causes a macro-expansion.

Why doesn't code_typed display params?

(@p-i-)

julia> code_typed(x -> x^2)[1]
LambdaInfo for (::##5#6)(::Any)
:(begin
 return x ^ 2
 end)

^ here I see one ::Any param, but it doesn't seem to be connected with the token x.

 julia> code_typed(print)[1]
LambdaInfo for print(::IO, ::Char)
:(begin
 (Base.write)(io,c)
 return Base.nothing
 end::Void)

^ similarly here; there is nothing to connect io with the ::IO So surely this can't be a complete
dump of the AST representation of that particular print method…?

(@fcard) print(::IO, ::Char) only tells you what method it is, it's not part of the AST. It isn't even
present in master anymore:

julia> code_typed(print)[1]
CodeInfo(:(begin
 (Base.write)(io,c)

https://riptutorial.com/ 102

 return Base.nothing
 end))=>Void

(@p-i-) I don't understand what you mean by that. It seems to be dumping the AST for the body of
that method, no? I thought code_typed gives the AST for a function. But it seems to be missing the
first step, i.e. setting up tokens for params.

(@fcard) code_typed is meant to only show the body's AST, but for now it does give the complete
AST of the method, in the form of a LambdaInfo (0.5) or CodeInfo (0.6), but a lot of the information is
omitted when printed to the repl. You will need to inspect the LambdaInfo field by field in order to get
all the details. dump is going to flood your repl, so you could try:

macro method_info(call)
 quote
 method = @code_typed $(esc(call))
 print_info_fields(method)
 end
end

function print_info_fields(method)
 for field in fieldnames(typeof(method))
 if isdefined(method, field) && !(field in [Symbol(""), :code])
 println(" $field = ", getfield(method, field))
 end
 end
 display(method)
end

print_info_fields(x::Pair) = print_info_fields(x[1])

Which gives all the values of the named fields of a method's AST:

julia> @method_info print(STDOUT, 'a')
 rettype = Void
 sparam_syms = svec()
 sparam_vals = svec()
 specTypes = Tuple{Base.#print,Base.TTY,Char}
 slottypes = Any[Base.#print,Base.TTY,Char]
 ssavaluetypes = Any[]
 slotnames = Any[Symbol("#self#"),:io,:c]
 slotflags = UInt8[0x00,0x00,0x00]
 def = print(io::IO, c::Char) at char.jl:45
 nargs = 3
 isva = false
 inferred = true
 pure = false
 inlineable = true
 inInference = false
 inCompile = false
 jlcall_api = 0
 fptr = Ptr{Void} @0x00007f7a7e96ce10
LambdaInfo for print(::Base.TTY, ::Char)
:(begin
 $(Expr(:invoke, LambdaInfo for write(::Base.TTY, ::Char), :(Base.write), :(io), :(c)))
 return Base.nothing
 end::Void)

https://riptutorial.com/ 103

See the lil' def = print(io::IO, c::Char)? There you go! (also the slotnames = [..., :io, :c] part)
Also yes, the difference in output is because I was showing the results on master.

???

(@Ismael-VC) you mean like this? Generic dispatch with Symbols

You can do it this way:

julia> function dispatchtest{alg}(::Type{Val{alg}})
 println("This is the generic dispatch. The algorithm is $alg")
 end
dispatchtest (generic function with 1 method)

julia> dispatchtest(alg::Symbol) = dispatchtest(Val{alg})
dispatchtest (generic function with 2 methods)

julia> function dispatchtest(::Type{Val{:Euler}})
 println("This is for the Euler algorithm!")
 end
dispatchtest (generic function with 3 methods)

julia> dispatchtest(:Foo)
This is the generic dispatch. The algorithm is Foo

julia> dispatchtest(:Euler)

This is for the Euler algorithm! I wonder what does @fcard thinks about generic symbol dispatch! -
--^ :angel:

Module Gotcha

@def m begin
 a+2
end

@m # replaces the macro at compile-time with the expression a+2

More accurately, only works within the toplevel of the module the macro was defined in.

julia> module M
 macro m1()
 a+1
 end
 end
M

julia> macro m2()
 a+1
 end
@m2 (macro with 1 method)

julia> a = 1
1

https://riptutorial.com/ 104

http://stackoverflow.com/questions/39314925/generic-dispatch-with-symbols/39315024#39315024

julia> M.@m1
ERROR: UndefVarError: a not defined

julia> @m2
2

julia> let a = 20
 @m2
 end
2

esc keeps this from happening, but defaulting to always using it goes against the language design.
A good defense for this is to keep one from using and introducing names within macros, which
makes them hard to track to a human reader.

Python `dict`/JSON like syntax for `Dict` literals.

Introduction

Julia uses the following syntax for dictionaries:

Dict({k₁ => v₁, k₂ => v₂, …, k�₋₁ => v�₋₁, k� => v�)

While Python and JSON looks like this:

{k₁: v₁, k₂: v₂, …, k�₋₁: v�₋₁, k�: v�}

For illustrative purposes we could also use this syntax in Julia and add new semantics to it (Dict
syntax is the idiomatic way in Julia, which is recommended).

First let's see what kind of expression it is:

julia> parse("{1:2 , 3: 4}") |> Meta.show_sexpr
(:cell1d, (:(:), 1, 2), (:(:), 3, 4))

This means we need to take this :cell1d expression and either transform it or return a new
expression that should look like this:

julia> parse("Dict(1 => 2 , 3 => 4)") |> Meta.show_sexpr
(:call, :Dict, (:(=>), 1, 2), (:(=>), 3, 4))

Macro definition

The following macro, while simple, allows to demonstrate such code generation and
transformation:

macro dict(expr)
 # Check the expression has the correct form:

https://riptutorial.com/ 105

 if expr.head ≠ :cell1d || any(sub_expr.head ≠ :(:) for sub_expr ∈ expr.args)
 error("syntax: expected `{k₁: v₁, k₂: v₂, …, k�₋₁: v�₋₁, k�: v�}`")
 end

 # Create empty `:Dict` expression which will be returned:
 block = Expr(:call, :Dict) # :(Dict())

 # Append `(key => value)` pairs to the block:
 for pair in expr.args
 k, v = pair.args
 push!(block.args, :($k => $v))
 end # :(Dict(k₁ => v₁, k₂ => v₂, …, k�₋₁ => v�₋₁, k� => v�))

 # Block is escaped so it can reach variables from it's calling scope:
 return esc(block)
end

Let's check out the resulting macro expansion:

julia> :(@dict {"a": :b, 'c': 1, :d: 2.0}) |> macroexpand
:(Dict("a" => :b,'c' => 1,:d => 2.0))

Usage

julia> @dict {"a": :b, 'c': 1, :d: 2.0}
Dict{Any,Any} with 3 entries:
 "a" => :b
 :d => 2.0
 'c' => 1

julia> @dict {
 "string": :b,
 'c' : 1,
 :symbol : π,
 Function: print,
 (1:10) : range(1, 10)
 }
Dict{Any,Any} with 5 entries:
 1:10 => 1:10
 Function => print
 "string" => :b
 :symbol => π = 3.1415926535897...
 'c' => 1

The last example is exactly equivalent to:

Dict(
 "string" => :b,
 'c' => 1,
 :symbol => π,
 Function => print,
 (1:10) => range(1, 10)
)

https://riptutorial.com/ 106

Misusage

julia> @dict {"one": 1, "two": 2, "three": 3, "four": 4, "five" => 5}
syntax: expected `{k₁: v₁, k₂: v₂, …, k�₋₁: v�₋₁, k�: v�}`

julia> @dict ["one": 1, "two": 2, "three": 3, "four": 4, "five" => 5]
syntax: expected `{k₁: v₁, k₂: v₂, …, k�₋₁: v�₋₁, k�: v�}`

Notice that Julia has other uses for colon : as such you will need to wrap range literal expressions
with parenthesis or use the range function, for example.

Read Metaprogramming online: https://riptutorial.com/julia-lang/topic/1945/metaprogramming

https://riptutorial.com/ 107

https://riptutorial.com/julia-lang/topic/1945/metaprogramming

Chapter 21: Modules

Syntax

module Module; ...; end•
using Module•
import Module•

Examples

Wrap Code in a Module

The module keyword can be used to begin a module, which allows code to be organized and
namespaced. Modules can define an external interface, typically consisting of exported symbols.
To support this external interface, modules can have unexported internal functions and types not
intended for public use.

Some modules primarily exist to wrap a type and associated functions. Such modules, by
convention, are usually named with the plural form of the type's name. For instance, if we have a
module that provides a Building type, we can call such a module Buildings.

module Buildings

immutable Building
 name::String
 stories::Int
 height::Int # in metres
end

name(b::Building) = b.name
stories(b::Building) = b.stories
height(b::Building) = b.height

function Base.show(io::IO, b::Building)
 Base.print(stories(b), "-story ", name(b), " with height ", height(b), "m")
end

export Building, name, stories, height

end

The module can then be used with the using statement:

julia> using Buildings

julia> Building("Burj Khalifa", 163, 830)
163-story Burj Khalifa with height 830m

julia> height(ans)
830

https://riptutorial.com/ 108

http://www.riptutorial.com/julia-lang/topic/3079/functions
http://www.riptutorial.com/julia-lang/topic/5467/types

Using Modules to Organize Packages

Typically, packages consist of one or more modules. As packages grow, it may be useful to
organize the main module of the package into smaller modules. A common idiom is to define
those modules as submodules of the main module:

module RootModule

module SubModule1

...

end

module SubModule2

...

end

end

Initially, neither root module nor submodules have access to each others' exported symbols.
However, relative imports are supported to address this issue:

module RootModule

module SubModule1

const x = 10
export x

end

module SubModule2

import submodule of parent module
using ..SubModule1
const y = 2x
export y

end

import submodule of current module
using .SubModule1
using .SubModule2
const z = x + y

end

In this example, the value of RootModule.z is 30.

Read Modules online: https://riptutorial.com/julia-lang/topic/7368/modules

https://riptutorial.com/ 109

http://www.riptutorial.com/julia-lang/topic/5815/packages
https://riptutorial.com/julia-lang/topic/7368/modules

Chapter 22: Packages

Syntax

Pkg.add(package)•
Pkg.checkout(package, branch="master")•
Pkg.clone(url)•
Pkg.dir(package)•
Pkg.pin(package, version)•
Pkg.rm(package)•

Parameters

Parameter Details

Pkg.add(package) Download and install the given registered package.

Pkg.checkout(package,
branch)

Check out the given branch for the given registered package. branch
is optional and defaults to "master".

Pkg.clone(url) Clone the Git repository at the given URL as a package.

Pkg.dir(package) Get the location on disk for the given package.

Pkg.pin(package,
version)

Force the package to remain at the given version. version is optional
and defaults to the current version of the package.

Pkg.rm(package) Remove the given package from the list of required packages.

Examples

Install, use, and remove a registered package

After finding an official Julia package, it is straightforward to download and install the package.
Firstly, it's recommended to refresh the local copy of METADATA:

julia> Pkg.update()

This will ensure that you get the latest versions of all packages.

Suppose that the package we want to install is named Currencies.jl. The command to run to
install this package would be:

julia> Pkg.add("Currencies")

https://riptutorial.com/ 110

https://github.com/JuliaFinance/Currencies.jl

This command will install not only the package itself, but also all of its dependencies.

If the installation is successful, you can test that the package works properly:

julia> Pkg.test("Currencies")

Then, to use the package, use

julia> using Currencies

and proceed as described by the package's documentation, usually linked to or included from its
README.md file.

To uninstall a package that is no longer needed, use the Pkg.rm function:

julia> Pkg.rm("Currencies")

Note that this may not actually remove the package directory; instead it will merely mark the
package as no longer required. Often, this is perfectly fine — it will save time in case you need the
package again in the future. But if necessary, to remove the package physically, call the rm
function, then call Pkg.resolve:

julia> rm(Pkg.dir("Currencies"); recursive=true)

julia> Pkg.resolve()

Check out a different branch or version

Sometimes, the latest tagged version of a package is buggy or is missing some required features.
Advanced users may wish to update to the latest development version of a package (sometimes
referred to as the "master", named after the usual name for a development branch in Git). The
benefits of this include:

Developers contributing to a package should contribute to the latest development version.•
The latest development version may have useful features, bugfixes, or performance
enhancements.

•

Users reporting a bug may wish to check if a bug occurs on the latest development version.•

However, there are many drawbacks to running the latest development version:

The latest development version may be poorly-tested and have serious bugs.•
The latest development version can change frequently, breaking your code.•

To check out the latest development branch of a package named JSON.jl, for example, use

Pkg.checkout("JSON")

To check out a different branch or tag (not named "master"), use

https://riptutorial.com/ 111

http://www.riptutorial.com/julia-lang/example/19975/testing-a-package
http://www.riptutorial.com/git/example/18228/branching
https://github.com/JuliaLang/JSON.jl

Pkg.checkout("JSON", "v0.6.0")

However, if the tag represents a version, it's usually better to use

Pkg.pin("JSON", v"0.6.0")

Note that a version literal is used here, not a plain string. The Pkg.pin version informs the package
manager of the version constraint, allowing the package manager to offer feedback on what
problems it might cause.

To return to the latest tagged version,

Pkg.free("JSON")

Install an unregistered package

Some experimental packages are not included in the METADATA package repository. These
packages can be installed by directly cloning their Git repositories. Note that there may be
dependencies of unregistered packages that are themselves unregistered; those dependencies
cannot be resolved by the package manager and must be resolved manually. For example, to
install the unregistered package OhMyREPL.jl:

Pkg.clone("https://github.com/KristofferC/Tokenize.jl")
Pkg.clone("https://github.com/KristofferC/OhMyREPL.jl")

Then, as is usual, use using to use the package:

using OhMyREPL

Read Packages online: https://riptutorial.com/julia-lang/topic/5815/packages

https://riptutorial.com/ 112

https://github.com/KristofferC/OhMyREPL.jl
https://riptutorial.com/julia-lang/topic/5815/packages

Chapter 23: Parallel Processing

Examples

pmap

pmap takes a function (that you specify) and applies it to all of the elements in an array. This work is
divided up amongst the available workers. pmap then returns places the results from that function
into another array.

addprocs(3)
sqrts = pmap(sqrt, 1:10)

if you function takes multiple arguments, you can supply multiple vectors to pmap

dots = pmap(dot, 1:10, 11:20)

As with @parallel, however, if the function given to pmap is not in base Julia (i.e. it is user-defined or
defined in a package) then you must make sure that function is available to all workers first:

@everywhere begin
 function rand_det(n)
 det(rand(n,n))
 end
end

determinants = pmap(rand_det, 1:10)

See also this SO Q&A.

@parallel

@parallel can be used to parallellize a loop, dividing steps of the loop up over different workers.
As a very simple example:

addprocs(3)

a = collect(1:10)

for idx = 1:10
 println(a[idx])
end

For a slightly more complex example, consider:

@time begin
 @sync begin
 @parallel for idx in 1:length(a)

https://riptutorial.com/ 113

http://stackoverflow.com/questions/38515624/julia-run-function-multiple-times-save-results-in-array

 sleep(a[idx])
 end
 end
end
27.023411 seconds (13.48 k allocations: 762.532 KB)
julia> sum(a)
55

Thus, we see that if we had executed this loop without @parallel it would have taken 55 seconds,
rather than 27, to execute.

We can also supply a reduction operator for the @parallel macro. Suppose we have an array, we
want to sum each column of the array and then multiply these sums by each other:

A = rand(100,100);

@parallel (*) for idx = 1:size(A,1)
 sum(A[:,idx])
end

There are several important things to keep in mind when using @parallel to avoid unexpected
behavior.

First: if you want to use any functions in your loops that are not in base Julia (e.g. either functions
you define in your script or that you import from packages), then you must make those functions
accessible to the workers. Thus, for example, the following would not work:

myprint(x) = println(x)
for idx = 1:10
 myprint(a[idx])
end

Instead, we would need to use:

@everywhere begin
 function myprint(x)
 println(x)
 end
end

@parallel for idx in 1:length(a)
 myprint(a[idx])
end

Second Although each worker will be able to access the objects in the scope of the controller,
they will not be able to modify them. Thus

a = collect(1:10)
@parallel for idx = 1:length(a)
 a[idx] += 1
end

julia> a'

https://riptutorial.com/ 114

1x10 Array{Int64,2}:
 1 2 3 4 5 6 7 8 9 10

Whereas, if we had executed the loop wihtout the @parallel it would have successfully modified
the array a.

TO ADDRESS THIS, we can instead make a a SharedArray type object so that each worker can
access and modify it:

a = convert(SharedArray{Float64,1}, collect(1:10))
@parallel for idx = 1:length(a)
 a[idx] += 1
end

julia> a'
1x10 Array{Float64,2}:
 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

@spawn and @spawnat

The macros @spawn and @spawnat are two of the tools that Julia makes available to assign tasks to
workers. Here is an example:

julia> @spawnat 2 println("hello world")
RemoteRef{Channel{Any}}(2,1,3)

julia> From worker 2: hello world

Both of these macros will evaluate an expression on a worker process. The only difference
between the two is that @spawnat allows you to choose which worker will evaluate the expression
(in the example above worker 2 is specified) whereas with @spawn a worker will be automatically
chosen, based on availability.

In the above example, we simply had worker 2 execute the println function. There was nothing of
interest to return or retrieve from this. Often, however, the expression we sent to the worker will
yield something we wish to retrieve. Notice in the example above, when we called @spawnat, before
we got the printout from worker 2, we saw the following:

RemoteRef{Channel{Any}}(2,1,3)

This indicates that the @spawnat macro will return a RemoteRef type object. This object in turn will
contain the return values from our expression that is sent to the worker. If we want to retrieve
those values, we can first assign the RemoteRef that @spawnat returns to an object and then, and
then use the fetch() function which operates on a RemoteRef type object, to retrieve the results
stored from an evaluation performed on a worker.

julia> result = @spawnat 2 2 + 5
RemoteRef{Channel{Any}}(2,1,26)

julia> fetch(result)

https://riptutorial.com/ 115

http://docs.julialang.org/en/release-0.4/manual/metaprogramming/#expressions-and-evaluation

7

The key to being able to use @spawn effectively is understanding the nature behind the expressions
that it operates on. Using @spawn to send commands to workers is slightly more complicated than
just typing directly what you would type if you were running an "interpreter" on one of the workers
or executing code natively on them. For instance, suppose we wished to use @spawnat to assign a
value to a variable on a worker. We might try:

@spawnat 2 a = 5
RemoteRef{Channel{Any}}(2,1,2)

Did it work? Well, let's see by having worker 2 try to print a.

julia> @spawnat 2 println(a)
RemoteRef{Channel{Any}}(2,1,4)

julia>

Nothing happened. Why? We can investigate this more by using fetch() as above. fetch() can be
very handy because it will retrieve not just successful results but also error messages as well.
Without it, we might not even know that something has gone wrong.

julia> result = @spawnat 2 println(a)
RemoteRef{Channel{Any}}(2,1,5)

julia> fetch(result)
ERROR: On worker 2:
UndefVarError: a not defined

The error message says that a is not defined on worker 2. But why is this? The reason is that we
need to wrap our assignment operation into an expression that we then use @spawn to tell the
worker to evaluate. Below is an example, with explanation following:

julia> @spawnat 2 eval(:(a = 2))
RemoteRef{Channel{Any}}(2,1,7)

julia> @spawnat 2 println(a)
RemoteRef{Channel{Any}}(2,1,8)

julia> From worker 2: 2

The :() syntax is what Julia uses to designate expressions. We then use the eval() function in
Julia, which evaluates an expression, and we use the @spawnat macro to instruct that the
expression be evaluated on worker 2.

We could also achieve the same result as:

julia> @spawnat(2, eval(parse("c = 5")))
RemoteRef{Channel{Any}}(2,1,9)

julia> @spawnat 2 println(c)

https://riptutorial.com/ 116

http://docs.julialang.org/en/release-0.4/manual/metaprogramming/#expressions-and-evaluation
http://docs.julialang.org/en/release-0.4/manual/metaprogramming/#expressions-and-evaluation

RemoteRef{Channel{Any}}(2,1,10)

julia> From worker 2: 5

This example demonstrates two additional notions. First, we see that we can also create an
expression using the parse() function called on a string. Secondly, we see that we can use
parentheses when calling @spawnat, in situations where this might make our syntax more clear and
manageable.

When to use @parallel vs. pmap

The Julia documentation advises that

pmap() is designed for the case where each function call does a large amount of work.
In contrast, @parallel for can handle situations where each iteration is tiny, perhaps
merely summing two numbers.

There are several reasons for this. First, pmap incurs greater start up costs initiating jobs on
workers. Thus, if the jobs are very small, these startup costs may become inefficient. Conversely,
however, pmap does a "smarter" job of allocating jobs amongst workers. In particular, it builds a
queue of jobs and sends a new job to each worker whenever that worker becomes available.
@parallel by contrast, divvies up all work to be done amongst the workers when it is called. As
such, if some workers take longer on their jobs than others, you can end up with a situation where
most of your workers have finished and are idle while a few remain active for an inordinate amount
of time, finishing their jobs. Such a situation, however, is less likely to occur with very small and
simple jobs.

The following illustrates this: suppose we have two workers, one of which is slow and the other of
which is twice as fast. Ideally, we would want to give the fast worker twice as much work as the
slow worker. (or, we could have fast and slow jobs, but the principal is the exact same). pmap will
accomplish this, but @parallel won't.

For each test, we initialize the following:

addprocs(2)

@everywhere begin
 function parallel_func(idx)
 workernum = myid() - 1
 sleep(workernum)
 println("job $idx")
 end
end

Now, for the @parallel test, we run the following:

@parallel for idx = 1:12
 parallel_func(idx)
end

https://riptutorial.com/ 117

http://docs.julialang.org/en/release-0.4/manual/parallel-computing/

And get back print output:

julia> From worker 2: job 1
 From worker 3: job 7
 From worker 2: job 2
 From worker 2: job 3
 From worker 3: job 8
 From worker 2: job 4
 From worker 2: job 5
 From worker 3: job 9
 From worker 2: job 6
 From worker 3: job 10
 From worker 3: job 11
 From worker 3: job 12

It's almost sweet. The workers have "shared" the work evenly. Note that each worker has
completed 6 jobs, even though worker 2 is twice as fast as worker 3. It may be touching, but it is
inefficient.

For for the pmap test, I run the following:

pmap(parallel_func, 1:12)

and get the output:

From worker 2: job 1
From worker 3: job 2
From worker 2: job 3
From worker 2: job 5
From worker 3: job 4
From worker 2: job 6
From worker 2: job 8
From worker 3: job 7
From worker 2: job 9
From worker 2: job 11
From worker 3: job 10
From worker 2: job 12

Now, note that worker 2 has performed 8 jobs and worker 3 has performed 4. This is exactly in
proportion to their speed, and what we want for optimal efficiency. pmap is a hard task master -
from each according to their ability.

@async and @sync

According to the documentation under ?@async, "@async wraps an expression in a Task." What this
means is that for whatever falls within its scope, Julia will start this task running but then proceed
to whatever comes next in the script without waiting for the task to complete. Thus, for instance,
without the macro you will get:

julia> @time sleep(2)
 2.005766 seconds (13 allocations: 624 bytes)

https://riptutorial.com/ 118

But with the macro, you get:

julia> @time @async sleep(2)
 0.000021 seconds (7 allocations: 657 bytes)
Task (waiting) @0x0000000112a65ba0

julia>

Julia thus allows the script to proceed (and the @time macro to fully execute) without waiting for the
task (in this case, sleeping for two seconds) to complete.

The @sync macro, by contrast, will "Wait until all dynamically-enclosed uses of @async, @spawn,
@spawnat and @parallel are complete." (according to the documentation under ?@sync). Thus, we
see:

julia> @time @sync @async sleep(2)
 2.002899 seconds (47 allocations: 2.986 KB)
Task (done) @0x0000000112bd2e00

In this simple example then, there is no point to including a single instance of @async and @sync
together. But, where @sync can be useful is where you have @async applied to multiple operations
that you wish to allow to all start at once without waiting for each to complete.

For example, suppose we have multiple workers and we'd like to start each of them working on a
task simultaneously and then fetch the results from those tasks. An initial (but incorrect) attempt
might be:

addprocs(2)
@time begin
 a = cell(nworkers())
 for (idx, pid) in enumerate(workers())
 a[idx] = remotecall_fetch(pid, sleep, 2)
 end
end
4.011576 seconds (177 allocations: 9.734 KB)

The problem here is that the loop waits for each remotecall_fetch() operation to finish, i.e. for each
process to complete its work (in this case sleeping for 2 seconds) before continuing to start the
next remotecall_fetch() operation. In terms of a practical situation, we're not getting the benefits of
parallelism here, since our processes aren't doing their work (i.e. sleeping) simultaneously.

We can correct this, however, by using a combination of the @async and @sync macros:

@time begin
 a = cell(nworkers())
 @sync for (idx, pid) in enumerate(workers())
 @async a[idx] = remotecall_fetch(pid, sleep, 2)
 end
end
2.009416 seconds (274 allocations: 25.592 KB)

Now, if we count each step of the loop as a separate operation, we see that there are two

https://riptutorial.com/ 119

separate operations preceded by the @async macro. The macro allows each of these to start up,
and the code to continue (in this case to the next step of the loop) before each finishes. But, the
use of the @sync macro, whose scope encompasses the whole loop, means that we won't allow the
script to proceed past that loop until all of the operations preceded by @async have completed.

It is possible to get an even more clear understanding of the operation of these macros by further
tweaking the above example to see how it changes under certain modifications. For instance,
suppose we just have the @async without the @sync:

@time begin
 a = cell(nworkers())
 for (idx, pid) in enumerate(workers())
 println("sending work to $pid")
 @async a[idx] = remotecall_fetch(pid, sleep, 2)
 end
end
0.001429 seconds (27 allocations: 2.234 KB)

Here, the @async macro allows us to continue in our loop even before each remotecall_fetch()
operation finishes executing. But, for better or worse, we have no @sync macro to prevent the code
from continuing past this loop until all of the remotecall_fetch() operations finish.

Nevertheless, each remotecall_fetch() operation is still running in parallel, even once we go on.
We can see that because if we wait for two seconds, then the array a, containing the results, will
contain:

sleep(2)
julia> a
2-element Array{Any,1}:
 nothing
 nothing

(The "nothing" element is the result of a successful fetch of the results of the sleep function, which
does not return any values)

We can also see that the two remotecall_fetch() operations start at essentially the same time
because the print commands that precede them also execute in rapid succession (output from
these commands not shown here). Contrast this with the next example where the print commands
execute at a 2 second lag from each other:

If we put the @async macro on the whole loop (instead of just the inner step of it), then again our
script will continue immediately without waiting for the remotecall_fetch() operations to finish. Now,
however, we only allow for the script to continue past the loop as a whole. We don't allow each
individual step of the loop to start before the previous one finished. As such, unlike in the example
above, two seconds after the script proceeds after the loop, the results array still has one element
as #undef indicating that the second remotecall_fetch() operation still has not completed.

@time begin
 a = cell(nworkers())
 @async for (idx, pid) in enumerate(workers())
 println("sending work to $pid")

https://riptutorial.com/ 120

 a[idx] = remotecall_fetch(pid, sleep, 2)
 end
end
0.001279 seconds (328 allocations: 21.354 KB)
Task (waiting) @0x0000000115ec9120
This also allows us to continue to

sleep(2)

a
2-element Array{Any,1}:
 nothing
 #undef

And, not surprisingly, if we put the @sync and @async right next to each other, we get that each
remotecall_fetch() runs sequentially (rather than simultaneously) but we don't continue in the code
until each has finished. In other words, this would be essentially the equivalent of if we had neither
macro in place, just like sleep(2) behaves essentially identically to @sync @async sleep(2)

@time begin
 a = cell(nworkers())
 @sync @async for (idx, pid) in enumerate(workers())
 a[idx] = remotecall_fetch(pid, sleep, 2)
 end
end
4.019500 seconds (4.20 k allocations: 216.964 KB)
Task (done) @0x0000000115e52a10

Note also that it is possible to have more complicated operations inside the scope of the @async
macro. The documentation gives an example containing an entire loop within the scope of @async.

Recall that the help for the sync macros states that it will "Wait until all dynamically-enclosed uses
of @async, @spawn, @spawnat and @parallel are complete." For the purposes of what counts as
"complete" it matters how you define the tasks within the scope of the @sync and @async macros.
Consider the below example, which is a slight variation on one of the examples given above:

@time begin
 a = cell(nworkers())
 @sync for (idx, pid) in enumerate(workers())
 @async a[idx] = remotecall(pid, sleep, 2)
 end
end
0.172479 seconds (93.42 k allocations: 3.900 MB)

julia> a
2-element Array{Any,1}:
 RemoteRef{Channel{Any}}(2,1,3)
 RemoteRef{Channel{Any}}(3,1,4)

The earlier example took roughly 2 seconds to execute, indicating that the two tasks were run in
parallel and that the script waiting for each to complete execution of their functions before
proceeding. This example, however, has a much lower time evaluation. The reason is that for the
purposes of @sync the remotecall() operation has "finished" once it has sent the worker the job to
do. (Note that the resulting array, a, here, just contains RemoteRef object types, which just indicate

https://riptutorial.com/ 121

http://julia.readthedocs.org/en/latest/manual/parallel-computing/

that there is something going on with a particular process which could in theory be fetched at
some point in the future). By contrast, the remotecall_fetch() operation has only "finished" when it
gets the message from the worker that its task is complete.

Thus, if you are looking for ways to ensure that certain operations with workers have completed
before moving on in your script (as for instance is discussed in this post) it is necessary to think
carefully about what counts as "complete" and how you will measure and then operationalize that
in your script.

Adding Workers

When you first start Julia, by default, there will only be a single process running and available to
give work to. You can verify this using:

julia> nprocs()
1

In order to take advantage of parallel processing, you must first add additional workers who will
then be available to do work that you assign to them. You can do this within your script (or from
the interpreter) using: addprocs(n) where n is the number of processes you want to use.

Alternatively, you can add processes when you start Julia from the command line using:

$ julia -p n

where n is how many additional processes you want to add. Thus, if we start Julia with

$ julia -p 2

When Julia starts we will get:

julia> nprocs()
3

Read Parallel Processing online: https://riptutorial.com/julia-lang/topic/4542/parallel-processing

https://riptutorial.com/ 122

http://stackoverflow.com/questions/32143159/waiting-for-a-task-to-be-completed-on-remote-processor-in-julia?lq=1
https://riptutorial.com/julia-lang/topic/4542/parallel-processing

Chapter 24: Reading a DataFrame from a file

Examples

Reading a dataframe from delimiter separated data

You may want to read a DataFrame from a CSV (Comma separated values) file or maybe even from
a TSV or WSV (tabs and whitespace separated files). If your file has the right extension, you can
use the readtable function to read in the dataframe:

readtable("dataset.CSV")

But what if your file doesn't have the right extension? You can specify the delimiter that your file
uses (comma, tab, whitespace etc) as a keyword argument to the readtable function:

readtable("dataset.txt", separator=',')

Handling different comment comment marks

Data sets often contain comments that explain the data format or contain the license and usage
terms. You usually want to ignore these lines when you read in the DataFrame.

The readtable function assumes that comment lines begin with the '#' character. However, your file
may use comment marks like % or //. To make sure that readtable handles these correctly, you can
specify the comment mark as a keyword argument:

readtable("dataset.csv", allowcomments=true, commentmark='%')

Read Reading a DataFrame from a file online: https://riptutorial.com/julia-lang/topic/7340/reading-
a-dataframe-from-a-file

https://riptutorial.com/ 123

https://riptutorial.com/julia-lang/topic/7340/reading-a-dataframe-from-a-file
https://riptutorial.com/julia-lang/topic/7340/reading-a-dataframe-from-a-file

Chapter 25: Regexes

Syntax

Regex("[regex]")•
r"[regex]"•
match(needle, haystack)•
matchall(needle, haystack)•
eachmatch(needle, haystack)•
ismatch(needle, haystack)•

Parameters

Parameter Details

needle the Regex to look for in the haystack

haystack the text in which to look for the needle

Examples

Regex literals

Julia supports regular expressions1. The PCRE library is used as the regex implementation.
Regexes are like a mini-language within a language. Since most languages and many text editors
provide some support for regex, documentation and examples of how to use regex in general are
outside the scope of this example.

It is possible to construct a Regex from a string using the constructor:

julia> Regex("(cat|dog)s?")

But for convenience and easier escaping, the @r_str string macro can be used instead:

julia> r"(cat|dog)s?"

1: Technically, Julia supports regexes, which are distinct from and more powerful than what are
called regular expressions in language theory. Frequently, the term "regular expression" will be
used to refer to regexes also.

Finding matches

There are four primary useful functions for regular expressions, all of which take arguments in
needle, haystack order. The terminology "needle" and "haystack" come from the English idiom

https://riptutorial.com/ 124

http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-expressions
http://www.riptutorial.com/julia-lang/topic/5817/string-macros
https://en.wikipedia.org/wiki/Regular_expression

"finding a needle in a haystack". In the context of regexes, the regex is the needle, and the text is
the haystack.

The match function can be used to find the first match in a string:

julia> match(r"(cat|dog)s?", "my cats are dogs")
RegexMatch("cats", 1="cat")

The matchall function can be used to find all matches of a regular expression in a string:

julia> matchall(r"(cat|dog)s?", "The cat jumped over the dogs.")
2-element Array{SubString{String},1}:
 "cat"
 "dogs"

The ismatch function returns a boolean indicating whether a match was found inside the string:

julia> ismatch(r"(cat|dog)s?", "My pigs")
false

julia> ismatch(r"(cat|dog)s?", "My cats")
true

The eachmatch function returns an iterator over RegexMatch objects, suitable for use with for loops:

julia> for m in eachmatch(r"(cat|dog)s?", "My cats and my dog")
 println("Matched $(m.match) at index $(m.offset)")
 end
Matched cats at index 4
Matched dog at index 16

Capture groups

The substrings captured by capture groups are accessible from RegexMatch objects using indexing
notation.

For instance, the following regex parses North American phone numbers written in (555)-555-5555
format:

julia> phone = r"\((\d{3})\)-(\d{3})-(\d{4})"

and suppose we wish to extract the phone numbers from a text:

julia> text = """
 My phone number is (555)-505-1000.
 Her phone number is (555)-999-9999.
 """
"My phone number is (555)-505-1000.\nHer phone number is (555)-999-9999.\n"

Using the matchall function, we can get an array of the substrings matched themselves:

https://riptutorial.com/ 125

http://www.riptutorial.com/julia-lang/topic/4355/for-loops
http://www.riptutorial.com/julia-lang/topic/4355/for-loops
http://www.riptutorial.com/regex/topic/660/capture-groups

julia> matchall(phone, text)
2-element Array{SubString{String},1}:
 "(555)-505-1000"
 "(555)-999-9999"

But suppose we want to access the area codes (the first three digits, enclosed in brackets). Then
we can use the eachmatch iterator:

julia> for m in eachmatch(phone, text)
 println("Matched $(m.match) with area code $(m[1])")
 end
Matched (555)-505-1000 with area code 555
Matched (555)-999-9999 with area code 555

Note here that we use m[1] because the area code is the first capture group in our regular
expression. We can get all three components of the phone number as a tuple using a function:

julia> splitmatch(m) = m[1], m[2], m[3]
splitmatch (generic function with 1 method)

Then we can apply such a function to a particular RegexMatch:

julia> splitmatch(match(phone, text))
("555","505","1000")

Or we could map it across each match:

julia> map(splitmatch, eachmatch(phone, text))
2-element Array{Tuple{SubString{String},SubString{String},SubString{String}},1}:
 ("555","505","1000")
 ("555","999","9999")

Read Regexes online: https://riptutorial.com/julia-lang/topic/5890/regexes

https://riptutorial.com/ 126

https://riptutorial.com/julia-lang/topic/5890/regexes

Chapter 26: REPL

Syntax

julia>•
help?>•
shell>•
\[latex]•

Remarks

Other packages may define their own REPL modes in addition to the default modes. For instance,
the Cxx package defines the cxx> shell mode for a C++ REPL. These modes are usually accessible
with their own special keys; see package documentation for more details.

Examples

Launch the REPL

After installing Julia, to launch the read-eval-print-loop (REPL):

On Unix Systems

Open a terminal window, then type julia at the prompt, then hit Return. You should see something
like this come up:

On Windows

Find the Julia program in your start menu, and click it. The REPL should be launched.

Using the REPL as a Calculator

The Julia REPL is an excellent calculator. We can start with some simple operations:

julia> 1 + 1

https://riptutorial.com/ 127

http://www.riptutorial.com/julia-lang/example/1597/hello--world-
http://i.stack.imgur.com/5Wpbf.png

2

julia> 8 * 8
64

julia> 9 ^ 2
81

The ans variable contains the result of the last calculation:

julia> 4 + 9
13

julia> ans + 9
22

We can define our own variables using the assignment = operator:

julia> x = 10
10

julia> y = 20
20

julia> x + y
30

Julia has implicit multiplication for numeric literals, which makes some calculations quicker to
write:

julia> 10x
100

julia> 2(x + y)
60

If we make a mistake and do something that is not allowed, the Julia REPL will throw an error,
often with a helpful tip on how to fix the problem:

julia> 1 ^ -1
ERROR: DomainError:
Cannot raise an integer x to a negative power -n.
Make x a float by adding a zero decimal (e.g. 2.0^-n instead of 2^-n), or write
1/x^n, float(x)^-n, or (x//1)^-n.
 in power_by_squaring at ./intfuncs.jl:82
 in ^ at ./intfuncs.jl:106

julia> 1.0 ^ -1
1.0

To access or edit previous commands, use the ↑ (Up) key, which moves to the last item in history.
The ↓ moves to the next item in history. The ← and → keys can be used to move and make edits to
a line.

https://riptutorial.com/ 128

Julia has some built-in mathematical constants, including e and pi (or π).

julia> e
e = 2.7182818284590...

julia> pi
π = 3.1415926535897...

julia> 3π
9.42477796076938

We can type characters like π quickly by using their LaTeX codes: press \, then p and i, then hit
the Tab key to substitute the \pi just typed with π. This works for other Greek letters and additional
unicode symbols.

We can use any of Julia's built-in math functions, which range from simple to fairly powerful:

julia> cos(π)
-1.0

julia> besselh(1, 1, 1)
0.44005058574493355 - 0.7812128213002889im

Complex numbers are supported using im as an imaginary unit:

julia> abs(3 + 4im)
5.0

Some functions will not return a complex result unless you give it a complex input, even if the input
is real:

julia> sqrt(-1)
ERROR: DomainError:
sqrt will only return a complex result if called with a complex argument. Try
sqrt(complex(x)).
 in sqrt at math.jl:146

julia> sqrt(-1+0im)
0.0 + 1.0im

julia> sqrt(complex(-1))
0.0 + 1.0im

Exact operations on rational numbers are possible using the // rational division operator:

julia> 1//3 + 1//3
2//3

See the Arithmetic topic for more about what sorts of arithmetic operators are supported by Julia.

Dealing with Machine Precision

https://riptutorial.com/ 129

http://www.riptutorial.com/julia-lang/topic/3848/arithmetic

Note that machine integers are constrained in size, and will overflow if the result is too big to be
stored:

julia> 2^62
4611686018427387904

julia> 2^63
-9223372036854775808

This can be prevented by using arbitrary-precision integers in the computation:

julia> big"2"^62
4611686018427387904

julia> big"2"^63
9223372036854775808

Machine floating points are also limited in precision:

julia> 0.1 + 0.2
0.30000000000000004

More (but still limited) precision is possible by again using big:

julia> big"0.1" + big"0.2"
3.0017e-01

Exact arithmetic can be done in some cases using Rationals:

julia> 1//10 + 2//10
3//10

Using REPL Modes

There are three built-in REPL modes in Julia: the Julia mode, the help mode, and the shell mode.

The Help Mode

The Julia REPL comes with a built-in help system. Press ? at the julia> prompt to access the
help?> prompt.

At the help prompt, type the name of some function or type to get help for:

https://riptutorial.com/ 130

https://en.wikipedia.org/wiki/Integer_overflow

Even if you do not spell the function correctly, Julia can suggest some functions that are possibly
what you meant:

help?> printline
search:

Couldn't find printline
Perhaps you meant println, pipeline, @inline or print
 No documentation found.

 Binding printline does not exist.

This documentation works for other modules too, as long as they use the Julia documentation
system.

julia> using Currencies

help?> @usingcurrencies
 Export each given currency symbol into the current namespace. The individual unit
 exported will be a full unit of the currency specified, not the smallest possible
 unit. For instance, @usingcurrencies EUR will export EUR, a currency unit worth
 1€, not a currency unit worth 0.01€.

 @usingcurrencies EUR, GBP, AUD
 7AUD # 7.00 AUD

 There is no sane unit for certain currencies like XAU or XAG, so this macro does
 not work for those. Instead, define them manually:

 const XAU = Monetary(:XAU; precision=4)

The Shell Mode

See Using Shell from inside the REPL for more details about how to use Julia's shell mode, which
is accessible by hitting ; at the prompt. This shell mode supports interpolating data from the Julia
REPL session, which makes it easy to call Julia functions and make their results into shell
commands:

Read REPL online: https://riptutorial.com/julia-lang/topic/5739/repl

https://riptutorial.com/ 131

http://i.stack.imgur.com/ElrTF.png
http://www.riptutorial.com/julia-lang/example/19299/using-shell-from-inside-the-repl
http://i.stack.imgur.com/lW4SF.png
https://riptutorial.com/julia-lang/topic/5739/repl

Chapter 27: Shell Scripting and Piping

Syntax

;shell command•

Examples

Using Shell from inside the REPL

From inside the interative Julia shell (also known as REPL), you can access the system's shell by
typing ; right after the prompt:

shell>

From here on, you can type any shell comand and they will be run from inside the REPL:

shell> ls
Desktop Documents Pictures Templates
Downloads Music Public Videos

To exit this mode, type backspace when the prompt is empty.

Shelling out from Julia code

Julia code can create, manipulate, and execute command literals, which execute in the OS's
system environment. This is powerful but often makes programs less portable.

A command literal can be created using the `` literal. Information can be interpolated using the $
interpolation syntax, as with string literals. Julia variables passed through command literals need
not be escaped first; they are not actually passed to the shell, but rather directly to the kernel.
However, Julia displays these objects so that they appear properly escaped.

julia> msg = "a commit message"
"a commit message"

julia> command = `git commit -am $msg`
`git commit -am 'a commit message'`

julia> cd("/directory/where/there/are/unstaged/changes")

julia> run(command)
[master (root-commit) 0945387] add a
 4 files changed, 1 insertion(+)

Read Shell Scripting and Piping online: https://riptutorial.com/julia-lang/topic/5420/shell-scripting-
and-piping

https://riptutorial.com/ 132

https://riptutorial.com/julia-lang/topic/5420/shell-scripting-and-piping
https://riptutorial.com/julia-lang/topic/5420/shell-scripting-and-piping

Chapter 28: String Macros

Syntax

macro"string" # short, string macro form•
@macro_str "string" # long, regular macro form•
macro`command`•

Remarks

String macros are not quite as powerful as plain old strings — because interpolation must be
implemented in the macro's logic, string macros are unable to contain string literals of the same
delimiter for interpolation.

For instance, although

julia> "$("x")"
"x"

works, the string macro text form

julia> doc"$("x")"
ERROR: KeyError: key :x not found

gets parsed incorrectly. This can be somewhat mitigated by using triple-quotes as the outer string
delimiter;

julia> doc"""$("x")"""
"x"

does indeed work properly.

Examples

Using string macros

String macros are syntactic sugar for certain macro invocations. The parser expands syntax like

mymacro"my string"

into

@mymacro_str "my string"

which then, like any other macro call, gets substituted with whatever expression the @mymacro_str

https://riptutorial.com/ 133

macro returns. Base Julia comes with several string macros, such as:

@b_str

This string macro constructs byte arrays instead of strings. The contents of the string, encoded as
UTF-8, will be used as the array of bytes. This can be useful for interfacing with low-level APIs,
many of which work with byte arrays instead of strings.

julia> b"Hello World!"
12-element Array{UInt8,1}:
 0x48
 0x65
 0x6c
 0x6c
 0x6f
 0x20
 0x57
 0x6f
 0x72
 0x6c
 0x64
 0x21

@big_str

This macro will return a BigInt or a BigFloat parsed from the string it's given.

julia> big"1"
1

julia> big"1.0"
1.00

This macro exists because big(0.1) does not behave as one might initially expect: the 0.1 is a
Float64 approximation of true 0.1 (1//10), and promoting that to BigFloat will keep the
approximation error of Float64. Using the macro will parse 0.1 directly to a BigFloat, reducing the
approximation error.

julia> big(0.1)
1.000000000000000055511151231257827021181583404541015625000000000000000000000000e-01

julia> big"0.1"
1.0002e-01

@doc_str

This string macro constructs Base.Markdown.MD objects, which are used in the internal
documentation system to provide rich-text documentation for any environment. These MD objects
render well in a terminal:

https://riptutorial.com/ 134

http://www.riptutorial.com/julia-lang/topic/5437/arrays
http://www.riptutorial.com/julia-lang/topic/5562/strings

and also in a browser:

@html_str

This string macro constructs HTML string literals, which render nicely in a browser:

@ip_str

This string macro constructs IP address literals. It works with both IPv4 and IPv6:

julia> ip"127.0.0.1"
ip"127.0.0.1"

julia> ip"::"
ip"::"

@r_str

https://riptutorial.com/ 135

http://i.stack.imgur.com/DOnB2.png
http://i.stack.imgur.com/Tq06q.png
http://i.stack.imgur.com/m4JSw.png

This string macro constructs Regex literals.

@s_str

This string macro constructs SubstitutionString literals, which work together with Regex literals to
allow more advanced textual substitution.

@text_str

This string macro is similar in spirit to @doc_str and @html_str, but does not have any fancy
formatting features:

@v_str

This string macro constructs VersionNumber literals. See Version Numbers for a description of what
they are and how to use them.

@MIME_str

This string macro constructs the singleton types of MIME types. For instance, MIME"text/plain" is
the type of MIME("text/plain").

Symbols that are not legal identifiers

Julia Symbol literals must be legal identifiers. This works:

julia> :cat
:cat

But this does not:

julia> :2cat
ERROR: MethodError: no method matching *(::Int64, ::Base.#cat)
Closest candidates are:
 *(::Any, ::Any, ::Any, ::Any...) at operators.jl:288

*{T<:Union{Int128,Int16,Int32,Int64,Int8,UInt128,UInt16,UInt32,UInt64,UInt8}}(::T<:Union{Int128,Int16,Int32,Int64,Int8,UInt128,UInt16,UInt32,UInt64,UInt8},
::T<:Union{Int128,Int16,Int32,Int64,Int8,UInt128,UInt16,UInt32,UInt64,UInt8}) at int.jl:33
 *(::Real, ::Complex{Bool}) at complex.jl:180
 ...

What looks like a symbol literal here is actually being parsed as an implicit multiplication of :2
(which is just 2) and the function cat, which obviously does not work.

We can use

https://riptutorial.com/ 136

http://www.riptutorial.com/julia-lang/example/20707/regex-literals
http://www.riptutorial.com/julia-lang/example/20707/regex-literals
http://i.stack.imgur.com/i6h1h.png
http://www.riptutorial.com/julia-lang/example/20543/version-numbers

julia> Symbol("2cat")
Symbol("2cat")

to work around the issue.

A string macro could help to make this more terse. If we define the @sym_str macro:

macro sym_str(str)
 Meta.quot(Symbol(str))
end

then we can simply do

julia> sym"2cat"
Symbol("2cat")

to create symbols which are not valid Julia identifiers.

Of course, these techniques can also create symbols that are valid Julia identifiers. For example,

julia> sym"test"
:test

Implementing interpolation in a string macro

String macros do not come with built-in interpolation facilities. However, it is possible to manually
implement this functionality. Note that it is not possible to embed without escaping string literals
that have the same delimiter as the surrounding string macro; that is, although """ $("x") """ is
possible, " $("x") " is not. Instead, this must be escaped as " $(\"x\") ". See the remarks section
for more details about this limitation.

There are two approaches to implementing interpolation manually: implement parsing manually, or
get Julia to do the parsing. The first approach is more flexible, but the second approach is easier.

Manual parsing

macro interp_str(s)
 components = []
 buf = IOBuffer(s)
 while !eof(buf)
 push!(components, rstrip(readuntil(buf, '$'), '$'))
 if !eof(buf)
 push!(components, parse(buf; greedy=false))
 end
 end
 quote
 string($(map(esc, components)...))
 end
end

https://riptutorial.com/ 137

http://www.riptutorial.com/julia-lang/example/20453/string-interpolation--insert-value-defined-by-variable-into-string-
http://www.riptutorial.com/julia-lang/topic/5817/string-macros

Julia parsing

macro e_str(s)
 esc(parse("\"$(escape_string(s))\""))
end

This method escapes the string (but note that escape_string does not escape the $ signs) and
passes it back to Julia's parser to parse. Escaping the string is necessary to ensure that " and \ do
not affect the string's parsing. The resulting expression is a :string expression, which can be
examined and decomposed for macro purposes.

Command macros

0.6.0-dev

In Julia v0.6 and later, command macros are supported in addition to regular string macros. A
command macro invocation like

mymacro`xyz`

gets parsed as the macro call

@mymacro_cmd "xyz"

Note that this is similar to string macros, except with _cmd instead of _str.

We typically use command macros for code, which in many languages frequently contains " but
rarely contains `. For instance, it is fairly straightforward to reimplement a simple version of
quasiquoting using command macros:

macro julia_cmd(s)
 esc(Meta.quot(parse(s)))
end

We can use this macro either inline:

julia> julia`1+1`
:(1 + 1)

julia> julia`hypot2(x,y)=x^2+y^2`
:(hypot2(x,y) = begin # none, line 1:
 x ^ 2 + y ^ 2
 end)

or multiline:

julia> julia```
 function hello()
 println("Hello, World!")

https://riptutorial.com/ 138

http://www.riptutorial.com/julia-lang/example/20456/intro-to-expressions

 end
       ``` 
:(function hello() # none, line 2: 
        println("Hello, World!") 
    end)

Interpolation using $ is supported:

julia> x = 2 
2 
 
julia> julia`1 + $x` 
:(1 + 2)

but the version given here only allows one expression:

julia> julia``` 
       x = 2 
       y = 3 
       ``` 
ERROR: ParseError("extra token after end of expression")

However, extending it to handle multiple expressions is not difficult.

Read String Macros online: https://riptutorial.com/julia-lang/topic/5817/string-macros

https://riptutorial.com/ 139

https://riptutorial.com/julia-lang/topic/5817/string-macros

Chapter 29: String Normalization

Syntax

normalize_string(s::String, ...)•

Parameters

Parameter Details

casefold=true Fold the string to a canonical case based off the Unicode standard.

stripmark=true Strip diacritical marks (i.e. accents) from characters in the input string.

Examples

Case-Insensitive String Comparison

Strings can be compared with the == operator in Julia, but this is sensitive to differences in case.
For instance, "Hello" and "hello" are considered different strings.

julia> "Hello" == "Hello"
true

julia> "Hello" == "hello"
false

To compare strings in a case-insensitive manner, normalize the strings by case-folding them first.
For example,

equals_ignore_case(s, t) =
 normalize_string(s, casefold=true) == normalize_string(t, casefold=true)

This approach also handles non-ASCII Unicode correctly:

julia> equals_ignore_case("Hello", "hello")
true

julia> equals_ignore_case("Weierstraß", "WEIERSTRASS")
true

Note that in German, the uppercase form of the ß character is SS.

Diacritic-Insensitive String Comparison

Sometimes, one wants strings like "resume" and "résumé" to compare equal. That is, graphemes

https://riptutorial.com/ 140

http://unicode.org/Public/UCD/latest/ucd/CaseFolding.txt
https://en.wikipedia.org/wiki/Diacritic
http://www.riptutorial.com/julia-lang/topic/5562/strings
http://www.riptutorial.com/julia-lang/topic/5563/comparisons
http://www.riptutorial.com/julia-lang/topic/5563/comparisons
http://www.riptutorial.com/julia-lang/example/20449/graphemes

that share a basic glyph, but possibly differ because of additions to those basic glyphs. Such
comparison can be accomplished by stripping diacritical marks.

equals_ignore_mark(s, t) =
 normalize_string(s, stripmark=true) == normalize_string(t, stripmark=true)

This allows the above example to work correctly. Additionally, it works well even with non-ASCII
Unicode characters.

julia> equals_ignore_mark("resume", "résumé")
true

julia> equals_ignore_mark("αβγ", "ὰβ̂γ̆")
true

Read String Normalization online: https://riptutorial.com/julia-lang/topic/7612/string-normalization

https://riptutorial.com/ 141

https://riptutorial.com/julia-lang/topic/7612/string-normalization

Chapter 30: Strings

Syntax

"[string]"•
'[Unicode scalar value]'•
graphemes([string])•

Parameters

Parameter Details

For sprint(f, xs...)

f A function that takes an IO object as its first argument.

xs Zero or more remaining arguments to pass to f.

Examples

Hello, World!

Strings in Julia are delimited using the " symbol:

julia> mystring = "Hello, World!"
"Hello, World!"

Note that unlike some other languages, the ' symbol cannot be used instead. ' defines a
character literal; this is a Char data type and will only store a single Unicode scalar value:

julia> 'c'
'c'

julia> 'character'
ERROR: syntax: invalid character literal

One can extract the unicode scalar values from a string by iterating over it with a for loop:

julia> for c in "Hello, World!"
 println(c)
 end
H
e
l
l
o
,

https://riptutorial.com/ 142

http://www.unicode.org/glossary/#unicode_scalar_value
http://www.riptutorial.com/julia-lang/topic/4355/for-loops
http://www.riptutorial.com/julia-lang/topic/4355/for-loops

W
o
r
l
d
!

Graphemes

Julia's Char type represents a Unicode scalar value, which only in some cases corresponds to what
humans perceive as a "character". For instance, one representation of the character e ́, as in
résumé, is actually a combination of two Unicode scalar values:

julia> collect("é")
2-element Array{Char,1}:
 'e'
 '́'

The Unicode descriptions for these codepoints are "LATIN SMALL LETTER E" and "COMBINING
ACUTE ACCENT". Together, they define a single "human" character, which is Unicode terms is
called a grapheme. More specifically, Unicode Annex #29 motivates the definition of a grapheme
cluster because:

It is important to recognize that what the user thinks of as a “character”—a basic unit of
a writing system for a language—may not be just a single Unicode code point. Instead,
that basic unit may be made up of multiple Unicode code points. To avoid ambiguity
with the computer use of the term character, this is called a user-perceived character.
For example, “G” + acute-accent is a user-perceived character: users think of it as a
single character, yet is actually represented by two Unicode code points. These user-
perceived characters are approximated by what is called a grapheme cluster, which
can be determined programmatically.

Julia provides the graphemes function to iterate over the grapheme clusters in a string:

julia> for c in graphemes("résumé")
 println(c)
 end
r
é
s
u
m
é

Note how the result, printing each character on its own line, is better than if we had iterated over
the Unicode scalar values:

julia> for c in "résumé"
 println(c)
 end

https://riptutorial.com/ 143

http://www.unicode.org/glossary/#unicode_scalar_value
http://www.unicode.org/glossary/#grapheme
http://www.unicode.org/glossary/#grapheme_cluster
http://www.unicode.org/glossary/#grapheme_cluster

r
e

s
u
m
e

Typically, when working with characters in a user-perceived sense, it is more useful to deal with
grapheme clusters than with Unicode scalar values. For instance, suppose we want to write a
function to compute the length of a single word. A naïve solution would be to use

julia> wordlength(word) = length(word)
wordlength (generic function with 1 method)

We note that the result is counter-intuitive when the word includes grapheme clusters that consist
of more than one codepoint:

julia> wordlength("résumé")
8

When we use the more correct definition, using the graphemes function, we get the expected result:

julia> wordlength(word) = length(graphemes(word))
wordlength (generic function with 1 method)

julia> wordlength("résumé")
6

Convert numeric types to strings

There are numerous ways to convert numeric types to strings in Julia:

julia> a = 123
123

julia> string(a)
"123"

julia> println(a)
123

The string() function can also take more arguments:

julia> string(a, "b")
"123b"

You can also insert (aka interpolate) integers (and certain other types) into strings using $:

julia> MyString = "my integer is $a"
"my integer is 123"

https://riptutorial.com/ 144

Performance Tip: The above methods can be quite convenient at times. But, if you will be
performing many, many such operations and you are concerned about execution speed of your
code, the Julia performance guide recommends against this, and instead in favor of the below
methods:

You can supply multiple arguments to print() and println() which will operate on them exactly as
string() operates on multiple arguments:

julia> println(a, "b")
123b

Or, when writing to file, you can similarly use, e.g.

open("/path/to/MyFile.txt", "w") do file
 println(file, a, "b", 13)
end

or

file = open("/path/to/MyFile.txt", "a")
println(file, a, "b", 13)
close(file)

These are faster because they avoid needing to first form a string from given pieces and then
output it (either to the console display or a file) and instead just sequentially output the various
pieces.

Credits: Answer based on SO Question What's the best way to convert an Int to a String in Julia?
with Answer by Michael Ohlrogge and Input from Fengyang Wang

String interpolation (insert value defined by variable into string)

In Julia, as in many other languages, it is possible to interpolate by inserting values defined by
variables into strings. For a simple example:

n = 2
julia> MyString = "there are $n ducks"
"there are 2 ducks"

We can use other types than numeric, e.g.

Result = false
julia> println("test results is $Result")
test results is false

You can have multiple interpolations within a given string:

MySubStr = "a32"
MyNum = 123.31

https://riptutorial.com/ 145

http://docs.julialang.org/en/release-0.4/manual/performance-tips/#avoid-string-interpolation-for-i-o
http://stackoverflow.com/questions/38676573/whats-the-best-way-to-convert-an-int-to-a-string-in-julia

println("$MySubStr , $MyNum")

Performance Tip Interpolation is quite convenient. But, if you are going to be doing it many times
very rapidly, it is not the most efficient. Instead, see Convert numeric types to strings for
suggestions when performance is an issue.

Using sprint to Create Strings with IO Functions

Strings can be made from functions that work with IO objects by using the sprint function. For
instance, the code_llvm function accepts an IO object as the first argument. Typically, it is used like

julia> code_llvm(STDOUT, *, (Int, Int))

define i64 @"jlsys_*_46115"(i64, i64) #0 {
top:
 %2 = mul i64 %1, %0
 ret i64 %2
}

Suppose we want that output as a string instead. Then we can simply do

julia> sprint(code_llvm, *, (Int, Int))
"\ndefine i64 @\"jlsys_*_46115\"(i64, i64) #0 {\ntop:\n %2 = mul i64 %1, %0\n ret i64
%2\n}\n"

julia> println(ans)

define i64 @"jlsys_*_46115"(i64, i64) #0 {
top:
 %2 = mul i64 %1, %0
 ret i64 %2
}

Converting the results of "interactive" functions like code_llvm into strings can be useful for
automated analysis, such as testing whether generated code may have regressed.

The sprint function is a higher-order function which takes the function operating on IO objects as
its first argument. Behind the scenes, it creates an IOBuffer in RAM, calls the given function, and
takes the data from the buffer into a String object.

Read Strings online: https://riptutorial.com/julia-lang/topic/5562/strings

https://riptutorial.com/ 146

http://www.riptutorial.com/julia-lang/example/20452/convert-numeric-types-to-strings
http://www.riptutorial.com/julia-lang/topic/5632/unit-testing
http://www.riptutorial.com/julia-lang/topic/6955/higher-order-functions
https://riptutorial.com/julia-lang/topic/5562/strings

Chapter 31: sub2ind

Syntax

sub2ind(dims::Tuple{Vararg{Integer}}, I::Integer...)•
sub2ind{T<:Integer}(dims::Tuple{Vararg{Integer}}, I::AbstractArray{T<:Integer,1}...)•

Parameters

parameter details

dims::Tuple{Vararg{Integer}} size of the array

I::Integer... subscripts(scalar) of the array

I::AbstractArray{T<:Integer,1}... subscripts(vector) of the array

Remarks

The second example shows that the result of sub2ind might be very buggy in some specific cases.

Examples

Convert subscripts to linear indices

julia> sub2ind((3,3), 1, 1)
1

julia> sub2ind((3,3), 1, 2)
4

julia> sub2ind((3,3), 2, 1)
2

julia> sub2ind((3,3), [1,1,2], [1,2,1])
3-element Array{Int64,1}:
 1
 4
 2

Pits & Falls

no error, even the subscript is out of range.
julia> sub2ind((3,3), 3, 4)
12

https://riptutorial.com/ 147

One cannot determine whether a subscript is in the range of an array by comparing its index:

julia> sub2ind((3,3), -1, 2)
2

julia> 0 < sub2ind((3,3), -1, 2) <= 9
true

Read sub2ind online: https://riptutorial.com/julia-lang/topic/1914/sub2ind

https://riptutorial.com/ 148

https://riptutorial.com/julia-lang/topic/1914/sub2ind

Chapter 32: Time

Syntax

now()•
Dates.today()•
Dates.year(t)•
Dates.month(t)•
Dates.day(t)•
Dates.hour(t)•
Dates.minute(t)•
Dates.second(t)•
Dates.millisecond(t)•
Dates.format(t, s)•

Examples

Current Time

To get the current date and time, use the now function:

julia> now()
2016-09-04T00:16:58.122

This is the local time, which includes the machine's configured time zone. To get the time in the
Coordinated Universal Time (UTC) time zone, use now(Dates.UTC):

julia> now(Dates.UTC)
2016-09-04T04:16:58.122

To get the current date, without the time, use today():

julia> Dates.today()
2016-10-30

The return value of now is a DateTime object. There are functions to get the individual components of
a DateTime:

julia> t = now()
2016-09-04T00:16:58.122

julia> Dates.year(t)
2016

julia> Dates.month(t)
9

https://riptutorial.com/ 149

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

julia> Dates.day(t)
4

julia> Dates.hour(t)
0

julia> Dates.minute(t)
16

julia> Dates.second(t)
58

julia> Dates.millisecond(t)
122

It is possible to format a DateTime using a specially-formatted format string:

julia> Dates.format(t, "yyyy-mm-dd at HH:MM:SS")
"2016-09-04 at 00:16:58"

Since many of the Dates functions are exported from the Base.Dates module, it can save some
typing to write

using Base.Dates

which then enables accessing the qualified functions above without the Dates. qualification.

Read Time online: https://riptutorial.com/julia-lang/topic/5812/time

https://riptutorial.com/ 150

http://www.riptutorial.com/julia-lang/topic/7368/modules
https://riptutorial.com/julia-lang/topic/5812/time

Chapter 33: Tuples

Syntax

a,•
a, b•
a, b = xs•
()•
(a,)•
(a, b)•
(a, b...)•
Tuple{T, U, V}•
NTuple{N, T}•
Tuple{T, U, Vararg{V}}•

Remarks

Tuples have much better runtime performance than arrays for two reasons: their types are more
precise, and their immutability allows them to be allocated on the stack instead of the heap.
However, this more precise typing comes with both more compile-time overhead and more
difficulty achieving type stability.

Examples

Introduction to Tuples

Tuples are immutable ordered collections of arbitrary distinct objects, either of the same type or of
different types. Typically, tuples are constructed using the (x, y) syntax.

julia> tup = (1, 1.0, "Hello, World!")
(1,1.0,"Hello, World!")

The individual objects of a tuple can be retrieved using indexing syntax:

julia> tup[1]
1

julia> tup[2]
1.0

julia> tup[3]
"Hello, World!"

They implement the iterable interface, and can therefore be iterated over using for loops:

julia> for item in tup

https://riptutorial.com/ 151

http://www.riptutorial.com/julia-lang/topic/5437/arrays
http://www.riptutorial.com/julia-lang/topic/6084/type-stability
http://www.riptutorial.com/julia-lang/topic/5467/types
http://www.riptutorial.com/julia-lang/topic/5466/iterables
http://www.riptutorial.com/julia-lang/topic/4355/for-loops
http://www.riptutorial.com/julia-lang/topic/4355/for-loops

 println(item)
 end
1
1.0
Hello, World!

Tuples also support a variety of generic collections functions, such as reverse or length:

julia> reverse(tup)
("Hello, World!",1.0,1)

julia> length(tup)
3

Furthermore, tuples support a variety of higher-order collections operations, including any, all, map,
or broadcast:

julia> map(typeof, tup)
(Int64,Float64,String)

julia> all(x -> x < 2, (1, 2, 3))
false

julia> all(x -> x < 4, (1, 2, 3))
true

julia> any(x -> x < 2, (1, 2, 3))
true

The empty tuple can be constructed using ():

julia> ()
()

julia> isempty(ans)
true

However, to construct a tuple of one element, a trailing comma is required. This is because the
parentheses ((and)) would otherwise be treated as grouping operations together instead of
constructing a tuple.

julia> (1)
1

julia> (1,)
(1,)

For consistency, a trailing comma is also allowed for tuples with more than one element.

julia> (1, 2, 3,)
(1,2,3)

https://riptutorial.com/ 152

http://www.riptutorial.com/julia-lang/topic/6955/higher-order-functions
http://www.riptutorial.com/julia-lang/example/23486/map--filter--and-reduce

Tuple types

The typeof a tuple is a subtype of Tuple:

julia> typeof((1, 2, 3))
Tuple{Int64,Int64,Int64}

julia> typeof((1.0, :x, (1, 2)))
Tuple{Float64,Symbol,Tuple{Int64,Int64}}

Unlike other data types, Tuple types are covariant. Other data types in Julia are generally invariant.
Thus,

julia> Tuple{Int, Int} <: Tuple{Number, Number}
true

julia> Vector{Int} <: Vector{Number}
false

This is the case because everywhere a Tuple{Number, Number} is accepted, so too would a
Tuple{Int, Int}, since it also has two elements, both of which are numbers. That is not the case
for a Vector{Int} versus a Vector{Number}, as a function accepting a Vector{Number} may wish to
store a floating point (e.g. 1.0) or a complex number (e.g. 1+3im) in such a vector.

The covariance of tuple types means that Tuple{Number} (again unlike Vector{Number}) is actually an
abstract type:

julia> isleaftype(Tuple{Number})
false

julia> isleaftype(Vector{Number})
true

Concrete subtypes of Tuple{Number} include Tuple{Int}, Tuple{Float64}, Tuple{Rational{BigInt}},
and so forth.

Tuple types may contain a terminating Vararg as their last parameter to indicate an indefinite
number of objects. For instance, Tuple{Vararg{Int}} is the type of all tuples containing any number
of Ints, possibly zero:

julia> isa((), Tuple{Vararg{Int}})
true

julia> isa((1,), Tuple{Vararg{Int}})
true

julia> isa((1,2,3,4,5), Tuple{Vararg{Int}})
true

julia> isa((1.0,), Tuple{Vararg{Int}})
false

https://riptutorial.com/ 153

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)

whereas Tuple{String, Vararg{Int}} accepts tuples consisting of a string, followed by any number
(possibly zero) of Ints.

julia> isa(("x", 1, 2), Tuple{String, Vararg{Int}})
true

julia> isa((1, 2), Tuple{String, Vararg{Int}})
false

Combined with co-variance, this means that Tuple{Vararg{Any}} describes any tuple. Indeed,
Tuple{Vararg{Any}} is just another way of saying Tuple:

julia> Tuple{Vararg{Any}} == Tuple
true

Vararg accepts a second numeric type parameter indicating how many times exactly its first type
parameter should occur. (By default, if unspecified, this second type parameter is a typevar that
can take any value, which is why any number of Ints are accepted in the Varargs above.) Tuple
types ending in a specified Vararg will automatically be expanded to the requested number of
elements:

julia> Tuple{String,Vararg{Int, 3}}
Tuple{String,Int64,Int64,Int64}

Notation exists for homogenous tuples with a specified Vararg: NTuple{N, T}. In this notation, N
denotes the number of elements in the tuple, and T denotes the type accepted. For instance,

julia> NTuple{3, Int}
Tuple{Int64,Int64,Int64}

julia> NTuple{10, Int}
NTuple{10,Int64}

julia> ans.types
svec(Int64,Int64,Int64,Int64,Int64,Int64,Int64,Int64,Int64,Int64)

Note that NTuples beyond a certain size are shown simply as NTuple{N, T}, instead of the expanded
Tuple form, but they are still the same type:

julia> Tuple{Int,Int,Int,Int,Int,Int,Int,Int,Int,Int}
NTuple{10,Int64}

Dispatching on tuple types

Because Julia function parameter lists are themselves tuples, dispatching on various kinds of
tuples is often easier done through the method parameters themselves, often with liberal usage for
the "splatting" ... operator. For instance, consider the implementation of reverse for tuples, from
Base:

https://riptutorial.com/ 154

http://www.riptutorial.com/julia-lang/topic/5562/strings
http://www.riptutorial.com/julia-lang/example/10467/introduction-to-dispatch

revargs() = ()
revargs(x, r...) = (revargs(r...)..., x)

reverse(t::Tuple) = revargs(t...)

Implementing methods on tuples this way preserves type stability, which is crucial for
performance. We can see that there is no overhead to this approach using the @code_warntype
macro:

julia> @code_warntype reverse((1, 2, 3))
Variables:
 #self#::Base.#reverse
 t::Tuple{Int64,Int64,Int64}

Body:
 begin
 SSAValue(1) = (Core.getfield)(t::Tuple{Int64,Int64,Int64},2)::Int64
 SSAValue(2) = (Core.getfield)(t::Tuple{Int64,Int64,Int64},3)::Int64
 return
(Core.tuple)(SSAValue(2),SSAValue(1),(Core.getfield)(t::Tuple{Int64,Int64,Int64},1)::Int64)::Tuple{Int64,Int64,Int64}

 end::Tuple{Int64,Int64,Int64}

Although somewhat hard to read, the code here is simply getting creating a new tuple with values
3rd, 2nd, and 1st elements of the original tuple, respectively. On many machines, this compiles
down to extremely efficient LLVM code, which consists of loads and stores.

julia> @code_llvm reverse((1, 2, 3))

define void @julia_reverse_71456([3 x i64]* noalias sret, [3 x i64]*) #0 {
top:
 %2 = getelementptr inbounds [3 x i64], [3 x i64]* %1, i64 0, i64 1
 %3 = getelementptr inbounds [3 x i64], [3 x i64]* %1, i64 0, i64 2
 %4 = load i64, i64* %3, align 1
 %5 = load i64, i64* %2, align 1
 %6 = getelementptr inbounds [3 x i64], [3 x i64]* %1, i64 0, i64 0
 %7 = load i64, i64* %6, align 1
 %.sroa.0.0..sroa_idx = getelementptr inbounds [3 x i64], [3 x i64]* %0, i64 0, i64 0
 store i64 %4, i64* %.sroa.0.0..sroa_idx, align 8
 %.sroa.2.0..sroa_idx1 = getelementptr inbounds [3 x i64], [3 x i64]* %0, i64 0, i64 1
 store i64 %5, i64* %.sroa.2.0..sroa_idx1, align 8
 %.sroa.3.0..sroa_idx2 = getelementptr inbounds [3 x i64], [3 x i64]* %0, i64 0, i64 2
 store i64 %7, i64* %.sroa.3.0..sroa_idx2, align 8
 ret void
}

Multiple return values

Tuples are frequently used for multiple return values. Much of the standard library, including two of
the functions of the iterable interface (next and done), returns tuples containing two related but
distinct values.

The parentheses around tuples can be omitted in certain situations, making multiple return values
easier to implement. For instance, we can create a function to return both positive and negative

https://riptutorial.com/ 155

http://www.riptutorial.com/julia-lang/topic/6084/type-stability
http://www.riptutorial.com/julia-lang/topic/5466/iterables

square roots of a real number:

julia> pmsqrt(x::Real) = sqrt(x), -sqrt(x)
pmsqrt (generic function with 1 method)

julia> pmsqrt(4)
(2.0,-2.0)

Destructuring assignment can be used to unpack the multiple return values. To store the square
roots in variables a and b, it suffices to write:

julia> a, b = pmsqrt(9.0)
(3.0,-3.0)

julia> a
3.0

julia> b
-3.0

Another example of this is the divrem and fldmod functions, which do an integer (truncating or
floored, respectively) division and remainder operation at the same time:

julia> q, r = divrem(10, 3)
(3,1)

julia> q
3

julia> r
1

Read Tuples online: https://riptutorial.com/julia-lang/topic/6675/tuples

https://riptutorial.com/ 156

http://www.riptutorial.com/julia-lang/topic/3848/arithmetic
http://www.riptutorial.com/julia-lang/topic/3848/arithmetic
https://riptutorial.com/julia-lang/topic/6675/tuples

Chapter 34: Type Stability

Introduction

Type instability occurs when a variable's type can change at runtime, and hence cannot be
inferred at compile-time. Type instability often causes performance problems, so being able to
write and identify type-stable code is important.

Examples

Write type-stable code

function sumofsins1(n::Integer)
 r = 0
 for i in 1:n
 r += sin(3.4)
 end
 return r
end

function sumofsins2(n::Integer)
 r = 0.0
 for i in 1:n
 r += sin(3.4)
 end
 return r
end

Timing the above two functions shows major differences in terms of time and memory allocations.

julia> @time [sumofsins1(100_000) for i in 1:100];
0.638923 seconds (30.12 M allocations: 463.094 MB, 10.22% gc time)

julia> @time [sumofsins2(100_000) for i in 1:100];
0.163931 seconds (13.60 k allocations: 611.350 KB)

This is because of type-unstable code in sumofsins1 where the type of r needs to be checked for
every iteration.

Read Type Stability online: https://riptutorial.com/julia-lang/topic/6084/type-stability

https://riptutorial.com/ 157

http://www.riptutorial.com/julia-lang/topic/5467/types
https://riptutorial.com/julia-lang/topic/6084/type-stability

Chapter 35: Types

Syntax

immutable MyType; field; field; end•
type MyType; field; field; end•

Remarks

Types are key to Julia's performance. An important idea for performance is type stability, which
occurs when the type a function returns only depends on the types, not the values, of its
arguments.

Examples

Dispatching on Types

On Julia, you can define more than one method for each function. Suppose we define three
methods of the same function:

foo(x) = 1
foo(x::Number) = 2
foo(x::Int) = 3

When deciding what method to use (called dispatch), Julia chooses the more specific method that
matches the types of the arguments:

julia> foo('one')
1

julia> foo(1.0)
2

julia> foo(1)
3

This facilitates polymorphism. For instance, we can easily create a linked list by defining two
immutable types, named Nil and Cons. These names are traditionally used to describe an empty
list and a non-empty list, respectively.

abstract LinkedList
immutable Nil <: LinkedList end
immutable Cons <: LinkedList
 first
 rest::LinkedList
end

https://riptutorial.com/ 158

http://www.riptutorial.com/julia-lang/topic/6084/type-stability
http://www.riptutorial.com/julia-lang/example/10467/introduction-to-dispatch
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Linked_list

We will represent the empty list by Nil() and any other lists by Cons(first, rest), where first is
the first element of the linked list and rest is the linked list consisting of all remaining elements. For
example, the list [1, 2, 3] will be represented as

julia> Cons(1, Cons(2, Cons(3, Nil())))
Cons(1,Cons(2,Cons(3,Nil())))

Is the list empty?

Suppose we want to extend the standard library's isempty function, which works on a variety of
different collections:

julia> methods(isempty)
29 methods for generic function "isempty":
isempty(v::SimpleVector) at essentials.jl:180
isempty(m::Base.MethodList) at reflection.jl:394
...

We can simply use the function dispatch syntax, and define two additional methods of isempty.
Since this function is from the Base module, we have to qualify it as Base.isempty in order to extend
it.

Base.isempty(::Nil) = true
Base.isempty(::Cons) = false

Here, we did not need the argument values at all to determine whether the list is empty. Merely the
type alone suffices to compute that information. Julia allows us to omit the names of arguments,
keeping only their type annotation, if we need not use their values.

We can test that our isempty methods work:

julia> using Base.Test

julia> @test isempty(Nil())
Test Passed
 Expression: isempty(Nil())

julia> @test !isempty(Cons(1, Cons(2, Cons(3, Nil()))))
Test Passed
 Expression: !(isempty(Cons(1,Cons(2,Cons(3,Nil())))))

and indeed the number of methods for isempty have increased by 2:

julia> methods(isempty)
31 methods for generic function "isempty":
isempty(v::SimpleVector) at essentials.jl:180
isempty(m::Base.MethodList) at reflection.jl:394

Clearly, determining whether a linked list is empty or not is a trivial example. But it leads up to
something more interesting:

https://riptutorial.com/ 159

http://www.riptutorial.com/julia-lang/example/19976/writing-a-simple-test

How long is the list?

The length function from the standard library gives us the length of a collection or certain iterables.
There are many ways to implement length for a linked list. In particular, using a while loop is likely
fastest and most memory-efficient in Julia. But premature optimization is to be avoided, so let's
suppose for a second that our linked list need not be efficient. What's the simplest way to write a
length function?

Base.length(::Nil) = 0
Base.length(xs::Cons) = 1 + length(xs.rest)

The first definition is straightforward: an empty list has length 0. The second definition is also easy
to read: to count the length of a list, we count the first element, then count the length of the rest of
the list. We can test this method similarly to how we tested isempty:

julia> @test length(Nil()) == 0
Test Passed
 Expression: length(Nil()) == 0
 Evaluated: 0 == 0

julia> @test length(Cons(1, Cons(2, Cons(3, Nil())))) == 3
Test Passed
 Expression: length(Cons(1,Cons(2,Cons(3,Nil())))) == 3
 Evaluated: 3 == 3

Next steps

This toy example is pretty far from implementing all of the functionality that would be desired in a
linked list. It is missing, for instance, the iteration interface. However, it illustrates how dispatch can
be used to write short and clear code.

Immutable Types

The simplest composite type is an immutable type. Instances of immutable types, like tuples, are
values. Their fields cannot be changed after they are created. In many ways, an immutable type is
like a Tuple with names for the type itself and for each field.

Singleton types

Composite types, by definition, contain a number of simpler types. In Julia, this number can be
zero; that is, an immutable type is allowed to contain no fields. This is comparable to the empty
tuple ().

Why might this be useful? Such immutable types are known as "singleton types", as only one
instance of them could ever exist. The values of such types are known as "singleton values". The
standard library Base contains many such singleton types. Here is a brief list:

https://riptutorial.com/ 160

http://www.riptutorial.com/julia-lang/topic/5466/iterables
https://en.wikipedia.org/wiki/Program_optimization#When_to_optimize
http://www.riptutorial.com/julia-lang/topic/6675/tuples

Void, the type of nothing. We can verify that Void.instance (which is special syntax for
retrieving the singleton value of a singleton type) is indeed nothing.

•

Any media type, such as MIME"text/plain", is a singleton type with a single instance,
MIME("text/plain").

•

The Irrational{:π}, Irrational{:e}, Irrational{:φ}, and similar types are singleton types, and
their singleton instances are the irrational values π = 3.1415926535897..., etc.

•

The iterator size traits Base.HasLength, Base.HasShape, Base.IsInfinite, and Base.SizeUnknown
are all singleton types.

•

0.5.0

In version 0.5 and later, each function is a singleton instance of a singleton type! Like any
other singleton value, we can recover the function sin, for example, from
typeof(sin).instance.

•

Because they contain nothing, singleton types are incredibly lightweight, and they can frequently
be optimized away by the compiler to have no runtime overhead. Thus, they are perfect for traits,
special tag values, and for things like functions that one would like to specialize on.

To define a singleton type,

julia> immutable MySingleton end

To define custom printing for the singleton type,

julia> Base.show(io::IO, ::MySingleton) = print(io, "sing")

To access the singleton instance,

julia> MySingleton.instance
MySingleton()

Often, one assigns this to a constant:

julia> const sing = MySingleton.instance
MySingleton()

Wrapper types

If zero-field immutable types are interesting and useful, then perhaps one-field immutable types
are even more useful. Such types are commonly called "wrapper types" because they wrap some
underlying data, providing an alternative interface to said data. An example of a wrapper type in
Base is String. We will define a similar type to String, named MyString. This type will be backed by
a vector (one-dimensional array) of bytes (UInt8).

First, the type definition itself and some customized showing:

https://riptutorial.com/ 161

http://www.riptutorial.com/julia-lang/topic/3079/functions
http://www.riptutorial.com/julia-lang/topic/5562/strings
http://www.riptutorial.com/julia-lang/topic/5437/arrays

immutable MyString <: AbstractString
 data::Vector{UInt8}
end

function Base.show(io::IO, s::MyString)
 print(io, "MyString: ")
 write(io, s.data)
 return
end

Now our MyString type is ready for use! We can feed it some raw UTF-8 data, and it displays as we
like it to:

julia> MyString([0x48,0x65,0x6c,0x6c,0x6f,0x2c,0x20,0x57,0x6f,0x72,0x6c,0x64,0x21])
MyString: Hello, World!

Obviously, this string type needs a lot of work before it becomes as usable as the Base.String type.

True composite types

Perhaps most commonly, many immutable types contain more than one field. An example is the
standard library Rational{T} type, which contains two fieds: a num field for the numerator, and a den
field for the denominator. It is fairly straightforward to emulate this type design:

immutable MyRational{T}
 num::T
 den::T
 MyRational(n, d) = (g = gcd(n, d); new(n÷g, d÷g))
end
MyRational{T}(n::T, d::T) = MyRational{T}(n, d)

We have successfully implemented a constructor that simplifies our rational numbers:

julia> MyRational(10, 6)
MyRational{Int64}(5,3)

Read Types online: https://riptutorial.com/julia-lang/topic/5467/types

https://riptutorial.com/ 162

https://riptutorial.com/julia-lang/topic/5467/types

Chapter 36: Unit Testing

Syntax

@test [expr]•
@test_throws [Exception] [expr]•
@testset "[name]" begin; [tests]; end•
Pkg.test([package])•

Remarks

The standard library documentation for Base.Test covers additional material beyond that shown in
these examples.

Examples

Testing a Package

To run the unit tests for a package, use the Pkg.test function. For a package named MyPackage, the
command would be

julia> Pkg.test("MyPackage")

An expected output would be similar to

INFO: Computing test dependencies for MyPackage...
INFO: Installing BaseTestNext v0.2.2
INFO: Testing MyPackage
Test Summary: | Pass Total
 Data | 66 66
Test Summary: | Pass Total
 Monetary | 107 107
Test Summary: | Pass Total
 Basket | 47 47
Test Summary: | Pass Total
 Mixed | 13 13
Test Summary: | Pass Total
 Data Access | 35 35
INFO: MyPackage tests passed
INFO: Removing BaseTestNext v0.2.2

though obviously, one cannot expect it to match the above exactly, since different packages use
different frameworks.

This command runs the package's test/runtests.jl file in a clean environment.

One can test all installed packages at once with

https://riptutorial.com/ 163

http://docs.julialang.org/en/latest/stdlib/test/

julia> Pkg.test()

but this usually takes a very long time.

Writing a Simple Test

Unit tests are declared in the test/runtests.jl file in a package. Typically, this file begins

using MyModule
using Base.Test

The basic unit of testing is the @test macro. This macro is like an assertion of sorts. Any boolean
expression can be tested in the @test macro:

@test 1 + 1 == 2
@test iseven(10)
@test 9 < 10 || 10 < 9

We can try out the @test macro in the REPL:

julia> using Base.Test

julia> @test 1 + 1 == 2
Test Passed
 Expression: 1 + 1 == 2
 Evaluated: 2 == 2

julia> @test 1 + 1 == 3
Test Failed
 Expression: 1 + 1 == 3
 Evaluated: 2 == 3
ERROR: There was an error during testing
 in record(::Base.Test.FallbackTestSet, ::Base.Test.Fail) at ./test.jl:397
 in do_test(::Base.Test.Returned, ::Expr) at ./test.jl:281

The test macro can be used in just about anywhere, such as in loops or functions:

For positive integers, a number's square is at least as large as the number
for i in 1:10
 @test i^2 ≥ i
end

Test that no two of a, b, or c share a prime factor
function check_pairwise_coprime(a, b, c)
 @test gcd(a, b) == 1
 @test gcd(a, c) == 1
 @test gcd(b, c) == 1
end

check_pairwise_coprime(10, 23, 119)

Writing a Test Set

0.5.0

https://riptutorial.com/ 164

In version v0.5, test sets are built into the standard library Base.Test module, and you don't have to
do anything special (besides using Base.Test) to use them.

0.4.0

Test sets are not part of Julia v0.4's Base.Test library. Instead, you have to REQUIRE the BaseTestNext
module, and add using BaseTestNext to your file. To support both version 0.4 and 0.5, you could
use

if VERSION ≥ v"0.5.0-dev+7720"
 using Base.Test
else
 using BaseTestNext
 const Test = BaseTestNext
end

It is helpful to group related @tests together in a test set. In addition to clearer test organization,
test sets offer better output and more customizability.

To define a test set, simply wrap any number of @tests with a @testset block:

@testset "+" begin
 @test 1 + 1 == 2
 @test 2 + 2 == 4
end

@testset "*" begin
 @test 1 * 1 == 1
 @test 2 * 2 == 4
end

Running these test sets prints the following output:

Test Summary: | Pass Total
 + | 2 2

Test Summary: | Pass Total
 * | 2 2

Even if a test set contains a failing test, the entire test set will be run to completion, and the
failures will be recorded and reported:

@testset "-" begin
 @test 1 - 1 == 0
 @test 2 - 2 == 1
 @test 3 - () == 3
 @test 4 - 4 == 0
end

Running this test set results in

-: Test Failed
 Expression: 2 - 2 == 1

https://riptutorial.com/ 165

 Evaluated: 0 == 1
 in record(::Base.Test.DefaultTestSet, ::Base.Test.Fail) at ./test.jl:428
 ...
-: Error During Test
 Test threw an exception of type MethodError
 Expression: 3 - () == 3
 MethodError: no method matching -(::Int64, ::Tuple{})
 ...
Test Summary: | Pass Fail Error Total
 - | 2 1 1 4
ERROR: Some tests did not pass: 2 passed, 1 failed, 1 errored, 0 broken.
 ...

Test sets can be nested, allowing for arbitrarily deep organization

@testset "Int" begin
 @testset "+" begin
 @test 1 + 1 == 2
 @test 2 + 2 == 4
 end
 @testset "-" begin
 @test 1 - 1 == 0
 end
end

If the tests pass, then this will only show the results for the outermost test set:

Test Summary: | Pass Total
 Int | 3 3

But if the tests fail, then a drill-down into the exact test set and test causing the failure is reported.

The @testset macro can be used with a for loop to create many test sets at once:

@testset for i in 1:5
 @test 2i == i + i
 @test i^2 == i * i
 @test i ÷ i == 1
end

which reports

Test Summary: | Pass Total
 i = 1 | 3 3
Test Summary: | Pass Total
 i = 2 | 3 3
Test Summary: | Pass Total
 i = 3 | 3 3
Test Summary: | Pass Total
 i = 4 | 3 3
Test Summary: | Pass Total
 i = 5 | 3 3

A common structure is to have outer test sets test components or types. Within these outer test
sets, inner test sets test behaviour. For instance, suppose we created a type UniversalSet with a

https://riptutorial.com/ 166

http://www.riptutorial.com/julia-lang/topic/4355/for-loops
http://www.riptutorial.com/julia-lang/topic/4355/for-loops

singleton instance that contains everything. Before we even implement the type, we can use test-
driven development principles and implement the tests:

@testset "UniversalSet" begin
 U = UniversalSet.instance
 @testset "egal/equal" begin
 @test U === U
 @test U == U
 end

 @testset "in" begin
 @test 1 in U
 @test "Hello World" in U
 @test Int in U
 @test U in U
 end

 @testset "subset" begin
 @test Set() ⊆ U
 @test Set(["Hello World"]) ⊆ U
 @test Set(1:10) ⊆ U
 @test Set([:a, 2.0, "w", Set()]) ⊆ U
 @test U ⊆ U
 end
end

We can then start implementing our functionality until it passes our tests. The first step is to define
the type:

immutable UniversalSet <: Base.AbstractSet end

Only two of our tests pass right now. We can implement in:

immutable UniversalSet <: Base.AbstractSet end
Base.in(x, ::UniversalSet) = true

This also makes some of our subset tests to pass. However, the issubset (⊆) fallback doesn't work
for UniversalSet, because the fallback tries to iterate over elements, which we can't do. We can
simply define a specialization that makes issubset return true for any set:

immutable UniversalSet <: Base.AbstractSet end
Base.in(x, ::UniversalSet) = true
Base.issubset(x::Base.AbstractSet, ::UniversalSet) = true

And now, all our tests pass!

Testing Exceptions

Exceptions encountered while running a test will fail the test, and if the test is not in a test set,
terminate the test engine. Usually, this is a good thing, because in most situations exceptions are
not the desired result. But sometimes, one wants to test specifically that a certain exception is
raised. The @test_throws macro facilitates this.

https://riptutorial.com/ 167

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

julia> @test_throws BoundsError [1, 2, 3][4]
Test Passed
 Expression: ([1,2,3])[4]
 Thrown: BoundsError

If the wrong exception is thrown, @test_throws will still fail:

julia> @test_throws TypeError [1, 2, 3][4]
Test Failed
 Expression: ([1,2,3])[4]
 Expected: TypeError
 Thrown: BoundsError
ERROR: There was an error during testing
 in record(::Base.Test.FallbackTestSet, ::Base.Test.Fail) at ./test.jl:397
 in do_test_throws(::Base.Test.Threw, ::Expr, ::Type{T}) at ./test.jl:329

and if no exception is thrown, @test_throws will fail also:

julia> @test_throws BoundsError [1, 2, 3, 4][4]
Test Failed
 Expression: ([1,2,3,4])[4]
 Expected: BoundsError
 No exception thrown
ERROR: There was an error during testing
 in record(::Base.Test.FallbackTestSet, ::Base.Test.Fail) at ./test.jl:397
 in do_test_throws(::Base.Test.Returned, ::Expr, ::Type{T}) at ./test.jl:329

Testing Floating Point Approximate Equality

What's the deal with the following?

julia> @test 0.1 + 0.2 == 0.3
Test Failed
 Expression: 0.1 + 0.2 == 0.3
 Evaluated: 0.30000000000000004 == 0.3
ERROR: There was an error during testing
 in record(::Base.Test.FallbackTestSet, ::Base.Test.Fail) at ./test.jl:397
 in do_test(::Base.Test.Returned, ::Expr) at ./test.jl:281

The error is caused by the fact that none of 0.1, 0.2, and 0.3 are represented in the computer as
exactly those values — 1//10, 2//10, and 3//10. Instead, they are approximated by values that are
very close. But as seen in the test failure above, when adding two approximations together, the
result can be a slightly worse approximation than is possible. There is much more to this subject
that cannot be covered here.

But we aren't out of luck! To test that the combination of rounding to a floating point number and
floating point arithmetic is approximately correct, even if not exact, we can use the isapprox
function (which corresponds to operator ≈). So we can rewrite our test as

julia> @test 0.1 + 0.2 ≈ 0.3
Test Passed
 Expression: 0.1 + 0.2 ≈ 0.3
 Evaluated: 0.30000000000000004 isapprox 0.3

https://riptutorial.com/ 168

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Of course, if our code was entirely wrong, the test will still catch that:

julia> @test 0.1 + 0.2 ≈ 0.4
Test Failed
 Expression: 0.1 + 0.2 ≈ 0.4
 Evaluated: 0.30000000000000004 isapprox 0.4
ERROR: There was an error during testing
 in record(::Base.Test.FallbackTestSet, ::Base.Test.Fail) at ./test.jl:397
 in do_test(::Base.Test.Returned, ::Expr) at ./test.jl:281

The isapprox function uses heuristics based off the size of the numbers and the precision of the
floating point type to determine the amount of error to be tolerated. It's not appropriate for all
situations, but it works in most, and saves a lot of effort implementing one's own version of
isapprox.

Read Unit Testing online: https://riptutorial.com/julia-lang/topic/5632/unit-testing

https://riptutorial.com/ 169

https://riptutorial.com/julia-lang/topic/5632/unit-testing

Chapter 37: while Loops

Syntax

while cond; body; end•
break•
continue•

Remarks

The while loop does not have a value; although it can be used in expression position, its type is
Void and the value obtained will be nothing.

Examples

Collatz sequence

The while loop runs its body as long as the condition holds. For instance, the following code
computes and prints the Collatz sequence from a given number:

function collatz(n)
 while n ≠ 1
 println(n)
 n = iseven(n) ? n ÷ 2 : 3n + 1
 end
 println("1... and 4, 2, 1, 4, 2, 1 and so on")
end

Usage:

julia> collatz(10)
10
5
16
8
4
2
1... and 4, 2, 1, 4, 2, 1 and so on

It is possible to write any loop recursively, and for complex while loops, sometimes the recursive
variant is more clear. However, in Julia, loops have some distinct advantages over recursion:

Julia does not guarantee tail call elimination, so recursion uses additional memory and may
cause stack overflow errors.

•

And further, for the same reason, a loop can have decreased overhead and run faster.•

Run once before testing condition

https://riptutorial.com/ 170

https://en.wikipedia.org/wiki/Collatz_conjecture

Sometimes, one wants to run some initialization code once before testing a condition. In certain
other languages, this kind of loop has special do-while syntax. However, this syntax can be
replaced with a regular while loop and break statement, so Julia does not have specialized do-while
syntax. Instead, one writes:

local name

continue asking for input until satisfied
while true
 # read user input
 println("Type your name, without lowercase letters:")
 name = readline()

 # if there are no lowercase letters, we have our result!
 !any(islower, name) && break
end

Note that in some situations, such loops could be more clear with recursion:

function getname()
 println("Type your name, without lowercase letters:")
 name = readline()
 if any(islower, name)
 getname() # this name is unacceptable; try again
 else
 name # this name is good, return it
 end
end

Breadth-first search

0.5.0

(Although this example is written using syntax introduced in version v0.5, it can work with few
modifications on older versions also.)

This implementation of breadth-first search (BFS) on a graph represented with adjacency lists
uses while loops and the return statement. The task we will solve is as follows: we have a
sequence of people, and a sequence of friendships (friendships are mutual). We want to
determine the degree of the connection between two people. That is, if two people are friends, we
will return 1; if one is a friend of a friend of the other, we will return 2, and so on.

First, let’s assume we already have an adjacency list: a Dict mapping T to Array{T, 1}, where the
keys are people and the values are all the friends of that person. Here we can represent people
with whatever type T we choose; in this example, we will use Symbol. In the BFS algorithm, we
keep a queue of people to “visit”, and mark their distance from the origin node.

function degree(adjlist, source, dest)
 distances = Dict(source => 0)
 queue = [source]

 # until the queue is empty, get elements and inspect their neighbours

https://riptutorial.com/ 171

https://en.wikipedia.org/wiki/Breadth-first_search

 while !isempty(queue)
 # shift the first element off the queue
 current = shift!(queue)

 # base case: if this is the destination, just return the distance
 if current == dest
 return distances[dest]
 end

 # go through all the neighbours
 for neighbour in adjlist[current]
 # if their distance is not already known...
 if !haskey(distances, neighbour)
 # then set the distance
 distances[neighbour] = distances[current] + 1

 # and put into queue for later inspection
 push!(queue, neighbour)
 end
 end
 end

 # we could not find a valid path
 error("$source and $dest are not connected.")
end

Now, we will write a function to build an adjacency list given a sequence of people, and a
sequence of (person, person) tuples:

function makeadjlist(people, friendships)
 # dictionary comprehension (with generator expression)
 result = Dict(p => eltype(people)[] for p in people)

 # deconstructing for; friendship is mutual
 for (a, b) in friendships
 push!(result[a], b)
 push!(result[b], a)
 end

 result
end

We can now define the original function:

degree(people, friendships, source, dest) =
 degree(makeadjlist(people, friendships), source, dest)

Now let’s test our function on some data.

const people = [:jean, :javert, :cosette, :gavroche, :éponine, :marius]
const friendships = [
 (:jean, :cosette),
 (:jean, :marius),
 (:cosette, :éponine),
 (:cosette, :marius),
 (:gavroche, :éponine)
]

https://riptutorial.com/ 172

Jean is connected to himself in 0 steps:

julia> degree(people, friendships, :jean, :jean)
0

Jean and Cosette are friends, and so have degree 1:

julia> degree(people, friendships, :jean, :cosette)
1

Jean and Gavroche are connected indirectly through Cosette and then Marius, so their degree is 3
:

julia> degree(people, friendships, :jean, :gavroche)
3

Javert and Marius are not connected through any chain, so an error is raised:

julia> degree(people, friendships, :javert, :marius)
ERROR: javert and marius are not connected.
 in degree(::Dict{Symbol,Array{Symbol,1}}, ::Symbol, ::Symbol) at ./REPL[28]:27
 in degree(::Array{Symbol,1}, ::Array{Tuple{Symbol,Symbol},1}, ::Symbol, ::Symbol) at
./REPL[30]:1

Read while Loops online: https://riptutorial.com/julia-lang/topic/5565/while-loops

https://riptutorial.com/ 173

https://riptutorial.com/julia-lang/topic/5565/while-loops

Credits

S.
No

Chapters Contributors

1
Getting started with
Julia Language

Andrew Piliser, becko, Community, Dawny33, Fengyang Wang,
Kevin Montrose, prcastro

2 @goto and @label Fengyang Wang

3 Arithmetic Fengyang Wang

4 Arrays Fengyang Wang, Michael Ohlrogge, prcastro

5 Closures Fengyang Wang

6 Combinators Fengyang Wang

7 Comparisons Fengyang Wang

8 Comprehensions 2Cubed, Fengyang Wang, zwlayer

9 Conditionals Fengyang Wang, Michael Ohlrogge, prcastro

10
Cross-Version
Compatibility

Fengyang Wang

11 Dictionaries B Roy Dawson

12 Enums Fengyang Wang

13 Expressions Michael Ohlrogge

14 for Loops Fengyang Wang, Michael Ohlrogge

15 Functions
Fengyang Wang, Harrison Grodin, Michael Ohlrogge,
Sebastialonso

16
Higher-Order
Functions

Fengyang Wang, mnoronha

17 Input Fengyang Wang

18 Iterables Fengyang Wang, prcastro

19 JSON 4444, Fengyang Wang

20 Metaprogramming Fengyang Wang, Ismael Venegas Castelló, P i, prcastro

https://riptutorial.com/ 174

https://riptutorial.com/contributor/879997/andrew-piliser
https://riptutorial.com/contributor/855050/becko
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4993513/dawny33
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/1710232/prcastro
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3541976/michael-ohlrogge
https://riptutorial.com/contributor/1710232/prcastro
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/6119465/2cubed
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/5223033/zwlayer
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3541976/michael-ohlrogge
https://riptutorial.com/contributor/1710232/prcastro
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/6302341/b-roy-dawson
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3541976/michael-ohlrogge
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3541976/michael-ohlrogge
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/7504176/harrison-grodin
https://riptutorial.com/contributor/3541976/michael-ohlrogge
https://riptutorial.com/contributor/1296980/sebastialonso
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/1710232/prcastro
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/2374329/ismael-venegas-castello
https://riptutorial.com/contributor/435129/p-i
https://riptutorial.com/contributor/1710232/prcastro

21 Modules Fengyang Wang

22 Packages Fengyang Wang

23 Parallel Processing Fengyang Wang, Harrison Grodin, Michael Ohlrogge, prcastro

24
Reading a
DataFrame from a
file

Pranav Bhat

25 Regexes Fengyang Wang

26 REPL Fengyang Wang

27
Shell Scripting and
Piping

2Cubed, Fengyang Wang, mnoronha, prcastro

28 String Macros Fengyang Wang

29 String Normalization Fengyang Wang

30 Strings Fengyang Wang, Michael Ohlrogge

31 sub2ind Fengyang Wang, Gnimuc

32 Time Fengyang Wang

33 Tuples Fengyang Wang

34 Type Stability Abhijith, Fengyang Wang

35 Types Fengyang Wang, prcastro

36 Unit Testing Fengyang Wang

37 while Loops Fengyang Wang

https://riptutorial.com/ 175

https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/7504176/harrison-grodin
https://riptutorial.com/contributor/3541976/michael-ohlrogge
https://riptutorial.com/contributor/1710232/prcastro
https://riptutorial.com/contributor/6096891/pranav-bhat
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/6119465/2cubed
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1710232/prcastro
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3541976/michael-ohlrogge
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/4594532/gnimuc
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/837827/abhijith
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/1710232/prcastro
https://riptutorial.com/contributor/3575047/fengyang-wang
https://riptutorial.com/contributor/3575047/fengyang-wang

	About
	Chapter 1: Getting started with Julia Language
	Versions
	Examples
	Hello, World!

	Chapter 2: @goto and @label
	Syntax
	Remarks
	Examples
	Input validation
	Error cleanup

	Chapter 3: Arithmetic
	Syntax
	Examples
	Quadratic Formula
	Sieve of Eratosthenes
	Matrix Arithmetic

	Sums
	Products
	Powers

	Chapter 4: Arrays
	Syntax
	Parameters
	Examples
	Manual construction of a simple array
	Array types
	Arrays of Arrays - Properties and Construction
	Initialize an Empty Array
	Vectors
	Concatenation

	Horizontal Concatenation
	Vertical Concatenation

	Chapter 5: Closures
	Syntax
	Remarks
	Examples
	Function Composition
	Implementing Currying
	Introduction to Closures

	Chapter 6: Combinators
	Remarks
	Examples
	The Y or Z Combinator
	The SKI Combinator System

	A Direct Translation from Lambda Calculus
	Showing SKI Combinators

	Chapter 7: Comparisons
	Syntax
	Remarks
	Examples
	Chained Comparisons
	Ordinal Numbers
	Standard Operators
	Using ==, ===, and isequal

	When to use ==
	When to use ===
	When to use isequal

	Chapter 8: Comprehensions
	Examples
	Array comprehension

	Basic Syntax
	Conditional Array Comprehension
	Multidimensional array comprehensions
	Generator Comprehensions

	Function Arguments

	Chapter 9: Conditionals
	Syntax
	Remarks
	Examples
	if...else expression
	if...else statement
	if statement
	Ternary conditional operator
	Short-circuit operators: && and ||

	For branching
	In conditions
	if statement with multiple branches
	The ifelse function

	Chapter 10: Cross-Version Compatibility
	Syntax
	Remarks
	Examples
	Version numbers
	Using Compat.jl

	Unified String type
	Compact broadcasting syntax

	Chapter 11: Dictionaries
	Examples
	Using Dictionaries

	Chapter 12: Enums
	Syntax
	Remarks
	Examples
	Defining an enumerated type
	Using symbols as lightweight enums

	Chapter 13: Expressions
	Examples
	Intro to Expressions
	Creating Expressions
	Fields of Expression Objects
	Interpolation and Expressions
	External References on Expressions

	Chapter 14: for Loops
	Syntax
	Remarks
	Examples
	Fizz Buzz
	Find smallest prime factor
	Multidimensional iteration
	Reduction and parallel loops

	Chapter 15: Functions
	Syntax
	Remarks
	Examples
	Square a number
	Recursive functions

	Simple recursion
	Working with trees
	Introduction to Dispatch

	Optional Arguments
	Parametric Dispatch
	Writing Generic Code
	Imperative factorial
	Anonymous functions

	Arrow syntax
	Multiline syntax
	Do block syntax

	Chapter 16: Higher-Order Functions
	Syntax
	Remarks
	Examples
	Functions as arguments
	Map, filter, and reduce

	Chapter 17: Input
	Syntax
	Parameters
	Examples
	Reading a String from Standard Input
	Reading Numbers from Standard Input
	Reading Data from a File

	Reading strings or bytes
	Reading structured data

	Chapter 18: Iterables
	Syntax
	Parameters
	Examples
	New iterable type
	Combining Lazy Iterables

	Lazily slice an iterable
	Lazily shift an iterable circularly
	Making a multiplication table
	Lazily-Evaluated Lists

	Chapter 19: JSON
	Syntax
	Remarks
	Examples
	Installing JSON.jl
	Parsing JSON
	Serializing JSON

	Chapter 20: Metaprogramming
	Syntax
	Remarks
	Examples
	Reimplementing the @show macro
	Until loop
	QuoteNode, Meta.quot, and Expr(:quote)

	The difference between Meta.quot and QuoteNode, explained
	What about Expr(:quote)?
	Guide

	π's Metaprogramming bits & bobs
	Symbol
	Expr (AST)
	multiline Exprs using quote
	quote -ing a quote
	Are $ and :(…) somehow inverses of one another?
	Is $foo the same as eval(foo) ?

	macro s
	Let's make our own @show macro:
	expand to lower an Expr
	esc()
	Example: swap macro to illustrate esc()

	Example: until macro
	Interpolation and assert macro
	A fun hack for using { } for blocks

	ADVANCED
	Scott's macro:

	junk / unprocessed ...
	view/dump a macro
	How to understand eval(Symbol("@M"))?
	Why doesn't code_typed display params?
	???
	Module Gotcha
	Python `dict`/JSON like syntax for `Dict` literals.

	Introduction
	Macro definition
	Usage
	Misusage

	Chapter 21: Modules
	Syntax
	Examples
	Wrap Code in a Module
	Using Modules to Organize Packages

	Chapter 22: Packages
	Syntax
	Parameters
	Examples
	Install, use, and remove a registered package
	Check out a different branch or version
	Install an unregistered package

	Chapter 23: Parallel Processing
	Examples
	pmap
	@parallel
	@spawn and @spawnat
	When to use @parallel vs. pmap
	@async and @sync
	Adding Workers

	Chapter 24: Reading a DataFrame from a file
	Examples
	Reading a dataframe from delimiter separated data
	Handling different comment comment marks

	Chapter 25: Regexes
	Syntax
	Parameters
	Examples
	Regex literals
	Finding matches
	Capture groups

	Chapter 26: REPL
	Syntax
	Remarks
	Examples
	Launch the REPL

	On Unix Systems
	On Windows
	Using the REPL as a Calculator

	Dealing with Machine Precision
	Using REPL Modes

	The Help Mode
	The Shell Mode

	Chapter 27: Shell Scripting and Piping
	Syntax
	Examples
	Using Shell from inside the REPL
	Shelling out from Julia code

	Chapter 28: String Macros
	Syntax
	Remarks
	Examples
	Using string macros

	@b_str
	@big_str
	@doc_str
	@html_str
	@ip_str
	@r_str
	@s_str
	@text_str
	@v_str
	@MIME_str
	Symbols that are not legal identifiers
	Implementing interpolation in a string macro

	Manual parsing
	Julia parsing
	Command macros

	Chapter 29: String Normalization
	Syntax
	Parameters
	Examples
	Case-Insensitive String Comparison
	Diacritic-Insensitive String Comparison

	Chapter 30: Strings
	Syntax
	Parameters
	Examples
	Hello, World!
	Graphemes
	Convert numeric types to strings
	String interpolation (insert value defined by variable into string)
	Using sprint to Create Strings with IO Functions

	Chapter 31: sub2ind
	Syntax
	Parameters
	Remarks
	Examples
	Convert subscripts to linear indices
	Pits & Falls

	Chapter 32: Time
	Syntax
	Examples
	Current Time

	Chapter 33: Tuples
	Syntax
	Remarks
	Examples
	Introduction to Tuples
	Tuple types
	Dispatching on tuple types
	Multiple return values

	Chapter 34: Type Stability
	Introduction
	Examples
	Write type-stable code

	Chapter 35: Types
	Syntax
	Remarks
	Examples
	Dispatching on Types

	Is the list empty?
	How long is the list?
	Next steps
	Immutable Types

	Singleton types
	Wrapper types
	True composite types

	Chapter 36: Unit Testing
	Syntax
	Remarks
	Examples
	Testing a Package
	Writing a Simple Test
	Writing a Test Set
	Testing Exceptions
	Testing Floating Point Approximate Equality

	Chapter 37: while Loops
	Syntax
	Remarks
	Examples
	Collatz sequence
	Run once before testing condition
	Breadth-first search

	Credits

