

Introduction to Datascience
Learn Julia Programming, Math & Datascience from

Scratch.

Karthikeyan A K

Table of Contents
Preface. 1

Front Cover . 2

Back Cover . 3

1. What you need to know . 4

1.1. GNU/Linux . 4

1.2. Math . 4

2. What you need to have? . 5

Datascience . 6

3. What is Datascience?. 7

4. Stages in Data Science. 8

4.1. Gathering Data . 8

4.2. Data Wrangling. 8

4.3. Statistics . 8

4.4. Visualization . 8

4.5. Machine Learning (ML) . 8

4.6. Automation . 9

4.7. Scaling . 9

5. Predictive And Descriptive Analysis . 10

5.1. Descriptive & Predictive Analysis - London Cholera . 10

5.2. Descriptive Analysis - Napoleon’s Russian Defeat . 15

5.3. Prediction After Description . 17

5.4. The Power Of Visualization . 17

6. Machine Learning, Artificial Intelligence and Data Science . 18

6.1. Machine Learning . 18

6.2. Artificial Intelligence. 18

6.3. Data Science . 20

Julia . 21

7. Installing Julia. 22

8. Julia REPL . 24

8.1. Volume of Sphere . 25

8.2. Clearing REPL . 26

8.3. Exiting a statement . 27

8.4. History . 27

8.5. Exiting REPL . 27

9. Accessing Help . 28

10. Package Management. 29

10.1. Installing packages . 29

10.2. Removing packages . 31

10.3. Reference . 32

11. Installing Jupyter notebook and Jupyter lab. 33

11.1. Install IJilia . 33

11.2. Start Jupyter Notebook . 35

11.3. Start Jupyter Lab . 36

11.4. Reference . 37

12. Starting with Julia (using Jupyter) lab . 38

13. Julia program in a file. 42

14. Basic Arithmetic. 43

15. Strings. 51

16. Boolean Operations. 57

17. Comparisons . 61

18. Conditions and Branching. 66

19. Ternary Operator. 69

20. Short Circuit Evaluation. 71

20.1. How not to use Shortcut Evaluations . 72

21. While Loops . 75

21.1. Finding primes . 76

22. Ranges and for loops. 79

23. Breaks and Continues. 81

24. Arrays . 84

25. Tuples . 95

26. Comprehension . 102

26.1. Generator Comprehension . 105

26.2. Permutation . 105

26.3. Flattened Comprehension . 106

27. Sets . 108

27.1. Unions. 109

27.2. Intersection . 110

27.3. Difference . 110

27.4. Other Operations . 110

27.5. You can’t sort a Set. 111

27.6. Converting Set to Array . 112

27.7. Coverting Set to Tuple. 114

27.8. Pop out a element from a Set . 114

28. Dictionaries. 116

29. Comments . 120

30. Functions . 122

30.1. Passing Arguments . 123

30.2. Default Argument . 124

30.3. Default Argument . 125

30.4. More default arguments . 126

30.5. Returning Values . 128

30.6. Named Arguments. 129

30.7. Single line functions . 133

30.8. Functions acting on a vector . 134

30.9. Using functions with map . 135

30.10. Anonymous function . 136

30.11. Variable Arguments . 136

30.12. Piping / Chaining functions . 138

30.13. Passing function as argument . 139

30.14. Multiple Dispatch . 140

31. Regular Expressions (regexp). 143

31.1. A taste of Regexp . 143

31.2. Things to remember . 146

31.3. The dot . 147

31.4. Character classes . 148

31.5. Anchors . 151

31.6. Captures . 152

31.7. Counts. 154

31.8. String to regexp . 157

31.9. Case sensitive & insensitive match . 157

31.10. Scanning . 159

31.11. Learn more about regex . 161

32. Struct . 162

32.1. Mutable Struct . 165

32.2. Value Types . 166

32.3. Complex Data Types . 167

33. Vectors & Matrix . 170

34. Files. 171

34.1. Plain Text . 171

34.2. CSV. 171

34.3. JSON . 171

34.4. Text Vs Binary. 171

35. Scrapping. 172

36. Plots . 173

36.1. Installing Julia Plots . 173

36.2. Basic plot Function - Plotting Sin and Cos . 175

36.3. Scatter and Histogram . 178

36.4. Learn more about Plots . 183

37. Dataframes . 184

38. Debugging . 185

Mathematics . 186

39. Vectors . 187

39.1. Addition . 187

39.2. reduce function . 188

39.3. Midpoint. 189

39.4. Distance . 190

39.5. Magnitude . 191

39.6. Unit Vector. 192

39.7. The Vector Library. 192

40. Matrices . 193

41. Sigmoid . 204

42. Bayesian. 210

43. Statistics . 211

43.1. Total . 211

43.2. Minimum . 212

43.3. Maximum . 212

43.4. Range . 213

43.5. Mean . 213

43.6. Median . 214

43.7. Mean Vs Median. 215

43.8. Mode . 216

43.9. Percentile . 217

43.10. Interquartile Range (IQR) . 218

43.11. Variance . 218

43.12. Standard Deviation . 221

43.13. Covariance. 223

43.14. Correlation . 224

43.15. Reference. 225

44. Probability. 226

44.1. Independent and Dependent Events. 226

44.2. Monte Carlo Simulation . 227

44.3. Bayes Theorem . 227

44.4. Normal Distribution Curve . 227

Machine Learning . 228

45. Genetic Algorithms . 229

45.1. Guessing a Number with Genetic Algorithm . 229

46. Fine grained plot . 250

46.1. Curve fitting with genetic algorithm. 252

47. K Nearest Neighbors . 263

48. Decision Tree . 264

48.1. Understanding the Titanic data set . 264

48.2. Entropy. 264

48.3. Applying Entropy on Titanic Dataset . 268

48.4. Building a Decision Tree . 287

49. Gradient Descent . 288

49.1. Guessing Number With Gradient Descent. 289

49.2. Linear Regression With Gradient Descent. 291

49.3. Generalizing Linear Regression With Gradient Descent . 298

50. Hot and Cold Learning . 300

51. K Means Clustering . 301

51.1. Intuition . 301

51.2. Writing it in Julia . 303

52. Naive Bayes For Text Classification. 310

Neural Networks . 318

53. Back propagation. 319

Bibliography . 320

Preface
I was emboldened to write this book after my video series called Data Science With Julia[1] got some
traction. That too after a tweet about Decision Tree[2] was liked by Julia Language itself. So I thought
why not give it more?

This book should be seen as my attempt to explain Data Science to my self and nothing more. Will
this book rise to professional stature is yet to be seen.

[1] https://www.youtube.com/playlist?list=PLe1T0uBrDrfOLQlomF_4AxHa4LX0wsCXa

[2] https://twitter.com/karthik_ak/status/1429767974064324608

1

https://www.youtube.com/playlist?list=PLe1T0uBrDrfOLQlomF_4AxHa4LX0wsCXa
https://twitter.com/karthik_ak/status/1429767974064324608

Front Cover

The front cover showcases a scene from Indian mythology where the forces of Good (Devar’s) and
that of Evil (Asuran’s) churn the cosmic ocean revealing things like poison and elixir. In a similar
way a Data Scientist can churn the vast amount of data that he has at his disposal for good purpose
like finding out a new drug that might work, or for evil purpose like tracking and invading privacy
of some one.

2

Back Cover

We thank Richard M. Stallman (https://stallman.org) and Free Software Foundation (https://fsf.org)
for making this book possible.

3

https://stallman.org
https://fsf.org

Chapter 1. What you need to know

1.1. GNU/Linux
You need to know GNU/Linux if you have not used it, one of the best places to learn it is
https://linuxjourney.com.

1.2. Math
Data Science is the a place where data processing meets computer science. Computers are good and
are very fast at math, and data science is math. To know math, one can look into the courses offered
by Khan Academy[3]. One can go through these courses

• Precalculus

• Calculus

• Matrix

• Probability and Statistics

One also read this book Mathematics for Machine Learning [mml].

[3] https://khanacademy.org

4

https://linuxjourney.com
https://khanacademy.org

Chapter 2. What you need to have?
A good decent powered computer might be needed to run programs in this book. I would say its
preferable to have a GNU/Linux[4] machines so that you can explore the field of data science.

[4] https://www.getgnulinux.org/

5

https://www.getgnulinux.org/

Datascience

6

Chapter 3. What is Datascience?
There is lot of Data, in fact we have coined the term data explosion, and more times than we realize
these data indicate something valuable. With data people have become great stock traders[5], they
have made machines win competitions that were thought only humans could win it[6].

It turns out that if we can use math on lot’s of data with clever computer science, we could do
things that were once thought impossible, and there is lot’s of data out there.

Data Science is a field where we use computer science to make sense of huge amounts data around
us. We try to make it humanly understandable, we try to predict things even though we may not
understand why somethings happen. That’s data science.

This might be the cusp of super intelligence, surely this is a new age of data. So welcome to this
wonderful universe!

[5] https://www.amazon.com/Man-Who-Solved-Market-Revolution/dp/073521798X

[6] https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-
what-it-wants-to-do-next/

7

https://www.amazon.com/Man-Who-Solved-Market-Revolution/dp/073521798X
https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/

Chapter 4. Stages in Data Science
In professional environments Data Science may not be simple. It requires lot of stages, when I say
stages, don’t imagine it as a waterfall model where each of them is a compartment, imagine them as
a fuzzy thing where one overlaps another. Enough of work in one may lead to another. This section
describes those stages.

4.1. Gathering Data
One of the first stage is gathering data. In some projects there could be data and in some one might
not have data. You must devise a way to gather data. In some cases the client will present you with
data but it will not be the right one.

Even if you gather the right data, it might be in a very messy state, not suitable for any purpose.

4.2. Data Wrangling
Data wrangling is a phase where you try to modify the data so that it suits your purpose. May be
you need to collect tweets and label it as positive or negative sentiment. May be you use data from a
spreadsheet where lot’s of things are missing, what to do about it?

You need to understand the task at hand and communicate with people and come up with plan to
make the data more suitable for applying math on it.

4.3. Statistics
Statistics will be applied on data during this phase. You might count number of words that occur in
a particular text to understand something about it. You might summarize some numerical values
into mean, median, mode, inter quartile range (IQR) etc, and try to understand make sense about it
and so on. Usually statistics if performed on wrangled and cleaned up data.

4.4. Visualization
In real world Data Science most of the problem’s are solved just by visualization. Humans are
visual creatures and they can get it easily when something is presented in visual format. I would
even argue visualization is the most important thing in Data Science.

4.5. Machine Learning (ML)
When you do Statistics and Visualization, most problem yield and become understandable. If not
we must go in for machine learning, where machines and algorithms are set to task to learn about
data to predict something about it, or to categorize the data and so on.

4.5.1. Feature Engineering

One of the main things in machine learning is feature engineering. Think of the ship Titanic, when

8

it drowned some survived and others died. Do you think the survival rate of a person depended on
his name? The color of dress he wore? Or do you think it depended on his age, sex, what class he
travelled? These are the things you need to think in feature engineering.

Ideally if the right feature are picked and given to a machine learning system, it would train fast
and give right result.

4.5.2. Machine Learning

Machine learning is the phase where you give (highly modified) data to a learning system hoping
that it will learn about it and produce a good result. You may be need to try out many ML
algorithms before settling on the optimal one.

4.5.3. Neural Networks

When the data available to you is really large, and if you are unable to pick up the features, then
one can go into Neural Networks. Neural networks are loosely modeled after neurons[7] in our
brain, and can train themselves without much human intervention.

4.6. Automation
When you have arrived at an agreeable solution following the techniques presented in the sections
above, you need to automate the process like building a good programming library and hosting it
on computers to automate the task. An automated task could do the things that are shown below:

This stage by stage approach of transforming data is called pipelining.

4.7. Scaling
Usually in projects that needs pipelining, and that deal with lot of data volume, it also needs scaling.
That is what would you do if there is flood of data into your sleepy servers? If you have got lot of
servers running your algorithms to process your data, what will happen to those servers when the
data dries up? You don’t want to be paying high bills for unused servers. These are all the things
you will worry in the scaling phase.

But this book is not about scaling. But it could cover in the future.

[7] https://en.wikipedia.org/wiki/Neuron

9

https://en.wikipedia.org/wiki/Neuron

Chapter 5. Predictive And Descriptive
Analysis
There are two ways to analyze data. The first one is very highly romanticized prediction. That is
given a set of inputs you are able to predict what the outcome of the inputs would be by making
machines learn from the sampled data. This field is called Machine Learning, artificial Intelligence
and so on.

The other more essential field is called descriptive analysis. That is some event has happened, then
you pour over the data in and out why things have happened that way and what can you learn
from it.

In practical sense descriptive analysis is highly important for businesses as they would like to know
why things happened in such a way in times of good and bad. A complete understanding of any
subject is desired if one wants to be alpha in it and be able to better adjust to changing events and
come out at the top.

5.1. Descriptive & Predictive Analysis - London
Cholera

one may find the wikipedia article here https://en.wikipedia.org/wiki/
1854_Broad_Street_cholera_outbreak

London once had a cholera outbreak and none seemed to know how it happened, at that time in
mid 1850’s, none seemed to know how cholera occurred, some even thought that one contracted
cholera if they breathe in foul air and it could be avoided if we could breathe in scents.

10

https://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak
https://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak

Figure 1. John Snow

A person named John snow did scientific analysis of the outbreak, he plotted the number of deaths
of cholera onto map of London as shown below:

11

Figure 2. Map Of Cholera Outbreak

Below you can see a zoomed version of the map:

12

Figure 3. Zoom In On Broad Street Pump

One should be able to notice that the deaths are concentrated around Broad street pump, so John
Snow concluded that the water in that pump should be contaminated.

13

Figure 4. Broad Street Pump

He also did his research and found out that cholera deaths that had happened quite far away from
the pump were due to people drinking water from Broad street pump, as this water was brought up
to them as they thought this pump water was tasty.

With the available data, and with field research, John Snow was able to show to the world that
cholera is a water borne disease. With this analysis, future cholera’s could be attributed / predicted
to contaminated water sources, and following Snows method one could even predict where the
contaminated water could be.

Here I would would like to emphasize the mapping technique, the power of human vision, which
when looking at a map was able to narrow the highest amount of outbreak and was able to locate
the source of cholera.

14

5.2. Descriptive Analysis - Napoleon’s Russian Defeat

Figure 5. French Invasion Of Russia

Napoleon Bonaparte invaded Russia. Russians did not really fight with him, but avoided him till the
winter set in. The french troops were ill prepared for the Russian cold and they died in bitter and
biting cold.

The French naturally wanted to study about this excellent Russian strategy and commissioned a
study, and we got the following map:

15

Figure 6. Troop Size Map

The map is not up to scale, but brilliantly shows the french defeat. If you take a look at it, the brown
band shows the french march in to Russia, the black shows the French retreat. The width of the
band shows the troop strength, so the person who is studying the visualization would know where
the troop numbers reduced.

As you can see, even before the troops reached the capital Moscow, their numbers were really
reduced, and the march back was disastrous. the march back is also related to a temperature chart
which shows significant troop reduction along with corresponding temperatures.

Figure 7. Effect Of Low Temperature On Troops

16

It was finally concluded that it was not the fight with the Russians, but the low temperatures and
harsh Russian winter killed most of the troops.

5.3. Prediction After Description
Certainly every time I know of, in data science assignments, it is of vital importance that a person
doing the job understand the data as thoroughly as possible. So inevitably one has to do descriptive
analysis even before one can predict some thing.

In the case of London cholera, it’s by collecting data, mapping it, one way able to determine that it
for from a well the cholera spread. The data scientist even had to find out why cholera deaths
occurred even far away from the contaminated well in a case to generalize his theory. Today due to
such descriptive analysis and data gathering, we know how to deal with cholera outbreak exactly
and we today know it spreads by water.

Similarly, if any nation would like to invade Russia, it’s better to back off if winter set’s in, you
simply can’t beat them in winter, and their nationalism is far too higher for any army of today to
defeat them.

So in order to predict cholera spreads by water, and it’s better to keep ones hands off Russia, we
need to analyze the data, do descriptive analysis so that we understand why things have evolved in
such ways.

5.4. The Power Of Visualization
It’s said that two third of our human brains processing power is dedicated to vision. I find it’s true
that in data science that if we could plot data, show it in visual form, them it becomes very much
intuitive than looking at table of numeric values.

In the above data analysis, if you see both Joh Snow and the French have relied upon producing
great visualizations to do descriptive analysis of the data presented to them, and visualization they
made the understanding of data more intuitive.

So always try to visualize data, try to create visual dashboards, this might help you to understand
data science problems better and would accelerate you to solve it.

17

Chapter 6. Machine Learning, Artificial
Intelligence and Data Science
Many people are confused about what’s the difference between Machine Learning, Artificial
Intelligence and Data Science. Even some who claim themselves to be professionals seems not to
know how they are different, this section was created to help clarify it.

6.1. Machine Learning
In machine learning, you would take a bunch of inputs and outputs, give it to an algorithm that
would spit out a function or equation or computer code that can transform inputs to outputs.

This does not mean it just one to one mapping, that is the algorithm is not just a table that
contains the mapping from the input to output, instead it should be able to predict the values of
unknown inputs as well and give a satisfactory output that varies very little compared to the real
world.

6.2. Artificial Intelligence
In Artificial Intelligence you have an agent. Say you bought a robot for your house, this robot runs
an algorithm that detects newspaper on your porch and brings it to you, that algorithm would have
been created by machine learning process.

The robot is an agent running your machine learning algorithm, An Artificial Intelligence involves
an agent that observes the real world, and acts accordingly.

18

Figure 8. Water Heater

One might ask that is automatic water heater is artificially intelligent, the answer is yes. You might
say that the water heater operates with a bimetallic strip which isn’t machine learning, my
argument is so what, its able to sense the temperature, sense the set temperature, if the
temperature is equal to the set temperature then it cuts off the power. It is intelligent indeed!

You don’t need machine learning all the time to make something intelligent.

19

6.2.1. GOFAI

GOFAI stands for good old fashioned artificial intelligence where a programmer meticulously codes
the rules. This might be okay for a tic-tac-toe game that plays against a human, but say an agent
want’s sort oranges depending on their size, texture, color and other attributes, coding that by
observing the feed from a camera is going to be near impossible. Fo that GOFAI is not suitable.

So we need automated learning solutions that learns from inputs and outputs as the data becomes
complex.

6.3. Data Science
Data Science is the process by which one understands data, possibly what causes the data to vary.
For example, the weather man these day could tell in advance that it’s going to rain, or it’s going to
be sunny, thats because they have poured over historical wether data patterns and had observed
what causes what.

It’s not necessary that a person observing things understands exactly what causes some event. For
example people have long known that lunar positions caused high and low tides, but they never
knew about gravity for very long time.

People in Nile have observed that certain stars appearing in certain part of the sky causes flooding
of rivers, but they did not know exactly why. We humans have used our observed (data) for long
before the term data science was coined. We are natural data scientists indeed. In fact even a little
kid could tell whether if its mother or father would spend more on automobiles. Relating events to
happenings is part of human way of life.

20

Julia

21

Chapter 7. Installing Julia
In this blog we will see how to install Julia. Visit https://julialang.org, you must see a banner like this
which offers download. Click on the Download button.

You will be a taken to this page https://julialang.org/downloads/, if you scroll down you will see
something like this:

I clicked on the 64-bit thing for Generic Linux x86. Once you do that a file named julia-1.6.2-
linux-x86_64.tar.gz will be downloaded. Extract it to your home directory and open ~/.bashrc and
add it this at the last:

Add Julia to PATH
export PATH="$PATH:$HOME/julia-1.5.2/bin"

this tells your computer to look into ~/julia-1.6.2/bin when you call julia. Just for once type this in
terminal:

$ source ~/.bashrc

To know more about .basrc you can visit here https://www.journaldev.com/41479/bashrc-file-in-
linux.

In your terminal when you type julia, you should be getting this:

22

https://julialang.org
https://julialang.org/downloads/
https://www.journaldev.com/41479/bashrc-file-in-linux
https://www.journaldev.com/41479/bashrc-file-in-linux

$ julia
 _
 _ _ _(_)_ | Documentation: https://docs.julialang.org
 (_) | (_) (_) |
 _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 1.5.2 (2020-09-23)
 _/ |__'_|_|_|__'_| | Official https://julialang.org/ release
|__/ |

julia>

Press Ctrl+D to exit.

If all had gone well, you had installed Julia, ran its REPL, and came out of it successfully. In case you
are wondering what REPL is, wait for the next blog.

23

Chapter 8. Julia REPL
REPL stands for Read Eval(uate) Print Loop. Its a way a programming ecosystem gives you a easy
way to execute small programs in shell environments. Let’s get started with it. In your terminal
type this:

$ julia

You should be seeing something like this.

Juila prints a nice ASCII art of Julia logo and it prints version info and when was it released etc. The
julia> is julia prompt where you can type some small Julia code, Julia will read it, evaluate it and
print the result.

So lets see what 1 and 2 added is, type 1 + 2 and hit ENTER:

julia> 1 + 2
3

So it’s 3 yaaay! Our first small Julia program!!

You can type multiple Julia statements per line, it needs to be separated by semicolon ; as shown:

24

julia> x = 3; y = 4
4

In the above statement we have a thing like x = 3, this means we put a value of 3 in a box named x
and in y = 4, we put 4 in a box named y. Now what happens when we have three x boxes and four y
boxes? Try this out:

julia> 3x + 4y
25

Julia says its 25!

Now let’s try to multiply x and y:

julia> xy
ERROR: UndefVarError: xy not defined

It fails. We will see why it fails when we see about variables. Okay, mathematically we use dot . to
denote multiplication

ion, so let’s try out x.y:

julia> x.y
ERROR: type Int64 has no field y
Stacktrace:
 [1] getproperty(::Int64, ::Symbol) at ./Base.jl:33
 [2] top-level scope at REPL[5]:1

it fails too, we will soon see why in coming blogs (i.e you will learn about it). The right way to
multiply in Julia is to use the star * operator as shown:

julia> x * y
12

8.1. Volume of Sphere
Let’s see something complex. Let’s now calculate volume of a sphere. We know its , lets see how
to do it in Julia.

First let’s have a variables name radius to hold value of radius, so let’s say the radius is 7 units, so
we use this statement to assign 7 to radius:

25

julia> radius = 7
7

Next we calculate the volume as follows:

julia> (4/3)π * radius^3
1436.7550402417319

If you are wondering how I got π into Julia REPL, just type \pi and press kbd:[TAB]. Here radius^3
means radius is raised to the power of 3.

Julia provides a function named typeof, with which we can investigate the type of π as follows:

julia> typeof(π)
Irrational{:π}

so Julia says π is irrational which is right.

Rational numbers in Julia can be defined like x//y, so typeof(22//7)` returns rational as shown:

julia> typeof(22//7)
Rational{Int64}

8.2. Clearing REPL
When you feel there are lot of things in your Julia REPL and want to have a fresh screen, just type
Ctrl + l and it will blank out as shown:

26

You can still access old variables and functions defined, its just the display that’s blanked out.

8.3. Exiting a statement
When you have typed something wrong and want to terminate the statement, just type kbd:[Ctrl +
c].

julia> 1 + 41^C

julia>

Julia will clear out that statement and present a fresh prompt.

8.4. History
Use the up arrow and down arrow to go through the history of all the statements you have typed.

8.5. Exiting REPL
To exit Julia REPL press kbd:[Ctrl + d].

27

Chapter 9. Accessing Help

 Video lecture for this section could be found here https://youtu.be/BC11KlSQm6E

If you have been using GNU/Linux or Python (even on on evil platforms like Mac and Windows),
you will have a way of accessing help documentation in REPL, so does Julia too. To access help, just
type ? in Julia prompt, you will be presented with something like this:

help?>

You can come out of help by pressing kbd:[Backspace]. Okay lets see what typeof (if you have read
previous blog you may have used typeof) does. Just type typeof in help prompt and hit Enter.

help?> typeof
search: typeof typejoin TypeError

 typeof(x)

 Get the concrete type of x.

 Examples
 ≡≡≡≡≡≡≡≡≡≡

 julia> a = 1//2;

 julia> typeof(a)
 Rational{Int64}

 julia> M = [1 2; 3.5 4];

 julia> typeof(M)
 Array{Float64,2}

Isn’t it useful?

28

https://youtu.be/BC11KlSQm6E

Chapter 10. Package Management

 Video for this part of the book https://youtu.be/6_pcQB9n9jI

et’s see how to add packages in Julia using it’s REPL. For that just like you went into help mode by
pressing ? at julia> prompt, you must for package management press]. To come out of this
package pkg> thing press Backspace.

In case I am going too fast, let’s discuss what packages are. Today is the age of internet, and hence a
code written by one can be used by millions, all it needs is a internet connection. So almost all
modern languages have a way of managing reusable shared code. In Julia, this reusable shared
code is called a Package.

Since Julia’s ecosystem is open source (I wish people understood the merits of [Free
Software](https://fsf.org) and ignored the misleading Open Source, any way), many people look at
popular packages in Julia and analyze them, they are well maintained and tested and can used with
fair amount of trust. So let’s see how to install a package.

10.1. Installing packages
So to make our learning useful, let’s install a package that highlights out Julia code typed in the Julia
prompt. So press] and type add OhMyREPL and press ENTER, this will spit some output as shown:

29

https://youtu.be/6_pcQB9n9jI
https://fsf.org

(@v1.5) pkg> add OhMyREPL
 Installing known registries into `~/.julia`
100.0%
 Added registry `General` to `~/.julia/registries/General`
 Resolving package versions...
 Installed Pipe ───── v1.3.0
 Installed Tokenize ─ v0.5.8
 Installed OhMyREPL ─ v0.5.9
 Installed Crayons ── v4.0.4
 Installed fzf_jll ── v0.21.1+0
 Installed JLFzf ──── v0.1.2
Downloading artifact: fzf
Updating `~/.julia/environments/v1.5/Project.toml`
 [5fb14364] + OhMyREPL v0.5.9
Updating `~/.julia/environments/v1.5/Manifest.toml`
 [a8cc5b0e] + Crayons v4.0.4
 [1019f520] + JLFzf v0.1.2
 [5fb14364] + OhMyREPL v0.5.9
 [b98c9c47] + Pipe v1.3.0
 [0796e94c] + Tokenize v0.5.8
 [214eeab7] + fzf_jll v0.21.1+0
 [2a0f44e3] + Base64
 [ade2ca70] + Dates
 [b77e0a4c] + InteractiveUtils
 [76f85450] + LibGit2
 [8f399da3] + Libdl
 [56ddb016] + Logging
 [d6f4376e] + Markdown
 [44cfe95a] + Pkg
 [de0858da] + Printf
 [3fa0cd96] + REPL
 [9a3f8284] + Random
 [ea8e919c] + SHA
 [9e88b42a] + Serialization
 [6462fe0b] + Sockets
 [cf7118a7] + UUIDs
 [4ec0a83e] + Unicode

Hope all went well, now press Backspace to come back to Julia prompt

julia>

Now press Ctrl + d to come out of Julia.

Open a editor, open the file ~/.julia/config/startup.jl, if it’s not present create it, and add this
code in it:

30

atreplinit() do repl
 try
 @eval using OhMyREPL
 catch e
 @warn "error while importing OhMyREPL" e
 end
end

The above code tells to include the package OhMyREPL during startup of julia> prompt. Save the file.
Now in terminal type:

$ julia

to start Julia REPL, and since this is the first time you are using OhMyREPL, julia will compile it and
you will see something as shown below:

So when you try out expressions as shown above, it’s color highlighted! Enjoy!!!

10.2. Removing packages
To remove a package, you need to do this

31

pkg> rm PackageName

10.3. Reference
• Julia Packages https://docs.julialang.org/en/v1/stdlib/Pkg/

• OhMyREPL https://juliapackages.com/p/ohmyrepl

32

https://docs.julialang.org/en/v1/stdlib/Pkg/
https://juliapackages.com/p/ohmyrepl

Chapter 11. Installing Jupyter notebook and
Jupyter lab

 Video lecture for this section could be found here https://youtu.be/sJUrKTCYM64

Data Science is a highly interactive activity. You get the data, do something with it, see what has
happened, then go a step back or step forward depending on the result and so on. Usually data
scientist don’t use REPL and a text editor to code, they use something interactive called Jypyter[8]

notebooks which you will learn about in the coming, chapters. Over here we will see how to install
it.

11.1. Install IJilia
To install IJulia, the package that let’s Julia connect with Jupyter. First launch Julia REPL by
executing this:

$ julia

Once again you will greeted by Julia’s ASCII art screen

 _ _ _(_)_ | Documentation: https://docs.julialang.org
 (_) | (_) (_) |
 _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 1.5.2 (2020-09-23)
 _/ |__'_|_|_|__'_| | Official https://julialang.org/ release
|__/ |

Goto packages by pressing] and type add IJulia at the pkg> prompt. You must see something like
this

33

https://youtu.be/sJUrKTCYM64

This was the thing that pkg> spit out for me

34

(@v1.5) pkg> add IJulia
 Updating registry at `~/.julia/registries/General`
100.0%
 Resolving package versions...
 Installed Artifacts ─────── v1.3.0
 Installed MbedTLS_jll ───── v2.16.8+1
 Installed VersionParsing ── v1.2.0
 Installed ZeroMQ_jll ────── v4.3.2+5
 Installed ZMQ ───────────── v1.2.1
 Installed MbedTLS ───────── v1.0.3
 Installed Parsers ───────── v1.0.11
 Installed IJulia ────────── v1.22.0
 Installed SoftGlobalScope ─ v1.1.0
 Installed Conda ─────────── v1.4.1
 Installed JSON ──────────── v0.21.1
 Installed JLLWrappers ───── v1.1.3
Downloading artifact: ZeroMQ
Downloading artifact: MbedTLS
Updating `~/.julia/environments/v1.5/Project.toml`
 [7073ff75] + IJulia v1.22.0
Updating `~/.julia/environments/v1.5/Manifest.toml`
 [56f22d72] + Artifacts v1.3.0
 [8f4d0f93] + Conda v1.4.1
 [7073ff75] + IJulia v1.22.0
 [692b3bcd] + JLLWrappers v1.1.3
 [682c06a0] + JSON v0.21.1
 [739be429] + MbedTLS v1.0.3
 [c8ffd9c3] + MbedTLS_jll v2.16.8+1
 [69de0a69] + Parsers v1.0.11
 [b85f4697] + SoftGlobalScope v1.1.0
 [81def892] + VersionParsing v1.2.0
 [c2297ded] + ZMQ v1.2.1
 [8f1865be] + ZeroMQ_jll v4.3.2+5
 [8ba89e20] + Distributed
 [7b1f6079] + FileWatching
 [a63ad114] + Mmap
 [8dfed614] + Test
 Building Conda ─→ `~/.julia/packages/Conda/3rPhK/deps/build.log`
 Building IJulia → `~/.julia/packages/IJulia/a1SNk/deps/build.log`

(@v1.5) pkg>

Exit pkg> by pressing backspace.

11.2. Start Jupyter Notebook
Now at your julia> prompt type using IJulia as shown below:

35

julia> using IJulia
[Info: Precompiling IJulia [7073ff75-c697-5162-941a-fcdaad2a7d2a]

If this is your first time initiating IJulia, then it will precompile it as shown above, now type
notebook() as shown below:

julia> notebook()
[Info: running `/home/karthikeyan/anaconda3/bin/jupyter notebook`
^CProcess(setenv(`/home/karthikeyan/anaconda3/bin/jupyter notebook`; dir
="/home/karthikeyan"), ProcessExited(0))

This should open the notebook in the browser, and you must see something like this.

To quit notebook type Ctrl + c in the terminal.

11.3. Start Jupyter Lab
To start Jupyter Lab, type the following commands at the julia> prompt:

julia> using IJulia
julia> jupyterlab()

Your browser will launch and you will see a prompt that asks you to select the language that
Juptyter lab shold operate on, I selected Julia 1.5

36

You will see a screen like this for Jupyter lab

To stop Jupyter lab type Ctrl + c at the terminal. In the next few blogs we will see the basics of
notebook and lab.

11.4. Reference
• https://jupyter.org/install

• https://github.com/JuliaLang/IJulia.jl

[8] https://jupyter.org/

37

https://jupyter.org/install
https://github.com/JuliaLang/IJulia.jl
https://jupyter.org/

Chapter 12. Starting with Julia (using
Jupyter) lab
NOTE

Get video lecture for this section here https://youtu.be/aaMsJawnJuQ

Okay, let’s start with Juyter lab. I am using Jupyter notebooks no more because I feel lab is cool. To
start it you can either do it by the Julia way by calling IJulia as I mentioned [Installing Jupyter
notebook and Jupyter lab]({% post_url 2020-10-31-installing-jupyter-notebook-and-jupyter-lab %}),
or I like the Conda way, to do it, in your terminal type this:

$ jupyter lab

When started in IJulia way, the lab asks me what kernel I must use as shown below:

when started the Conda way, it sows something like this:

38

https://youtu.be/aaMsJawnJuQ

In the above launcher, I select Julia 1.5.2 in the Notebook section:

When you select a kernel, at the left pane you should be seeing a file called untitled.ipynb, right
click on it and change it’s name to starting_with_julia_lab.ipynb. Now this lab is like REPL on
steroids, it has got thing called cells as shown:

Now type

1 + 2

in the cell and press Shift + Enter, you see the outputs 3 and the input cell receives a number [1]:,
the output too receives number [1] as shown in the image below

Now let’s try to print the legendary [Hello World](https://en.wikipedia.org/wiki/

39

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

%22Hello,_World!%22_program) in the next cell

println("Hello World")

It should spit out an output as shown:

Hello World

Now let’s print 1 + 2 = 3, for that type the following in the cell

println("1 + 2 = ", 1 + 2)

and press Shift + Enter or Ctrl + Enter

1 + 2 = 3

You will get an output as shown above

in the coming example, we put a value 3 into a thing called variable, this variable is called a and
you know how to execute this, go on:

a = 3

Output:

3

Similarly we put a value 5 in variable b and execute it:

b = 5

Output:

5

Now let’s check if 1 equals 2 in the next cell:

1 == 2

Output:

40

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

false

Once you have done this your notebook should look like this.

A Jupyter lab instance is collection of many notebooks. If you did not understand what I mean by
that, its okay, things will clear up.

Instead of Shift + Enter, you can press Alt + Enter, in that case the cell will be executed, and a new
cell won’t be created beneath it. To get the code / note book for this blog check out this link
https://gitlab.com/data-science-with-julia/code/-/blob/master/starting_with_julia_lab.ipynb

Go on and play around with Jupyter lab, mess it up and crash it, start it all over to learn.

41

https://gitlab.com/data-science-with-julia/code/-/blob/master/starting_with_julia_lab.ipynb

Chapter 13. Julia program in a file

 Video lecture for this section could be found here https://youtu.be/_oDSlQuny4Y

It’s not that all your Julia programs will be in Jupyter Lab and Jupyter notebooks. Once you have
done some thing and its kinda set in stone, you can put in a file and and execute it using the Julia
run time. In production environment, its nothing but few Julia files getting executed when needed.
In this blog we will see how to put Julia programs in a file and execute it.

I hope you have a text editor with you, I strongly do not recommend using Juptyer lab to create
Julia files. Why? Because I don’t like it and you will see for yourself if you don’t realize it now. I
would suggest one to use [Atom](https://atom.io) or [VS Code](https://code.visualstudio.com/),
unfortunately both created by evil Microsoft corporation.

Create a file called hello_world.julia and put this stuff into it:

println("Hello World!")
println("Let's see what miracles the new field of Data Science can do.")

you can get this source code here https://gitlab.com/data-science-with-julia/code/-/blob/master/
hello_world.julia

Now in your terminal, go to the directory where the file is and type this:

$ julia hello_world.julia

and hit Enter. If you get this:

Hello World!
Let's see what miracles the new field of Data Science can do.

as output, then all is well. Yaay, you have created and executed your first Julia program as a file. In
data science we explore a lot with notebooks and lab because of their visual nature. When things
are okay, we put them in Julia files and ship it off.

42

https://youtu.be/_oDSlQuny4Y
https://atom.io
https://code.visualstudio.com/
https://gitlab.com/data-science-with-julia/code/-/blob/master/hello_world.julia
https://gitlab.com/data-science-with-julia/code/-/blob/master/hello_world.julia

Chapter 14. Basic Arithmetic

 Video lecture for this section could be found here https://youtu.be/4g0eImxZ_K4

Let us see about basic arithmetic in Julia. The notebook for this blog is available here
https://gitlab.com/datascience-book/code/-/blob/master/artthmetic.ipynb.

First start a notebook, so first let’s do addition. Type this in a cell:

1 + 2

and execute it. As you can see + sign adds two numbers and outputs the result as shown:

3

Try an other example:

41 + 1

Output:

42

Now let’s try multiplication:

6 * 7

The * sign multiplies numbers at its left and right side and outputs the result as shown:

42

Now let’s try subtraction which is accomplished by - sign. In the example below we are taking away
8 from 50:

50 - 8

Output:

42

43

https://youtu.be/4g0eImxZ_K4
https://gitlab.com/datascience-book/code/-/blob/master/artthmetic.ipynb

Now division is done by /, so this is what you get when you divide 375 by 21:

375 / 21

Output:

17.857142857142858

Now x^y in Julia can be written as x ^ y, so the below example finds out 28 raised to the power of
12:

28 ^ 12

Output:

232218265089212416

For curiosity reason we will see what will happen when we add -2 and 45:

-2 + 45

Output:

43

There is a operator called mod % which gives us the reminder. Lets see what’s the reminder when
21 is divided by 4:

21 % 4

Output:

1

We have seen how to get reminder, now let’s see how to get quotient of a division operation. For
that we use ÷ operator which does integer division. So look at the example below:

21 ÷ 4

Output

44

5

To type in ÷ in the notebook, type \div in a cell and press Tab.

It’s not that one can enter only 1 statement in Jupyter lab’s cell and press Shift + Enter to execute
it, you can enter multiple statements by using Enter key at the end of statement, then you can press
Shift + Enter to execute it.

In the example below, we convert 90 degree Celsius to Fahrenheit.

celcius = 90
fahrenheit = (9 / 5)celcius + 32

Output:

194.0

In the above example, first we assign value 90 to variable named celcius using this statement
celcius = 90. Next we compute Fahrenheit as follows fahrenheit = (9 / 5)celcius + 32. Look how
we can give (9 / 5)celcius, Julia can find out you are trying to multiply with celcius, it’s very
much like writing an equation. Then 32 is added to it here (9 / 5)celcius + 32.

For the sake of experimentation try out this statement fahrenheit = (9 / 5) * (celcius + 32). Did
you get the right answer? What went wrong?

Now try out the example below:

celcius = 90
fahrenheit = (9 / 5) celcius + 32

Output:

45

syntax: extra token "celcius" after end of expression

Stacktrace:

 [1] top-level scope at In[14]:2

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

Note how quickly Julia could get confused by just leaving a space between (9/5) and celcius,
wheras you human can see its a obvious thing.

Now try this example out:

celcius = 90
fahrenheit = (9 / 5) * celcius + 32

Output:

194.0

There is a difference between how Scientists write equations and programmers program it. For
example for a scientist writing F = (9/5)C + 32 is a good enough Julia program, but as a
programmer one would absolutely hate it. A programmer would like the program to be self
documenting. Hence he would like fahrenheit = (9 / 5) * celcius + 32. He would like to mention
celcius is multiplied by (9 / 5) explicitly using the * operator.

For a scientist (9/5) is good enough, but for a programmer its blasphemy. Programmers like to the
program to be more readable. I think I need to write a blog about the way of code: Scientists Vs
Programmers. (9 / 5) is more readable than (9/5) programmer would say.

46

Now consider the example below. When ever you wrap something in brackets, it get’s executed
first, so in the below operation 90 is added with 32 in (celcius + 32) giving 122, then this 122 is
multiplied with 9 \over 5 in (9 / 5) * (celcius + 32):

celcius = 90
farenheit = (9 / 5) * (celcius + 32)

Output:

219.6

You can use only round brackets (and this) in math iperations in Julia, curly and other brackets
are strict no:

celcius = 90
fahrenheit = {9 / 5} * celcius + 32

Output:

syntax: { } vector syntax is discontinued around In[17]:2

Stacktrace:

 [1] top-level scope at In[17]:2

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

Here I am trying to use square brackets:

47

celcius = 90
fahrenheit = [9/5] * celcius + 32

Output:

MethodError: no method matching +(::Array{Float64,1}, ::Int64)
For element-wise addition, use broadcasting with dot syntax: array .+ scalar
Closest candidates are:
 +(::Any, ::Any, !Matched::Any, !Matched::Any...) at operators.jl:538
 +(!Matched::Missing, ::Number) at missing.jl:115
 +(!Matched::Base.CoreLogging.LogLevel, ::Integer) at logging.jl:116
 ...

Stacktrace:

 [1] top-level scope at In[18]:2

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

One good thing about Julia is you can assign values to variables and construct algebric equations as
follows:

x = 4
y = 7

3x + 4y + 27

Output:

48

67

Try breaking the above example and make it throw errors so that you would learn.

Let’s assign 12 to z as shown:

z = 12

Output:

12

Below example is the compact way of writing z = z + 4, that is you are adding 4 with z, making it 16
and assigning it to z again.

Example 1:

z += 4
z

Output:

16

Imagine what would a mathematician think if you present an equation z = z+4 :D Programmer and
the way maths and science people think are very different, but data science is marriage of huge
amounts of data with computer processing which run algorithms based on scientific observation
and mathematics.

Since I am lazy, explain to your self what’s happening in the examples below:

Example 2:

z -= 3
z

Output:

13

Example 3:

49

z *= 17
z

Output:

221

Example 4:

z %= 5

Output:

1

Example 5:

z = 12
z ^= 2
z

Output:

144

50

Chapter 15. Strings

 Video lecture for this section could be found here https://youtu.be/FXNIuZuUPLs

Get the Jupyter notebook of this blog here https://gitlab.com/datascience-book/
code/-/blob/master/strings.ipynb

Imagine a perl necklace, you have a string that runs through pearls, that is you have stringed or
strung the pearls. If you string bunch of characters in programming, it’s called a String. as simple as
that.

So now let’s create a Hello World string as shown below:

"Hello World!"

Output:

"Hello World!"

There is a lot to learn here. We find characters H to ! surrounded by double quotes ", they were
strung. That how you create a string.

Now let’s print it out using a function named println (I think this means print line)

println("Hello World!")

Output:

Hello World!

Now let’s put a String into a variable named string

string = "I am a string"

Output:

"I am a string"

And let’s print out the variable string

println(string)

51

https://youtu.be/FXNIuZuUPLs
https://gitlab.com/datascience-book/code/-/blob/master/strings.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/strings.ipynb

Output:

I am a string

Look when you print it, how neat it is without those ugly double quotes.

Now let’s assign 42 to a variable named a

a = 42

Output:

42

Check its type. It would be Int anyway

typeof(a)

Output:

Int64

Now let’s use a function named repr to convert it into String.

b = repr(a)

Output:

"42"

I am not sure what’s the meaning or full form of repr, but thats a weird function name in Julia.

Take a look at the code below, execute it in your notebook.

c = "Answer to the ultimate question $a"

Output:

"Answer to the ultimate question 42"

52

We see that "Answer to the ultimate question $a", where $a tells Julia to embed the value of a in the
string. Technically this is called String Interopolation.

Now let’s print c and see

println(c)

Output:

Answer to the ultimate question 42

There is a function called occursin that checks is a string occurs in another string. To test it, let’s
create a string and store it in a variable called sentence as shown below:

sentence = "A spammer is a person who eats spam"

Output:

"A spammer is a person who eats spam"

Now let’s check if "spam" occurs in sentence

occursin("spam", sentence)

Output:

true

and it does!

If you want to find in which location "spam" occurs first, you can use function called findfirst as
shown below:

findfirst("spam", sentence)

Ouput:

3:6

It gives the range, that is "spam" can be found from 3rd character to 6th character of sentence.

Now if you want to find all occurance of "spam" in sentence, you can use findall as shown below:

53

findall("spam", sentence)

Output:

2-element Vector{UnitRange{Int64}}:
 3:6
 32:35

Now let’s check if 32nd to 35th character of senctence is really "spam"

sentence[32:35]

Output:

"spam"

If you have not guessed it, String can be thought of as a Array of characters, to kinda prove it, we
check the 7th location of sentence

sentence[7]

Output:

'm': ASCII/Unicode U+006D (category Ll: Letter, lowercase)

and its 'm'.

Now let’s check what are the first seven characters of sentence

sentence[1:7]

Output:

"A spamm"

No let’s check what we have from 7th character to the last of sentence, here to get the last place we
use length(sentence):

sentence[7:length(sentence)]

54

Output:

"mer is a person who eats spam"

Like we can iterate element by element in an Array, we can iterate character by character in a
String and print them out as shown:

for character in sentence
 print("$character,")
end

Output:

A, ,s,p,a,m,m,e,r, ,i,s, ,a, ,p,e,r,s,o,n, ,w,h,o, ,e,a,t,s, ,s,p,a,m,

Just like we can use join function on Array, we can use them on String as shown:

join(sentence, ",")

Output:

"A, ,s,p,a,m,m,e,r, ,i,s, ,a, ,p,e,r,s,o,n, ,w,h,o, ,e,a,t,s, ,s,p,a,m"

This section doesn’t go into regular expressions, but we can find if a regular expression is found in
a String using the match function as shown:

m = match(r"spam", sentence)

Output:

RegexMatch("spam")

We might deep dive into regular expressions possibly when we are learning about Natural
Language Processing.

We can use the function uppercase to convert all characters in a sentence to uppercase as shown:

uppercase(sentence)

Output:

55

"A SPAMMER IS A PERSON WHO EATS SPAM"

Similarly, there is a way to convert it to lowercase too:

lowercase(c)

Output:

"answer to the ultimate question 42"

This section is a brief introduction to String in Julia. I think this is enough of Strings for a
Datascientist.

56

Chapter 16. Boolean Operations

 Video lecture for this section could be found here https://youtu.be/NTxTXxbF5gY

Let’s look at Boolean algebra[9] with Julia. The notebook for this blog is here <https://gitlab.com/
datascience-book/code/-/blob/master/binary_arithmetic.ipynb

In Julia, something true is represented by a constant true and something false is represented by a
constant false. These two things are inbuilt in Julia and you can’t keep a variable like true = 1, Julia
will throw an error.

Now let’s look at operators that do binary arithmetic. The and operation is done using the and &
operator as shown:

true & true

Output:

true

true & false

Output:

false

We use the pipe | symbol to do the OR operation as shown:

false | true

Output:

true

false | false

Output:

false

57

https://youtu.be/NTxTXxbF5gY
https://gitlab.com/datascience-book/code/-/blob/master/binary_arithmetic.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/binary_arithmetic.ipynb

The tilde ~ symbol is used for a NOT as shown:

~ false

Output:

true

⊻ does the XOR operation, to type it, type \xor and press Tab key.

true ⊻ true

Output:

false

true ⊻ false

Output:

true

false ⊻ false

Output:

false

The >> is used for arithmetic right shift, so 3 divided by 2 is kinda one.

3 >> 1

Output:

1

The >>> is used for logical right shift

58

3 >>> 1

Output:

1

In the below example I have no clue why it became -2, may be I will explore it in later blogs

-3 >> 1

Output:

-2

I am blown away why it produces such a result in the example below, may be I will investigate
when I am not lazy:

-3 >>> 1

Output:

9223372036854775806

The << is used for arithmetic left shift, so shifiting 101 by 1 becomes 1010 which is 6 as shown below:

3 << 1

Output:

6

Now let's try out some De Morgan's
Lawfootnote:[https://en.wikipedia.org/wiki/De_Morgans_laws]:

x = true
y = false

~(x | y) == ~x & ~y

59

Output:

true

and an another one:

~(x & y) == ~x | ~y

Output:

true

[9] https://en.wikipedia.org/wiki/Boolean_algebra

60

https://en.wikipedia.org/wiki/Boolean_algebra

Chapter 17. Comparisons

 Video lecture for this section could be found here https://youtu.be/TCO6T8T8aE8

Life is full of comparisons, we must earn more next year than now. We are considered lesser than
our boss because he owns an expensive car, or has more money. Programming follows real life,
comparisons are important part of programming too. Let’s see how its done in Julia.

The notebook for this blog is available here https://gitlab.com/datascience-book/code/-/blob/master/
comparisons.ipynb. So fire your Jupyter lab and let’s get started.

First let’s see if 1 is greater than 2, for checking that we use greater than symbol >

1 > 2

Output:

false

Looks like 1 is less than 2 in Julia world. Now let’s check if 2 is greater than 1, and it looks so as
from below example:

2 > 1

Output:

true

Now let’s see if 1 is greater than 1:

1 > 1

Output:

false

Looks not, and it looks as though 1 is equal to 1 as we can see below. The >= checks if the left hand
side number is either greater or equal to the right hand side number.

1 >= 1

61

https://youtu.be/TCO6T8T8aE8
https://gitlab.com/datascience-book/code/-/blob/master/comparisons.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/comparisons.ipynb

Output:

true

Now let’s use the less than sign and try to do something. Let’s check if 5 is less than 3 using the less
than < operator

5 < 3

Output:

false

Now lets check if 3 is less than 5

3 < 5

Output:

true

Now let’s see if 3 is less than or equal to 5 using the ⇐ operator. Since 3 is less than 5 it returns true.

3 <= 5

Output:

true

Now rather than putting = sign after <, we will put it before < and check.

3 =< 5

Output:

62

syntax: "<" is not a unary operator

Stacktrace:

 [1] top-level scope at In[8]:1

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

It fails.

Now let’s check if 3 is less than or equal to 3.

3 <= 3

Output:

true

Now let’s check of 3 equals 3, for that we use the double equal to == operator as shown.

3 == 3

Output:

true

Now look at the statement below,we are checking if 3 == 3.0, that is 3 on the left side is an integer
and 3.0 on the right side is a floating point number or a Real number. These two pieces of data are

63

stored differently in Julia in different locations, yet Julia is smart enough to compare them and say
they are equal. If you want to know more about floating point and how they are stored in
computers, look here https://en.wikipedia.org/wiki/Floating-point_arithmetic

3 == 3.0

Output:

true

If we want to check if two values are stored in same location in computers memory, we can use the
triple equal sign === as shown. 3 is stored in different location than 3.0 hence Julia says they both
are not equal.

3 === 3.0

Output:

false

Try this one

a = 5
b = 5
a === b

What do you infer from it?

Now there is a special value called NaN in Julia, it means not a number. Now it turns out that two
`NaN’s are not equal

NaN == NaN

Output:

false

But it turns out that in Julia all the things that are NaN point to a same address located in the RAM, so
that passes the === test as shown:

NaN === NaN

64

https://en.wikipedia.org/wiki/Floating-point_arithmetic

Output:

true

The last operator we are going to see in the blog is not equal to, denoted by !=, so let’s check if 4 is
not equal to 5

4 != 5

Output:

true

Turns out true. Now let’s check if 4 is not equal to 4:

4 != 4

Output:

false

65

Chapter 18. Conditions and Branching

 Video lecture for this section could be found here https://youtu.be/ROvLW1-sM-w

In the last section we have seen how to use comparisons and to compare things. Now let’s see how
to use them. Let’s see how to compare two numbers and print useful output. The notebook for this
blog is here https://gitlab.com/datascience-book/code/-/blob/master/if.ipynb.

Take a look at the example below, type it in your Jupyter lab and execute it:

a = 5; b = 3

if a > b
 println("a = ", a, " is bigger")
end

if b > a
 println("b = ", b, " is bigger")
end

if a == b
 println("both numbers are equal")
end

Output:

a = 5 is bigger

It says a = 5 is bigger, now change the values of a and b in a = 5; b = 3 and see what happens.
Make one greater than other, make them both equal and see. Now let’s see how it works. The main
work horse of the above program is the if condition. It’s syntax is as follows:

if <some condition>
 # Do something here if <some condition> is true
end

it consists of a if key word, followed by some condition. So in:

if a > b
 println("a = ", a, " is bigger")
end

a > b is the condition. If this condition is true then the code block between if and end will get
executed. So in if a > b, a is 5 and b is 3 and hence its true, so the statement println("a = ", a, "
is bigger") in:

66

https://youtu.be/ROvLW1-sM-w
https://gitlab.com/datascience-book/code/-/blob/master/if.ipynb

if a > b
 println("a = ", a, " is bigger")
end

gets executed, you get the output a = 5 is bigger. Now try explaining the other parts of the
program to yourself.

Now in the above program the conditions are checked three times, that is first in if a > b then in if
b > a and then in if a == b. What if a > b is true, then its just waste of computing resource to check
for other conditions. Is there a programming construct that when one condition passes, all others
are ignored? Fortunately yes. Check the program below:

a = 3; b = 5

if a > b
 println("a = ", a, " is bigger")

 elseif b > a
 println("b = ", b, " is bigger")

 elseif a == b
 println("both numbers are equal")
end

Output:

b = 5 is bigger

In the above program b is greater than a, so when it hits if a > b it fails. Then Julia checks if there
is a elseif keyword. In this case there is. First we have elseif b > a and b > a is true. So the
statement under the elseif gets executed and hence println("b = ", b, " is bigger") gets
executed and it prints b = 5 is bigger.

In the above program, we have another condition check elseif a == b, in reality either a or b
should be greater or they must be equal, so in fact this will be hit when both conditions a > b and b
> a fail, so we could avoid condition check here and assume both numbers are equal and we can
write the program as shown:

67

a = 3; b = 3

if a > b
 println("a = ", a, " is bigger")

 elseif b > a
 println("b = ", b, " is bigger")

 else
 println("both numbers are equal")
end

Output:

both numbers are equal

Take a look at the above program. Look at the:

else
 println("both numbers are equal")

This else is hit only when all other conditions have failed. So when neither a or b is greater, they
both must be equal. Hence there is no need of a condition check here. else always has no condition
in it and is executed when all other conditions in if and elseif fails.

So since all conditions fail in the above program println("both numbers are equal") under the else
gets execute and we get both numbers are equal as output.

68

Chapter 19. Ternary Operator

 Video lecture for this section could be found here https://youtu.be/ROvLW1-sM-w

Unary operator are ones that operate on one stuff like the tilde ~ operator, you can do something
like ~ a, ~ false etc and get a result. Binary operators operators act on two stuff, like the plus +
operator. You can do 1 + 2 and so on, they get 2 operands. Ternary operator, operates on three
stuffs. Take a look at the program below:

a = 10; b = 15

max = b > a ? b : a
min = b < a ? b : a

println("Maximum = ", max)
println("Minimum = ", min)

Output:

Maximum = 15
Minimum = 10

Type it in your Jupyter lab and execute it. So this program is able to find maximum and minimum
of two values. Let’s see how it works.

First we assign a to 10 and b to 15 here:

a = 10; b = 15

Next look at this line:

max = b > a ? b : a

Here we have a variable max and we are assigning something to it with an equal to = operator. The
interesting part is at the right side, look at it carefully, it goes like this b > a ? b : a. Note the syntax
here. There is a condition b > a, so it becomes true or false depending on the avlues of b and a, at
the right of it is a ? b : a. If b > a is true, the the stuff between question ? and : get returned and b
is assigned to max. If b > a is false, the stuff after the : is assigned to max that is a.

So this ternary operator ? : deals with three stuffs.

1. A condition <condition> ? :

2. Something to be returned or done when the condition is true <condition> ? <do something when
true> :

69

https://youtu.be/ROvLW1-sM-w

3. Something to be returned or done when the condition is false <condition> ? <do something when
true> : <do something when false>.

I think you can figure out rest of the program by yourself.

As an exercise why don’t you write a simple program with uses ternary operator and and does this:

• It multiplies two variables a and b when a variable named action is set to multiply

• It adds two variables a and b when a variable named action is set to any other value

• Finally it prints out the result

The Jupyer notebook for this section is available here https://gitlab.com/datascience-book/code/-/
blob/master/ternary_operator.ipynb.

70

https://gitlab.com/datascience-book/code/-/blob/master/ternary_operator.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/ternary_operator.ipynb

Chapter 20. Short Circuit Evaluation

 Video lecture for this section could be found here https://youtu.be/ROvLW1-sM-w

In the section Boolean Operations, we had talked about using & to Boolean AND stuff and using | to
Boolean OR. But there is one draw back. If I say false & true, just by looking at false & one can say
the result is false, irrespective of what is on the right side operand, but this & looks at its both left
and right side anyway. There is however are two intelligent and operators that Julia calls as short
cut evaluation, one of them is &&, a double AND.

If there is an expression false && true, Julia seeing false &&, doesn’t bother what’s at the right side
if the && and just returns false. It saves valuable computing power. In Data Science applications we
use very simple algorithms with massive amounts of data, so computing efficiency is important, so
Julia is a good candidate for it. It is also possible to write very inefficient programs in Julia if one is
not careful. So I feel these kind of small knowledge tidbits are useful.

So lets see a program with double AND && short cut operator. Below program checks which of the
three given variables have the highest values and prints them out. Note how we have used &&
operators everywhere.

a = 6; b = 7; c = 7

if a > b && a > c

 println("a = ", a, " is the greatest")

elseif b > a && b > c

 println("b = ", b, " is the greatest")

elseif c > a && c > b

 println("c = ", c, " is the greatest")

else

 println("All or some variables have equal value")
end

Output:

All or some variables have equal value

So if you take the line if a > b && a > c, when a > b is false, Julia does not compare a with c in ` a >
c`. That’s bit smart and if this program is running billion times on say 50 data crunching servers, it
makes a difference.

71

https://youtu.be/ROvLW1-sM-w

Similarly we have a double pipe symbol || used for OR operations. So if there is true || false
situation, Julia never bothers what’s at the right side of ||, it just returns true. Below is a program
that takes weather input, if the weather is "sunny" or "rainy", it tells you to take an umbrella, else it
says its a nice weather.

weather = "sunny"

if (weather == "sunny") || (weather == "rainy")
 println("Take an umbrella")
else
 println("Looks like nice weather")
end

Output:

Take an umbrella

The notebook for this blog is available here https://gitlab.com/datascience-book/code/-/blob/master/
short_circuit_evaluation.ipynb.

20.1. How not to use Shortcut Evaluations
In my Jupyter notebook on Shortcut Evaluations here https://gitlab.com/datascience-book/code/-/
blob/master/short_circuit_evaluation.ipynb., I had tabled such an example for you to fiddle:

y = false # change this to true and false and see what happens

y && println("Right side executed")

This might make you think to write programs like this:

print_stuff = true

print_stuff && println("Stuff") # very bad way of programming

Where && in the above example is used as some kind of condition branching like if. This might
seem appealing and really short and concise way of expressing thing, that is print something or so
some operation like this:

72

https://gitlab.com/datascience-book/code/-/blob/master/short_circuit_evaluation.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/short_circuit_evaluation.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/short_circuit_evaluation.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/short_circuit_evaluation.ipynb

a = 5
increment = false

increment && (a += 1) # remove the paranthesis and see what happens, can you explain
why?
increment || (a -= 1) # remove the paranthesis and see what happens, can you explain
why?

println("a = ", a)

In the above example a gets incremented if increment is true, and decremented if increment is false.
Well in programming terms this is bullshit. Absolute bullshit. Constructing these types of programs
may not invite a frown from the Julia compiler, but will definitely invite frowns from a good
programmer.

&& and || are not supposed to be used as conditional branching. They are used for logical
operations. So as a responsible programmer / data scientist (who’s job is programming too), it’s
your job to create readable, understandable and maintainable programs. So possibly you could
write the above program as shown:

The right way

a = 5
increment = false

if increment
 a += 1
else
 a -= 1
end

println("a = ", a)

or like this:

Right and bit concise way

a = 5
increment = true

increment ? (a += 1) : (a -= 1)

println("a = ", a)

Personally I am against the concise way because it does not make the program good to read. It’s my
opinion, using the if and spreading the things over multiple lines makes a clear read I would say.

73

The Jupyter notebook for this blog is available here https://gitlab.com/datascience-book/code/-
/blob/master/how_not_to_use_shortcut_evaluations.ipynb.

74

https://gitlab.com/datascience-book/code/-/blob/master/how_not_to_use_shortcut_evaluations.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/how_not_to_use_shortcut_evaluations.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/how_not_to_use_shortcut_evaluations.ipynb

Chapter 21. While Loops

 Video lecture for this section could be found here https://youtu.be/oNCX8MWxI7E

No matter what modern programming language you take, you will find a while loop in it, Julia is no
exception in that case (but there are languages without it). This section is about while loops in Julia.
The notebook for this section can be found here: https://gitlab.com/datascience-book/code/-/blob/
master/while.ipynb. So let’s try it out and see. Take this first example, type it in your Jupyter lab and
execute it:

i = 1

while i <= 10
 println(i)
 i += 1
end

Output:

1
2
3
4
5
6
7
8
9
10

So how it works? First we have got this statement i = 1, where we initialize a variable named i to 1.
Next we have while i ⇐ 10, so this while key word gets a condition i ⇐ 10, and i is less than 10, so
the stuff between while <condition> and end gets executed. So in the the above code they are these
lines:

println(i)
i += 1

Here we print i in println(i) and next we increment i by 1 here i += 1 and hence i becomes 2.
When it encounters end, it does not end, the control transfers back to while i ⇐ 10, since the
condition is true again the loop body gets executed again and 2 gets printed and i become 3 now. It
goes on till i is 11 and when it hits while i ⇐ 10, i ⇐ 10 fails and the loop never gets executed and
the program ends.

For a visual look here is a diagram that explains how a while loop works:

75

https://youtu.be/oNCX8MWxI7E
https://gitlab.com/datascience-book/code/-/blob/master/while.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/while.ipynb

A while or most programming loops needs the three things to work properly

1. A variable initiation, for us its i = 1.

2. A condition check, for us its i ⇐ 10.

3. Variable update, for us its i += 1.

If we leave out (3), the loop could be a infinite loop, comment out i += 1 and see what happens,
hope you know to stop your kernel and kill Jupyter notebook / lab, refer Installing Jupyter notebook
and Jupyter lab.

21.1. Finding primes
So let’s now see an example where we can put our while loop to use, type the program below and
execute it. Change the value of number and see. This program finds if a number is prime or not.

76

number = 71

counter = 2

while number % counter != 0
 counter += 1
end

if number != counter
 print(number, " is not prime")
else
 print(number, " is prime")
end

Output:

71 is prime

Let’s see how it works. If you know math, then you would know that primes are divisible only by 1
and it self. So if any number is prime then it gives a non zero reminder if it divided by any other
number other than itself or 1. In the above program that’s what we do. We have a variable counter
and we set it to 2 here counter = 2, next we have this code block:

while number % counter != 0
 counter += 1
end

now look at the condition, if the number is prime and not 2, this condition number % counter != 0
will be true, and if you are wondering != stands for, it stands for not equal to in programming. So if
the condition is true, the code between while and end executes, hence counter now becomes 3 by
executing counter += 1, and once again 71 % 3 is not zero and so again counter increments and in
next iteration it is 71 % 4 and so on. The loop ends when counter is 71, where 71 % 71 is 0 and hence
number % counter != 0 fails and the program control comes out of the while.

It (the program execution) now encounters this:

if number != counter
 print(number, " is not prime")
else
 print(number, " is prime")
end

Here in the above piece of code if the number is not equal to counter we print it’s not a prime, but
when it is, we print is as prime.

The notebook for this blog can be found here: https://gitlab.com/datascience-book/code/-/blob/

77

https://gitlab.com/datascience-book/code/-/blob/master/while.ipynb

master/while.ipynb.

78

https://gitlab.com/datascience-book/code/-/blob/master/while.ipynb

Chapter 22. Ranges and for loops

 Video lecture for this section could be found here https://youtu.be/3cuTFzcW8KQ

If you wand to say 1 to 10 in Julia, this is a simpler way to do it, its called as range:

1:10

Output:

1:10

It’s syntax is <start value>:<end value>. And you can print 1 to 10 like this:

for i in 1:10
 print(i, ' ')
end

Output:

1 2 3 4 5 6 7 8 9 10

Let me introduce for loop, this can remove lot of clutter compared to a while loop. This for works
like this, first you have a variable in this case i and then it’s followed by a in keyword and is
followed by a range (in future we will see other data types as well). So you can think for as
something that un-bundles 1:10 and puts each value into the variable i one at a time and executes
the loop body that is in the above case is print(i, ' '). Notice how the print() is different from the
println(). println() prints a new line at the end whereas print() does not.

Let’s say we want to print numbers from 5 to 100 in steps of 5, range has a way for that too, take a
look at the example below:

for i in 5:5:100
 print(i, ' ')
end

Output:

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

The format for range with step is this <start value>:<step size>:<end value> as shown below:

79

https://youtu.be/3cuTFzcW8KQ

5:5:100

Output:

5:5:100

The notebook for this blog is here https://gitlab.com/datascience-book/code/-/blob/master/
ranges.ipynb.

80

https://gitlab.com/datascience-book/code/-/blob/master/ranges.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/ranges.ipynb

Chapter 23. Breaks and Continues
Sometimes while you are executing a loop, you might like to skip something, at those times you can
use a key word called continue. Let’s say that I don’t want 6 getting printed when I write a program
to print 1 to 10, I can write a program like this:

i = 0

while i < 10

 i += 1

 if i == 6
 continue
 end

 println(i)
end

Output:

1
2
3
4
5
7
8
9
10

Look at these lines of code in the above example:

if i == 6
 continue
end

It tells Julia to continue to next iteration if i equals 6, so the statement that comes after it, that is in
this case println(i) won’t get executes when i is 6, and it will go to the next iteration and i will
become 7 and the loop will go on normally. So seeing this why can’t you write a program that prints
only even numbers or odd numbers below a given value in the number line?

continue tells Julia to skip operation and go on to next iteration, break tells it to break out of the loop
entirely. Type the program below in your notebook and execute it:

81

i = 1

while i <= 10

 println(i)

 if i == 6
 break
 end

 i += 1
end

Output:

1
2
3
4
5
6

Here when i is 6, in these lines:

if i == 6
 break
end

when i==6 becomes true, and break will get executed, and the program breaks out of the loop.
Hence only 1 to 6 gets printed and the loop breaks.

A very similar implementation of the above programs is given below using for loop for continue:

for i in 1:10

 if i == 6
 continue
 end

 println(i)
end

Output:

82

1
2
3
4
5
7
8
9
10

and this one is for break:

for i in 1:10
 println(i)

 if i == 6
 break
 end
end

Output:

1
2
3
4
5
6

The notebook for this blog can be found here https://gitlab.com/datascience-book/code/-/blob/
master/breaks_and_continues.ipynb.

83

https://gitlab.com/datascience-book/code/-/blob/master/breaks_and_continues.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/breaks_and_continues.ipynb

Chapter 24. Arrays

 Video lecture for this section could be found here https://youtu.be/qCPIr-vD1Ls

Arrays are nothing but a collection of some stuff. Imagine a rack with, where each compartment is
numbered/indexed 1, 2 ,3 … and so on and you put an item in each compartment. At a later time
you can retrieve the item using the index.

The code for this blog can be fount here https://gitlab.com/datascience-book/code/-/blob/master/
arrays.ipynb, let’s get practical here now. Launch your Jupyter Lab and try these out:

First lets create an array as shown below:

array = [1, 2, 3, 4, 5]

Output:

5-element Array{Int64,1}:
 1
 2
 3
 4
 5

As you can see we have 1, 2, 3, 4, 5, within [and], that’s how Julia knows we have created an
array, and we assign it to variable named array. So the variable array points to the start of [1, 2, 3,
4, 5].

To determine how many elements are present in an array, we use the length() function as shown
below

length(array)

Output:

5

I don’t think it should be a mystery to you that we have 5 elements in array.

Now let’s try size():

size(array)

Output:

84

https://youtu.be/qCPIr-vD1Ls
https://gitlab.com/datascience-book/code/-/blob/master/arrays.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/arrays.ipynb

(5,)

so it returns something weird, and it looks like this (5,), this is called a Tuple, a very similar data
structure like Array, but it’s immutable. That is we cannot change it. We will look at it in the later
blogs.

Now let’s get into some kind of statistics, what about totaling the values in an array, take a look at
the example below:

total = 0

for element in array
 total += element
end

println(total)

Output:

15

We use the for loop here, in this line for element in array, in each iteration, element get the value of
one element of array. That is in the first iteration element becomes 1 in the second 2 and so on. Now
when it hits total += 0, in the first iteration total becomes 0 + 1, that is 1, in the second iteration 1 +
2 that is 3 and so on…. Finally we print total here println(total) and its 15.

Now let’s see what the average is. Its nothing but total divided by number of elements in the array
as shown below:

avg = total / length(array)

Output:

3.0

In previous blogs we have seen how to find maximum of 2 or three numbers, but look at the
program below. You can pack how many number you want in the array and it will find the
maximum:

85

max = array[1]

for element in array
 max = max > element ? max : element
end

println(max)

Output:

5

First we have a variable max which s assigned to the first element of the array here max = array[1],
now we have these lines:

for element in array
 max = max > element ? max : element
end

In the above lines, each element of the array is assigned to element and here max = max > element ?
max : element, max takes on the value of element if it’s greater than element and finally we print out
max here println(max).

Now let’s see how to access 3rd element of an array:

array[3]

Output:

3

Now we access elements 2 to 4:

array[2:4]

Output:

3-element Array{Int64,1}:
 2
 3
 4

86

See that in the above example we pass range 2:4 between the brackets.

We wrote a long program to find maximum of an array, but we can also do it like this:

maximum(array)

Output:

5

Here is the code to find minimum:

minimum(array)

Output:

1

We can get cumulative sum of an array as shown:

cumsum(array)

Output:

5-element Array{Int64,1}:
 1
 3
 6
 10
 15

This is how to find total or sum of an array:

sum(array)

Output:

15

Now let’s multiply all elements of an array by 7:

87

array * 7

Output:

5-element Array{Int64,1}:
 7
 14
 21
 28
 35

Now let’s add 1 to all elements of the array:

array.+ 1

Output:

5-element Array{Int64,1}:
 2
 3
 4
 5
 6

Note that we use a dot in array.+ 1, the dot . is a broadcasting operator which is used for element
wise operations. I find that we can omit . for multiplying and dividing array by scalar.

In the example below we divide array by scalar:

array / 4

Output:

5-element Array{Float64,1}:
 0.25
 0.5
 0.75
 1.0
 1.25

In the below example we subtract 4 from each element of the array, notice that we use the dot .
operator:

88

array.- 4

Output:

5-element Array{Int64,1}:
 -3
 -2
 -1
 0
 1

There is a function called typeof() in Julia that tells the variable type. Let’s see what data type array
is:

typeof(array)

Output:

Array{Int64,1}

So it says Array, that is collection of stuff in an ordered format, it’s elements are integers Int, and
each element occupies 64 bits of space. Why don’t you check what is the type of array / 4?

Now let’s see how to add a new element to an array:

push!(array, 21)

Output:

6-element Array{Int64,1}:
 1
 2
 3
 4
 5
 21

In the above case we have added 21 to the array using push!() function. As a first argument to
push!() we give array and as second argument we give the element to be added that is 21.

Wen ever you use push!(), you see that array gets modified as shown below. The exclamation mark,
also called as bang ! in computer science indicates that the argument been passed to it gets
modified. Let’s check the value of array now:

89

array

Output:

6-element Array{Int64,1}:
 1
 2
 3
 4
 5
 21

Now let’s pop out the last element of the array:

pop!(array)

Output:

21

We use function called pop!(), since it comes with a bang !, we can expect array is modified here as
shown below:

array

Output:

5-element Array{Int64,1}:
 1
 2
 3
 4
 5

We push 3 into the array:

push!(array, 3)
sort(array)

Output:

90

6-element Array{Int64,1}:
 1
 2
 3
 3
 4
 5

We check it again as though we don’t believe in push!():

array

Output:

6-element Array{Int64,1}:
 1
 2
 3
 4
 5
 3

We reverse the order of elements in array

reverse(array)

Output:

6-element Array{Int64,1}:
 3
 5
 4
 3
 2
 1

We sort the array here:

sort!(array)

Output:

91

6-element Array{Int64,1}:
 1
 2
 3
 3
 4
 5

Since we used a function with bang ! above, we can expect the result to be stored in variable array
as shown below:

array

Output:

6-element Array{Int64,1}:
 1
 2
 3
 3
 4
 5

Now let’s do some real math, lets say we are buying some items, their quantities and prices are
given below:

mangoes = 2
rice_in_kg = 5
eggs = 12

mango_price = 50
rice_price = 30
egg_price = 7

quantities = [mangoes, rice_in_kg, eggs]
prices = [mango_price, rice_price, egg_price];

The above cell does not spit any output, look at the semicolon ; at the end of the last line that
prevents the cell from cluttering your notebook with its outputs.

Since it’s Julia, I can compute the total prices as shown below:

total_array = quantities.* prices

Output:

92

3-element Array{Int64,1}:
 100
 150
 84

As you can see, you can compute the total cost of each item using just the star * operator. That’s a
lot of savings for you from writing lot of iterative code (if you know to code in other languages).

Now let’s compute the sun of the above total_array

grand_total = sum(total_array)

Output:

334

Julia provides sum() function that computes the total of an array.

Now let’s use Julia’s built in linear algebra package, and since quantities and prices are nothing but
vectors, we can compute the total by taking it’s dot product as shown:

using LinearAlgebra
dot(quantities, prices)

Output:

334

In the above example we have learned to use or import a package, to import it we use using
<package name>. Thankfully Julia has LinearAlgebra package built into it, but it’s not imported at the
start by default, so we need to import it using using LinearAlgebra. It provides a convenient dot()
function to calculate the dot product.

Now say we want to be more concise, we can use the dot operator ⋅ provided by LinearAlgebra
package.

quantities ⋅ prices

Output:

334

93

In case you are wondering how to type ⋅, type \cdot and press Tab.

94

Chapter 25. Tuples

 Video lecture for this section could be found here https://youtu.be/Uahv2THnDfY

Tuple is a data type like Array, the only thing is you can’t change values in a Tuple, in Array you
can. You can get the Jupyter notebook for this blog here https://gitlab.com/datascience-book/code/-/
blob/master/tuples.ipynb.

So let’s dive in.

First we create a Tuple and assign it to a variable called tuple

tuple = (1, 5, 9, 3, 7, 2)

Output:

(1, 5, 9, 3, 7, 2)

So the above example speaks something, in Arrays we wrap elements with square brackets [], but
here we are wrapping it with rounded ones ().

In the below example we check the Tuple’s type:

typeof(tuple)

Output:

NTuple{6,Int64}

I am not sure why its called NTuple, I read some docs and I infer it means a homogeneous data type.
In the above example our tuple contains all Int64 that is integers of 64 bit wide; and it has 6
elements in them, identified by 6 in NTuple{6,Int64}.

An array is mutable, that is the values in it can be changed, below we have an Array:

array = [1, 5, 9, 3, 7, 2]

Output:

95

https://youtu.be/Uahv2THnDfY
https://gitlab.com/datascience-book/code/-/blob/master/tuples.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/tuples.ipynb

6-element Array{Int64,1}:
 1
 5
 9
 3
 7
 2

and we change the third element in it:

array[3] = 10
array

Output:

6-element Array{Int64,1}:
 1
 5
 10
 3
 7
 2

This statement array[3] = 10 accesses the third element and sets it to 10. If we try to do this in Tuple
as shown below, we get an error:

tuple[3] = 10
tuple

Output:

96

MethodError: no method matching setindex!(::NTuple{6,Int64}, ::Int64, ::Int64)

Stacktrace:

 [1] top-level scope at In[5]:1

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

Like an Array we can get maximum value in a Tuple using the maximum() function:

maximum(tuple)

Output:

9

We can get minimum value in a Tuple using the minimum() function:

minimum(tuple)

Output:

1

We can get total of Tuple using the sum() function:

97

sum(tuple)

Output:

27

Below we get the cumulative sum using cumsum() function:

cumsum(tuple)

Output:

(1, 6, 15, 18, 25, 27)

We are unable to sort it however, I did not try out sort!() because anything with a bang modifies
the argument that’s been passed to it. A Tuple is immutable and hence sort!() makes no sense and
hence I tried sort() and it did not work:

sort(tuple)

Output:

98

MethodError: no method matching sort(::NTuple{6,Int64})
Closest candidates are:
 sort(!Matched::AbstractUnitRange) at range.jl:1014
 sort(!Matched::AbstractRange) at range.jl:1017
 sort(!Matched::SparseArrays.SparseVector{Tv,Ti}; kws...) where {Tv, Ti} at
/buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.5/SparseArrays/src
/sparsevector.jl:1912
 ...

Stacktrace:

 [1] top-level scope at In[14]:1

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

Possibly one must convert Tuple into Array to sort.

Now let’s use our LinearAlgebra package to and wee if ⋅ operator works on Tuple:

using LinearAlgebra
tuple ⋅ tuple

Output:

169

and it does. To get the dot operator type \cdot followed by Tab.

In our last blog about [Array]({% post_url 2020-11-17-arrays %}), we saw that when getting size of
an array we got something as shown:

99

size_of_array = size(array)

Output:

(6,)

Well the size of an array is a Tuple. You also see that in the above example it gives an Output (6,)
and not (6). Now let’s inspect the type of the returned value:

typeof(size_of_array)

Output:

Tuple{Int64}

As an exercise, why don’t you try typeof6 and see what it is? A Tuple should always have an comma
,, thats how Julia identifies it’s an Tuple than a number surrounded by brackets.

I wish we could convert Tuple to Array by using a construct like this Tuple(<array>), but it turns out
that you must do a trickery as shown below:

array_from_tuple = [element for element in tuple]

Output:

6-element Array{Int64,1}:
 1
 5
 9
 3
 7
 2

In the above example notice this [element for element in tuple], this is called list comprehension,
it works like this, it starts with an empty Array [], now take this for element in tuple, this is a for
loop, so for each element in tuple, it take an element one by one and puts it into variable named
element, now this element is added to Array here [element ….], so in the first iteration it becomes
[1], in the next [1, 5] and so on… Finally we get an Array [1, 5, 9, 3, 7, 2] which gets assigned
to array_from_tuple.

Though making an Array from Tuple is a pain, making a Tuple from an Array seems to be as easy as
shown:

100

tuple_from_array = Tuple(array)

Output:

(1, 5, 10, 3, 7, 2)

weird Julia.

101

Chapter 26. Comprehension

 Video lecture for this section could be found here https://youtu.be/MmVaj9qIjX8

In this blog let’s look at comprehensions, you can get the notebook here https://gitlab.com/
datascience-book/code/-/blob/master/comprehension.ipynb. First we define a range as shown:

range = 1:10

Output:

1:10

Now say we want to square the values in the range, we can do it as shown:

[value^2 for value in range]

Output:

10-element Array{Int64,1}:
 1
 4
 9
 16
 25
 36
 49
 64
 81
 100

Look at the construct of the program, we separate out each item in the range using this statement
for value in range, each time the item gets stored in a variable called value, and in value^2 we
square it, and we capture it in an array by wrapping it all between square brackets like this
[value^2 for value in range]. This trickery is called list comprehension.

Below let me introduce to you the rand() function, in the below example we want to generate
random number between 1 and 100, so we use rand(1:100), and we want to generate 10 numbers,
so we pass 10 as the second argument as ten like this rand(1:100, 10). Type the example below and
execute:

array = rand(1:100, 10)

102

https://youtu.be/MmVaj9qIjX8
https://gitlab.com/datascience-book/code/-/blob/master/comprehension.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/comprehension.ipynb

Output:

10-element Array{Int64,1}:
 70
 41
 87
 48
 54
 63
 61
 100
 26
 37

As you see from the above example, we assign the random numbers to a variable called array. Now
let’s use list comprehension to take square root of array as shown:

square_root = [value^0.5 for value in array]

Output:

10-element Array{Float64,1}:
 8.366600265340756
 6.4031242374328485
 9.327379053088816
 6.928203230275509
 7.3484692283495345
 7.937253933193772
 7.810249675906654
 10.0
 5.0990195135927845
 6.082762530298219

Okay, list comprehension is very powerful feature, but one can take square of array as shown:

array.* array

Output:

103

10-element Array{Int64,1}:
 4900
 1681
 7569
 2304
 2916
 3969
 3721
 10000
 676
 1369

So in the above example we do element wise multiplication, for that we use the .* operator. I tried
out array * array and hoped that it would work, but it did not.

The dot . means element wise operation. We can do element wise squaring of the array as shown:

array.^2

Output:

10-element Array{Int64,1}:
 4900
 1681
 7569
 2304
 2916
 3969
 3721
 10000
 676
 1369

All we do add a dot . before ^ and that’s it. So does it mean list comprehension is dead? Nope we
can do some trickery with list comprehension as shown:

odd_numbers = [value for value in array if value % 2 != 0]

Output:

104

5-element Array{Int64,1}:
 41
 87
 63
 61
 37

Let’s see how the program works. First we take each item in the array and assign it to a variable
called value here for value in array, but we do not do that all the time, it happens only when the
value is odd as given by if value % 2 != 0, if that happens we take the value and put in in an Array
like this [value …..]. So we have complete program as shown here [value for value in array if
value % 2 != 0]. So what we are doing is filtering the odd numbers, nothing else.

26.1. Generator Comprehension
Just like list comprehension, in which things are wrapped around by square braces, we use round
braces for a thing called generator comprehension. If you look at the example below, we do
squaring elements of range:

squares = (el^2 for el in range)

Output:

Base.Generator{typeof(range),var"#3#4"}(var"#3#4"(), range)

but we do it inside round braces, so we get an output as shown above. That is squares are not
evaluated unless absolutely necessary. So to force the evaluation we run the code below

join(squares, ", ")

Output:

"1, 4, 9, 16, 25, 36, 49, 64, 81, 100"

Where the method join(), joins the element of passed collection squares in this case with a string ",
".

26.2. Permutation
If we roll two dice, let’s see what permutations we get. Type the code below and execute:

105

dice_range = 1:6

Finding permuation for roll of two dice

dice_permuations = [(x, y) for x = dice_range, y = dice_range]

Output:

6×6 Array{Tuple{Int64,Int64},2}:
 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

So let’s see how the code works. So we are using list comprehension, and we are wrapping the
output in square brackets [], we are wrapping a Tuple inside a list [(x, y)], and the Tuple is fed by
variables x and y. These x and y take their values in an iterative manner from dice_range that
ranges from 1 to 6 here for x = dice_range, y = dice_range. So this concise piece of code generates
us a 6X6 array with all permutations of x`and `y. Below we check the size of the permutation as
though we don’t trust Julia:

size(dice_permuations)

Output:

(6, 6)

26.3. Flattened Comprehension
The comprehension discussed above returned a rank 2 matrix, but what if want to generate a
flattened one? See the example below:

flattened_permuations = [(x, y) for x = dice_range for y = dice_range]

Output:

106

36-element Array{Tuple{Int64,Int64},1}:
 (1, 1)
 (1, 2)
 (1, 3)
 (1, 4)
 (1, 5)
 (1, 6)
 (2, 1)
 (2, 2)
 (2, 3)
 (2, 4)
 (2, 5)
 (2, 6)
 (3, 1)
 ⋮
 (5, 1)
 (5, 2)
 (5, 3)
 (5, 4)
 (5, 5)
 (5, 6)
 (6, 1)
 (6, 2)
 (6, 3)
 (6, 4)
 (6, 5)
 (6, 6)

In the above example we simply use 2 for’s like this `for x = dice_range for y = dice_range.
This generates us a vector of Tuple’s rather than a matrix as in the previous example. Now let’s
check its size to conform it’s a vector:

size(flattened_permuations)

Output:

(36,)

107

Chapter 27. Sets

 Video lecture for this section could be found here https://youtu.be/ju7J3pBU7fM

Julia has a datatype called Set, that is mathematical equivalent of a [Set](https://en.wikipedia.org/
wiki/Set_(mathematics)). From the angle of Julia you can think Set as an Array which contains just
unique values and cannot be ordered or sorted.

So let’s dive in, we can create a set as shown below:

set = Set([1, 2, 3, 4])

Output:

Set{Int64} with 4 elements:
 4
 2
 3
 1

So we see that we use an array [1, 2, 3, 4], this is been passed to a Function called Set() like this
Set([1, 2, 3, 4]) and out we get out a set which is stored in a variable called set. Why don’t you
try out Set([1, 2, 3, 4, 1, 2, 3, 4]) and see what happens?

We will also create another set as shown:

another_set = Set((3, 4, 5, 6, 7))

Output:

Set{Int64} with 5 elements:
 7
 4
 3
 5
 6

Now we will try to push in a new value 8 in another set. Note we use push!() function which means
the argument passed to it gets modified:

push!(another_set, 8)

Output:

108

https://youtu.be/ju7J3pBU7fM
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)

Set{Int64} with 6 elements:
 7
 4
 3
 5
 8
 6

In the above piece of code we give another_set as argument to the push!() and we add 8 to it, so
another_set get modified.

Let’s now try to push 8 again to another_set:

push!(another_set, 8)

Output:

Set{Int64} with 6 elements:
 7
 4
 3
 5
 8
 6

As you can see from the above example, a set contains just unique values and if you push a value
that already exists, it will not grow.

27.1. Unions

Julia has a union() function with which you could get a set’s union as shown:

union(set, another_set)

Output:

109

https://upload.wikimedia.org/wikipedia/commons/3/30/Venn0111.svg

Set{Int64} with 8 elements:
 7
 4
 2
 3
 5
 8
 6
 1

27.2. Intersection

Julia has a intersect() function with which you can find intersection of two sets as shown:

intersect(set, another_set)

Output:

Set{Int64} with 2 elements:
 4
 3

27.3. Difference

Julia has setdiff() function with which you can find the difference of two sets as shown, in the
belowcode it means get all the elements of set that are not there in another_set:

setdiff(set, another_set)

Output:

Set{Int64} with 2 elements:
 2
 1

27.4. Other Operations
You can find number of elements in a set using length() function as shown:

110

https://upload.wikimedia.org/wikipedia/commons/9/99/Venn0001.svg
https://upload.wikimedia.org/wikipedia/commons/e/e6/Venn0100.svg

length(set)

Output:

4

To get the type of set you can use the typeof() operator as shown:

typeof(set)

Output:

Set{Int64}

Set is just another collection so you can use for loop as shown:

for element in set
 print(element, ", ")
end

Output:

4, 2, 3, 1,

Rather than using the cumbersome for, you can print the values of set as shown:

print(join(set, ", "))

Output:

4, 2, 3, 1

In the above example join(), joins the set elements with a string ", " and outputs this string: "4, 2,
3, 1", this when passed to println() outputs 4, 2, 3, 1.

27.5. You can’t sort a Set
You can’t sort a set, unlike Array and Tuple a set is unordered:

111

sort(set)

Output:

MethodError: no method matching sort(::Set{Int64})
Closest candidates are:
 sort(!Matched::AbstractUnitRange) at range.jl:1014
 sort(!Matched::AbstractRange) at range.jl:1017
 sort(!Matched::SparseArrays.SparseVector{Tv,Ti}; kws...) where {Tv, Ti} at
/buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.5/SparseArrays/src
/sparsevector.jl:1912
 ...

Stacktrace:

 [1] top-level scope at In[12]:1

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

27.6. Converting Set to Array
You can’t convert a set to array as easy as passing a set to an Array() as shown:

Array(set)

Output:

112

MethodError: no method matching Array(::Set{Int64})
Closest candidates are:
 Array(!Matched::LinearAlgebra.SymTridiagonal) at
/buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/sr
c/tridiag.jl:142
 Array(!Matched::LinearAlgebra.Tridiagonal) at
/buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/sr
c/tridiag.jl:583
 Array(!Matched::LinearAlgebra.AbstractTriangular) at
/buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/sr
c/triangular.jl:157
 ...

Stacktrace:

 [1] top-level scope at In[13]:1

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

You need to use list [comprehension]({% post_url 2020-11-20-comprehension %}) trickery as shown:

array_from_set = [element for element in set]

Output:

4-element Array{Int64,1}:
 4
 2
 3
 1

As though we do not believe we can make Array from Set we check the typeof of array_from_set

113

typeof(array_from_set)

Output:

Array{Int64,1}

27.7. Coverting Set to Tuple
We do not get an Array from set using the Array() thing, but we can get a Tuple, using Tuple() as
shown:

Tuple(set)

Output:

(4, 2, 3, 1)

That’s sad, because Array is treated as unwanted second class citizens, but may be there could be a
reason for that which I am unaware.

27.8. Pop out a element from a Set
We can pop out a element from a set using the pop!() function as shown:

pop!(set)

Output:

4

Note that since we have used bang !, it modifies the passed variable set and the popped out value 4
get removed from set as shown below:

set

Output:

114

Set{Int64} with 3 elements:
 2
 3
 1

size() returns a Tuple and its for multidimensional data structure like Array, so it won’t work on
Set:

size(set)

Output:

MethodError: no method matching size(::Set{Int64})
Closest candidates are:
 size(!Matched::BitArray{1}) at bitarray.jl:104
 size(!Matched::BitArray{1}, !Matched::Integer) at bitarray.jl:107
 size(!Matched::Core.Compiler.StmtRange) at show.jl:1874
 ...

Stacktrace:

 [1] top-level scope at In[19]:1

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

Well that’s it for sets, get the Jpyter notebook for this section here https://gitlab.com/datascience-
book/code/-/blob/master/sets.ipynb.

115

https://gitlab.com/datascience-book/code/-/blob/master/sets.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/sets.ipynb

Chapter 28. Dictionaries

 Video lecture for this section could be found here https://youtu.be/1U2XSGMSJWg

Jupyter notebook for this section could be found here https://gitlab.com/datascience-book/code/-/
blob/master/dictionary.ipynb

What comes to your mind when you think of a dictionary? Today in software or online dictionary
you type a word and get its meaning in seconds. When I was small we had paper books, in each
page there were printed lot of words and its meaning, even then we could find meaning of a word
within one or two minutes. That’s because dictionary was a ordered set of words with which we
could pin point the word were looking with ease. In programming languages dictionaries are
designed in similar fashion, it could book looked up with ease.

In a language dictionary, you can think of a looked up word as a key or index, the meaning that is
entered against the word as a value. Take a look at the code below, type it and execute it:

spell = Dict(
 1 => "one",
 2 => "two",
 3 => "three"
)

Output:

Dict{Int64,String} with 3 entries:
 2 => "two"
 3 => "three"
 1 => "one"

In the above example we create a dictionary using the Dict() function, the keys are 1, 2 and 3, we
have given their English names as their values. Now if you want to get the spelling of 3, you can get
it as shown:

number = 3
spell[number]

Output:

"three"

One who knows arrays can argue this can be achieved with the following code:

116

https://youtu.be/1U2XSGMSJWg
https://gitlab.com/datascience-book/code/-/blob/master/dictionary.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/dictionary.ipynb

spell = ["one", "two", "tree"]
spell[3]

that’s correct, but take the example as shown below:

prices = Dict(
 "mango" => 50,
 "bananna" => 10,
 "samosa" => 15,
 "briyani" => 80
)

Output:

Dict{String,Int64} with 4 entries:
 "mango" => 50
 "samosa" => 15
 "briyani" => 80
 "bananna" => 10

above we have created a dictionary with prices of items, now say is it better for one to access price
of a mango by giving prices[1], or prices["mango"]?

Let’s say we went to shop and bought two Briyani parcels and four Samosas, I’m starting to feel
hungry now ὠ�. We can represent our purchase as shown:

purchase = Dict(
 "briyani" => 2,
 "samosa" => 4
)

Output:

Dict{String,Int64} with 2 entries:
 "samosa" => 4
 "briyani" => 2

Just to know more about dictionaries, this is how you would list keys of a dictionary:

keys(purchase)

Output:

117

Base.KeySet for a Dict{String,Int64} with 2 entries. Keys:
 "samosa"
 "briyani"

This is how you will list values contained in the dictionary:

values(purchase)

Output:

Base.ValueIterator for a Dict{String,Int64} with 2 entries. Values:
 4
 2

The length() function works in a dictionary and returns the count of key value pairs in it.

length(purchase)

Output:

2

typeof() seems to be a universal function, and it works on dictionaries as well:

typeof(purchase)

Output:

Dict{String,Int64}

Now let’s calculate our bill, type the program below and see what happens:

total = 0

for (item, quantity) in purchase
 total += prices[item] * quantity
end

total

Output:

118

220

So let me explain how the program works. First we have assigned a variable total to 0 here total =
0.

Next look at this statement:

for (item, quantity) in purchase

look how we unravel the key value pair as (item, quantity). Since we are using a for loop, for every
purchase, the key gets stored in variable called item and value get’s stored in variabe called
quantity. Now for the first iteration it would would be like this:

total += prices[item] * quantity

Which would translate into total = 0 + (prices["briyani"] * 2), which will be reduced to total =
80 * 2, hence total will become 160, and the loop goes on and on till all the purchase elements are
fetched and the total calculated, and we get a grand total of 220

Since we know list comprehension, we can write the above code as shown below:

sum([prices[item] * quantity for (item, quantity) in purchase])

Output:

220

Neat isn’t it?

119

Chapter 29. Comments
You might be smart enough to write a piece of code today, but you may not be smart enough 6
months from now. The very code you created will look foreign and non-understandable. So it better
for one to comment or add descriptions to ones code. All programming languages provide a way to
write comments in them. Comments are there for programmers reference, when the program runs,
the comments are ignored as the computer does not need it to run the code.

Take a look at the program below:

Temperature in Celsius
C = 30

#=
The following code below calculates the Fahrenheit
from Celsius
=#
F = ((9 / 5) * C) + 32

println(30, " C = ", F, " F")

It’s a simple program to convert Celsius to Fahrenheit. But notice here:

Temperature in Celsius
C = 30

Here the things followed by the hash , that is Temperature in Celsius is a comment. In the above
code I have given C = 30, in reality it would have been far better if I had given celsius = 30 as in
today’s way of coding we expect a code to be as good to read as a comment. Any way I hope you
now get an idea what an comment is.

The example shown above is a single line comment. I could have given it like this too:

C = 30 # Temperature in Celsius

Personally I prefer comments being in a separate line.

Now if you want to write long paragraphs, there is a thing called multiline comments. It starts with
a = and ends with a = as shown below:

#=
The following code below calculates the Fahrenheit
from Celsius
=#
F = ((9 / 5) * C) + 32

120

You can find the source file for the program here https://gitlab.com/datascience-book/code/-/blob/
master/comments.jl.

121

https://gitlab.com/datascience-book/code/-/blob/master/comments.jl
https://gitlab.com/datascience-book/code/-/blob/master/comments.jl

Chapter 30. Functions
Let’s say you go to a hotel, you order the waiter a dish and you get it. Just saying "I want Briyani"
gets you something. No need to tell the waiter how to purchase mutton, rice cook them and all those
stuff, just a few words and you are able to accomplish this complex task. Just imagine what you
have achieved! There is no need for you to tell about how to water the fields and dry the paddy,
raise goats and all those stuff, just a few words and you are done. All is taken care at the
background.

Programming is very similar to real world. You can wrap lot of things into a code block, give it a
name and call it when needed. Those things are called functions. So lets see a piece of code that
makes us understand it a bit. Type the code below and execute it.

function printline()
 println('*' ^ 50)
end

printline()
println("Hello World!")
printline()

Output:

**
Hello World!
**

So notice that how a simple and readable is this function call printline(), and it prints us a set of
stars for us. You can remember it, call it easily and its intuitive. Those are the power of functions.

When designing a function have these in mind:

• It’s name should be intuitive and readable.

• A very good code needs almost no documentation.

• If the code is not understandable, then make sure you [comment]({% post_url 2020-11-26-
comments %}) them well so that they will be understandable by the reader.

• If for some reason reading the function name is not obvious, say you think printline() may
confuse some one who’s native is not English, try to break it to print_line(). That is use
underscore to break complex words.

• The code inside functions should be readable as well (we will talk about this further in future).

Okay now we know function is called by its name followed by round braces like printline() as
shown above. Now let’s see how its defined:

122

function printline()
 println('*' ^ 50)
end

You see above the keyword function, that says to Julia that we are defining a function. This is
followed by the function name printline like this:

function printline

This is immediately followed by braces:

function printline()

So these define the start of the function, now let’s say where it ends here using the end keyword:

function printline()
end

Now between the function printline() and end, we can fill it with code the function should execute
as shown:

function printline()
 println('*' ^ 50)
end

In the above case we just tell it to print a line made up of 50 stars.

You can get the Jupyter notebook for this blog here https://gitlab.com/datascience-book/code/-/blob/
master/functions.ipynb.

30.1. Passing Arguments
Let’s come back to the hotel example. While ordering Briyani, you can pass some options to the
waiter. Say you say that you do not need onions as side dish but want more Brinjal, then depending
on the options your side dish will be tailored. These passing values to a function is technically in
programming is called arguments.

Type the program below and execute it:

123

https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb

function printline1(length)
 println('*' ^ length)
end

i = 1

while i <= 10
 printline1(i)
 i += 1
end

Output:

*
**

So in the above program in these lines:

while i <= 10
 printline1(i)
 i += 1
end

We call printline1 like this printline1(i) with an argument. This i is passed to variable called
length and is available inside the body of the printline1 function. With the length we vary the
number of stars in the line as shown in below code:

function printline1(length)
 println('*' ^ length)
end

The Jupyter notebook for this blog is available here https://gitlab.com/datascience-book/code/-/blob/
master/functions.ipynb.

30.2. Default Argument
Okay in printline1() function you saw that you can change the length of the line with an argument,

124

https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb

but you were left with calling the function with the argument always been set to vary the length of
the line. Let’s say what if you want to have a function where you can pass an argument, else the
function assumes something by default. Welcome to default argument. Look at the program below:

function printline2(length = 50)
 println('*' ^ length)
end

printline2(10)
printline2()

Output:

**

Here in the above example, function named printline2() is coded as follows: function
printline2(length = 50), note the length = 50. So you can call printline2 like this printline2(10),
where it will print a line of 10 characters long, or you can call it like printline2() where it will print
a line of 50 characters long which is the default provided.

The Jupyter notebook for this blog is available here https://gitlab.com/datascience-book/code/-/blob/
master/functions.ipynb.

30.3. Default Argument
Okay in printline1() function you saw that you can change the length of the line with an argument,
but you were left with calling the function with the argument always been set to vary the length of
the line. Let’s say what if you want to have a function where you can pass an argument, else the
function assumes something by default. Welcome to default argument. Look at the program below:

function printline2(length = 50)
 println('*' ^ length)
end

printline2(10)
printline2()

Output:

**

Here in the above example, function named printline2() is coded as follows: function
printline2(length = 50), note the length = 50. So you can call printline2 like this printline2(10),

125

https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb

where it will print a line of 10 characters long, or you can call it like printline2() where it will print
a line of 50 characters long which is the default provided.

The Jupyter notebook for this blog is available here https://gitlab.com/datascience-book/code/-/blob/
master/functions.ipynb.

30.4. More default arguments
In the previous blog we have seen functions with default argument, now let’s see more of it. See the
below program, type it and execute it:

function printline3(length = 50, character = '*')
 println(character ^ length)
end

printline3()
printline3(10)
printline3(20, '#')

Output:

**

####################

You see a function that’s starts with a definition like this function printline3(length = 50,
character = '*'), and you see you can call it in three ways like without any argument like this:

printline3()

where the length defaults to 50 and character defaults to '*'. You can call it with a single argument
like this:

printline3(10)

where the length becomes 10 but the character defaults to '*'. You can call it like this:

printline3(20, '#')

Where we vary both length and character away from the default values. But what if you want a
function where you just vary the character alone so that it can be called like printline3('>'),
currently it cannot be done. So look at the new function definition of printline4 below, type it and
execute it.

126

https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb

function printline4(length = 50, character = '*')
 println(character ^ length)
end

function printline4(char::Char)
 printline4(50, char)
end

printline4()
printline4(30)
printline4('#')
printline4(25, '>')

Output:

**

##
>>>>>>>>>>>>>>>>>>>>>>>>>

Note the calls printline4(), printline4(30) and printline4(25, '>') are taken care by this
definitions:

function printline4(length = 50, character = '*')
 println(character ^ length)
end

Now for this printline4('#'), we define a another printline4() function like this:

function printline4(char::Char)
 printline4(50, char)
end

This function takes in a character as argument, and it intelligently passes it to printline4(50, char).
So you can learn few things from these, that is:

• A function can call another function. printline4(char::Char) calls printline4(length = 50,
character = '*') in the above case.

• A function with same name can have multiple definitions.

• Julia calls the reads an executes the appropriate definition depending on the type and number
of arguments passed.

The Jupyter notebook for this blog is available here https://gitlab.com/datascience-book/code/-/blob/
master/functions.ipynb.

127

https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb

30.5. Returning Values
Lets say you have a mathematical function , you expect to return . In fact functions
in programming like in mathematics are designed to return something. Julia functions returns the
output of the last statement by default. Let’s see an example, type the example below and execute it:

function add(a, b)
 a + b
end

sum = add(5, 3)
println(sum)

Output:

8

In the above example, println(sum) prints 8, but how? Because sum is assigned to this add(5, 3), that
means add(5, 3) seems to have done something and returned it out. Now let’s look at the definition
of add() function:

function add(a, b)
 a + b
end

So it just consists of one statement a + b and that’s the last statement in the function, so the
computed value of a + b must have been returned out which would have been stored in sum and
that’s what gets printed.

This is in fact amazing thing. As we have seen few blogs before, going to a hotel and ordering a dish
abstracts many things. You are served a dish, but behind it a cook works on it, before that a farmer
would have produced something, before that a factory would have produced seeds fertilizers,
animal feed, machinery etc, all of these are been abstracted away by a simple order where you say I
want such and such a dish. Functions gives you that mighty power.

You could also specify the keyword return in a function to return any thing. In the example below:

function add_with_return(a, b)
 return a + b
end

sum = add_with_return(5, 3)
println(sum)

128

Output:

8

we explicitly specify return a + b so that the a + b gets returned. Now it does not mean its only at
the last statement you must return something. Look at the code below:

function add_with_wrong_return(a, b)
 return 0
 return a + b
end

sum = add_with_wrong_return(5, 3)
println(sum)

Output:

0

in it we have returned 0 using return 0 before return a + b, so no matter what ever you do, say
add(1, 2) or what ever, it will return 0. Once a function has returned something the execution of
the function will stop, the code after return wont be executed, so in the above case return a + b is a
unreachable code. In some IDE’s and tooling environments,it would warn of possible unreachable
code thus making you to code better.

The Jupyter notebook for this blog is available here https://gitlab.com/datascience-book/code/-/blob/
master/functions.ipynb.

30.6. Named Arguments
Till now in functions you have seen functions where arguments are positional, say you define a
function like this:

function sub(a, b)
 return a - b
end

here it’s always b, the second argument that will get subtracted from a, the first argument. Like
when you call sub(5, 3) that you will get 2 as output, but what if I want to do something like this
sub(b = 20, a = 70), where I expect output to be 70 minus 20 that is 50, no that isn’t possible till
now. Now let’s see how to do these kind of stuff.

Code the function below in your Jupyter lab and let’s see how it works.

129

https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb

function increment(number = 0; inc = 0, dec = 0)
 number + inc - dec
end

Output:

increment (generic function with 4 methods)

First, we call just increment() as shown below:

increment()

Output:

0

in this case the number, inc and dec defaults to 0. And hence we get the output as 0. Now let’s call it
with just one argument as shown:

increment(1)

Output:

1

here increment(1), the 1 is passed as positional argument and hence number in function
increment(number = 0; inc = 0, dec = 0) becomes 1 and hence 1 is returned.

Now let’s see the code below:

increment(2, inc = 5)

Output:

7

and this code:

increment(12, dec = 8)

130

Output:

4

Looks like, inc and dec are not passed as positional argument, but they were named as inc in
increment(2, inc = 5) and dec in increment(12, dec = 8), yet Julia seems to have compute the
results correctly. If these were positional then 8 should have been pass to inc within the function
when we call increment(12, dec = 8).

In the example below we give both inc and dec as named arguments to the function:

increment(10, inc = 5, dec = 7)

Output:

8

So how Julia knows inc and dec are named arguments but not positional. If you see the function
definition function increment(number = 0; inc = 0, dec = 0), you can see we have place inc = 0
and dec = 0 after a semicolon ;, that’s a hint to Julia that these arguments could be named
arguments.

Just because we have said that they are named arguments, it does not mean that they have lost
their positional status. We can very well call the increment() function as shown below, where every
argument preserves its positional properties.

increment(10, 5, 7)

Output:

8

Now see how I have coded the function printline5() below, where all arguments are placed after
the semicolon ; and are hence named arguments, and they have default values too:

function printline5(;length = 50, character = '*')
 println(character ^ length)
end

Output:

printline5 (generic function with 1 method)

131

So if I want a line of variable length I can call as shown:

printline5(length = 7)

If I want a line of different character, I can call like this:

printline5(character = '@')

Output:

@@

Let’s say I want a line of my preferred length and the character of my choice, I can call like this:

printline5(length = 7, character = '!')

Output:

!!!!!!!

And I can call it with out any argument at all, in the case below it takes default length and
character:

printline5()

Output:

**

But since all are placed behind a semicolon, I notice that they have lost their positional status in this
case:

printline5(7, '!')

Output:

132

MethodError: no method matching printline5(::Int64, ::Char)

Stacktrace:

 [1] top-level scope at In[53]:1

 [2] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091

 [3] execute_code(::String, ::String) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:27

 [4] execute_request(::ZMQ.Socket, ::IJulia.Msg) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/execute_request.jl:86

 [5] #invokelatest#1 at ./essentials.jl:710 [inlined]

 [6] invokelatest at ./essentials.jl:709 [inlined]

 [7] eventloop(::ZMQ.Socket) at
/home/karthikeyan/.julia/packages/IJulia/a1SNk/src/eventloop.jl:8

 [8] (::IJulia.var"#15#18")() at ./task.jl:356

Looks like you need one positional argument before the semicolon ; for named argument to
preserve their positional properties.

You can get the Jupyter notebook file for this blog here https://gitlab.com/data-science-with-julia/
code/-/blob/master/functions.ipynb.

30.7. Single line functions
There are more tricks you can do with functions in Julia. If the function is short, you can simply
define it as shown:

y(x) = 2x + 3

Output:

y (generic function with 1 method)

Noe we call y(7) as shown below:

y(7)

133

https://gitlab.com/data-science-with-julia/code/-/blob/master/functions.ipynb
https://gitlab.com/data-science-with-julia/code/-/blob/master/functions.ipynb

Output:

17

Doesn’t it look very mathematical? That’s why many math people use Julia and I feel its better for
A.I, as A.I is nothing but math.

30.8. Functions acting on a vector
Do you know that a function can operate on a vector? We use the same function y() defined above
on a vector, see the code below:

y.([1, 2, 3, 4])

Output:

4-element Array{Int64,1}:
 5
 7
 9
 11

See how y() just takes single argument x and returns a value, but y.() that is with a dot can take a
vector, operate on it element wise one by one, pack it into a vector and return it out. It’s not that
functions in a single line can do it, any function can do it as shown below:

function y1(x)
 2x + 3
end

Output:

y1 (generic function with 1 method)

y1.([1, 2, 3, 4])

Output:

134

4-element Array{Int64,1}:
 5
 7
 9
 11

And this function with a . can operate on ranges too:

y.(1:10)

Output:

10-element Array{Int64,1}:
 5
 7
 9
 11
 13
 15
 17
 19
 21
 23

30.9. Using functions with map
There is a function called map() which takes function as argument and iterateable thing as second
argument, say Array, Tuple or Range, then it takes each element in the iterator, apply the function on
it, takes the result, packs it into an array and returns it to us.

Take a look at the code below, see how we map y on to a Array

map(y, [1, 2, 3, 4])

Output:

4-element Array{Int64,1}:
 5
 7
 9
 11

135

30.10. Anonymous function
It is not that a function should always have a name, it could be anonymous too, take a look at the
code below, type it and execute it:

map(x -> 2x + 3, [1, 2, 3, 4])

Output:

4-element Array{Int64,1}:
 5
 7
 9
 11

We have map(), rather than giving a name of a function as the first argument, we give x → 2x + 3,
that is the function has no name, but an argument x followed by arrow → followed by the return
value 2x + 3, and it works like charm.

30.11. Variable Arguments
Its not that there must be fixed set of arguments that are passed to a function, you can pass variable
number of arguments too as shown, type the function below in a Jupter lab cell:

function vararg_sum(numbers...)
 total = 0
 for number in numbers
 total += number
 end
 total
end

Output:

vararg_sum (generic function with 3 methods)

So a function was created, now let’s use it with a single argument:

vararg_sum(8)

Output:

136

8

So it works. Now let’s try many arguments:

vararg_sum(8, 2, 3, 4, 5)

Output:

22

It works too! We will soon see how it works.

A variable that gets variable argument is at the end of the function. It has a name numbers in out
case, and is followed by a triple dot … as in function vararg_sum(numbers…). Inside the function the
variable named numbers and not numbers… stores all the argument. We will see how it stores soon.
Julia gets a hint hat a variable need to store varible arguments if its followed by triple dot ….

A variable argument variable should always be at the end of the function if we are using other
variables as named and positional arguments. The below function find total of numbers and adds it
with a base base. As you can see the variable argument is at the end of the function.

function vararg_sum_with_base(base = 0, numbers...)
 total = base
 for number in numbers
 total += number
 end
 total
end

Output:

vararg_sum_with_base (generic function with 2 methods)

and once again it works as shown below:

vararg_sum_with_base(5, 1, 2, 3, 4)

Output:

15

In the below example, all we are interested is to see what numbers hold. So let’s print it out:

137

function vararg(base = 0, numbers...)
 total = base
 println(numbers)
 println(typeof(numbers))
end

Output:

vararg (generic function with 2 methods)

We call the function

vararg(1, 2, 3, 4, 5)

(2, 3, 4, 5)
NTuple{4,Int64}

As you see number inside the function is nothing but a Tuple packed with all the values we pass as
argument.

30.12. Piping / Chaining functions
Julia has this nice idea of chaining functions, the below code is equivalent to sum(1:10):

1:10 |> sum

Output:

55

So in the above code we see that 1:10 is piped to sum(). The output of this can be piped to sqrt() as
shown below:

1:10 |> sum |> sqrt

Output:

7.416198487095663

So the above code is equivalent to sqrt(sum(1:10)), but it looks more elegant. The same operation is

138

done by code below using the circle operator, you can type it by typing \circ and pressing Tab in
your notebook:

(sqrt ∘ sum)(1:10)

Output:

7.416198487095663

Notice how in piping things pass from left to right here 1:10 |> sum |> sqrt and right to left here
(sqrt ∘ sum)(1:10).

So these are the useful things about functions I feel we as data scientist must know.

You can get the Jupyter notebook file for this blog here https://gitlab.com/datascience-book/code/-/
blob/master/functions.ipynb.

30.13. Passing function as argument

 Video lecture for this section could be found here https://youtu.be/fNz2IlpG41A

It is possible in Julia to pass an function as argument, below we define a function called starline()
that prints a line of 50 stars:

starline() = println('*' ^ 50)

Output:

starline (generic function with 1 method)

Let’s test it:

starline()

Output:

**

Now let’s define a function called execute_function() as follows:

139

https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/functions.ipynb
https://youtu.be/fNz2IlpG41A

function execute_function(a_function)
 a_function()
end

Output:

execute_function (generic function with 1 method)

So how does this execute_function() works. First we take in an argument as a_function and in this
statement a_function(), we are treating it as a function and calling it. Now let’s test it:

execute_function(starline)

Output:

**

So it works. You can find notebook here https://gitlab.com/datascience-book/code/-/blob/master/
passing_function_as_arguments.ipynb.

30.14. Multiple Dispatch

 Video lecture for this section could be found here https://youtu.be/fNz2IlpG41A

Take a look at the code below, type it and execute it in your Jupyter notebook or in a text file. Let’s
see how it works. If you see, we have defined a functions named multi_disp many times:

140

https://gitlab.com/datascience-book/code/-/blob/master/passing_function_as_arguments.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/passing_function_as_arguments.ipynb
https://youtu.be/fNz2IlpG41A

function multi_disp()
 println("In multi_disp()")
end

function multi_disp(some_argument)
 println("In multi_disp(some_argument)")
end

function multi_disp(number::Int)
 println("In multi_disp(number::Int)")
end

function multi_disp(arg1, arg2)
 println("In multi_disp(arg1, arg2)")
end

multi_disp()
multi_disp("abc")
multi_disp(70)
multi_disp(1, 2)

Output

In multi_disp()
In multi_disp(some_argument)
In multi_disp(number::Int)
In multi_disp(arg1, arg2)

So if you see this piece of code

multi_disp()
multi_disp("abc")
multi_disp(70)
multi_disp(1, 2)

one can see multi_disp() calling this function definition:

function multi_disp()
 println("In multi_disp()")
end

Notice that the function definition has no arguments, and multi_disp() has no arguments too!

Now take for instance we are calling multi_disp("abc"), some how this executes this function:

141

function multi_disp(some_argument)
 println("In multi_disp(some_argument)")
end

and not any other function link this one:

function multi_disp(number::Int)
 println("In multi_disp(number::Int)")
end

Julia knows that function multi_disp(number::Int) takes an integer for argument and hence should
be avoided when we call multi_disp("abc") where "abc" is a string. But when multi_disp(70) is
called, Julia rightly executes multi_disp(number::Int) because we are passing in number. This is
called multiple dispatch, and it is one of the most powerful feature that Julia offers to programmers.
We will see it when we create complex programs where a same function needs to do multiple
things depending on number of arguments and types of arguments varies.

Now for multi_disp(1, 2), Julia rightly calls:

function multi_disp(arg1, arg2)
 println("In multi_disp(arg1, arg2)")
end

Because the above function has two arguments. So Julia takes into account the number of
arguments and the arguments types when trying to decide which function to call when function
names are same.

Get the notebook for this blog here https://gitlab.com/datascience-book/code/-/blob/master/
multiple_dispatch.ipynb.

142

https://gitlab.com/datascience-book/code/-/blob/master/multiple_dispatch.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/multiple_dispatch.ipynb

Chapter 31. Regular Expressions (regexp)

 Video lecture for this section could be found here https://youtu.be/AkYyjhEizFA

Get the Jupyter notebook here https://gitlab.com/datascience-book/code/-/blob/
master/regexp.ipynb

Regular expressions are used to check if a pattern exists in a string. Without much blah blah let’s
see what it is.

31.1. A taste of Regexp
Type the code below and execute

regexp = r"abc"
m = match(regexp, "english letters start with abc")

Output:

RegexMatch("abc")

Take this statement:

regexp = r"abc"

Here you have a variable named regexp which is been assigned to r"abc", which is not a string. Even
thought the abc are surrounded by double quotes, the r before the quotes makes it an expression.

Now in this line:

m = match(regexp, "english letters start with abc")

Julia see’s if the expression (not string) abc is present in the string "english letters start with
abc", and it is present it returns a match, and hence we get the output RegexMatch("abc").

In the example below, you see that circular brackets surround abc and make it (abc). This means we
want to capture that expression, let’s executeand see what happens:

regexp = r"(abc)"
m = match(regexp, "english letters start with abc")

Output:

143

https://youtu.be/AkYyjhEizFA
https://gitlab.com/datascience-book/code/-/blob/master/regexp.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/regexp.ipynb

RegexMatch("abc", 1="abc")

So we get the output that it matches abc, which is denoted by RegexMatch("abc", and this is followed
by capture which is denoted by 1="abc").

Now you can get this match is captured in variable m and you can get it as shown below:

m[1]

Output:

"abc"

These things are called captures.

\d is used to match a digit. In the example below string "Five means 5 in English." contains digit 5
and so match returns a positive match:

regexp = r"\d"
m = match(regexp, "Five means 5 in English.")

Output:

RegexMatch("5")

Now let’s say we wants to match exactly 6 digits. We know \d means match a digit, and we append
{6} to it to match exactly 6 times as shown below:

regexp = r"\d{6}"
m = match(regexp, "I live in 36/1, my postal code is 600131.")

Output:

RegexMatch("600131")

In the above example 36 consists of digits and so does 1 in 36/1, they don’t match \d{6} because they
are two and one digit each, the one that matches is 600131.

The plus sign denotes one or more so \d+ means we need to match one or more digit. So the below
example matches 36 in "I live in 36/1, my postal code is 600131.":

144

regexp = r"(\d+)"
m = match(regexp, "I live in 36/1, my postal code is 600131.")

Output:

RegexMatch("36", 1="36")

since we have given it like (\d+) which means capture, we get the output as RegexMatch("36",
1="36").

The example below shows how to check for a match:

regexp = r"(\d{6})"
m = match(regexp, "I live in 36/1, my postal code is 600131.")

if m != nothing
 println("There is a match")
end

Output:

There is a match

600131 is a match for (\d{6}), so there is a match. You can check if there is a match by capturing it in
a variable, in this case its m, and if there is a match it should not be nothing. So any thing inside this
if block:and

if m != nothing
 println("There is a match")
end

Get’s executed if there is a match, so the code prints There is a match.

In the code below we check for a 6 digit string which is not present in "I live in 36/1, my postal
code is 600.", and hence the condition m != nothing becomes false and so nothing gets printed.

regexp = r"(\d{6})"
m = match(regexp, "I live in 36/1, my postal code is 600.")

if m != nothing
 println("There is a match")
end

The code below is same as the example above, but here we have got the else part, since m !=

145

nothing becomes false, the else part gets executed and Match not found gets printed.

regexp = r"(\d{6})"
m = match(regexp, "I live in 36/1, my postal code is 600.")

if m != nothing
 println("There is a match")

 else

 println("Match not found")
end

Output:

Match not found

Hope you have got some vague idea about regexp, we will see it in bit more detail in the coming
sections.

31.2. Things to remember
There are some things you need to remember, or at least refer from time to time. Those are
mentioned in table below[10].

If you do not understand now, don’t worry, you will be able to pick it up.

Thing What it means

. Any single character

\w Any word character (letter, number, underscore)

\W Any non-word character

\d Any digit

\D Any non-digit

\s Any whitespace character

\S Any non-whitespace character

\b Any word boundary character

^ Start of line

$ End of line

\A Start of string

\z End of string

[abc] A single character of: a, b or c

146

Thing What it means

[^abc] Any single character except: a, b, or c

[a-z] Any single character in the range a-z

[a-zA-Z] Any single character in the range a-z or A-Z

(…) Capture everything enclosed

(a b)

a or b a?

Zero or one of a a*

Zero or more of a a+

One or more of a a{3}

Exactly 3 of a a{3,}

3 or more of a a{3,6}

Between 3 and 6 of a i

case insensitive m

make dot match newlines x

ignore whitespace in regex o

31.3. The dot
If you refer the table, the dot . in regexp is used to match anything. Take a regexp r".at", the .at
means that it will match anything that’s before at, so it matches rat in There is rat in my house":

match(r".at", "There is rat in my house")

Output:

RegexMatch("rat")

It matches cat in "There is cat in my house":

match(r".at", "There is cat in my house")

Output:

RegexMatch("cat")

It matches bat in "There is bat in my house"

147

match(r".at", "There is bat in my house")

Output:

RegexMatch("bat")

31.4. Character classes
The dot before at .at, matches anything before .at, but let’s say we want to match only, b, c and r
before at, we can group them as character class like this [bcr], where we put them inside square
braces, now we follow it with at like this [bcr]at, this matches bat, cat, rat, but notthing else.

Take a look at the examples below where this regular expression r"[bcr]at" is put into action and
matches stuff:

match(r"[bcr]at", "There is rat in my house")

Output:

RegexMatch("rat")

match(r"[bcr]at", "There is cat in my house")

Output:

RegexMatch("cat")

match(r"[bcr]at", "There is bat in my house")

Output:

RegexMatch("bat")

But in the example below, we have a string that has no bat, cat or rat in it, so it returns nothing:

match(r"[bcr]at", "There is mat in my house")

Below are simple programs where regexp r"[bcr]at" is used to detect presence of the animal
names bat, cat or rat, if yes it prints here is an animal in the house. else it prints I don’t detect an

148

animal..

string = "There is rat in my house"

match_data = match(r"[bcr]at", string)

if match_data != nothing
 println("There is an animal in the house.")
else
 println("I don't detect an animal.")
end

Output:

There is an animal in the house.

string = "There is mat in my house"

match_data = match(r"[bcr]at", string)

if match_data != nothing
 println("There is an animal in the house.")
else
 println("I don't detect an animal.")
end

Output:

I don't detect an animal.

We can provide something like ranges in character classes, say [A-Z] means match anything from
capital A to capital Z (both inclusive), so in the example below U is the first match, so it get’s
detected:

match(r"[A-Z]", "this string contains UPPERCASE letter")

Output:

RegexMatch("U")

There is no capital letter in "this string does not contains uppercase letter", so the below
example returns nothing as a match:

149

match(r"[A-Z]", "this string does not contains uppercase letter")

In computers A to Z are ordered before a to z, so if we give a regular expression r"[A-z]" as show
below:

match(r"[A-z]", "There is a letter")

Output:

RegexMatch("T")

It detects any letter, so the first letter T gets matched and we get RegexMatch("T") as output. How
ever this same regexp does not match numbers, so we get nothing as out put in the program below:

match(r"[A-z]", "12345")

If we want to match numbers, we can use \d or in case of character classes we can use [0-9] as
shown below to return a positive match:

match(r"[0-9]", "12345")

Output:

RegexMatch("1")

In character classes ^ (carrot) signifies not, so when we say [^0-9] it means detect any thing that not
0, 9 and and any thing in between, so the string in example below "12345" is just numbers, so
nothing gets detected.

match(r"[^0-9]", "12345")

How ever the same regep detects a in the string "12345 abc" below because its not a number:

match(r"[^0-9]", "12345 abc")

Output:

RegexMatch(" ")

150

31.5. Anchors
Let’s say you want to match something at the start and end of a string, you can use a thing called
anchors, once again refer to things to remember section for this. Anchor’s \A and ^ are used to
denote start of a string, hence r"\AHello" and r"^Hello" checks if Hello exists at the start of the
string, if yes it matches as shown in the below examples:

match(r"\AHello", "Hello world!")

Output:

RegexMatch("Hello")

match(r"^Hello", "Hello world!")

Output:

RegexMatch("Hello")

In the below example we don’t have a match because Hello is not at the start of "Say Hello world!":

match(r"\AHello", "Say Hello world!")

Similarly anchors \Z and $ are used to match something that should be present at the end of a
string, so look at the exples below and explain it to yourself:

match(r"world!\Z", "Hello world!")

Output:

RegexMatch("world!")

match(r"world!$", "Hello world!")

Output:

RegexMatch("world!")

In the example below, world! is not present at the end of "Hello world!, said the computer" , so

151

there is no match and it returns nothing.

match(r"world!\Z", "Hello world!, said the computer")

31.6. Captures
Regexp is used to detect a pattern in a string, but what if we want to see what string it had
matched? Welcome to captures. Captures are created by wrapping regexp in round braces as
shown:

match(r"(abc)", "This string contains abc in it")

Output:

RegexMatch("abc", 1="abc")

In the above example we have wrapped abc in regexp like this: r"(abc)", so apart from returning a
positive match RegexMatch("abc"), it will also return a capture.

Look at the captures below, first we capture abc like this: (abc), inside the capture we once again
capture bc ike this (a(bc)), execute the code:

match(r"(a(bc))", "This string contains abc in it")

Output:

RegexMatch("abc", 1="abc", 2="bc")

Regexp start from the outside, so first it captures abc in "This string contains abc in it" and then
it captures bc inside the first capture. So you end up with two captures like this: RegexMatch("abc",
1="abc", 2="bc").

Look at the example below, execute it:

match(r"(a(b(c)))", "This string contains abc in it")

Output:

RegexMatch("abc", 1="abc", 2="bc", 3="c")

Let’s see how it works. So we have a capture as shown: (a(b(c))). Forget the inner braces, so the
outer most braces looks like (abc), so abc is captured and we get RegexMatch("abc", 1="abc"). Next

152

come to the inner braces that captures bc (a(bc)), so that become the second capture and we get
RegexMatch("abc", 1="abc", 2="bc"). Now the most inner most capture is just c as in `(a(b(c))), so
just c is in third capture and we get RegexMatch("abc", 1="abc", 2="bc", 3="c").

31.6.1. Capturing phone number

Let’s look at something that might be practical. Let’s say that one would write his or her phone
number in this format: +91 8428050777, where +91 is the country code and 8428050777 is the phone
number. Now we need to write a regexp that would capture it.

Look at the piece of code below and let’s execute it:

match(r"((\d{2}) (\d{10}))", "+91 8428050777")

Output:

RegexMatch("91 8428050777", 1="91 8428050777", 2="91", 3="8428050777")

 You need to refer Things to remember section in Regexp

So we have got first capture as the entire phone number. This is accomplished by the regular
expression r"(\d{2} \d{10})", where r"(\d{2})" matches the 91 in "+91 8428050777", next there is a
space, s the regexp is now r"(\d{2}) " and then there is a ten digit number , so its now r"(\d{2}
\d{10})". this would give a match and capture like this: RegexMatch("91 8428050777", 1="91
8428050777")

Next we need to capture the country code which is nothing but the first two digits in the regexp, so
the regexp now becomes like this: r"((\d{2}) \d{10})", notice the braces around \d{2}. So this
would produce a match and capture like this RegexMatch("91 8428050777", 1="91 8428050777",
2="91").

Similarly we apply a capture around \d{10} for local area number so we get a regexp as shown: r"
\d{2}) (\d{10}", this gives us our final match and capture as like this: RegexMatch("91 8428050777",
1="91 8428050777", 2="91", 3="8428050777").

in the program below, we see how to use captures, execute it and we will see baout it.

match_data = match(r"((\d{2}) (\d{10}))", "+91 8428050777")

println("Phone Number: ", match_data[1])
println("Country code: ", match_data[2])
println("Local number: ", match_data[3])

Output:

153

Phone Number: 91 8428050777
Country code: 91
Local number: 8428050777

So the above code we assign match(r"\d{2}) (\d{10}", "+91 8428050777") to a variable named
match_data in this line:

match_data = match(r"((\d{2}) (\d{10}))", "+91 8428050777")

So match_data contains RegexMatch("91 8428050777", 1="91 8428050777", 2="91", 3="8428050777").
Which means match_data[1] will have "91 8428050777", match_data[2] will have 91 and match_data[3]
will have the capture "8428050777". We print those in the following lines of code:

println("Phone Number: ", match_data[1])
println("Country code: ", match_data[2])
println("Local number: ", match_data[3])

31.7. Counts

 Refer Things to remember section to understand the code.

Looks at the piece of code below, the regex r"\d" matches exactly one digit that is 8 in "8420050777".

match(r"\d", "8420050777") # match just one digit

Output:

RegexMatch("8")

Now say we want to match more than one digit, we could use the + sign after \d to get regular
expression like r"\d+". So this identifies a (sub)string having one or more digit as shown below:

match(r"\d+", "8420050777") # + means one or more

Output:

RegexMatch("8420050777")

So the whole number 8420050777 gets matched.

Now * in regex means zero or more and \s means space, so type the code below and execute it:

154

match(r"\w*\s*\d+", "Karthik 8420050777") # * zero or more

Output:

RegexMatch("Karthik 8420050777")

You must read it as zero or more printable characters r"\w*", followed by zero or more spaces
r"\w*\s*", followed by one or more numbers r"\w*\s*\d+". So the above example matches "Karthik
8420050777".

You can remove the name, increase or decrease spaces, and it would still work. I have removed the
name in the example below and the above regex works as shown:

match(r"\w*\s*\d+", "8420050777") # * zero or more

Output:

RegexMatch("8420050777")

in the next example , we will try to form regular expression where it needs to match something like
"Karthik: 8420050777". The example below fails to produce a math because there is no colon in the
string.

match(r"\w*: \d+", "Karthik 8420050777")

To fix it we use the zero or one thing, which is denoted by ? as shown below:

match(r"\w*:? \d+", "Karthik 8420050777") # ? means zero o one

Output:

RegexMatch("Karthik 8420050777")

So the regex should be read as zero or more words/printable characters r"\w*", followed by zero or
one colon r"\w*:", followed by exactly one space r"\w*:? ", followed by one or more numbers.

This would even match when there is a colon in between name and space as shown below:

match(r"\w*:? \d+", "Karthik: 8420050777")

Output:

155

RegexMatch("Karthik: 8420050777")

Now let’s capture the name and phone number:

match(r"(\w*):? (\d+)", "Karthik: 8420050777")

Output:

RegexMatch("Karthik: 8420050777", 1="Karthik", 2="8420050777")

To make the regex more robust, let’s introduce zero or more spaces between the : and did it as
shown below:

match(r"(\w*):?\s*(\d+)", "Karthik: 8420050777")

Output:

RegexMatch("Karthik: 8420050777", 1="Karthik", 2="8420050777")

Note in the above example we have added \s* between :? and \d+.

Now let’s test our almost bullet proof regex with lot of spaces between name and number:

match(r"(\w*):?\s*(\d+)", "Karthik: 8420050777")

Output:

RegexMatch("Karthik: 8420050777", 1="Karthik", 2="8420050777")

Let’s say t hat you want to match exact number of counts, say only 4 numbers, you could use
something lke this:

match(r"\d{4}", "Karthik: 8420050777")

Output:

RegexMatch("8420")

Since we seen usage of {<number>} in other sections in Regex, I am not going to go more into this.

156

31.8. String to regexp
May be one day you need to write a piece of code where you need to construct a regular expression
dynamically. For that you need to construct a string, and this needs to be used in a regexp.

So look at the code below and execute it:

string = "\\d{4}"
regex = Regex(string)

Output:

r"\d{4}"

When wen print the above string using println(string) it prints \d{4} [11], we pass string to a
function called Regex like this: Regex(string) and it gets converted to a regular expression. We do
capture it in a variable named regex.

Now let’s use the regexp to amtch some numbers:

match(regex, "43248")

Output:

RegexMatch("4324")

It works!

Below is a code where I have use repr function to convert regex into string, it was done for
curiosity. May be it could serve you some purpose some day:

regexp = r"\d+"
println(repr(regexp))

Output:

r"\d+"

31.9. Case sensitive & insensitive match
We can tell a regexp to do case sensitive or insensitive match, for example take the example below:

157

match(r"(?i)uppercase", "This matches UPPERCASE")

Output:

RegexMatch("UPPERCASE")

r"uppercase" should not match UPPERCASE but it can be made to match it by adding (?i) to the prior
of uppercase, so it becomes like this r"(?i)uppercase. This would match UPPERCASE in "This matches
UPPERCASE".

Since it’s a case insensitive match, it also matches uppercase as shown below:

match(r"(?i)uppercase", "This matches uppercase")

Output:

RegexMatch("uppercase")

A very similar example is shown below, I think you should be able to explain it by now:

match(r"(?i)UPPERCASE", "This matches uppercase")

Output:

RegexMatch("uppercase")

(?i) switches on caseinsensivivity, wheras (?-i) switches it off. So look at the example below:

Mixing case sensitivity
match(r"sensitive(?i)caseless(?-i)sensitive", "sensitiveCASELESSsensitive")

Output:

RegexMatch("sensitiveCASELESSsensitive")

r"sensitive" matches sensitive, then caseinsenivity gets switched on using (?i), so
r"sensitive(?i)caseless" matches sensitiveCASELESS, now we make it case sensitive using this
switch (?-i), and hence r"sensitive(?i)caseless(?-i)sensitive" matches the whole
sensitiveCASELESSsensitive, and we get a match.

158

31.10. Scanning
You might be interested to scan a string for regexp and collect the words that match it, for that kind
of operations I have written a function scan_regexp as shown below. Type the code and execute it,
we will see how it works.

string = "I have bat, cat and rat in my house"

function scan_regexp(regexp, string)
 string = replace(string, r"\W" => " ")
 words = split(string)

 output = []

 for word in words
 if match(regexp, word) != nothing
 push!(output, word)
 end
 end

 output
end

scan_regexp(r".at", string)

Output:

3-element Vector{Any}:
 "bat"
 "cat"
 "rat"

First we start with an empty function like this:

function scan_regexp(regexp, string)
end

Let us receive the regular expression in variable regexp and the string that should be scanned in
variable string.

Now if you refer Things to remember section, \W in regexp means non alphabetic character’s, so we
create a regular expression to scan all non alphabets and replace them with spaces in the following
line string = replace(string, r"\W" ⇒ " ").

159

function scan_regexp(regexp, string)
 string = replace(string, r"\W" => " ")
end

Next we split the string into words using the this line words = split(string), so the function now
becomes like this:

function scan_regexp(regexp, string)
 string = replace(string, r"\W" => " ")
 words = split(string)
end

Let’s now have a array named output that will collect all words that match the regexp

function scan_regexp(regexp, string)
 string = replace(string, r"\W" => " ")
 words = split(string)

 output = []
end

Now for each word in word we compare if it matches the regular expression:

function scan_regexp(regexp, string)
 string = replace(string, r"\W" => " ")
 words = split(string)

 output = []

 for word in words
 if match(regexp, word) != nothing
 end
 end
end

If it matches we push that word into output using the following code: push!(output, word), so the
function now looks like this:

160

function scan_regexp(regexp, string)
 string = replace(string, r"\W" => " ")
 words = split(string)

 output = []

 for word in words
 if match(regexp, word) != nothing
 push!(output, word)
 end
 end
end

Finally we return the output:

function scan_regexp(regexp, string)
 string = replace(string, r"\W" => " ")
 words = split(string)

 output = []

 for word in words
 if match(regexp, word) != nothing
 push!(output, word)
 end
 end

 output
end

31.11. Learn more about regex
Regular expression is huge topic, we have just scratched the surface to give an introduction to you,
but you need to be good with it if you are doing text mining and other operations. So I strongly
encourage the reader to do more research, seek and learn about it.

You may find this gist to be useful https://gist.github.com/dataPulverizer/
23c8d992d351d7faf0ed1c1966605b10.

You can also refer these books

1. Introducing regular expressions https://www.amazon.com/dp/B008K9OGDA

2. Mastering regular expressions https://www.amazon.com/dp/B007I8S1X0

[10] I got this list from http://rubular.com/

[11] One might need to learn about escape sequence in strings https://www.youtube.com/watch?v=dJ4PnBXkzXI

161

https://gist.github.com/dataPulverizer/23c8d992d351d7faf0ed1c1966605b10
https://gist.github.com/dataPulverizer/23c8d992d351d7faf0ed1c1966605b10
https://www.amazon.com/dp/B008K9OGDA
https://www.amazon.com/dp/B007I8S1X0
http://rubular.com/
https://www.youtube.com/watch?v=dJ4PnBXkzXI

Chapter 32. Struct

 Video lecture for this section could be found here https://youtu.be/Izsx3_IM81k

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/struct.ipynb

Let’s say you want to find area of rectangle, you could write a Julia function named
rectangle_area(length, breadth) that returns the rectangle area. But don’t you think it will be
intuitive if we can write something like this area(rect::Rectangle), where the rectangle holds a
special data type which packs length an breadth into one variable? Let’s see hoe it can be done.

There is a thing called struct in Julia with which we can define complex data types. So in the code
below we have created our own type called Rectangle which can hold `length and breadth. `

struct Rectangle
 length
 breadth
end

An instance of type Rectangle can be created as shown below:

rect = Rectangle(4, 5)

Output:

Rectangle(4, 5)

In the above piece of code rect variable holds an object of type Rectangle, this rect can be thought
as a union of two variables namely length and breadth. Now let’s write area function to find out the
area of Rectangle.

The area function can be written as shown below.

function area(rect::Rectangle)
 rect.length * rect.breadth
end

If you see the function accepts one argument named rect, which must be of type Rectangle, else the
function would throw an error. Inside the function we are returning the multiple of rect’s `length,
accessed by dot . operator like this: rect.length and it’s breadth, which is accessed by dot operator
like this rect.breadth.

Finally we can use our function arra, to calculate area of rectangle as shown below:

162

https://youtu.be/Izsx3_IM81k
https://gitlab.com/datascience-book/code/-/blob/master/struct.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/struct.ipynb

area(rect)

Output:

20

It works!

Now let’s create a class called Square. A square can be defined just by its side length, so we just have
one variable in it called side as shown below:

struct Square
 side
end

We can create an instance of Square as shown:

s = Square(5)

Output:

Square(5)

Now let’s write area function for Square type. We write is as shown:

function area(square::Square)
 side = square.side
 area(Rectangle(side, side))
end

A square is nothing but rectangle having equal sides, so we can reuse area(rect::Rectangle). So in
the above function we get the side length of square using the following statement side =
square.side, and we construct a rectangle from it using Rectangle(side, side), and we call
`Rectangle’s area upon it like this: area(Rectangle(side, side)).

Now let’s test it out:

area(s)

Output:

163

25

It works!

We can access attribute of a struct’s instance using dot . operator as shown:

s.side

Output:

5

But what happens if we want to change the side of square:

s.side = 7

Output:

setfield! immutable struct of type Square cannot be changed

Stacktrace:

[1] setproperty!(x::Square, f::Symbol, v::Int64)

@ Base ./Base.jl:34

[2] top-level scope

@ In[11]:1

[3] eval

@ ./boot.jl:360 [inlined]

164

[4] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,
filename::String)

@ Base ./loading.jl:1094

It fails!

32.1. Mutable Struct
Le’s say we want to define a data type called Person that stores ones name and age. Age changes, so
it’s better to have it as mutable struct. mutable struct is a struct who’s instance variable’s attributes
can be reassigned to new values.

This is not a Julia performance book, so I do not want to go into pro’s and cons of
mutable and immutable things in computer programming. But if you really want
this book to have such a content, do contact me, I might be tempted to write it.

So we create a mutable struct called Person as shown:

mutable struct Person
 name
 age
end

We create a person instance:

p = Person("Karthik", 38)

Output:

Person("Karthik", 38)

We can reassign the person age, or even the persons name, in the code below we are changing the
person’s age:

p.age = 39

Output:

39

165

Now let’s print the person and see if the age has changed:

p

Output:

Person("Karthik", 39)

Now let’s assign person’s name to 7824 and age to Zigor:

p2 = Person(7824, "Zigor")

Ouput:

Person(7824, "Zigor")

It works! But it shouldn’t. How can a person’s age be Zigor. Let’s fix such kind of things up.

32.2. Value Types
It turns out that in a struct we can tell what type the attribute should be. If you look at the code
below, we create a struct named Robot and it has two attributes name and model_number. We enforce
name to be of type string using the name::String statement, and we enforce model_number to be integer
using model_number::Int.

struct Robot
 name::String
 model_number::Int
end

Now if try to create instance of robot using mismatched data types, we will get an error as shown:

r = Robot(7824, "Zigor")

Output:

MethodError: Cannot `convert` an object of type Int64 to an object of type String
Closest candidates are:
 convert(::Type{String}, ::String) at essentials.jl:210
 convert(::Type{T}, ::T) where T<:AbstractString at strings/basic.jl:231
 convert(::Type{T}, ::AbstractString) where T<:AbstractString at strings/basic.jl:232
 ...

166

Stacktrace:

[1] Robot(name::Int64, model_number::String)

@ Main ./In[25]:2

[2] top-level scope

@ In[26]:1

[3] eval

@ ./boot.jl:360 [inlined]

[4] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,
filename::String)

@ Base ./loading.jl:1094

If we give the right data types, it would work:

r = Robot("Zigor", 7824)

Output:

Robot("Zigor", 7824)

32.3. Complex Data Types
It’s not that we need to have only simple data types associated with struct’s attributes, we can have
complex data types too. Imagine you are designing a game where there is a sprite, and its position
on the screen is defined by a complex data type called position, you can define them as shown:

167

struct Position
 x::Int
 y::Int
end

mutable struct Sprite
 name::String
 position::Position
end

Note that Sprite is mutable because its position would change. I nthe code below we define a sprite
with a postion

position = Position(5, 5)
sprite = Sprite("Turtle", position)

Output:

Sprite("Turtle", Position(5, 5))

We write a function called move right in which we take a Sprite as input, and we assign new
position to it as shown

function move_right(sprite::Sprite)
 new_x = sprite.position.x + 1
 y = sprite.position.y

 sprite.position = Position(new_x, y)
end

Output:

move_right (generic function with 1 method)

Now le’s move our sprite right

move_right(sprite)

Output

Position(6, 5)

168

We inspect sprite to see it’s position

sprite

Output:

Sprite("Turtle", Position(6, 5))

Its position has changed. Yaay!

169

Chapter 33. Vectors & Matrix

170

Chapter 34. Files

34.1. Plain Text

34.2. CSV

34.3. JSON

34.4. Text Vs Binary

171

Chapter 35. Scrapping

172

Chapter 36. Plots

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/plots.ipynb

 Video lecture for this section could be found here https://youtu.be/BWTyQUDRXwI

36.1. Installing Julia Plots
It is said that two third of our brains is devoted to process vision. We humans are very visual
animals, we can detect patters from seeing things rather than looking at a table of numbers. In fact
many Data Scientists make their living by creating just visualizations and info news so that people
concerned can easily digest it and understand it. I don’t think I will be going to very detail about
visualizations, the path for these blogs are not decided yet, but let’s here look at plotting in Julia.

There is a package called Plots (https://docs.juliaplots.org/latest/) in Julia which you can install it as
follows:

First launch the Julia REPL by typing in julia in your terminal.

$ julia
 _
 _ _ _(_)_ | Documentation: https://docs.julialang.org
 (_) | (_) (_) |
 _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 1.5.3 (2020-11-09)
 _/ |__'_|_|_|__'_| | Official https://julialang.org/ release
|__/

julia> |

Go to packages by typing in] at the julia> ` prompt, then in `pkg> type this:

(@v1.5) pkg> add Plots

so should see lot of packages getting installed and finally Plots too will get installed. Now the
notebook for this blog is here https://gitlab.com/data-science-with-julia/code/-/blob/master/
plots.ipynb. It’s not that you must install Plots from Julia REPL, you can also install it pragmatically
as shown below, right from your Jupyter lab:

Uncomment lines below if you want to install Plots
using Pkg
Pkg.add("Plots")

173

https://gitlab.com/datascience-book/code/-/blob/master/plots.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/plots.ipynb
https://youtu.be/BWTyQUDRXwI
https://docs.juliaplots.org/latest/
https://gitlab.com/data-science-with-julia/code/-/blob/master/plots.ipynb
https://gitlab.com/data-science-with-julia/code/-/blob/master/plots.ipynb

I have commented it out in the one you can get it from Gitlab because I have already installed it
using the REPL. Okay lets tell Julia that we are using Plots with the following statement:

using Plots

Output:

┌ Info: Precompiling Plots [91a5bcdd-55d7-5caf-9e0b-520d859cae80]
└ @ Base loading.jl:1278

This could take a while as it depends on the processing speed of your computer. For my 7-year
laptop I think it took nearly 20 minutes, but once the compiling of Plots is doe, from the next time
on its fast.

Now let’s plot a simple pie chart which reflects my favorite food platter:

pie(
 ["Mutton Briyani", "Tandoori Chicken", "Prawn Roast", "Greens"],
 [60, 20, 10, 10],
 title = "My Favorite Plate"
)

Output:

We will see more of Plots in my upcoming sections.

174

36.2. Basic plot Function - Plotting Sin and Cos
To start with let’s define θ to be from -2π to 2π with steps of 0.01 as shown below:

θ = -2π : 0.01 : 2π

Output:

-6.283185307179586:0.01:6.276814692820414

Now lets plot cos and sin values of θ

plot(
 θ, [sin.(θ), cos.(θ)],
 title = "sin and cos plots",
 xlabel = "Radians",
 ylabel = "Amplitude",
 label = ["sin(θ)" "cos(θ)"],
 ylims = (-1.5, 1.5),
 xlims = (-7, 7)
)

Output:

images::plots/plots_2/output_4_0.svg[]

So, what just happened? We have a function called plot():

plot()

To that we pass the first argument to be θ:

plot(θ)

the second argument to be an array of sin and cos of θ:

plot(θ, [sin.(θ), cos.(θ)])

apart from that we pass the following attributes too:

• title : Self explanatory

• xlabel : The text that must appear for the x-axis

• ylabel : The text that must appear for the y-axis

175

• label : The legend of the curves shown in top right

• xlims and ylims : The minimum and maximum of coordinates that needs to be displayed for the
plot, these accepts Tuple as argument

36.2.1. Building a Plot

Its not that you have to create a plot all in a go, you can build it part by part, you can see blow that
we plot sin`of `θ below, we have set linewidth = 3 so it appears nice and thick, we have set the
color to be purple, and its label to be sin θ:

p = plot(θ, sin.(θ), color = "purple", linewidth = 3, label = "sin θ")

so you get a plot as shown:

we have assigned the output of the above plot to a variable named p, so in the future this could be
modified. Now lets add cos plot to p, for that look at the code below:

plot!(p, θ, cos.(θ), color = "red", linewidth = 3, label = "cos θ")

Output:

176

so it is the same with just one difference, we are mutating p by passing it to the plot!() function.
Notice the exclamation mark ! in the plot!() and it accepts a plot as its first argument which it
changes. Now in the code below we further decorate p with title, labels and limits:

plot!(
 p,
 title = "sin and cos plots",
 xlabel = "Radians",
 ylabel = "Amplitude",
 ylims = (-1.5, 1.5),
 xlims = (-7, 7)
)

Output:

177

36.3. Scatter and Histogram
So let’s create a simple scatter, x-values as first argument, y-values as second, I have given color as
red but its completely optional:

scatter_plot = scatter([1, 2 , 3, 4], [1, 2, 3, 4], color = "red")

Output:

178

We have captured last output in a variable called scatter_plot, this is much better variable name I
tell you. In Basic plots Functions I had given a names like p which is actually blasphemy in
programming world, you might be smart today and understand what p is, but possibly 6 months
later it will haunt you, or a programmer touching your code sometime later might curse you thus
causing your loved ones and you to vomit blood and die. Anyway, we now add another scatter to
scatter_plot using the code below:

scatter!(scatter_plot, [1, 7, 8, 2, 3], [2, 6, 3, 1, 4], color = "blue")

Output:

179

As you can see above, this time we have not used plot!() to modify scatter_plot but we have used
this function scatter!() which I personally feel is much better to read. And we have put these new
dots in color blue. Let’s modify scatter_plot again this time using plot!() function as shown below:

plot!(
 scatter_plot,
 [1, 2, 3, 4],
 [-1, -2 , -3, -4],
 color = "orange",
 seriestype = :scatter
)

Output:

180

As you see above in the above plot!() we have used named argument seriestype and have set it to
:scatter for it to be a scatter plot. I am unsure why we have a colon : before scatter, should check
Julia docs about it. Okay, looks like this is a special kind of thing known as Symbol, another data type
in Julia, possibly it occupies less space compared to "scatter" which is a string when called multiple
times. I just checked this code:

julia> :a
:a

julia> typeof(:a)
Symbol

just to check its type.

Okay, the label box int above scatter plots is overlapping a data point, lets increase the x right limit
to 12 so that it would look better:

plot!(scatter_plot, xlims = (0, 12))

Output:

181

Better now!

For some reason I like histograms, so I have plotter a histogram below:

histogram(rand(1:1000, 500), bins = 20)

Output:

182

I think I will be using it while writing about the [Iris data set](
https://en.wikipedia.org/wiki/Iris_flower_data_set). You can get the notebook file for this blog here
https://gitlab.com/data-science-with-julia/code/-/blob/master/plots.ipynb.

36.4. Learn more about Plots
This is just a very brief section about plots and definetly you need to learn more. Please check the
official Plots website https://docs.juliaplots.org/latest/, and this Julia Plots by Prude University
https://www.math.purdue.edu/~allen450/Plotting-Tutorial.html is good too.

183

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://gitlab.com/data-science-with-julia/code/-/blob/master/plots.ipynb
https://docs.juliaplots.org/latest/
https://www.math.purdue.edu/~allen450/Plotting-Tutorial.html

Chapter 37. Dataframes

184

Chapter 38. Debugging

185

Mathematics

186

Chapter 39. Vectors

Video lecture for this section could be found here https://youtu.be/468U1e4ITjI?
list=PLe1T0uBrDrfOLQlomF_4AxHa4LX0wsCXa

Jupyter notebook for this section could be found here https://gitlab.com/
datascience-book/code/-/blob/master/vectors.ipynb

To learn in detail about vectors, visit https://www.khanacademy.org/math/linear-
algebra/vectors-and-spaces

An array in Julia is vector. but I found some more functions needs to be written so that we can do
operations like mathematical vectors. So this chapter was born. May be there is some package out
there that does this, but since the aim of this book is to give me deep understanding of Data Science
from its mathematical concepts, I decided to write my own functions.

39.1. Addition
So let’s begin. First let’s define two vectors a and b of equal length and add it.

187

https://youtu.be/468U1e4ITjI?list=PLe1T0uBrDrfOLQlomF_4AxHa4LX0wsCXa
https://youtu.be/468U1e4ITjI?list=PLe1T0uBrDrfOLQlomF_4AxHa4LX0wsCXa
https://gitlab.com/datascience-book/code/-/blob/master/vectors.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/vectors.ipynb
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces

a = [1, 2, 3]
b = [4, 5, 6]
a + b

Output:

3-element Vector{Int64}:
 5
 7
 9

This addition won’t be possible if a and b are of different lengths.

39.2. reduce function
We can do the same operation explained above with reduce function. Say we have an array of
vectors, we avoid writing loop and add them all by passing + sign to reduce as shown.

reduce(+, [a, b])

Output:

3-element Vector{Int64}:
 5
 7
 9

To show more the power of reduce, I define two more vectors c and d and add them.

c = [7, 8, 9]
d = [10, 11, 12]

Output:

3-element Vector{Int64}:
 10
 11
 12

reduce(+, [a, b, c, d])

Output:

188

3-element Vector{Int64}:
 22
 26
 30

39.3. Midpoint
For clustering algorithms, it’s important to find mid point of vectors (which represent a point in our
case). Mid point of vectors are found out using this formula.

One should not get confused. Here means it represents a point in space. In pure
mathematical terms, it makes no sense to find a a mid of of vectors.

Where is the mid point.

So we write and midpoint function:

function midpoint(array_of_vectors::Vector)
 reduce(+, array_of_vectors) / length(array_of_vectors)
end

We test it out:

midpoint([a, b])

Output:

3-element Vector{Float64}:
 2.5
 3.5
 4.5

midpoint([[0, 0], [2, 2]])

Output:

2-element Vector{Float64}:
 1.0
 1.0

Seems to work!

189

39.4. Distance
We can treat a vector / array in Julia as a point and find distance beween them. Let there be two
points and . where we can define as

Similarly we can define as

Then the distance can be written as:

now let’s define two vectors in Julia

first_vector = [0, 0]
second_vector = [3, 4]

Now the difference between these two vectors can be written as , this in Julia translates as
shown:

difference = first_vector - second_vector

Output

2-element Vector{Int64}:
 -3
 -4

Now let’s find

difference .^ 2

Output:

2-element Vector{Int64}:
 9
 16

Let’s sum the squares up

sum_of_squares = sum(difference .^ 2)

190

Output:

25

Now let’s take the square root to find the distance

sqrt(sum_of_squares)

Output

5.0

Let’s ack up what we have done into a function:

function distance(first_vector::Vector, second_vector::Vector)
 Δ = first_vector - second_vector
 sum_of_squares = sum(Δ .^ 2)
 sqrt(sum_of_squares)
end

Let’s test it out:

distance([0, 0], [3, 4])

Output:

5.0

Seems to work!

39.5. Magnitude
Given a vector , we know its magnitude can be written as:

So let’s translate into Julia and write a magnitude function as shown:

function magnitude(vector::Vector)
 sqrt(sum(vector .^ 2))
end

191

Let’s test it out:

magnitude([3, 4])

Output:

5.0

Seems to work!

39.6. Unit Vector
Given a vector , we can find unit vector using this formula:

hat X = vec X / |vec X|

where represents the unit vector and |vec X| represents the magnitude. So now let’s write this in
Julia:

function unit(vector::Vector)
 vector / magnitude(vector)
end

Let’s test it out:

unit([3, 4])

Output:

2-element Vector{Float64}:
 0.6
 0.8

Seems to work!

39.7. The Vector Library
I have collected the functions to operate on vectors as a library, one can get it here
https://gitlab.com/datascience-book/code/-/blob/master/vectors.ipynb

We will be using this later in this book.

192

https://gitlab.com/datascience-book/code/-/blob/master/vectors.ipynb

Chapter 40. Matrices

Video lecture for this section could be found here https://youtu.be/fYE5uUKglcU?
list=PLe1T0uBrDrfOLQlomF_4AxHa4LX0wsCXa

Get Jupter note book for this section here https://gitlab.com/datascience-book/code/
-/blob/master/matrix.ipynb

Let’s look at Matrices with Julia in this section. To learn about Matrices thoroughly I would suggest
one to visit https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices

So let’s say we have a matrix , this is how we write it mathematically:

And this is how we represent in Julia

A = [1 2 3; 4 5 6]

Look how we have rows separated by a semicolon ;, the columns in a row separated by space. This
is what you will het as output in Jupyter notebook:

2×3 Matrix{Int64}:
 1 2 3
 4 5 6

We can ask Julia what is the type of A and we get is a Matrix

typeof(A)

Output:

Matrix{Int64} (alias for Array{Int64, 2})

Matrix is a in built datatype in Julia and hence we do not need to build special libraries for it.

We have defines, now transpose of is represented as , we know this is :

In Julia we use apostrophe to find transpose of Matrix, and hence in Julia is written as shown:

193

https://youtu.be/fYE5uUKglcU?list=PLe1T0uBrDrfOLQlomF_4AxHa4LX0wsCXa
https://youtu.be/fYE5uUKglcU?list=PLe1T0uBrDrfOLQlomF_4AxHa4LX0wsCXa
https://gitlab.com/datascience-book/code/-/blob/master/matrix.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/matrix.ipynb
https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices

A'

Output:

3×2 adjoint(::Matrix{Int64}) with eltype Int64:
 1 4
 2 5
 3 6

Now let’s define a Matrix

B = [7 8 9; 10 11 12]

Output:

2×3 Matrix{Int64}:
 7 8 9
 10 11 12

Now I can take the sum of and as shown:

A + B

Output

2×3 Matrix{Int64}:
 8 10 12
 14 16 18

Since A and B have the same dimensions, they add up. Similarly we can subtract Matrices as shown:

A - B

Output

2×3 Matrix{Int64}:
 -6 -6 -6
 -6 -6 -6

Now let’s try to multiply A and B, and it fails

194

A * B

Output

195

 DimensionMismatch("matrix A has dimensions (2,3), matrix B has dimensions (2,3)")

 Stacktrace:

 [1] _generic_matmatmul!(C::Matrix{Int64}, tA::Char, tB::Char, A::Matrix{Int64},
B::Matrix{Int64}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool})

 @ LinearAlgebra
/Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/LinearA
lgebra/src/matmul.jl:814

 [2] generic_matmatmul!(C::Matrix{Int64}, tA::Char, tB::Char, A::Matrix{Int64},
B::Matrix{Int64}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool})

 @ LinearAlgebra
/Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/LinearA
lgebra/src/matmul.jl:802

 [3] mul!

 @
/Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/LinearA
lgebra/src/matmul.jl:302 [inlined]

 [4] mul!

 @
/Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/LinearA
lgebra/src/matmul.jl:275 [inlined]

 [5] *(A::Matrix{Int64}, B::Matrix{Int64})

 @ LinearAlgebra
/Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/LinearA
lgebra/src/matmul.jl:153

 [6] top-level scope

 @ In[6]:1

 [7] eval

 @ ./boot.jl:360 [inlined]

 [8] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,
filename::String)

 @ Base ./loading.jl:1094

196

That’s because one can multiply matrix of dimension with a matrix of dimension which
will give matrix of dimension . That is the number of columns in first matrix should be equal to
number of rows in second matrix, only then multiplication is possible.

However we can do element wise multiplication with A and B as shown

A .* B

Ouput

2×3 Matrix{Int64}:
 7 16 27
 40 55 72

Note that we have used .* operator, where the . means element wise and * means multiplication.

A is matrix, let’s define a matrix C which :

C = [1 2; 3 4; 5 6]

Output

3×2 Matrix{Int64}:
 1 2
 3 4
 5 6

Now we multiply both

A * C

Output

2×2 Matrix{Int64}:
 22 28
 49 64

And so above we get a matrix.

If we multiply C and A which are of dimensions and , we get a matrix as shown below:

C * A

197

Output

3×3 Matrix{Int64}:
 9 12 15
 19 26 33
 29 40 51

Let’s assign the product of C and A to a variable D

D = C * A

Output

3×3 Matrix{Int64}:
 9 12 15
 19 26 33
 29 40 51

Now we find inverse of D and assign it to a variable D_inv

D_inv = inv(D)

Output

3×3 Matrix{Float64}:
 7.03687e13 -1.40737e14 7.03687e13
 -1.40737e14 2.81475e14 -1.40737e14
 7.03687e13 -1.40737e14 7.03687e13

Now we multiply D and D_inv, we expect to get identity matrix:

D * D_inv

Output

3×3 Matrix{Float64}:
 1.375 -0.25 0.0
 1.0 0.0 0.5
 1.0 -1.0 1.5

But we don’t, thats because determinant of D is zero. We have to use a package called LinearAlgebra
to get access to function det with which we can find the determinant as shown:

198

using LinearAlgebra

det(D)

Output

8.526512829121201e-14

In the below few examples, we find determinant of matrix E

E = [1 2; 3 4]

Output

2×2 Matrix{Int64}:
 1 2
 3 4

det(E)

Output

2.0

and it’s non zero.

Since determinant of E is non zero, we can multiply E with its invese and get an identity matrix as
shown:

E * inv(E)

Output

2×2 Matrix{Float64}:
 1.0 0.0
 8.88178e-16 1.0

We know that we have defined matrix A which is a matrix as shown:

A

199

Output

2×3 Matrix{Int64}:
 1 2 3
 4 5 6

Now let’s find inverse of A

inv(A)

Output

 DimensionMismatch("matrix is not square: dimensions are (2, 3)")

 Stacktrace:

 [1] checksquare

 @
/Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/LinearA
lgebra/src/LinearAlgebra.jl:223 [inlined]

 [2] inv(A::Matrix{Int64})

 @ LinearAlgebra
/Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/LinearA
lgebra/src/dense.jl:807

 [3] top-level scope

 @ In[18]:1

 [4] eval

 @ ./boot.jl:360 [inlined]

 [5] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,
filename::String)

 @ Base ./loading.jl:1094

And it fails. IT turns out one can find inverse of matrix only when , or when the matrix is
square. But there is a way around, there is a function called pinv which is called pseudo inverse and
this can find inverse of matrix when its not square as shown:

200

pinv(A)

Output

3×2 Matrix{Float64}:
 -0.944444 0.444444
 -0.111111 0.111111
 0.722222 -0.222222

Now multiplying A with its pseudo inverse gives a indentity matrix as shown:

A * pinv(A)

Output

2×2 Matrix{Float64}:
 1.0 2.22045e-16
 -8.88178e-16 1.0

How ever if a matrix determinant is zero, still pinv does not work, we multiply D with its pseudo
inverse and we do not get identity matrix as shown

D * pinv(D)

Output

3×3 Matrix{Float64}:
 0.833333 0.333333 -0.166667
 0.333333 0.333333 0.333333
 -0.166667 0.333333 0.833333

As you can verify once again, determinant of D is almost zero

det(D)

Output

8.526512829121201e-14

Now let’s look at matrix division. One may note that we use / to divide matrix. Let define a matrix
and store it in variable A

201

A = [1 2; 3 4]

Output

2×2 Matrix{Int64}:
 1 2
 3 4

Similarly we define matrix B

B = [5 6; 7 8]

Output

2×2 Matrix{Int64}:
 5 6
 7 8

Now we can divide A by B as shown

A / B

Output

2×2 Matrix{Float64}:
 3.0 -2.0
 2.0 -1.0

This is same as A multiplied by inverse of B

A * inv(B)

Output

2×2 Matrix{Float64}:
 3.0 -2.0
 2.0 -1.0

We see A mutiplied by pinv(B) and we still get the same result.

202

A * pinv(B)

Output

2×2 Matrix{Float64}:
 3.0 -2.0
 2.0 -1.0

As a rule of thumb, I would suggest one to use pinv rahter than inv.

203

Chapter 41. Sigmoid

 Video lecture for this section could be found here https://youtu.be/CKIsnEcg7NI

Get the Jupyter notebook here https://gitlab.com/datascience-book/code/-/blob/
master/sigmoid.ipynb

A Sigmoid function is used to squash any values between 0 and 1, take a look at this curve

0

0.5

1

−6 −4 −2 0 2 4 6

You would see its 0.5 at and below it it decreases from 0.5 to 0, and above it it increases from
0.5 to 1.

Sigmoid mathematically is been represented by this formula

We can write a sigmoid function in Julia as shown

sigmoid(z) = 1 / (1 + exp(-z))

Now let’s plot a sigmoid from to

x = -10:0.01:10
y = sigmoid.(x)
using Plots
plot(x, y)

so this is how the plot looks like:

204

https://youtu.be/CKIsnEcg7NI
https://gitlab.com/datascience-book/code/-/blob/master/sigmoid.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/sigmoid.ipynb

It never goes below zero and never crosses above 1.

x = 0:0.01:600
y = sigmoid.(x .- 399)
plot(x, y)

Now let’s say we have data of animal weight’s and its as shown. You notice that the animals that

205

weigh less than 400 Kg are classified as pigs and one above that are classified as baby elephants.

Now let’s say we can manipulate a sigmoid graph in such a way that its occurs slightly before
 as shown below:

206

then we can say we have written a classification equation which outputs values less than or equal
to 0.5 for pigs and above 0.5 for baby elephants. Turns out that we can write such a classifier as
shown:

function classify_animal(weight)
 value = sigmoid(weight - 399)

 if value > 0.5
 "Baby Elephant"
 else
 "Pig"
 end
end

And it works:

classify_animal(350)

Output:

207

"Pig"

classify_animal(450)

Output:

"Baby Elephant"

Or to represent it more linearly, we can pass equation of line to the sigmoid function where
 and which does the same thing of giving 0.5 or lower for pigs and above 0.5 to 1 for

baby elephants.

x = 0:0.01:600
m = 1
c = -399
y = sigmoid.(m * x .+ c)
plot(x, y)

Now this is just classification for points in a line. As an exercise, think about 2-D classification as
shown below, where you need to classify bunch of points below a line as blue, and above that point
as red. How will you do it?

208

Hint: equation of plane is , now think of , that is sigmoid.(z), the one above 0.5 will
be called as pink and one below it will be called as blue.

209

Chapter 42. Bayesian

210

Chapter 43. Statistics

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/stats.ipynb

Video lecture for this section could be found here https://youtu.be/72DfAh5qraU
and here https://youtu.be/G2gB1BXPGr4

Data Science is all bout numbers, so let' do statistics on a bunch of numbers. We won’t be diving
deep into statistics, but tat the end of this section I will be giving you some reference sections where
you can learn more.

There are two packages that can be used for stats in Julia, they are LinearAlgebra
(https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) and Stats (https://docs.julialang.org/en/v1/
stdlib/Statistics/). There is also a comprehensive StatsKit (https://juliastats.org/). But here we like to
do things from scratch and hence we will build our own stats library and call it stats_lib.jl.

In future we might use it in other parts of this book. So let’s dive into statistics.

43.1. Total
One of the basic operations of statistics is totaling an array, it’s been represented by the following
formula, where the represents summation.

the equation above means that, presented with an array of length n, we add all values up. So it can
be expanded as:

In Julia we write our own sum function like this

function sum(v::Vector)
 total = 0

 for element in v
 total += element
 end

 total
end

And let’s test it out

sum([1, 2, 3])

211

https://gitlab.com/datascience-book/code/-/blob/master/stats.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/stats.ipynb
https://youtu.be/72DfAh5qraU
https://youtu.be/G2gB1BXPGr4
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://juliastats.org/

Output:

6

43.2. Minimum
There is a function called minimum in julia which can be used like this

minimum([1, 2, 3])

But then since we are bad ass programmers, let’s write our own minimum as follows

function vect_min(v::Vector)
 min = v[1]

 for element in v
 if element < min
 min = element
 end
 end

 return min
end

Let’s test it out:

vect_min([6, 5, -1])

Output

-1

I hope the reader of the book does not need an explanation what minimum is.

43.3. Maximum
Just like minimum, let’s write our own maximum function, though Julia provides a maximum function
which can be used like this:

maximum([1, 2, 3])

212

function vect_max(v::Vector)
 max = v[1]

 for element in v
 if element > max
 max = element
 end
 end

 return max
end

vect_max([6, 5, -1])

Output

6

Once again, I hope the reader knows what an maximum is.

43.4. Range
Range is the maximum spread of our data, it is nothing bit minimum minus the maximum of values
in a vector, so we can define our range. There is a range function in Julia, but it does a different
thing, so we write down our own range function as shown:

function vect_range(v::Vector)
 vect_max(v) - vect_min(v)
end

And we test it out:

vect_range([7, 1, 5, 2])

Output

6

43.5. Mean
Mean is average of all values. Usually statisticians talk about two means, let’s say you have entire
population of India, and you want to know whats the average earning of a person, you can’t ask

213

every person in a nation of 1.4 billion and average out, instead you ask a selected sample of people
and average them out, this is called sample mean. If peoples earnings are asked and averaged out,
then we represent that mean as sten[bar x] (a bar above) as shown:

Let’s say you work in a ten people office, and you want to know how many plates of biriyani each
person eats in a week, you can ask every one and then average it out. Since every person in study is
covered here, we call this population mean and we represent it by Greek letter mu, and since we
want to represent total sample count we represent it with capital as shown below

Now let’s write our own function to find mean:

function mean(v::Vector)
 sum(v) / length(v)
end

Let’s test it out

mean([1, 2, 3, 4])

Output:

2.5

43.6. Median
You would have heard about medians in roads, it will be in the middle of the road. A Median of a
vector of values is nothing but the middle value of sorted vector.

You have 2 cases here, take this vector [1, 2, 3, 5, 4], if you sort it, it will become [1, 2, 3, 4, 5],
the middle value is 3 which you can take it as a median. But what if you have a vector like [1, 2, 3,
4], it will have two values in the middle which are 2 and 3, in that case take the average of them
both so you get .

So we write our own median function which goes like this:

214

function median(v::Vector)
 v = sort(v)
 n = length(v)
 middle = Int(ceil(n/2))

 if n % 2 == 0
 (v[middle] + v[middle + 1]) / 2
 else
 v[middle]
 end
end

Let’s test it out

median([1, 2, 3, 5, 4])

Output

3

median([2, 1, 3, 4])

Output

2.5

43.7. Mean Vs Median
Let’s say that it’s Tina’s birthday, she distributes sweets to every one in her class, there are 15
students in the class. Every student get’s one of them, but Tina’s close friends gets 5, 7, 10, and Tina
herself eats 10. So if you put these values in a vector, you will get it as shown:

sweet_count = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 7, 10, 10]

Now let’s find its mean:

mean(sweet_count)

Output

2.8666666666666667

215

So its nearly 2.9 sweets per person which is way off than 1, in fact its 190% off. It will not do justice
if we tell most of the people ate neatly 3 sweets which is not true. In other worlds mean gets wildly
upset or gives wrong figures if there are outliers. Here the outlier values are 5 and above.

Now let’s take the median:

median(sweet_count)

Output

1

Surprisingly median says’s most had just 1 sweet, which is true. In other words median dies not
get’s swayed by outliers or very large values that pop into an array containing lots of values that
crowd around some point.

43.8. Mode
In a given set of observations, what ever values repeats the most, that one is taken as mode. Take
the example below where the number of sweets distributed to a class of students by a student
during her birthday is given:

sweet_count = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 7, 10, 10]

In the code below, we include ml_lib.jl where we have the counter function,

include("lib/ml_lib.jl")

function mode(v::Vector)
 counts = counter(v)

 counts_max_to_min = sort([(val, key) for (key, val) in counts], rev = true)
 counts_max_to_min[1][2]
end

and we gets the counts of values in passed Vector v in this line:

counts = counter(v)

If we pass sweet_count to counter, we might get it like:

[(11, 1), (1, 5), (1, 7), (2, 10)]

216

It returns a Array of Tuples, where the first element of Tuple is the count, and second is value.

In this line

counts_max_to_min = sort([(val, key) for (key, val) in counts], rev = true)

we sort the count in descending order of counts, so it becomes like this:

[(11, 1), (2, 10), (1, 5), (1, 7)]

Now we take the first tuple counts_max_to_min[1], so we get (11, 1), the second element of the Tuple
is the value, so we return it using the following command counts_max_to_min[1][2].

Now let’s compute the mode of sweet_count array:

mode(sweet_count)

Output

1

43.9. Percentile
Let’s say that you get a salary of Rs 100,000/-, and 98% of Indians earn less than you, then you are in
the 98th percentile. If we say we collect a fair sample of 1000 salaries, and take the 98th percentile
of it, that is the 980th element of sorted salaries,

then the value of the element should be close to 100,000.

So let’s write our own percentile function as shown:

function percentile(v::Vector, p)
 index = trunc(Int, p * length(v))
 sort(v)[index]
end

Let’s test it out:

vector = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

217

percentile(vector, 0.5)

Output

5

percentile(vector, 0.75)

Output

7

Seems to work!

43.10. Interquartile Range (IQR)

One can learn more about IQR here https://en.wikipedia.org/wiki/
Interquartile_range

Simply put, interquartile range is the difference between 25th and 75th percentile, so we can code it
as shown:

function iqr(v::Vector)
 percentile(v, 0.75) - percentile(v, 0.25)
end

And let’s test it out

vector = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
iqr(vector)

Output

5

43.11. Variance
Variance is a measure of how much data points in a vector vary from its mean sigma:[mu]. Some
of the data point can lie above mean and some of it can lie below the mean, this means one that are
more positive and more negative than the mean should not cancel out, so in order to find the

218

https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Interquartile_range

variance we subrect the mean from the data point and square it so that it’s always
positive. We want find the average variation, so we divide it by number of data points, so we finally
we get variance as shown:

Let’s say that you are conducting a research about equality of pay, you want to start from your
office to find out how equal pay is, you can use the above formula to find it.

LEt’s say that you want t find equality of pay for the entire tech industry, it’s impossible to collect
data from every one in the tech industry, so to compensate for the unknown, if you had collected
data points, you use the formula below:

Don’t ask me what the is, I really don’t get it fully, possibly you can refer here:
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data#variance-
standard-deviation-sample

function variance(v::Vector, kind = :population)
 if kind == :population
 population_variance(v)
 else
 sample_variance(v)
 end
end

function population_variance(v::Vector)
 N = length(v)
 x = v
 μ = mean(v)
 mean_difference = x .- μ
 sq_mean_diff = mean_difference .^ 2
 sum(sq_mean_diff) / N
end

function sample_variance(v::Vector)
 n = length(v)
 x = v
 average = mean(v)
 avg_difference = x .- average
 sq_avg_diff = avg_difference .^ 2
 sum(sq_avg_diff) / (n -1)
end

So we wrote two functions that calculates population variance which is handled by
population_variance(v::Vector) and sample variance which is handled by
sample_variance(v::Vector). We wrote a generic function called variance variance(v::Vector, kind
= :population) which has an second argument which when by default calculates population
variance, or calculates it when :population is passed as second argument. It calculates sample

219

https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data#variance-standard-deviation-sample
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data#variance-standard-deviation-sample

variance otherwise.

Now we test these functions out ash shown below.

population_variance([6, 2, 3, 1])

Output

3,5

variance([6, 2, 3, 1])

Output

3,5

variance([6, 2, 3, 1], :population)

Output

3.5

sample_variance([6, 2, 3, 1])

Output

4.666666666666667

sample_variance([2, 5, 6, 1])

Output

5.666666666666667

variance([6, 2, 3, 1], :sample)

Output

220

4.666666666666667

In the below example, we have two array’s, one is amount of sweet eaten by an entire class of
students which we capture it in a variance sweet_count, and we take a sample of it in
sample_sweet_count.

sweet_count = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 7, 10, 10]
sample_sweet_count = [1, 1, 1, 1, 1, 1, 5, 10]

Now we find the variance of the population.

variance(sweet_count)

Output

10.782222222222222

Next we find the variance of sample_sweet_count.

variance(sample_sweet_count)

Output

9.484375

They naturally differ, but look below, if I do a sample variation on sample_sweet_count, it comes near
to the population variance 10.782222222222222.

variance(sample_sweet_count, :sample)

Output

10.839285714285714

Though this example might be bit tailored, I hope one to find out about the division by , and
convince oneself that it works through proper reasoning.

43.12. Standard Deviation

221

Calculating Standard Deviation https://www.khanacademy.org/math/statistics-
probability/summarizing-quantitative-data/variance-standard-deviation-
population/a/calculating-standard-deviation-step-by-step

Let’s say we have this sweet distribution on Tina’s birthday, if you look at the variance, its
dimension would be , that is we are squaring things, so it may give some sense of spread, but it
would not be that intuitive.

So taking the square root will make the dimension to , and so it would be bit more intuitive to
know about the spread.

Square root of variance is called standard deviation. The population standard deviation is
represented by (sigma) as shown below

The sample standard deviation is represented by as shown below.

Having coded functions for variance, standard deviation is nothing but square root of it, so we code
it as follows.

function standard_deviation(v::Vector, kind = :population)
 variance = if kind == :population
 population_variance(v)
 else
 sample_variance(v)
 end

 sqrt(variance)
end

Now let’s test it out

sweet_count = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 7, 10, 10]
sample_sweet_count = [1, 1, 1, 1, 1, 1, 5, 10]

standard_deviation(sweet_count)

Output

3.283629428273267

222

https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/variance-standard-deviation-population/a/calculating-standard-deviation-step-by-step
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/variance-standard-deviation-population/a/calculating-standard-deviation-step-by-step
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/variance-standard-deviation-population/a/calculating-standard-deviation-step-by-step

standard_deviation(sweet_count, :sample)

Output

3.39887936714161

43.13. Covariance
We have seen that Variance is a measure of spread. Covariance sees if values in two given vectors
vary in the same way. That is if we hav vectors and , covariance checks if and both lie above
or below their respective means and . If both are above or if both are below their means, then
covariance increases, else it decreases.

Mathematically this is the formula for covariance:

And this is how we coded it:

function covariance(x::Vector, y::Vector)
 x_mean = mean(x)
 y_mean = mean(y)
 x_diff_mean = x .- x_mean
 y_diff_mean = y .- y_mean

 n = length(x)
 sum(x_diff_mean .* y_diff_mean) / (n - 1) # I have no clue about this n - 1
end

Now let’s test it out on an array that is dissimilar

x = [1, 3, 2, 5, 8, 7, 12, 2, 4]
y = [8, 6, 9, 4, 3, 3, 2, 7, 7]

covariance(x, y)

Output

-8.069444444444445

As you see on dissimilar arrays it’s low, n the above case it drops below zero. How ever on arrays
where both of their values vary in some kind of synchorony, the covariance is high as shown below.

223

x = [1, 2, 4, 5]
y = [1, 3, 5, 7]

covariance(x, y)

Output

4.666666666666667

43.14. Correlation
Covariance could b any number, there is no lower of upper bound, plus think of their unit, if we
give first array as amount of time a kid plays games and the second is marks, the covariance unit
will be hour-marks, looks funny isn’t it?

So how to mitigate this problem, wouldn’t it be great if we can have a unit less number from -1 to 1,
where the more minus means two arrays are not correlated at all, and as it approaches 1, it means
that the arrays are really correlated.

Turns out that if you find covariance of two vectors, and divide them by standard deviation of the
two vectors, then you get their correlation. So mathematically we can write correlation of two
arrays and as shown.

Where

• is the correlation of vectors and

• is the covariance of vectors and

• is the standard deviation of

• is the standard deviation of

We have coded correlation as follows

function correlation(x::Vector, y::Vector)
 covariance(x, y) / (standard_deviation(x, :sample) * standard_deviation(y, :
sample))
end

So for highly correlated data sets, the correlation approaches nearly 1 as shown.

224

x = [1, 2, 4, 5]
y = [1, 3, 5, 7]

correlation(x, y)

Output

0.9899494936611666

For data sets that are not correlated, the correlation approaches to -1 as shown.

x = [1, 3, 2, 5, 8, 7, 12, 2, 4]
y = [8, 6, 9, 4, 3, 3, 2, 7, 7]

correlation(x, y)

Output

-0.9069095825045426

43.15. Reference
1. Statistics, Khan Academy - https://www.khanacademy.org/math/statistics-probability/

2. Introductory Statistics - https://open.umn.edu/opentextbooks/textbooks/introductory-statistics

3. Online Stats Book - https://onlinestatbook.com/

4. Introductory Statistics (Openstax) https://openstax.org/details/introductory-statistics

225

https://www.khanacademy.org/math/statistics-probability/
https://open.umn.edu/opentextbooks/textbooks/introductory-statistics
https://onlinestatbook.com/
https://openstax.org/details/introductory-statistics

Chapter 44. Probability

I’m not a expert in probability, but I will present what I know. Let say there is a event happening,
say you are rolling a dice, and let represent the probability of getting a 6, then mathematically the
probability of happening is represented by . And we all know if a dice is rolled say a 1000
times or more will approach close to .

44.1. Independent and Dependent Events
Let’s say we are rolling dice twice, what is the probability of getting 1? We can can that . Now
we roll the dice for the second time, what is the probability of getting 5 the second time? We can say
it’s .

Now if we ask the question, if we throw the dice twice, what is the probability of getting 1 the first
time and 5 the second time? This mathematically is represented by , which is nothing but the
product of of and .

We can say that getting a 5 in the second roll is independent of getting 1 in the first roll. That is they
are independent, no information is stored in the dice saying that I got 1 the first time, so reduce the
probability of getting 1 the second time and increase the probability of getting 5 the second time. So
these are called independent events.

226

If two events are independent, then the probability of one happening given another has happened
is given simple multiplication of the two probilities as shown below:

44.2. Monte Carlo Simulation

44.3. Bayes Theorem

44.4. Normal Distribution Curve

0.
0

0.
1

0.
2

0.
3

0.
4

−2σ −1σ 1σ−3σ 3σ0 2σ

34.1% 34.1%

13.6%
2.1%

13.6% 0.1%0.1% 2.1%

227

Machine Learning

228

Chapter 45. Genetic Algorithms

45.1. Guessing a Number with Genetic Algorithm

 Video lecture for this section could be found here https://youtu.be/VOrVxAOJn3o

What is genetics? What makes us change? Well let’s take for instance the corona virus pandemic,
there are some humans who are naturally immune to it, some people who are not. Say that we are
not progressed so scientifically, then what would have happened? People who are not immune to it
will perish, some will have reduced biological function and may produce less kids, finally a
humanity will emerge which is totally immune to corona. These happen because there is tiny
variations that are set into us during our birth that makes us different from our mom and dad. So
producing more offspring means more variations and more chance of surviving an epidemic we
have. That’s why all species that had survived has a very strong urge to reproduce. The more the
urge more the offspring variations and survival.

Okay let’s code. So let’s define a universe where only numbers that are closest to 42 exist. Why 42?
Because it’s the ultimate answer.

 The answer to the ultimate question https://youtu.be/tK0urw144cU

So our universe is defines by this number here:

number = 42

Output:

42

This is a number we must guess using evolutionary technique.

Now our universe need to calculate the difference between the ultimate answer and a values that
exist in it, so we define a error function as follows:

function ∆(value, number)
 number - value
end

Output:

∆ (generic function with 1 method)

Let’s test our error function:

229

https://youtu.be/VOrVxAOJn3o
https://youtu.be/tK0urw144cU

∆(12, 42)

Output:

30

Now let us experiment with random numbers. I want to generate 500 random numbers that vary
from -0.5 to +0.5:

rand(500).- 0.5

Output:

500-element Array{Float64,1}:
 0.11811737299697067
 0.40975918563037483
 0.11512815232487483
 0.4407493702816716
 -0.06317498449812642
 0.47123272092330426
 -0.10407972969869217
 0.10466653256756975
 0.316758714503494
 0.05275897872543078
 -0.0580903153675667
 -0.0636241488226077
 0.24940396400825926
 ⋮
 0.4043456432783936
 -0.4607426587387351
 0.4003121999197845
 -0.28198845089727187
 0.32761734763714667
 -0.35388456207140506
 0.33622477093610326
 -0.3255506303368696
 -0.04515216140695988
 0.08163723449954996
 -0.4425492244863174
 0.09909239016396998

Seems to work.

45.1.1. Top Survivors

Next I want to define a function called top_survivors() which returns the numbers that are most

230

closes to 42 first and least closest to 42 at the last:

function top_survivors(values, number, top_percent = 10)
 errors_and_values = [(abs(∆(value, number)), value) for value in values]
 sorted_errors_and_values = sort(errors_and_values)
 end_number = Int(length(values) * top_percent / 100)
 sorted_errors_and_values[1:end_number]
end

Output:

top_survivors (generic function with 2 methods)

Lets see see in detail how top_survivors() is coded. First let’s start with an empty function
definition:

function top_survivors()
end

Now this function should receive values who’s survival ability will be determined

function top_survivors(values)
end

The survival ability is determined by a number, the values that are closest to the number survive,
so we we pass in a number to the function top_survivors():

function top_survivors(values, number)
end

Not all values should survive, say only top 10% of the values that are closest to the number should
survive, so we have a variable top_percent and set a default of 10 to it as shown below:

function top_survivors(values, number, top_percent = 10)
end

First we need to find errors, that is the difference between each value in values

function top_survivors(values, number, top_percent = 10)
 [for value in values]
end

231

compared to number:

function top_survivors(values, number, top_percent = 10)
 [∆(value, number) for value in values]
end

but there is a problem, let’s say number is 5 and value is 3, then the error is 2, let’s say another value
is 12 hence error ∆(value, number is now -7. Since -7 is less than 2, it does not mean that 12 is closer
to 5 than 3. What we need is absolute error and we get it using the abs() function shown below:

function top_survivors(values, number, top_percent = 10)
 errors_and_values = [abs(∆(value, number)) for value in values]
end

What are we going to do just with errors, let’s bundle error and corresponding value into a Tuple
using this code (abs(∆(value, number)), value) as shown below:

function top_survivors(values, number, top_percent = 10)
 [(abs(∆(value, number)), value) for value in values]
end

now let us assign it to a variable errors_and_values:

function top_survivors(values, number, top_percent = 10)
 errors_and_values = [(abs(∆(value, number)), value) for value in values]
end

So we have got an Array of Tuples in errors_and_values where the first element in the tuple is error
and second is the value that is associated with the error and it looks something like this:

[
 (error_1, value_1), , (error_n, value_n)
]

Now lets sort it so that the least errors and values are at first

function top_survivors(values, number, top_percent = 10)
 errors_and_values = [(abs(∆(value, number)), value) for value in values]
 sorted_errors_and_values = sort(errors_and_values)
end

and we store it in a variable sorted_errors_and_values as shown above, now all that is left is to
return the top_percent of errors_and_values out, those will be our survivors, for that we calculate

232

the end_number for our array as shown in the last line of the function below:

function top_survivors(values, number, top_percent = 10)
 errors_and_values = [(abs(∆(value, number)), value) for value in values]
 sorted_errors_and_values = sort(errors_and_values)
 end_number = Int(length(values) * top_percent / 100)
end

If values had 1943 elements then length(value) will be 1943. This is multiplied by top_percent by
100, in our case its 0.1 time 1943, that will be 194.3, and we get integer value of it result
Int(length(values) * top_percent / 100) which is 194, this will be stored in end_number. The
top_percent of errors_and_values will be sorted_errors_and_values[1:end_number] and we add this as
last line to our function below which means that this will be returned out:

function top_survivors(values, number, top_percent = 10)
 errors_and_values = [(abs(∆(value, number)), value) for value in values]
 sorted_errors_and_values = sort(errors_and_values)
 end_number = Int(length(values) * top_percent / 100)
 sorted_errors_and_values[1:end_number]
end

Let’s test top_survivors() now, let me generate 500 randome numbers from -0.5 to +0.5 and see
which is closest to number

survivors = top_survivors(rand(500).- 0.5, number)

Output:

233

50-element Array{Tuple{Float64,Float64},1}:
 (41.50295720311258, 0.49704279688742026)
 (41.503072694126054, 0.4969273058739454)
 (41.50606492163384, 0.49393507836615624)
 (41.509092656735994, 0.49090734326400853)
 (41.511967526254274, 0.4880324737457231)
 (41.51218378164256, 0.4878162183574357)
 (41.51401215336174, 0.4859878466382588)
 (41.51538950354761, 0.4846104964523883)
 (41.51687210415236, 0.4831278958476404)
 (41.520187541041686, 0.4798124589583119)
 (41.52202481756689, 0.47797518243311)
 (41.52243285351341, 0.47756714648659404)
 (41.52250385998039, 0.47749614001960716)
 ⋮
 (41.57023757877993, 0.42976242122007213)
 (41.571326533554725, 0.4286734664452725)
 (41.57377340302943, 0.4262265969705692)
 (41.57432225294512, 0.4256777470548734)
 (41.578400139207496, 0.42159986079250356)
 (41.579227438079286, 0.4207725619207161)
 (41.58325191425531, 0.41674808574469324)
 (41.58460955385501, 0.41539044614499)
 (41.5857945937749, 0.41420540622509905)
 (41.58642578719165, 0.4135742128083526)
 (41.589202493410696, 0.4107975065893039)
 (41.5916907905559, 0.40830920944409743)

So we see that top_survivors() returns top 50 closest, the first one being (41.50295720311258,
0.49704279688742026) that is it has an error of 41.50295720311258 and value of
0.49704279688742026.

45.1.2. Mutations

We know that 0.497 is far far from 42, so how does it inch near 42? The answer is mutation. Say that
this number spawns another set of numbers that vary slightly from 0.497, some of it might be more
away from 42, but some could be more near. So let’s write a function to mutate a value:

function mutate(value, mutations = 10)
 [value + rand() - 0.5 for i in 1:mutations]
end

Output:

mutate (generic function with 2 methods)

Okay this mutate() function receives a value as first argument, and second argument is number of

234

children it must have which is defined my mutations which we have set it to a default of 10. In this
statement:

[value + rand() - 0.5 for i in 1:mutations]

value is added with a random number anywhere between -0.5 to 0.5 and is been collected into array
and its done mutations times. So let’s test our mutate function:

mutate(50)

Output:

10-element Array{Float64,1}:
 49.70077118627718
 50.38719806541724
 49.659770263529325
 50.49345080427759
 49.682957552922375
 50.068482872331586
 50.418052425411894
 49.73656292165122
 50.01836131822904
 50.030683616700884

So see above how 50 mutates with values slightly varying from it.

I also want to introduce a function called vcat() that concatenates or joins two arrays as shown:

vcat([1, 2, 3], [4, 5, 6])

Output:

6-element Array{Int64,1}:
 1
 2
 3
 4
 5
 6

Our mutate function mutates only one value, but for our task we have a list of values, so let’s write
a function that mutates a list as shown:

235

function mutate_list(list, mutations = 10)
 output = []
 for element in list
 output = vcat(output, mutate(element, mutations))
 end
 output
end

Output:

mutate_list (generic function with 2 methods)

So mutate_list works as follows, first we have a empty function:

function mutate_list()
end

We receive a list which must be mutated:

function mutate_list(list)
end

Next we have a variable called mutations that defines the number of mutations that must take place
for each element in the list:

function mutate_list(list, mutations = 10)
end

Let’s have an element called output that will collect all mutations

function mutate_list(list, mutations = 10)
 output = []
end

We take each value in the list into a variable called element:

function mutate_list(list, mutations = 10)
 output = []
 for element in list
 end
end

236

Now we add mutated values to output using this statement output = vcat(output, mutate(element,
mutations)) as shown below:

function mutate_list(list, mutations = 10)
 output = []
 for element in list
 output = vcat(output, mutate(element, mutations))
 end
end

And finally once the operations is done for all elements in the list, we return the output:

function mutate_list(list, mutations = 10)
 output = []
 for element in list
 output = vcat(output, mutate(element, mutations))
 end
 output
end

Now let’s test our mutate() function:

mutate_list((1, 2, 3, 4))

Output:

237

40-element Array{Any,1}:
 1.1981180737202284
 0.6826820656478603
 1.4263346623043727
 1.0445431960263634
 0.9986709617577949
 0.5041082408398894
 1.206211947133361
 0.5703313900822442
 0.7085107623470692
 0.6808788103524246
 1.8926516209570248
 2.3122314617476407
 2.4123045970406345
 ⋮
 2.5112031422146033
 3.0098577316693103
 3.5139755069699214
 3.5552827017499755
 3.632721017569514
 3.6865403468441524
 3.908433918456275
 4.330548003821807
 3.8199880565807103
 4.4004408963825155
 3.8622190204543214
 4.299693796909806

So we have condition of best survival defined by number = 42, then we have a function called
top_survivors() which will clean out values it thinks are unfit and have only those that meet the top
percent of the criteria, then we have a function mutate() that will change the numbers. So we have
made the bits and pieces of our universe namely:

1. Condition for best fit number = 42

2. Way to clean those that are not fitting well`top_survivors()`

3. A way to change mutate()

45.1.3. Creating our universe

Now we have to put this all together. So first let us have a initial set of values, a bunch of numbers
to start with:

let there be initial values
initial_values = rand(500)

238

Figure 9. Brahma the initiator

First all those values are survivors, so let us define survivors and assign it to initial_values:

let there be initial values
initial_values = rand(500)
survivors = initial_values

Let’s define a variable called generations that will hold an value of the maximum number of
generations allowed in our universe:

let there be initial values
initial_values = rand(500)
survivors = initial_values
generations = 500

Next for plotting purpose, for us to see what happened visually we sample and store values /
numbers that are created in each generation that matches closest to number, that is 42 in our case,
we store that sampled values in top_survivors_sample

239

let there be initial values
initial_values = rand(500)
survivors = initial_values
generations = 500
top_survivors_sample = []

Now for each generation:

let there be initial values
initial_values = rand(500)
survivors = initial_values
generations = 500
top_survivors_sample = []

for generation in 1:generations
end

we make the survivors mutate and create offspring:

let there be initial values
initial_values = rand(500)
survivors = initial_values
generations = 500
top_survivors_sample = []

for generation in 1:generations
 survivors = mutate_list(survivors)
end

240

Figure 10. Shiva the god of Destruction

now the force of destruction comes to play only those that are closet to ideal condition are selected
in this line errors_and_values = top_survivors(survivors, number) others are eliminated:

241

let there be initial values
initial_values = rand(500)
survivors = initial_values
generations = 500
top_survivors_sample = []

for generation in 1:generations
 survivors = mutate_list(survivors)
 errors_and_values = top_survivors(survivors, number)
end

Figure 11. Vishnu the God that saves and ensures continuity

242

now we salvage only the values for the next generation in the following statement survivors =
[value for (error, value) in errors_and_values] as shown below:

let there be initial values
initial_values = rand(500)
survivors = initial_values
generations = 500
top_survivors_sample = []

for generation in 1:generations
 survivors = mutate_list(survivors)
 errors_and_values = top_survivors(survivors, number)
 survivors = [value for (error, value) in errors_and_values]
end

243

Figure 12. Saraswathi the God of knowledge and learning

Now we record the top 10 survivors into our sample array top_survivors_sample in this statement
push!(top_survivors_sample, survivors[1:10]), this will help us to plot and understand what
happened:

244

let there be initial values
initial_values = rand(500)
survivors = initial_values
generations = 500
top_survivors_sample = []

for generation in 1:generations
 survivors = mutate_list(survivors)
 errors_and_values = top_survivors(survivors, number)
 survivors = [value for (error, value) in errors_and_values]
 push!(top_survivors_sample, survivors[1:10])
end

And for the first and every 10th generation we print out the top values using these lines

if (generation == 1) || (generation % 10 == 0)
 println(generation, " => ", survivors[1:5])
end

So you can see the completed code below:

let there be initial values
initial_values = rand(500)
survivors = initial_values
generations = 500
top_survivors_sample = []

for generation in 1:generations
 survivors = mutate_list(survivors)
 errors_and_values = top_survivors(survivors, number)
 survivors = [value for (error, value) in errors_and_values]
 push!(top_survivors_sample, survivors[1:10])

 if (generation == 1) || (generation % 10 == 0)
 println(generation, " => ", survivors[1:5])
 end
end

Output:

1 => [1.489963570249114, 1.4748790114913484, 1.4622739648861949, 1.4510704237615362,
1.4490538800141282]
10 => [5.660855018791918, 5.598888609438815, 5.593011278753805, 5.5762836556003545,
5.566632716837373]
20 => [10.24997392360673, 10.215807815922725, 10.21448723688237, 10.214464268619894,
10.204137257813436]
30 => [14.909055039342904, 14.889731189243328, 14.884161682306756, 14.874322175303265,

245

14.867230337010271]
40 => [19.52250107015328, 19.50132983259004, 19.48141475284547, 19.47896089764954,
19.478514865080626]
50 => [24.185076343905422, 24.171229043560263, 24.16911898120017, 24.168797157127305,
24.151685651797276]
60 => [28.777004719428835, 28.73967040390202, 28.730165929867656, 28.721490919382102,
28.705793402309293]
70 => [33.38810260130008, 33.3806820730437, 33.35186837385183, 33.34216038995459,
33.32739352190749]
80 => [37.931008629223165, 37.9235457841195, 37.91415226790492, 37.91195802545634,
37.91106132860069]
90 => [41.99992407747299, 42.00008624788804, 41.99991137236084, 41.99979061755105,
42.000233034952544]
100 => [42.000123781083616, 42.000235748738795, 42.000307239484606, 41.99960275074321,
41.99956774943434]
110 => [42.000020774696715, 41.99997835399716, 41.99993951603409, 41.99979201596632,
41.999598390078326]
120 => [42.000244420648414, 41.999688461201856, 42.00033212168877, 42.000419165315776,
41.999043587401665]
130 => [42.00000316583509, 41.99980027149457, 42.00043079801067, 41.99954988980232,
41.99950264181341]
140 => [41.999923715753546, 41.99977377760766, 42.00033523277993, 41.99951474643227,
42.00055740776272]
150 => [41.99999977643734, 42.00037448792328, 42.00045229876902, 41.99954594667108,
42.000492403893965]
160 => [41.999937769558926, 41.999854484705295, 41.999819702244785, 42.00025056814451,
42.00039399008882]
170 => [42.00005547930738, 41.99979529808799, 41.99972233935926, 41.99971873415906,
41.99963575444441]
180 => [42.00003109415735, 42.000200426218896, 41.999755219184195, 42.00043618008025,
41.999501915890455]
190 => [41.99985969909203, 42.00021165635373, 41.99976762837727, 42.00031788049009,
42.000332341607766]
200 => [41.99992962001092, 42.00017098936294, 41.99979094577462, 42.00030728974183,
41.999650626630036]
210 => [42.00020298104202, 41.99975261684113, 41.99975023469254, 41.99957908132207,
41.999445950654746]
220 => [41.99992584076578, 41.999855258167386, 42.000200104286066, 41.999702460834605,
42.00035077159908]
230 => [42.00035209859171, 41.99963549012812, 42.00037216436359, 41.99951880529105,
42.00050803530517]
240 => [41.99984779759352, 41.99974134448669, 42.00031532262816, 41.99962683164088,
42.00052285058658]
250 => [41.999728429745, 42.000393543238104, 42.00051227111797, 41.999461252932434,
42.00064395532183]
260 => [42.00025814042138, 42.00031589894168, 42.00041985364005, 41.99956313819255,
41.9993910261099]
270 => [41.99999510362798, 42.00001999291032, 41.9999579395399, 41.999948699620724,
42.00035888305544]
280 => [42.0000349216614, 41.99994198625842, 41.99991656164299, 42.00016283910495,
41.99974913725434]

246

290 => [42.000088552147226, 42.00009177413705, 42.000285959629764, 41.999368276803075,
42.00085092034136]
300 => [42.00002153736082, 42.00017318821541, 42.00027218263787, 42.000360859044456,
41.99956805018513]
310 => [41.99982214130841, 41.99967598916952, 42.00033996524177, 41.99959063668834,
42.000454542266226]
320 => [42.00006126086911, 42.00008176129088, 41.99991628417523, 41.99984827263701,
42.0006948512896]
330 => [41.999920931176746, 42.000084474769224, 42.00011049825621, 42.0001780995309,
41.999746240047266]
340 => [42.00016462077862, 41.99973103912161, 41.99972713436191, 42.000314926474644,
41.99954583326124]
350 => [41.999909064720605, 41.99989664326481, 42.00012807380437, 41.99981089152715,
42.00044965487015]
360 => [41.99998035859879, 41.999741519792536, 41.99972834361312, 42.000466246698764,
41.999445378979175]
370 => [41.99998473751336, 42.000118961242094, 42.00019927235091, 41.99967103681347,
42.0003893406721]
380 => [42.00004994314298, 42.000088485492014, 41.99989507939007, 42.00021089501884,
41.999768499453445]
390 => [42.00016741179328, 41.99983192017003, 42.00019597710459, 42.000246488574184,
41.9997500616498]
400 => [42.0000690034192, 42.00032210252985, 42.00044477418595, 41.99950447485576,
41.999409987775174]
410 => [41.99984997793723, 42.00021601004096, 41.999733823597175, 41.99943005559297,
42.000572405921815]
420 => [41.99978319192324, 42.0003312867216, 41.99956076412637, 42.000495777523554,
42.00057076477468]
430 => [41.9999969877506, 42.00015622715756, 41.99978672785641, 42.00025219550749,
41.999745559762715]
440 => [41.999961313124366, 41.99992889660888, 42.00022494455986, 42.00027211260345,
41.99971622361044]
450 => [41.99992660449093, 42.00012955558257, 41.99986339510042, 42.00018388328064,
41.99973756767785]
460 => [41.99980983221668, 41.99979169174335, 41.99960684933666, 41.99945475746643,
42.00056035870122]
470 => [42.000037583752786, 42.000103148938535, 42.000148858716024,
41.999803261589705, 41.99958494029524]
480 => [42.00010180604779, 41.999839312694654, 42.000441302743766, 42.000564805088516,
42.00069368757735]
490 => [41.999991513319785, 42.000069257104975, 41.99971242785191, 42.000289368310895,
41.99933899177168]
500 => [42.00014966355293, 41.99981721794562, 42.00030285516861, 42.000342118257144,
41.99949493404719]

As you can see above as the index progresses, the top 5 values approach 42, sometimes they shoot
slightly above 42, but they are limited by the universal number that determines the survival ability,
so those which shoot up too much are also eliminate.

247

45.1.4. Plotting what we had done

Let’s plot and learn from stored values in top_survivors_sample. First let’s have a range for plotting
that spans from 1 to generations:

plotting_range = 1 : generations

Output:

1:500

Next let’s plot the target, which is nothing but number, we create a array having values that equal
number and is generations long using this code fill(number, generations), fill() creates an array of
generations long and fills it with number, we pass it as second argument to plot() as shown:

using Plots
progress_plot = plot(plotting_range, fill(number, generations), label = "number to
guess")

Output:

plot() by default does a line plot, so we get a straight line at 42 as shown above. We store the plot in
a variable named progress_plot.

In the code below, for the 1st and every 10th generation, we append progress_plot with ten values
of i that is the generation value using this code fill(i, 10) for x axis and on the y axis we plot the

248

corresponding value of top survivors for that generation top_survivors_sample[i] as shown below:

for i in plotting_range
 if (i == 1) || (i % 10 == 0)
 plot!(progress_plot, fill(i, 10), top_survivors_sample[i], label = "gen $i",
seriestype = :scatter)
 end
end

progress_plot

Output:

So as we see above, some where around the 100th generation we are reaching the targeted 42, why
don’t you raise the value of number in the notebook 71 and see when are we reaching the target, can
you say why? Can you increase the number to -7658 and see if we are able to reach it? If yes why
and if not why not?

249

Chapter 46. Fine grained plot
top_survivors_sample is an array, but since the plot dimensions above are so huge we are unable to
see it, so let’s do a fine grained plot, so we plot the number first:

fine_grain_plot = plot(plotting_range, fill(number, generations), label = "number to
guess")

Output:

Next just from generation 90 to 110 we plot the top_survivors_sample as shown below:

for i in 90:110
 if (i % 5 == 0)
 plot!(fine_grain_plot, fill(i, 10), top_survivors_sample[i], label = "gen $i",
seriestype = :scatter)
 end
end

fine_grain_plot

Output:

250

Let’s enlarge the plot so that we can see better, for that let’s zoom in, we set x-limits xlims from 85
to 125:

plot!(fine_grain_plot, xlims = (85, 125))

Output:

251

So you can see how the generations vary in value, and how they hover near 42.

The Jupyter notebook for this section is here https://gitlab.com/datascience-book/
code/-/blob/master/genetic_algorithm_to_guess_number.ipynb.

Figure 13. Lakshmi - Goddess of comfort, wealth and progress you gain by your experience

46.1. Curve fitting with genetic algorithm

 Video lecture for this section could be found here https://youtu.be/OLSzsGRLCKY

Before reading this section it would be great if you could read and get familiarized with Guessing a
Number with Genetic Algorithm.

252

https://gitlab.com/datascience-book/code/-/blob/master/genetic_algorithm_to_guess_number.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/genetic_algorithm_to_guess_number.ipynb
https://youtu.be/OLSzsGRLCKY

In this section we would like to fit a line with genetic algorithm for the equation . So let’s
write the equation in Julia

y(x) = 7x + 5

Output:

y (generic function with 1 method)

Now let’s assign x to range 1 to 5 in steps of 0.1

x = 0 : 0.1 : 5

Output:

0.0:0.1:5.0

Now let’s plot the line

using Plots

scatter_plot = scatter(x, y.(x), xlims = (-0.1, 5.5), ylims = (0, 50))

253

There is a property in Julia which I want you to remember, let’s say we have a tuple (5, 7) and we
assign it to two variables m and c as shown below

m, c = (5, 7)
println("m = ", m)
println("c = ", c)

Output:

m = 5
c = 7

Then the first variable will take the first value of the tuple and second will take the second value.
We will be using this technique here.

For genetic algorithm, mutation or change is very important. Let’s write a mutation function for a
two valued tuple as shown:

function mutate(value, mutations = 10)
 [value + rand() - 0.5 for i in 1:mutations]
end

function mutate(mc::Tuple, number_of_mutations = 10)
 m, c = mc
 ms = mutate(m, number_of_mutations)
 cs = mutate(c, number_of_mutations)

 [(ms[i], cs[i]) for i in 1:number_of_mutations]
end

Output:

mutate (generic function with 4 methods)

and we test that function:

mutate((1, 2))

254

10-element Vector{Tuple{Float64, Float64}}:
 (1.1205168123693385, 2.41514037266611)
 (0.5079882676843603, 1.8217999723149112)
 (1.1581739571074665, 2.459460436379917)
 (0.5796738025677814, 1.9702636743774655)
 (1.0321606616260794, 1.7632954510809746)
 (1.3545156402167784, 1.8782505949943635)
 (1.3407759822406362, 2.3597713445300306)
 (0.8524954649600578, 2.4966166282430047)
 (0.991673117157789, 2.4749204653332812)
 (0.9933905544923662, 1.5623361787716572)

Now let me explain how it works. First we have a mutation function that takes single value and
mutates it as shown below

function mutate(value, mutations = 10)
 [value + rand() - 0.5 for i in 1:mutations]
end

Now we kind of want to extend this mutate function to tuple, so we write a declaration for it as
shown

function mutate(value, mutations = 10)
 [value + rand() - 0.5 for i in 1:mutations]
end

function mutate(mc::Tuple, number_of_mutations = 10)
end

Note that unlike the mutate(value, mutations = 10) this mutate(mc::Tuple, number_of_mutations =
10) clearly says it needs a tuple. Now imagine I pass a tuple to mutate like mutate1, 2, clearly Julia
will pass it to mutate(mc::Tuple, number_of_mutations = 10) and not to mutate(value, mutations =
10). So now let’s define the tuple mutate.

Let’s assume the tuple will have only two values, so the first value should be assigned to a variable
m and second one to c as shown

function mutate(mc::Tuple, number_of_mutations = 10)
 m, c = mc
end

Now all we need to do is to mutate m and c by number_of_mutations times and combine it. To mutate m
and c we use the following code

255

ms = mutate(m, number_of_mutations)
cs = mutate(c, number_of_mutations)

In the above code mutate(m, number_of_mutations) and mutate(c, number_of_mutations) calls
mutate(value, mutations = 10). We store the values of mutation in variable ms, I pronounce it as
emmmss and other in seas cs, let’s plugin this code into our function as shown

function mutate(mc::Tuple, number_of_mutations = 10)
 m, c = mc
 ms = mutate(m, number_of_mutations)
 cs = mutate(c, number_of_mutations)
end

Now we combine these mutations to form a Array of `Tuple’s and return it as shown

function mutate(mc::Tuple, number_of_mutations = 10)
 m, c = mc
 ms = mutate(m, number_of_mutations)
 cs = mutate(c, number_of_mutations)

 [(ms[i], cs[i]) for i in 1:number_of_mutations]
end

Now let’s write an error function, let’s say that we have m and c that our algorithm recommends, for
a given x, the prediction will be (m * x + c) `, and in the training phase the value of `y may
vary from our prediction, so, we need to minus y from our prediction to get error as shown:

∆(m, c, x, y) = (m * x + c) - y

Output:

∆ (generic function with 1 method)

Let’s say our m is 5, and c is 4, let’s see what’s out error when x is 10 as shown below

∆(5, 4, 10, y(10))

Output:

-21

Now some one says he has 10 values of and corresponding with him, he wants us to fit a line to

256

predict the unknown stuff, we decide a value of and , we need to know the total error for all
values of our prediction, so let’s write a total_error function as shown:

function total_error(m, c, x, y)
 ΣΔ = 0

 for i in 1:length(x)
 ΣΔ += abs(∆(m, c, x[i], y[i]))
 end

 ΣΔ
end

output:

total_error (generic function with 1 method)

In the total_error, we have a variable ΣΔ to store the total error, we assign it to zero as shown:

function total_error(m, c, x, y)
 ΣΔ = 0
end

now for each element if x

function total_error(m, c, x, y)
 ΣΔ = 0

 for i in 1:length(x)
 end
end

we add absolute value of error to total error variable ΣΔ

function total_error(m, c, x, y)
 ΣΔ = 0

 for i in 1:length(x)
 ΣΔ += abs(∆(m, c, x[i], y[i]))
 end
end

we return the total error variable ΣΔ

257

function total_error(m, c, x, y)
 ΣΔ = 0

 for i in 1:length(x)
 ΣΔ += abs(∆(m, c, x[i], y[i]))
 end

 ΣΔ
end

Now let’s check the total_error function

total_error(5, 4, [1, 2, 3, 4, 5], [1, 2, 3, 4, 5])

Output:

80

Seems to work!

Let’s now write our top_survivors function, this one takes Array of 's and 's Tuple’s as `mcs (I spell
it as emm seee’s), an array of training inputs namely x_train and y_train, and selects the
top_percent of mcs that that deviates the least with y_train for the given x_train.

function top_survivors(mcs, x_train, y_train, top_percent = 10)
 errors_and_values = []

 for mc in mcs
 m, c = mc
 error = total_error(m, c, x_train, y_train)
 push!(errors_and_values, (error, mc))
 end

 sorted_errors_and_values = sort(errors_and_values)
 end_number = Int(length(mcs) * top_percent / 100)
 sorted_errors_and_values[1:end_number]
end

Output:

top_survivors (generic function with 2 methods)

I would encourage you to read my previous Guessing a Number Genetic Algorithm section to
understand top_survivors function.

258

Now let’s setup the needed inputs for top_survivors, let’s have initial mcs as (0, 0):

x_train = [1, 2, 3, 4, 5]
y_train = y.(x_train)
mcs = mutate((0, 0))

Output:

10-element Vector{Tuple{Float64, Float64}}:
 (0.16087862232389538, 0.018092305432591882)
 (0.08312155751992667, -0.022630590705241538)
 (-0.32885966826028445, -0.4936484604469795)
 (-0.19041016854936288, 0.4707757045419352)
 (0.011998626752193209, -0.276041600093212)
 (-0.18351337891221542, -0.31274629114220875)
 (0.014823442262999142, 0.03761731346306618)
 (-0.19617757028312166, -0.11227454061420317)
 (0.07142332361410042, -0.2765731664220268)
 (0.3720719485797561, 0.44332686459739223)

Let’s test it out:

top_survivors(mcs, x_train, y_train)

Output:

1-element Vector{Any}:
 (122.2022864483167, (0.3720719485797561, 0.44332686459739223))

Looks like our m of 0.3720719485797561 and c of 0.44332686459739223 are the fittest with an error
of 122.2022864483167. Now all we need to do it to tell it to select top survivors across many
generations so that we get a near perfect fit as shown:

259

generations = 40

top_survivor = Nothing
mc = (0, 0)

for i in 1:generations
 mcs = mutate(mc)
 top_survivor = top_survivors(mcs, x_train, y_train)[1]
 _error, mc = top_survivor
end

hm, hc = mc
p = scatter(x_train, y_train)
h(x) = hm * x + hc
plot!(p, x, h.(x))

Output:

The code below is almost the same as code above, but note the @gif which collects the plot images
into a gif file so that we can see it as animation:

260

generations = 40

top_survivor = Nothing
mc = (0, 0)

@gif for i in 1:generations
 mcs = mutate(mc)
 top_survivor = top_survivors(mcs, x_train, y_train)[1]
 _error, mc = top_survivor

 hm, hc = mc
 p = scatter(x_train, y_train)
 h(x) = hm * x + hc
 plot!(p, x, h.(x), ylims = (0, 50))
end

Output:

┌ Info: Saved animation to
│ fn = /Users/mindaslab/data_science_with_julia/code/tmp.gif
└ @ Plots /Users/mindaslab/.julia/packages/Plots/g581z/src/animation.jl:104

See how in 40 generations our algorithms nearly fits a line to y(x) = 7x + 5, you may change 7 and
5 in y(x) to any thing and our algorithm in successive generations will try to fit line to a bunch of
points better and better in successive generations.

When I tried, this was the final value I got for and

mc

Output:

261

(6.838106002778459, 5.334256635688782)

In your computer it could vary, but the line will be a near perfect fit for the bunch of points.

You can get the code for this section here https://gitlab.com/datascience-book/code/
-/blob/master/genetic_alogorithms_line_fitting.ipynb.

262

https://gitlab.com/datascience-book/code/-/blob/master/genetic_alogorithms_line_fitting.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/genetic_alogorithms_line_fitting.ipynb

Chapter 47. K Nearest Neighbors

263

Chapter 48. Decision Tree
Decision tree is primary used for classification. In this section let’s see how to use decision tree to
classify the Titanic data set https://gitlab.com/datascience-book/code/-/blob/master/data/titanic.csv.

48.1. Understanding the Titanic data set
Let’s first understand the Titanic data set, if you take a look at it here https://gitlab.com/datascience-
book/code/-/blob/master/data/titanic.csv , you would not that it’s a CSV file which has the following
columns:

Column Name Explanation

PassengerId A unique number given to every row of data.

Survived If it’s 1, then it means the passenger survived the
wreak, if 0 then it means he or she died.

Pclass the passenger class, whether the passenger is
occupied in 1st, second or third class.

Name Self explanatory

Sex Self explanatory

Age Self explanatory

SibSp Number of sibling or spouse of the passenger
who is on board.

Parch Number of parents or children of the passenger
onboard the ship.

Ticket The ticket number.

Fare The fare paid by the passenger, possibly in
British pounds.

Cabin Name or number of the cabin where the
passenger stays.

Embarked From which place the passenger embarked the
the ship.

With the the knowledge from the above table let’s proceed.

48.2. Entropy

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/entropy.ipynb

 Video lecture for this section could be found here https://youtu.be/d3m9m8KhU9Y

264

https://gitlab.com/datascience-book/code/-/blob/master/data/titanic.csv
https://gitlab.com/datascience-book/code/-/blob/master/data/titanic.csv
https://gitlab.com/datascience-book/code/-/blob/master/data/titanic.csv
https://gitlab.com/datascience-book/code/-/blob/master/entropy.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/entropy.ipynb
https://youtu.be/d3m9m8KhU9Y

First let’s look into what’s entropy. In short entropy is a measure of impurity in a system. Let me
explain. Let’s fire our Jupyter notebook and import our ml_lib.jl

include("ml_lib.jl")

Now the measure of impurity, that is entropy is given by the following formula:

That is entropy is denoted by and the probability of an element found in a set is given by ,
then the entropy is given by the above formula. Note that we use log two above.

 I am not sure we can use natural log or others, let me clarify it when I feel so.

So log to the base two in Julia is computed by a function log2, let’s find log two of 8:

log2(8)

Output:

3.0

Let’s dive in and calculate the entropy of the vector shown below:

fruits = ["apple", "apple", "apple", "apple"]

So the fruits just contains 4 elements of "apple" , hence it has got no impurity in it. Which means its
entropy should be really low. As though we don’t belive what we have type let’s count the number
of occurrences of "apple" in fruits:

counter(fruits)

Output:

Dict{Any, Any} with 1 entry:
 "apple" => 4

So there are 4 elements in fruits and all of them are "apple", so let’s calculate the probability of
"apple" which is:

p_apple = 4 / 4

265

Output:

1.0

Now let’s calculate the entropy of "apple":

entropy_1 = - 1 * log2(1)

Output:

-0.0

Since this set contains just pure "apple" and nothing else, it’s entropy is the least, that is zero.

Now let’s add an element "orange" to the set:

fruits = ["apple", "apple", "apple", "apple", "orange"]

Output:

5-element Vector{String}:
 "apple"
 "apple"
 "apple"
 "apple"
 "orange"

Now the probability of "apple" becomes:

p_apple = 4 / 5

Output:

0.8

And the probability of "orange" becomes:

p_orange = 1 / 5

Output:

266

0.2

Now let’s calculate it’s entropy:

entropy_2 = -(0.8 * log2(0.8)) - (0.2 * log2(0.2))

Output:

0.7219280948873623

Definitely it’s higher this time, since "orange" is an impurity in a set of "apple".

Now assuming there are equal number of elements ina a set, so the proablity is half, let’s calculate
the entropy and see:

entropy_3 = -(0.5 * log2(0.5)) - (0.5 * log2(0.5))

Output:

1.0

The entropy is even higher than 0.72 as the set is more mixed up.

Now let’s say we have a set of 10 fruits, let’s say we have 3 oranges, 3 sappota’s and 4 apples, now
let’s calculate the entropy:

entropy_4 = -(0.3 * log2(0.3)) - (0.3 * log2(0.3)) - (0.4 * log2(0.4))

Output:

1.5709505944546684

In ml_lib.jl, I have coded a function called element_probabilities, ehich when given a vector, puts
out he probabilities of elements, let’s try that out on our fruits vector:

element_probabilities(fruits)

Output:

267

Dict{Any, Any} with 2 entries:
 "orange" => 0.2
 "apple" => 0.8

I have also coded a function called entropy in ml_lib.jl which when passed a vector calculates it’s
entropy, let’s use it to find the entropy of fruits

entropy(fruits)

Output:

0.7219280948873623

Seems to work!

The reader is encouraged to refer source of ml_lib.jl which could be found here
https://gitlab.com/datascience-book/code/-/blob/master/lib/ml_lib.jl

48.3. Applying Entropy on Titanic Dataset

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/entropy_on_titanic.ipynb and here https://gitlab.com/
datascience-book/code/-/blob/master/entropy_on_titanic_feature_engineered.ipynb

In[1]:

include("ml_lib.jl")

Out[1]:

entropy (generic function with 1 method)

In[2]:

using DataFrames
using CSV

In[3]:

268

https://gitlab.com/datascience-book/code/-/blob/master/lib/ml_lib.jl
https://gitlab.com/datascience-book/code/-/blob/master/entropy_on_titanic.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/entropy_on_titanic.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/entropy_on_titanic_feature_engineered.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/entropy_on_titanic_feature_engineered.ipynb

df = DataFrame(CSV.File("data/titanic.csv"))

Get the non missing rows
df_non_missing = dropmissing(df)

Get only adults
filter_adults = df_non_missing.Age .>= 18
df_adults = df_non_missing[filter_adults, :]

Get only the men
filter_men = df_adults.Sex .== "male"
df_men = df_adults[filter_men, [:Sex, :Age, :Survived, :Pclass]]

Get only the woman
filter_women = .!filter_men
df_women = df_adults[filter_women, [:Sex, :Age, :Survived, :Pclass]]

Get only children
filter_children = .!filter_adults
df_children = df_non_missing[filter_children, [:Age, :Survived]]

Output:

Age Survived

1 4.0 1

2 1.0 1

3 3.0 1

4 2.0 0

5 2.0 0

6 0.92 1

7 17.0 1

8 16.0 1

9 2.0 1

10 14.0 1

11 4.0 1

12 16.0 1

13 17.0 1

14 4.0 1

15 15.0 1

16 6.0 1

17 17.0 1

269

Age Survived

18 11.0 1

19 16.0 1

In[4]:

entropy([1, 1, 1, 1, 1])

Out[4]:

0.0

In[5]:

entropy([1, 1, 1, 1, 1, 0, 0, 0])

Out[5]:

0.954434002924965

In[6]:

df_non_missing.Survived

Out[6]

270

183-element Vector{Int64}
1
1
0
1
1
1
1
0
1
0
0
1
0

and so on

1
1
1
1
1
1
0
1
0
1
1
1

In[7]:

entropy(df_non_missing.Survived)

Out[7]:

0.9127341558073343

In[8]:

entropy(df_men.Survived)

Out[8]:

0.9575534837147482

271

In[9]:

entropy(df_women.Survived)

Out[9]:

0.29461520565280713

In[10]:

entropy(df_children.Survived)

Out[10]:

0.4854607607459134

In[11]:

df_men

Out[11]:

Sno. Sex Age Survived Pclass

String Float64 Int64 Int64

1 male 54.0 0 1

2 male 34.0 1 2

3 male 28.0 1 1

4 male 19.0 0 1

5 male 65.0 0 1

6 male 45.0 0 1

7 male 25.0 0 3

8 male 46.0 0 1

9 male 71.0 0 1

10 male 23.0 1 1

11 male 21.0 0 1

12 male 47.0 0 1

13 male 24.0 0 1

272

Sno. Sex Age Survived Pclass

14 male 54.0 0 1

15 male 37.0 0 1

16 male 24.0 0 1

17 male 36.5 0 2

In[12]:

filter_1st_class_men = df_men.Pclass .== 1
df_men_first_class = df_men[filter_1st_class_men, :]

Out[12]:

Sex Age Survived Pclass

String Float64 Int64 Int64

1 male 54.0 0 1

2 male 28.0 1 1

3 male 19.0 0 1

4 male 65.0 0 1

5 male 45.0 0 1

In[13]:

entropy(df_men_first_class.Survived)

Out[13]:

0.9631672450918831

In[14]:

filter_other_class_men = .!filter_1st_class_men
df_men_other_class = df_men[filter_other_class_men, :]

Out[14]:

Sex Age Survived Pclass

String Float64 Int64 Int64

1 male 34.0 1 2

273

Sex Age Survived Pclass

2 male 25.0 0 3

3 male 36.5 0 2

4 male 36.0 0 2

5 male 32.0 1 3

In[15]:

entropy(df_men_other_class.Survived)

Out[15]:

0.863120568566631

In[16]:

women_survived = df_women.Survived

Out[16]:

274

77-element Vector{Int64}:
 1
 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 1
 ⋮
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

In[17]:

counter(women_survived)

Out[17]:

Dict{Any, Any} with 2 entries:
 0 => 4
 1 => 73

In[19]:

highest_vote(counter(women_survived))

Out[19]:

1

275

In[20]:

counter(df_men_first_class.Survived)

Out[20]:

Dict{Any, Any} with 2 entries:
 0 => 49
 1 => 31

In[21]:

counter(df_children.Survived)

Out[21]:

Dict{Any, Any} with 2 entries:
 0 => 2
 1 => 17

In[22]:

size(df_children)

Out[22]:

(19, 2)

In[1]:

include("ml_lib.jl")

Out[1]:

entropy (generic function with 1 method)

In[2]:

using DataFrames
using CSV

276

In[3]:

df = DataFrame(CSV.File("data/titanic_feature_engineered.csv"))

Get the non missing rows
df_non_missing = dropmissing(df)

Get only adults
filter_adults = df_non_missing.Age .>= 18
df_adults = df_non_missing[filter_adults, :]

Get only the men
filter_men = df_adults.Sex .== "male"
df_men = df_adults[filter_men, [:Sex, :Age, :Survived, :Pclass]]

Get only the woman
filter_women = .!filter_men
df_women = df_adults[filter_women, [:Sex, :Age, :Survived, :Pclass]]

Get only children
filter_children = .!filter_adults
df_children = df_non_missing[filter_children, [:Age, :Survived]]

Out[3]:

Sno Age Survived

Float64 Int64

1 2.0 0

2 14.0 1

3 4.0 1

4 14.0 0

5 2.0 0

In[4]:

entropy(df_non_missing.Survived)

Out[4]:

0.9744414561311621

In[5]:

277

entropy(df_men.Survived)

Out[5]:

0.6739468651941155

In[6]:

entropy(df_women.Survived)

Out[6]:

0.7747817605858327

In[7]:

entropy(df_children.Survived)

Out[7]:

0.9954192904269324

In[8]:

df_men

Out[8]:

Sno Sex Age Survived Pclass

String Float64 Int64 Int64

1 male 22.0 0 3

2 male 35.0 0 3

3 male 54.0 0 1

4 male 20.0 0 3

5 male 39.0 0 3

In[28]:

278

counter(df_men.Survived)

Out[28]:

Dict{Any, Any} with 2 entries:
 0 => 325
 1 => 70

In[9]:

filter_1st_class_men = df_men.Pclass .== 1
df_men_first_class = df_men[filter_1st_class_men, :]

Out[9]:

Sno Sex Age Survived Pclass

String Float64 Int64 Int64

1 male 54.0 0 1

2 male 28.0 1 1

3 male 19.0 0 1

4 male 40.0 0 1

5 male 28.0 0 1

In[10]:

entropy(df_men_first_class.Survived)

Out[10]: ----0.9515388458648668----

In[30]:

counter(df_men_first_class.Survived)

Out[30]:

Dict{Any, Any} with 2 entries:
 0 => 61
 1 => 36

In[11]:

279

filter_other_class_men = .!filter_1st_class_men
df_men_other_class = df_men[filter_other_class_men, :]

Out[11]:

Sno Sex Age Survived Pclass

String Float64 Int64 Int64

1 male 22.0 0 3

2 male 35.0 0 3

3 male 20.0 0 3

4 male 39.0 0 3

5 male 35.0 0 2

In[12]:

entropy(df_men_other_class.Survived)

Out[12]:

0.512142399277117

In[32]:

counter(df_men_other_class.Survived)

Out[32]:

Dict{Any, Any} with 2 entries:
 0 => 264
 1 => 34

In[35]:

34 / size(df_men_other_class)[1]

Out[35]: ----0.11409395973154363----

In[36]:

280

size(df_men_other_class)

Out[36]:

(298, 4)

In[37]:

36 / size(df_men_first_class)[1]

Out[37]:

0.3711340206185567

In[13]:

women_survived = df_women.Survived

Out[13]:

281

206-element Vector{Int64}:
 1
 1
 1
 1
 1
 1
 0
 1
 0
 0
 0
 1
 0
 ⋮
 1
 1
 1
 1
 1
 1
 1
 1
 1
 0
 0
 1

In[14]:

counter(women_survived)

Out[14]:

Dict{Any, Any} with 2 entries:
 0 => 47
 1 => 159

In[15]:

highest_vote(counter(women_survived))

Out[15]:

1

282

In[16]:

counter(df_men_first_class.Survived)

Out[16]:

Dict{Any, Any} with 2 entries:
 0 => 61
 1 => 36

In[17]:

counter(df_children.Survived)

Out[17]:

Dict{Any, Any} with 2 entries:
 0 => 52
 1 => 61

In[18]:

size(df_children)

Out[18]:

(113, 2)

In[19]:

filter_1st_class_women = df_women.Pclass .== 1

Out[19]:

283

206-element BitVector:
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮
 1
 0
 1
 0
 0
 1
 0
 1
 0
 0
 0
 1

In[20]:

df_women_first_class = df_women[filter_1st_class_women, :]

Out[20]:

Sno Sex Age Survived Pclass

String Float64 Int64 Int64

1 female 38.0 1 1

2 female 35.0 1 1

3 female 58.0 1 1

4 female 49.0 1 1

5 female 38.0 1 1

In[21]:

284

entropy(df_women_first_class.Survived)

Out[21]:

0.173781322679433

In[22]:

filter_other_class_women = .! filter_1st_class_women

Out[22]:

206-element BitVector:
 0
 1
 0
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 ⋮
 0
 1
 0
 1
 1
 0
 1
 0
 1
 1
 1
 0

In[23]:

df_women_other_class = df_women[filter_other_class_women, :]

Out[23]:

285

Sno Sex Age Survived Pclass

String Float64 Int64 Int64

1 female 26.0 1 3

2 female 27.0 1 3

3 female 55.0 1 2

4 female 31.0 0 3

5 female 38.0 1 3

In[24]:

entropy(df_women_other_class.Survived)

Out[24]:

0.9330252953592911

In[25]:

counter(df_women_first_class.Survived)

Out[25]:

Dict{Any, Any} with 2 entries:
 0 => 2
 1 => 75

In[26]:

counter(df_women_other_class.Survived)

Out[26]:

Dict{Any, Any} with 2 entries:
 0 => 45
 1 => 84

In[27]:

df_children

286

Out[27]:

Sno Age Survived

Float64 Int64

1 2.0 0

2 14.0 1

3 4.0 1

4 14.0 0

5 2.0 0

48.4. Building a Decision Tree

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/decision_tree_from_scratch_part_1.ipynb and https://gitlab.com/
datascience-book/code/-/blob/master/decision_tree_from_scratch_part_2.ipynb

287

https://gitlab.com/datascience-book/code/-/blob/master/decision_tree_from_scratch_part_1.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/decision_tree_from_scratch_part_1.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/decision_tree_from_scratch_part_2.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/decision_tree_from_scratch_part_2.ipynb

Chapter 49. Gradient Descent

Gradient descent seems to be one of the successful and miracle algorithm that seems to solve lot of
machine learning problems. Let’s say that there is a function , let’s say you are told that it’s been
determined by two attributes and , you are given lot’s of values of and corresponding values of

. So how would you find and ?

Imagine you guess lots of combinations of and , then you plug those values into for all values
of and you get the total square of error. You plot error vs and , you get something like this

Reader is encouraged to visit https://upload.wikimedia.org/wikipedia/commons/a/
a3/Gradient_descent.gif to see gradient descent in action.

Now imagine you keep some balls at various points on the error graph, they will roll down the
steepest gradient and descent to a place where and will produce the minimum deviation. That’s
the place where optimum and could be found.

Well if things are confusing, don’t worry, let’s see it in action.

288

https://upload.wikimedia.org/wikipedia/commons/a/a3/Gradient_descent.gif
https://upload.wikimedia.org/wikipedia/commons/a/a3/Gradient_descent.gif

49.1. Guessing Number With Gradient Descent

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/guessing_number_with_gradient_descent.ipynb

 Video lecture for this section could be found here https://youtu.be/NNU7HgSDR-Q

First let’s guesses a number with Gradient Descent.

49.1.1. Intuition

Let’s say we have a number 42, we need to guess it. So in the piece of code below, we have number
that’s 42, guess , that’s an initial random guess we make and α, which we call as step size. When yo
descend down a hill, you don’t spring like frog, you take small steps, similarly, we will change our
guess in small steps to reach number.

number = 42
α = 0.01
guess = rand(0:100)

Output:

29

So in the case above, the computer has done a wild guess of 29, which is way off 42, now how to
make the guess slightly more closer to 42. First we compute the error as shown below:

error = guess - number

Output:

-13

Then we recompute guess as shown below:

guess = guess - α * error

Output:

29.13

As you see, we don’t do guess= guess - error, but we multply error with α. α is called step size or

289

https://gitlab.com/datascience-book/code/-/blob/master/guessing_number_with_gradient_descent.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/guessing_number_with_gradient_descent.ipynb
https://youtu.be/NNU7HgSDR-Q

learning constant.

So we see that we have moved guess slightly more closer to 42 by following the above steps. Now
let’s take 1000 steps.

for i in 1:1000
 error = guess - number
 guess = guess - α * error
end

guess

Output:

41.99944438604583

As you see, taking 1000 steps makes our guess very much closer to 42 which is our destiny. Even if
we take 10,000 or 1,000,000 steps we won’t over shoot 42, that’s because, as we go near 42, error
becomes almost zero thus change in guess keeps decreasing.

49.1.2. Guessing Number

Now we have got some intuition about guessing number with gradient descent, let’s write some
code to visualize it. The code below is same as we have seen in the previous section, but we have
got variables guesses and errors which record our guesses and errors.

number = 42
α = 0.01
guess = rand(0:100)
guesses = []
errors = []

for i in 1:1000
 error = guess - number
 guess = guess - α * error
 push!(guesses, guess)
 push!(errors, error)
end

Now let’s plot our guesses against our destiny number

290

using Plots

number_line = [number for i in 1:1000]

visual = plot!(1:1000, number_line, label="destiny")
plot!(visual, guesses, label="guesses")

Output:

As you can see initially, the random guess which is around 47, creases steeply, but at the same time
our error to descends steeply thus limiting the rate of change of guess. Slowly the guess approaches
number and error since it almost is 0 ensures that the guess never over shoots 42.

Exercise: Change the value of α to a value say 10 and see what happens? could you explain why?.

Exercise: Change number and rerun the above program. Does the plotted graph differ? How and
why?

49.2. Linear Regression With Gradient Descent

 Video lecture for this section could be found here https://youtu.be/9WaSusd8wBM

Now let’s say you are given a bunch of points 's and 's, you plot it and looks like the dependent
variable is linearly linked to feature, you suspect a prediction will look like this:

So how to solve this by gradient descent assuming we have some wild random guess of and ?

291

https://youtu.be/9WaSusd8wBM

So let’s first start by taking partial differentiation of over .

Now let’s do the same, this time over .

We will use these results later.

Now say we have some wild guess of and , we plug it into and we get an value for given , this
would be our error value:

Now let’s square it:

This is for one point which gives prediction , for guessed value and , let’s compute the total
error for given points:

Since its better to get average error, let’s divide by :

Let’s call this equation as shown below:

Now we differentiate partially with :

which gives:

Since can be treated as constant, we can remove it since:

So we get:

Now plugging in we get:

292

Now we can update taking a step in the direction and magnitude pointed by gradient , before
subtracting from , we multiply it with constant as shown:

Similarly gives:

We can obtain new value of as follows:

So if we repeat these steps of finding the error gradient, multiply with a small constant and minus
the value from current value on and on, we will naturally come down to a point where and
gives minimum value of error, thus guessing almost the right values of and .

49.2.1. Code

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/linear_regression_with_gradient_descent.ipynb

In the last section you saw about the mathematics of solving a simple linear equation with gradient
descent, now let’s see it in code. First we have a function that describes a equation of line:

line(m, x, c) = m * x + c

Let’s test it out:

line(2, 5, 3)

Output:

13

Seems to work!. Now let’s generate sample treating data for us. We describe a function y(x) as
shown below:

y(x) = line(2, x, 3)

So when we run gradient descent, we expect our values of m and c to converge upon 2 and 3
respectively.

293

https://gitlab.com/datascience-book/code/-/blob/master/linear_regression_with_gradient_descent.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/linear_regression_with_gradient_descent.ipynb

Let’s test the function:

y(5)

Output:

13

Seems to work!

Now let’s say we take sample X to be 1 to 10 as shown:

X = 1:10

Output:

1:10

We generate sample Y for training as shown below:

Y = y.(X)

Output:

10-element Vector{Int64}:
 5
 7
 9
 11
 13
 15
 17
 19
 21
 23

Now for given training data X and Y, for a guessed m and c we need to find errors, for that we write a
function as shown:

294

function errors(X, Y, m, c)
 predictions = [line(m, x, c) for x in X]
 predictions - Y
end

Now let’s test it out, we aasume m is 4 and c is 5:

m = 4
c = 5
α = 0.001

errors(X, Y, m, c)

10-element Vector{Int64}:
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

Seems to work!

Now let’s load the cont of data points we have into a a variable n as shown:

n = length(Y)

Output:

10

If you remember we had assumed m as 4 and c as 5 before. Now let’s update m using the gradient:

m = m - (2 / n) * α * sum(errors(X, Y, m, c) .* X)

Output:

295

3.824

So we see its reducing, that is moving towards 2. Similar let’s update for c:

m = 4
c = 5

c = c - (2 / n) * α * sum(errors(X, Y, m, c))

Output:

4.974

We see it too is climbing down from 5, that is traveling towards 3.824

Now with the new values of m and c let’s update m once again:

m = 3.824
c = 4.974

m = m - (2 / n) * α * sum(errors(X, Y, m, c) .* X)

Output:

3.661838

It decreases further, near to 2, our expected m.

And now for c

m = 3.824
c = 4.974

c = c - (2 / n) * α * sum(errors(X, Y, m, c))

Output:

4.949988

It decreases further! So we are going somewhere!!!

Now let’s assume m as 5 and c as 0, now let’s apply this gradient descent algorithm and let’s take a
1000 steps:

296

m = 5
c = 0
α = 0.01

for i in 1:1000
 Δ = errors(X, Y, m, c)
 m = m - (2 / n) * α * sum(Δ .* X)
 c = c - (2 / n) * α * sum(Δ)
end

(m, c)

Output

(2.0071802776754826, 2.9500121822629732)

Wow! m is almost 2 and c is almost 3, now let’s plot our data points and our guessed line:

using Plots

graph = scatter(X, Y, label = "data")
points = 0:0.1:10
plot!(graph, points, [line(m, x, c) for x in points], label = "fit")

Output:

297

A very tight fit, even though its not 100% perfect. Good job!

49.3. Generalizing Linear Regression With Gradient
Descent
Now since you have done gradient descent for , let’s generalize it. Say suppose you have a
table as shown below:

Table 1. Feature List

Feature 1 … Feature j … Feature m Prediction

… …

… … … … … …

… …

… … … … … …

… …

There are features, and rows or data points, so you think this relation between features and
prediction might be related like this:

That is if is approximated to the right amounts than you can get a good prediction.

 is used because, h is the first letter in the word hypothesis.

So for each th row the prediction would be like:

Now doing a partial differentiation of with respect to we get:

We will use the above result later.

Similarly doing partial differentiation of with respect to we get:

We will use the above result later.

Now the average square of errors for data points would be:

So doing partial differentiation of with respect to we get:

298

Similarly doing partial differentiation of with respect to we get:

So once the above procedures are done in code, we can obtain new value of as:

Where is the step size.

Similarly we can get the new value of as shown:

299

Chapter 50. Hot and Cold Learning

300

Chapter 51. K Means Clustering

 Video lecture for this section could be found here https://youtu.be/468U1e4ITjI

K Means Clustering is an unsupervised learning. That is if you see in this book you need to some for
of label to data that is in the Titanic case you need to say if the person has survived or not, in Iris
flower classification you need to say what type of Iris the flower is. In K Means, that is not the case.
It’s used in cases where you do not really know how to classify the data you have.

Let’s say you have a bunch of data points, you throw it to K Means and tell it to classify in 10 ways,
and it will do then it’s on you to make sense of it.

51.1. Intuition
So let’s try to understand it. So you have got six points as shown below. Assume that they are on
cartesian plane. You as a human can say intuitively that you can bunch it into two, but how does
the computer do it. It does not have the millions of years of evolutionary advantage. You inherit a
crocodile’s brain when your computers processors was made, it almost inherited no learning.

So this is how you do it, you randomly assign two points (in this case I want to classify it two ways,
that is K = 2), let’s say one get classified as red group and one gets classified as blue group. So we
place a red cross on a random point, and a blue cross on another random point. Let’s say they are
the mid points of red and blue group as shown below:

Now all points near red midpoints become part of the red group and all points below the blue mid
point becomes part of the blue group as shown below.

Now we recenter our midpoint, as its no longer the mid point, so the red and blue crosses becomes
the mid point of the group again as shown below.

301

https://youtu.be/468U1e4ITjI

Now if we once again try to color the points, the coloring wont change, as the blue dots at the right
are near to the blue mid point, and red dots at the left are near the red mid point. Now we can
conclude the clustering is complete.

Now take another case, we initially choose two random midpoint, the red mid point is the lowest
left dot and blue mid point is next to it. So when we color the dots blue dominates and we as
humans could intuitively say that this clustering seems out of place. So how to mitigate this?

Once again recalculate the mid points, the red midpoint stays put, but the blue one is pulled far to
right by the weight of three dots to the right as shown below.

Now once again recolor, so the dots near the red mid point becomes red, and the ones near blue is
blue as shown. Magically this recalculating and recoloring seems to fix the issues as shown below.

One again reposition the mid points as shown below and you are done. This is how K Means
clustering is done.

As a human you can cluster points from 1D to 3D space, beyond that it will be difficult for human.
Plus if the points are in thousands and millions, it becomes really difficult. So let’s write Julia code
for it.

302

51.2. Writing it in Julia

Get the Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/k_means_clustering.ipynb

Let’s write the K Means Clustering in Julia, first we import vector library which we developed in the
vectors section

include("lib/vect_lib.jl")

You can find that library here https://gitlab.com/datascience-book/code/-/blob/master/vectors.ipynb

Now of the main thing in K Means is you must be able to associate a point (here in Julia we are
representing as a vector), to a mid point. So in the function below, we take in all the mid points, and
a vector, we see to which mid point the vector is nearest, and associate the vector with that mid
point.

function nearest(midpoints, vector)
 k = length(midpoints)

 index = 1
 output = Dict()
 Δd = distance(midpoints[1], vector)

 for midpoint in midpoints
 new_distance = distance(midpoint, vector)

 if Δd >= new_distance
 output["distance"] = Δd
 output["midpoint"] = midpoint
 output["midpoint_index"] = index
 end

 index += 1
 end

 output
end

Let’s execute the above function, we give two mid points [1, 1] and [5, 5], and we give a vector or
point in question as [6, 6]

nearest(
 [[1, 1], [5, 5]],
 [6, 6]
)

303

https://gitlab.com/datascience-book/code/-/blob/master/k_means_clustering.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/k_means_clustering.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/vectors.ipynb

Naturally, [6, 6] is near [5, 5] and hence we get an output as shown. The output we get is in the
form of dictionary and it contains three attributes, they are:

Dict{Any, Any} with 3 entries:
 "midpoint" => [5, 5]
 "distance" => 7.07107
 "midpoint_index" => 2

• midpoint - Which says which mid point is nearest to the vector in question

• distance - Which says whats the distance from the vector in question to the mid point

• midpoint_index - Which says at what indes the mid point is in the passed array.

When we give two midpoints [5, 5] and [7, 7] which are equidistance from [6, 6], out algorithm
picks the last one as shown:

nearest(
 [[1, 1], [5, 5], [7, 7]],
 [6, 6]
)

Output:

Dict{Any, Any} with 3 entries:
 "midpoint" => [7, 7]
 "distance" => 7.07107
 "midpoint_index" => 3

Similarly we check which midpoint is closest to [0, 0] below:

nearest(
 [[1, 1], [5, 5], [7, 7]],
 [0, 0]
)

Output:

Dict{Any, Any} with 3 entries:
 "midpoint" => [1, 1]
 "distance" => 1.41421
 "midpoint_index" => 1

Now we check which is closest to [3, 4] below:

304

nearest(
 [[1, 1], [5, 5], [7, 7]],
 [3, 4]
)

Output:

Dict{Any, Any} with 3 entries:
 "midpoint" => [5, 5]
 "distance" => 3.60555
 "midpoint_index" => 2

Now let’s tackle he heart of our problem, given a bunch of mid points and bunch of vectors, we
need say to which mid point the vector could be clustered. Thats been tackled in the code below.

function cluster(midpoints, vectors)
 k = length(midpoints)
 clusters = [[] for i in 1:k]

 for vector in vectors
 nearest_info = nearest(midpoints, vector)
 index = nearest_info["midpoint_index"]
 push!(clusters[index], vector)
 end

 clusters
end

Let’s go through the above function in detail. So let’s say we start with a empty function:

function cluster(midpoints, vectors)
end

From k is nothing but number of midpoints:

function cluster(midpoints, vectors)
 k = length(midpoints)
end

Now we create vector of k empty vectors for clustering:

305

function cluster(midpoints, vectors)
 k = length(midpoints)
 clusters = [[] for i in 1:k]
end

Now for each vector:

function cluster(midpoints, vectors)
 k = length(midpoints)
 clusters = [[] for i in 1:k]

 for vector in vectors
 end
end

We get the nearest midpoint:

function cluster(midpoints, vectors)
 k = length(midpoints)
 clusters = [[] for i in 1:k]

 for vector in vectors
 nearest_info = nearest(midpoints, vector)
 end
end

We know the nearest mid point has the midpoint_index which tells to which mid point the vector is
nearest, so we get that into a variable named index:

function cluster(midpoints, vectors)
 k = length(midpoints)
 clusters = [[] for i in 1:k]

 for vector in vectors
 nearest_info = nearest(midpoints, vector)
 index = nearest_info["midpoint_index"]
 end
end

Now we add the vector to the cluster at that particular index. Finally we return the clusters out.

306

function cluster(midpoints, vectors)
 k = length(midpoints)
 clusters = [[] for i in 1:k]

 for vector in vectors
 nearest_info = nearest(midpoints, vector)
 index = nearest_info["midpoint_index"]
 push!(clusters[index], vector)
 end

 clusters
end

Let’s test the function:

cluster(
 [[0, 0], [100, 100]],
 [[0,0], [102, 20], [5, 5], [105, 105]]
)

Output:

2-element Vector{Vector{Any}}:
 [[0, 0], [5, 5]]
 [[102, 20], [105, 105]]

Seems to wok!

Now in vect_lib.jl we already have coded a midpoint function, let’s test it out.

midpoint([[0, 0], [5, 5]])

2-element Vector{Float64}:
 2.5
 2.5

midpoint([[102, 20], [105, 105]])

Output:

307

2-element Vector{Float64}:
 103.5
 62.5

Seems to work!

All we need to do now is to code our own K Means Clustering function. So in the function below
takes in vector of vectors into variable named vectors, and it takes the values of k, and it groups the
vectors into k clusters.

function k_means_clustering(vectors, k = 2)
 vect_length = length(vectors)
 centers = []
 clusters = nothing

 for i in 1:k ①
 push!(centers, vectors[rand(1:vect_length)])
 end

 for i in 1:ceil(vect_length / k)
 clusters = cluster(centers, vectors) ②
 centers = []

 for vect_array in clusters ③
 center = midpoint(vect_array)
 push!(centers, center)
 end
 end

 clusters
end

① Pick K random midpoints / centers

② Cluster according to centers

③ Recenter midpoints according to new clusters

All we do in the code is first pick out k centers or midpoints, then for number of vectors vect_length
divided by k times we find clusters and re center again. This clusters the vectors.

So let’s try it out:

k_means_clustering([[0,0], [102, 20], [5, 5], [105, 105], [3, 4], [67, 82], [50, 50]
])

Output:

308

2-element Vector{Vector{Any}}:
 [[0, 0], [5, 5], [3, 4]]
 [[102, 20], [105, 105], [67, 82], [50, 50]]

Seems to work.

Now let’s try to cluster our vector into 3 clusters:

k_means_clustering([[0,0], [102, 20], [5, 5], [105, 105], [3, 4], [67, 82], [50, 50]
], 3)

Output:

3-element Vector{Vector{Any}}:
 [[102, 20]]
 [[0, 0], [5, 5], [3, 4]]
 [[105, 105], [67, 82], [50, 50]]

Seems to work!

Sometimes this code breaks if the numbers of points is very less compared to k, to
mitigate that use large number of points, some times just by running the function
again with same data fixes it. I think the problem is with choosing same centers
more than once.

309

Chapter 52. Naive Bayes For Text
Classification

 Video lecture for this section could be found here https://youtu.be/oHaeVuIhYoc

Get Jupyter notebook for this section here https://gitlab.com/datascience-book/
code/-/blob/master/naive_bayes.ipynb

Naive Baye’s is used for text classification, take a look at the labeled data set below, we have got text
at left and label at the right.

Text Label

A great game Sport

The election was over Politics

Very clean match Sport

A clean but forgettable game Sport

It was a close election Politics

Armed with the data above, we will apply a thing called Baye’s Theorem[12] to see if unknown text is
either related to Politics or Sport.

We can represent this Data set above using this dataframe

df = DataFrame(
 text = [
 "A great game",
 "The election was over",
 "Very clean match",
 "A clean but forgettable game",
 "It was a close election"
],

 label = [
 "Sport",
 "Politics",
 "Sport",
 "Sport",
 "Politics"
]
)

Now let’s see how to manually calculate the probability of words in each label. First, let’s take the
data only for politics

310

https://youtu.be/oHaeVuIhYoc
https://gitlab.com/datascience-book/code/-/blob/master/naive_bayes.ipynb
https://gitlab.com/datascience-book/code/-/blob/master/naive_bayes.ipynb

Text Label

The election was over Politics

It was a close election Politics

Now it contains total of 9 words. Out of these 9 words two are election. So the probability of finding
election in the label Politics is given as

Similarly when we take the data for label Sport:

Text Label

A great game Sport

Very clean match Sport

A clean but forgettable game Sport

We find there are 11 words, and 2 of them are game. So probability of finding the word game in sport
is:

Now let’s take a unseen string a very close game, we need to calculate if this belongs to label Sport
or Politics.

To determine if this string belong to post, we use this formula, where we take each word, find the
probability of the word in Sport, then multiply all of then together as shown:

But there is a problem here. There is no word named close in Sport data set, hence the probability
will be zero:

To mitigate this, we employ a technique called additive smoothing [13]. Here we are defining a
function called as shown below:

So the numerator is for us.

The denominator is dimension or number of words in the given label, for this case the label is
Sport and the total number of words is .

 is number of possible / unique words in the entire data set, and if you count them you will get
unique words.

 is smoothing constant, we have chosen

311

So plugging these values in the equation

, , ,

we get

In general we can express the formula for checkingthe probility of given set of words in a label as
shown:

If you look at the code, I would have defined additive smoothing function as follows:

"""
Performs additive smoothing as mentioned in
https://en.wikipedia.org/wiki/Additive_smoothing

```julia
additive_smoothing(numerator, denominator, N = 1, α = 0)
```
N is number of trials

α is smoothing paramater
"""
function additive_smoothing(numerator, denominator, N = 0, α = 1)
 (numerator + α) / (N + denominator * α)
end

In the above code just concentrate on

function additive_smoothing(numerator, denominator, N = 0, α = 1)
 (numerator + α) / (N + denominator * α)
end

This is the additive smoothing code.

Now let’s define a function to calculate the probability of word occurring in a function:

312

function word_probability(word, classification, data_frame, config = Dict())
 α = get(config, "α", 1)
 text_column = get(config, "text_column", "text")
 label_column = get(config, "label_column", "label")
 df = data_frame

 all_text = lowercase(join(df[:, text_column], " "))
 words = split(all_text)
 N = length(Set(words))

 filter = df[:, label_column] .== classification
 df_filtered = df[filter, :]
 filtered_text = lowercase(join(df_filtered[:, text_column], " "))

 word_counts = counter(split(filtered_text))

 word_count = get(word_counts, word, 0)

 additive_smoothing(word_count, length(split(filtered_text)), N, α)
end

The above function calculate the probability of word occurring in a given label. This is how it
works.

We have a function named word_probability

function word_probability(word, classification, data_frame, config = Dict())
end

the first argument is word, which accepts the word who’s probability should be determined, the
second argument is classification, that is the label, we will be determining the probability of word
occurring in classification. The third argument data_frame accepts the data frame that has the text
and classification labels. The fourth is a argument called config, to which a dictionary should be
passed.

The config could have the following keys. α, is the smoothing constant that we need to pass to the
additive_smoothing function. text_column is the key that holds the name of the text column that
needs to be considered. label_column is the key the holds the name of the label or classification
column.

In these lines:

α = get(config, "α", 1)
text_column = get(config, "text_column", "text")
label_column = get(config, "label_column", "label")

We set default value for config keys, if nothing is in α it ddefaults to 1, if nothing is in text_column, it

313

defaults to text, if nothing is in label_column it defaults to label. These are captured in varables α,
text_column and label_column

I assign data_frame to a variable df in this line df = data_frame for convenience.

In these lines (shown below) in word_probability function, we take all text in the data frame, and
get the count of unique words and assign it to variable named N. This N will be used in
additive_smoothing function soon.

all_text = lowercase(join(df[:, text_column], " "))
words = split(all_text)
N = length(Set(words))

Now if the classification or label is Sport we need to take just text in sport, for that we need to filter
it out, that is take the text rows that belong only to classification for that we write a filter as
shown below:

filter = df[:, label_column] .== classification

Use the filter to filter the dataframe:

df_filtered = df[filter, :]

Then take out the filtered text:

filtered_text = lowercase(join(df_filtered[:, text_column], " "))

Now we count the words in that classification using the following line:

word_counts = counter(split(filtered_text))

For this we use counter function which we have it in our library `ml_lib.jl`[14].

Next we see if a word is present, if yes get its count, or else we get it as zero as shown below:

word_count = get(word_counts, word, 0)

Finally we pass all the value to additive_smoothing function which get’s returned out:

additive_smoothing(word_count, length(split(filtered_text)), N, α)

Now you can try what’s the word probability of of say game in label Sport:

314

word_probability("game", "Sport", df, Dict("α" => 1))

Output

0.12

Now string probability is the multiplication of word probabilities, so we write a function as shown:

function string_probability(string, classification, data_frame, config = Dict())
 α = get(config, "α", 1)
 text_column = get(config, "text_column", "text")
 label_column = get(config, "label_column", "label")

 config_with_defaults = Dict("α" => α,
 "text_column" => text_column,
 "label_column" => label_column)

 probability = 1

 string = replace(string, r"\W" => " ")
 words = split(lowercase(string))

 for word in words
 probability *= word_probability(word, classification, data_frame,
config_with_defaults)
 end

 probability
end

We get a string and a classification for which its probability that should be determined. We split
the sting to words after removing punctuation and converting it to lower case in these lines:

string = replace(string, r"\W" => " ")
words = split(lowercase(string))

Next for each word we calculate the probability of it in the classification and multiply it all in
these lines

for word in words
 probability *= word_probability(word, classification, data_frame, config)
end

And finally we return the probability.

315

Now let’s se whats the probability of string = "a very close game" in "Sport"

string_probability(string, "Sport", df, Dict("α" => 1))

Output:

4.607999999999999e-5

Now let’s see its probability of being in label "Politics":

string_probability(string, "Politics", df, Dict("α" => 1))

Output

1.4293831139825827e-5

So string = "a very close game" has is more probable to be in Sport than Politics.

One may write a function to loop through the classifications in dataframe for a given string,
calculate the probability of string in for a classification, and take the label with max probability as
label or classification for that string, such kind of function is written below:

316

function label_text(text, data_frame, config)
 α = get(config, "α", 1)
 text_column = get(config, "text_column", "text")
 label_column = get(config, "label_column", "label")

 config_with_defaults = Dict("α" => α,
 "text_column" => text_column,
 "label_column" => label_column)
 df = data_frame

 max_probability = 0
 label = nothing
 classifications = Set(df[:, label_column])

 for classification in classifications
 probability = string_probability(text, classification, df,
config_with_defaults)

 if probability > max_probability
 max_probability = probability
 label = classification
 end
 end

 label
end

Now let’s test it for "a very close game"

string = "a very close game"
label_text(string, df, Dict("α" => 1))

And we get Sport as its classification or label. For "I am a politician who won election", we get
Politics as classification:

string = "I am a politician who won election"
label_text(string, df, Dict("α" => 1))

[12] https://en.wikipedia.org/wiki/Bayes%27_theorem

[13] https://en.wikipedia.org/wiki/Additive_smoothing

[14] https://gitlab.com/datascience-book/code/-/blob/master/lib/ml_lib.jl

317

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Additive_smoothing
https://gitlab.com/datascience-book/code/-/blob/master/lib/ml_lib.jl

Neural Networks

318

Chapter 53. Back propagation

319

Bibliography
▪ Think Julia - https://benlauwens.github.io/ThinkJulia.jl/latest/book.html

▪ Artificial Intelligence, a Modern Approach

▪ Machine Leaning in Action

▪ [mml] Mathematics for Machine Learning - https://mml-book.github.io/

▪ Data Science from Scratch

▪ Real World Machine Learning

▪ Super Intelligence

▪ The Joy of X

▪ Introduction to Probability for Data Science - https://probability4datascience.com/

▪ Stat Quest - https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw

▪ Right2Trick - https://www.youtube.com/c/Right2Trick

320

https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://mml-book.github.io/
https://probability4datascience.com/
https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw
https://www.youtube.com/c/Right2Trick

	Introduction to Datascience: Learn Julia Programming, Math & Datascience from Scratch.
	Table of Contents
	Preface
	Front Cover
	Back Cover
	Chapter 1. What you need to know
	1.1. GNU/Linux
	1.2. Math

	Chapter 2. What you need to have?
	Datascience
	Chapter 3. What is Datascience?
	Chapter 4. Stages in Data Science
	4.1. Gathering Data
	4.2. Data Wrangling
	4.3. Statistics
	4.4. Visualization
	4.5. Machine Learning (ML)
	4.6. Automation
	4.7. Scaling

	Chapter 5. Predictive And Descriptive Analysis
	5.1. Descriptive & Predictive Analysis - London Cholera
	5.2. Descriptive Analysis - Napoleon’s Russian Defeat
	5.3. Prediction After Description
	5.4. The Power Of Visualization

	Chapter 6. Machine Learning, Artificial Intelligence and Data Science
	6.1. Machine Learning
	6.2. Artificial Intelligence
	6.3. Data Science

	Julia
	Chapter 7. Installing Julia
	Chapter 8. Julia REPL
	8.1. Volume of Sphere
	8.2. Clearing REPL
	8.3. Exiting a statement
	8.4. History
	8.5. Exiting REPL

	Chapter 9. Accessing Help
	Chapter 10. Package Management
	10.1. Installing packages
	10.2. Removing packages
	10.3. Reference

	Chapter 11. Installing Jupyter notebook and Jupyter lab
	11.1. Install IJilia
	11.2. Start Jupyter Notebook
	11.3. Start Jupyter Lab
	11.4. Reference

	Chapter 12. Starting with Julia (using Jupyter) lab
	Chapter 13. Julia program in a file
	Chapter 14. Basic Arithmetic
	Chapter 15. Strings
	Chapter 16. Boolean Operations
	Chapter 17. Comparisons
	Chapter 18. Conditions and Branching
	Chapter 19. Ternary Operator
	Chapter 20. Short Circuit Evaluation
	20.1. How not to use Shortcut Evaluations

	Chapter 21. While Loops
	21.1. Finding primes

	Chapter 22. Ranges and for loops
	Chapter 23. Breaks and Continues
	Chapter 24. Arrays
	Chapter 25. Tuples
	Chapter 26. Comprehension
	26.1. Generator Comprehension
	26.2. Permutation
	26.3. Flattened Comprehension

	Chapter 27. Sets
	27.1. Unions
	27.2. Intersection
	27.3. Difference
	27.4. Other Operations
	27.5. You can’t sort a Set
	27.6. Converting Set to Array
	27.7. Coverting Set to Tuple
	27.8. Pop out a element from a Set

	Chapter 28. Dictionaries
	Chapter 29. Comments
	Chapter 30. Functions
	30.1. Passing Arguments
	30.2. Default Argument
	30.3. Default Argument
	30.4. More default arguments
	30.5. Returning Values
	30.6. Named Arguments
	30.7. Single line functions
	30.8. Functions acting on a vector
	30.9. Using functions with map
	30.10. Anonymous function
	30.11. Variable Arguments
	30.12. Piping / Chaining functions
	30.13. Passing function as argument
	30.14. Multiple Dispatch

	Chapter 31. Regular Expressions (regexp)
	31.1. A taste of Regexp
	31.2. Things to remember
	31.3. The dot
	31.4. Character classes
	31.5. Anchors
	31.6. Captures
	31.7. Counts
	31.8. String to regexp
	31.9. Case sensitive & insensitive match
	31.10. Scanning
	31.11. Learn more about regex

	Chapter 32. Struct
	32.1. Mutable Struct
	32.2. Value Types
	32.3. Complex Data Types

	Chapter 33. Vectors & Matrix
	Chapter 34. Files
	34.1. Plain Text
	34.2. CSV
	34.3. JSON
	34.4. Text Vs Binary

	Chapter 35. Scrapping
	Chapter 36. Plots
	36.1. Installing Julia Plots
	36.2. Basic plot Function - Plotting Sin and Cos
	36.3. Scatter and Histogram
	36.4. Learn more about Plots

	Chapter 37. Dataframes
	Chapter 38. Debugging

	Mathematics
	Chapter 39. Vectors
	39.1. Addition
	39.2. reduce function
	39.3. Midpoint
	39.4. Distance
	39.5. Magnitude
	39.6. Unit Vector
	39.7. The Vector Library

	Chapter 40. Matrices
	Chapter 41. Sigmoid
	Chapter 42. Bayesian
	Chapter 43. Statistics
	43.1. Total
	43.2. Minimum
	43.3. Maximum
	43.4. Range
	43.5. Mean
	43.6. Median
	43.7. Mean Vs Median
	43.8. Mode
	43.9. Percentile
	43.10. Interquartile Range (IQR)
	43.11. Variance
	43.12. Standard Deviation
	43.13. Covariance
	43.14. Correlation
	43.15. Reference

	Chapter 44. Probability
	44.1. Independent and Dependent Events
	44.2. Monte Carlo Simulation
	44.3. Bayes Theorem
	44.4. Normal Distribution Curve

	Machine Learning
	Chapter 45. Genetic Algorithms
	45.1. Guessing a Number with Genetic Algorithm

	Chapter 46. Fine grained plot
	46.1. Curve fitting with genetic algorithm

	Chapter 47. K Nearest Neighbors
	Chapter 48. Decision Tree
	48.1. Understanding the Titanic data set
	48.2. Entropy
	48.3. Applying Entropy on Titanic Dataset
	48.4. Building a Decision Tree

	Chapter 49. Gradient Descent
	49.1. Guessing Number With Gradient Descent
	49.2. Linear Regression With Gradient Descent
	49.3. Generalizing Linear Regression With Gradient Descent

	Chapter 50. Hot and Cold Learning
	Chapter 51. K Means Clustering
	51.1. Intuition
	51.2. Writing it in Julia

	Chapter 52. Naive Bayes For Text Classification

	Neural Networks
	Chapter 53. Back propagation

	Bibliography

