Movement
hjkl

$

g8
G

n

Left, down, up, right

Go to the beginning of the line
Go to the end of the line

Go to thefirst line
Gotothelast line

Gotolinen

Replacing Text

r
cw

cc
c{motion}

Copy/Paste
y{motion}
Yy

p
P

Searching
/{pattern}
Apattern}
n
N

Replace character

Change word

Change line

Change from cursor to {motion}

Yank {motion}

Yank line

Paste after cursor
Paste before cursor

Forward search for {pattern}
Reverse search for {pattern}
Repeat the last search

Repeat the last search in the opposite direction

Repeating Commands

{num}command}

Repeat previous change

Find and Replace

:s/{old}/{new}/{options}
:%s/{old}/{new}/{options}

Repeat command {num} times

Inserting Text

Insert at cursor
Insert at the beginning of the line

i
I

a Append after cursor

A Append at the end of the line

o Open a new line below the current line
@) Open a new line above the current line
Deleting Text

X Delete character

dd Delete line

dw Delete word

d{motion} Delete {motion}

Undo/Redo
u Undo
Ctrl-r Redo

Save and Quit

W Write (save)

'W(Write and quit

:q Quit

q! Force quit, don’t save changes
wq! Force write and quit

Help

:help [topic/command]
vimtutor

Substitute {new} for {old} on the current line
Substitute {new} for {old} in the entire document

Get help on topic or command.
Tutorial

The g option substitutes all occurrences on a line, otherwise just the first occurrence is changed per line.

http:/www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Tsc vi / vim graphical cheat sheet

normal
mode

toggle external « play Tev 0/ goto || /\ "soft" repeat|| 3 next i end "soft" bol next
~ I # i?:l i / & s i sentence + i

case « filter Macro ent O match bol ident sentence||__ down line
~_ goto 2 "hard" || _ Fiy — auto.t
 mark || 1 2 3 4 > 6 7 8 9 0 "5e e || = tormat
ex next end replace L back vank undo insert open paste begin end
mode ORIy WORIY R mode "till line line I at bol O above P before parag. parag.
record next end replace] | §, 1.3 insert open paste'{| [, . mi
* macro word € | I char t i y yankl |] undo 1 mode || O h-eliuw _P after misc HisE
ap]mnr.ll subst delete "hack" cof/ sereen oin sereen || « ex emd "‘ reg. 1 hol
Aat eol S line to eol “find ch] Ggutn In H top J Iimes K help bottom|| « line spec goto i:nl
subst L.. , find extra® h 1 . at || ', goto \ not
Aappend|| S Thar d delete B | & cmds <+ J 4 k 4 > | tor bol || * used!
. " back- change visual prev rev SCreen un- - 3 find
Z quit space |C o eo lines WORDY N(%nd] mid'l { indent } indent 7% (rev.)
® extra delete 1,3 visual prey « Set FEVErSE repeat .
emds X char C change V maode b word n {ﬁl'ld} mark|| s t/T/f/F || * I:E'jd e
motion | moves the cursor, or defines Main command line commands ('ex'): Notes:
the range for an operator -Wflff-i"—ﬂa - %‘Jll}a :q! (quit w/o saving) (1) use "x before a yank/paste/del command
direct action command, e f (open file to use that register ('clipboard') (x=a..z.*)
command if red, it enters insert mode %s/x/y/g (replace 'x' by 'y’ filewide), (e.g.: "ay$ to copy rest of line to reg 'a'")
. . :h (help in vim), :new (new file in vim), .]
i requires a motion afterwards, (2) type in a number before any action
OPETator | gperates between cursor & Other important commands: to repeat it that number of times
destination CTRL-R: redo (vim), (e.g.: zp, d2w, 51, dgj)
special functions, CTRL-F/-B: page up/down, (3) duplicate operator to act on current line
extra | requires extra input CTRL-E/-Y: scroll line up/down, 4 {df = dElet:_'} line, >> = indent line)
L CTRL-V: block-visual mode (vim only ’
q' commands with a ot need (¥) (4) ZZ to save & quit, Z() to quit w/o saving
a char argument afterwards Visual mode:
bol = beginning of line, eol = end of line, Move around and type operator to act (5) zt: scroll cursor to top,
mk = mark, yank = copy on selected region (vim only) zb: bottom, zz: center
words: [guux|[{foc]] bar] bazl j (6) E_%: top of file (vim only), '
WORDSs: bBuux (foo | bar | baz) 7 : open file under cursor (vim only)

:h operator :h navigation

[operator] [motion]

—A— —————— | %2

line
d Any motion can follow an w word
operator. Markg and searches W WORD
count as motions, too! d/
delete/cut foo will delete from the sehtence I\b
cursor to the next instance [, | [1block
of “foo”. y8f1i will yank from (,) () block up 1
y the cursor to the 3rd “i” on ¢, » < > block page
the line after it. Counts can t XML/HTML tag
yank/copy also come before operators: {1 { } block

odd will delete five lines. .
" ' quoted string
c starting cursor position —

change

w . (luse

make swap case
uppercase

£ =
shift left indent

up 2
page

:h text-objects

text-objects|)
L3 w— _ k
W w— B
__:l. (: ine

P first : : :
beginning) previous B previous previous h
of line e non-Blank N\ “woro word character
:h pattern-searches -
down
Prev Next Forward | Backward Matches 1 line
/ foo ?foo foo
dk NG
* T word under cursor
down
tx Tx upto X LRl
7 7
fx Fx find X A
:h mark-motions f
set mark M jump to first down
m m ?s'_czf)n?n”;i:"é m M (A-Z) across ' [char of just- 1 page
files changed text
jump to first : B | .
'm ocherorne Sy heies fump beck o G
containing m jump
last line

Pass a directory to the :edit command to open a directory explorer.
Instructions for usage are at the top of the screen.

ENTERING INSERT MODE
before after end of
I cursor 1 cursor a line A
previous next substitute S substitute line from
line line character line cursor

ENTERING VISUAL (SELECT) MODE

The most basic type.

beginning -

of line

Useful for moving Great for working
with tables made of

text, or anything

Use _ to chunks of a program

around the file. Use

select one or more

select characters

within a line. V

that happens to be

A v aligned.
lines. mode
o select

boxes across lines.

switch cursor re-select prepend to each jump to start |
to start/end previous area g v Visual block line of prior area (
h v_o :h gv 'h v_b_I th '«

Write current file, if modified,
and quit

Quit without checking for
changes (like : gq!)

77
write

‘WG

Use iscriptnames to list all files sourced during initialization.

ZQ

Write current file

Write current file and quit

Enable and configure syntax highlighting
Use :sy sync fromstart to redraw broken highlights

syntax
make

' Execute external shell
command

'h quickfix

Run a compiler and enter quickfix mode

Filter motion with shell
command

Use iearlier and : later to quickly jump backward and forward in a file's history.

Read external program output into current file

Tead

:h up—-down-motions

ts sw sts et tabstop ts Columns per tabstop

use spaces only n | n n | onN shiftwidth sw

Columns per £X

use tabs only n n 0 off softtabstop sts Spaces per tab

Set n to desired tab width (default 8) expandtab et

<Tab? inserts spaces

MIXING TABS AND SPACES IS RIGHT OUT.

(that means don't do it.)

Replace all tabs with spaces according to current
tabstop setting

-retab

fileformat ff Try changing this if your line-endings are messed up

list Display whitespace visibly according to listchars

'h left-right-motions

next 1 end of be%i;‘:g;% w end of E be%ii?:ier;(gt w end of $
h ct WORD li
character word word (0] WORD ine

paste before return to Normal

p L P AT

cursor mode
u undo Ar redo . repeat
file-searching . .
- find file under delete current
g f cursor in path d d e y y yank current line
and jump to it
delete character o jump to replace char
x after cursor A matching paren r under cursor
nG jump to line n /\o jump back N\ i jump forward
Jjump-motions Jjump-motions
align top of align bottom
center screen on . .
screen with of screen with
Z Z cursor Z Z
cursor cursor
auto-indent shift current line ﬁzgtricur:ze;t
== currentline < € leftbyshiftwisth » » SO DY

Using A[to return to Normal mode lets you keep your fingers on the home
row. It's even easier if you map Caps Lock to Control!

:h insert.txt

COOL INSERT MODE STUFF

/\w delete word before cursor /\u delete line before cursor
insert the contents of use the expression register
NYY registers NY= (s
N increase line indent N decrease line indent
t by shiftwidth d by shiftwidth
N~y /\ line completion N find next completion suggestion
x 1 P n according to complete

:h emdline.txt

COMMAND-LINE MODE ONLY
completion l\d

suggestions
cmdline-completion

insert word
under cursor I\rl\w

cmdline-editing

edit using
Normal mode l\ f

cmdwin

Put cnoremap %% <C-R>=expand(‘%:h’).’/’<CR> in your .vimre so you can type %% in Command-line
mode to refer to the directory of the current file, regardless of pwd.

Supply % as a range to the :substitute command to run it on every line in the file.
:%s/Scribbl/Design/ “Scribbled” -> “Designed”
Specify the “g” flag to apply the substitution to every match on a line.
:s/[dlal//g “badly” -> “by”

Vim supports many regular expression features.

s/ ..k/ax/ “Mook” -> “*Max”

Use _.
:%s/heat_.xBungle/anto/
Special escapes can be used to change the case of substitutions.
:s_\(f..\)_\UM\E_ “foobar” -> “FOObar”
Use :global to perform a command on matching lines.

: g/ foobar/d
If your pattern contains slashes, just use a different character as your delimiter.

'h s_flags, :h /[]

h usr_27, :h /.

instead of . if you want to search across multiple lines.

“Cheatsheet\nBungler” -> “Cantor” " /-

:h sub-replace-special

Delete all lines containing “foobar”

:s_Data/Lore_Brent Spiner_

Use \= to evaluate expressions with replacement groups.
:s_\d_\=submatch(@) + 1_g “10 25” -> “21 36"

'h sub-replace-\=

h ‘option’
helpgrep

set
set
set
set
set

ls

b path

bn
bnext
bprev

opt?
hoopt
opt
opt=val
opt+=val
echo &opt

bdelete

edit
enew

split

vsplit
hjkl
HJKL

W T

"w T

only
bufdo

+—<>

‘help

Normal mode ¢md help

Insert mode emd help

Visual mode e¢md help
Command-line editing emd help
Command-line emd help
Option help

Search through all help docs!

:h tags-and-searches

Jump to tag under cursor,
including [tags] in help files

Jump back up the tag-list

]
At
g"]

Jump to tag if it's the only
match; else list matching tags

:h options

View current value of opt
Turn off flag opt

Turn on flag opt
Overwrite value of opt
Append to value of opt

Access opt as a variable

:h buffers

List all open files

Jump to unique file matching path. Use
<Tab> to scroll through available completions!

Jump to file n, number from first column of :ls

Jump to next file

Jump to previous file

Remove file from the buffer list
Open a file for editing

Open a blank new file for editing

:h windows

Split current window horizontally

Split current window vertically

Move cursor to window left, below, above or to
the right of the current window

Move current window to left, bottom, top, or
right of screen

Rotate windows clockwise

Increase/decrease current window height/width
Move current window to a new tab

Close all windows except current window

Execute a command in each open file

<CR> Am \r Enter
<Tab> A{ \t Tab
<C-n> An i
<M-n> At
<Esc> Al .
<BS»> Ah \b Backspace

<Del)>

hidden hid Lets you switch buffers without saving

laststatus Is Show status line never (0), always (2) or with 2+ windows (1)
hlsearch hls Highlight search matches. Also see ‘highlight’

number nu Show line numbers

showcmd SC Show commands as you type them

ruler ru Show line and column number of the cursor

backspace bs Set to ‘2’ to make backspace work like sane editors

wrap Control line wrapping

background bg Set to ‘dark’ if you have a dark color scheme

REGISTERS - CLIPBOARDS

All commands that delete, copy, or paste text use registers. To change which register
is used by a command, type the register before the command. The default register is

mn). Typ_
ing dd or yVy is the same as typing ""dd or ""yy. Think of the first * as a short way

called “the unnamed register”, and it is invoked with a pair of double-quotes (

mn " rr

is pronounced “register ", and "a, “register a”.
:h registers

of saying “register”, so

registers vews s
echo Or

ll/

Access register r as a variable

Last search

pattern register Contains the last pattern you searched for

1 The black hole Use this to delete without clobbering any
register register (*_dd)

n 0 Las_t yank Contains the last text you yanked
register

Last big delete

. Contains the last line(s) you deleted
register

"4
ll2_ll9

Big delete
register stack

Every time "1 is written to, its content is
pushed to "2, then "2 to "3, and so on

Small delete Contains the last text you deleted within a

register single line
" If the OS integration gods smile upon
+ System clipboard you, this register reads and writes to your

system clipboard.

a — n Z Named registers 26 registers for you to play with

"A_"DZ

Using upper-case to refer to a register will

Append registers append to it rather than overwrite it

Record into register r. Stop recording by

qr Record hitting g again

@ r Playback Execute the contents of register r
Repeat last Repeat the last @r, this is particularly
playback useful with a count

vim one-liner used to sort the list of names by length:
rexe 'g/"/let @x = len(getline(".")) | normal "xPa ' | sort n | :g//normal dw

