

Debugging
Linux
Applications
Version 1.0

Copy and other Rights
The following Wikipedia
articles were used in the
making of this study
material:

●Call_stack
●Debugging
●Buffer_overflow
●Dynamic memory allocation

Additional material from the
GNU libc and GDB manual.

Original content by:
Gilad Ben-Yossef
Yariv Shivek

© 2007 Confidence ltd.

Permission is granted to copy,
distribute and/or modify this
document under the terms of
the GNU Free Documentation
License, Version 1.2 or any later
version published by the Free
Software Foundation; with no
Invariant Sections, with no
Front-Cover Texts, and with no
Back-Cover Texts.

Debugging
“ From then on, when
anything went wrong with
a computer, we said it had
bugs in it.”

Rear Admiral Grace
Hopper, coined the term
debugging in 1945.

Debugging

● Debugging is a methodical process of
finding and reducing the number of bugs,
or defects, in a computer program or a
piece of electronic hardware thus making
it behave as expected.

● Debugging is an art form as much as a
science, but many useful debugging
methods can be taught and learned.

● This is what this course is about.

Agenda

● Inside the Build Process
● GDB, the GNU Debugger
● Smashing the Stack for Fun and Profit
● The Heap and Dynamic Allocations
● Multi-Threading and Concurrency
● Programmed Debug Assistance
● Post-Mortem
● Debugging Tools

Debugging Linux Applications

Chapter 1

Inside the Build Process

ELF and DWARF

● The Executable and Linking Format (ELF)
is the file format standard for executables,
objects, shared libraries (and core dumps)
in Unix

● Use readelf(1) to obtain ELF
information

● The newest debug information format,
compatible with ELF, is DWARF 3

Header Paths

● GCC looks for system headers (included
with triangle brackets) in predefined paths

● Only afterwards, GCC searches for your
headers (included with quotation marks),
according to the -I options:

$ gcc -I/path/to/my/headers src.c

Library Paths

To link with libraries, you have to provide the
linker with the following:

● -larchive: Link against archive, which
may be a statically linking library (.a), or a
dynamically linking shared object (.so).

● -Lsearchdir: Add searchdir to the list
of paths the linker will search. The
directory is added before the system
default directories.

Debug Information

● The -g flag instructs GCC to add debug
information

● Even without -g, GCC still includes
minimal DWARF debug information

● Therefore, before shipping the application,
you may wish to strip the executable from
all debug symbols:

$ strip -d application

Optimizations

● The -On flag determines the current
optimization level (n)

● The Linux kernel, for example, must
compile with -O2

● When debugging, it is better not to
optimize – the code will be easier to follow
in the debugger

ldd(1)

● Use ldd(1) to view the dynamic library
dependencies of an application:

$ ldd main_dyn

linux-gate.so.1 => (0xffffe000)

libdyn.so.1 => libdyn.so.1 (0xb7fe3000)

libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e93000)

/lib/ld-linux.so.2 (0xb7fe7000)

Symbols

● Global functions and variables in the
source files turn to symbols in the object
files.

● The linker statically links object files
together using symbols.

● Dynamic linkage uses the GOT (Global
Offset Table) and the PLT (Procedure
Linkage Table)

Symbols and Name Mangling

● Symbols usually have the same name as
their function or variable name.

● However, dynamic linkage (allowing
multiple versions of the same DSO) and
C++ (with its overloading), create
complications.

● Therefore, symbol names will sometimes
be mangled

nm(1) – view object symbols

Use nm(1) to list symbols from any ELF
object files.

...

000018b0 D lib_a_global_inited_var

000018bc B lib_a_global_var

000004fd T lib_a_print_msg

000004bc t lib_a_static_print_msg

000018b8 b lib_a_static_var

000005c5 T lib_b_print_msg

00000584 t lib_b_static_print_msg

 U printf@@GLIBC_2.0

objdump(1) – ELF Contents

objdump(1) contains many options for
inspecting the insides of ELF files:

● -d/-D – disassemble/disassemble all

● -S – intermix source code with assembly

● -x – display all available header info

● -C – demangle symbol names into user-
level names (C++)

Using objdump(1) and nm(1)

● objdump(1) is most commonly when we
only have a crash address (EIP) and need
to understand where we crashed

● nm(1) is usually used to resolve linkage
problems – in order to understand which
symbols are defined where

Static Linkage Problems

● Missing symbols
● Using the same name for a static symbol in

two different files by mistake (meaning to
have only one variable, but defining it static
in a header file, for example)

● symbol collisions (sometimes preprocessor
macros are used to change function
names)

Dynamic Linkage Problems

● As in static, plus:
● Library interface changes require change

to the DSO version

Debugging Linux Applications

Chapter 2

GDB, the GNU Debugger

GDB

● GDB is a symbolic source level debugger
for Linux (and other) systems. It supports:
– Starting programs , attaching to running programs or

debugging crashed programs

– Debugging locally or remotely (via gdbserver)

– Setting breakpoints and watchpoints

– Examining variables, registers and call stack

– Changing data and calling functions

– Automating debug tasks

– Multi threaded programs

GDB Interfaces

● GDB can be used in two ways:
– As a standalone interactive program running

in the shell which receives text based
commands

– As a back-end to a GUI program,
communicating in the MI protocol

● The text interface is more difficult to use,
but can do things that the GUI cannot, like
automation.
– We'll get to the GUI later...

Build for Debugging

● In order to effectively debug a program, we need
to build the program with debug information

● Debug information saves the relation between
the program binary and its source and is required
for proper GDB operation

● To build a binary with debug information, pass
the -g argument to GCC

– Usually passed via the CFLAGS Makefile
variable

Starting GDB

● Invoke GDB by running the program gdb:

– $ gdb application

● You can also start with a core file:
– $ gdb application core

● You can specify a process ID if you want to
debug a running process:
– $ gdb program 1234

● Make sure not to have a file “1234” in the current
directory, or GDB will treat it as a core file...

GDB Commands

● A GDB command is a single line of input

● Command may be truncated if that abbreviation
is unambiguous

● Pressing TAB completes commands for you

● A blank line (typing just RETURN) means to
repeat the previous command

● Any text from a # to the end of the line is a
comment; it does nothing

● The help command is useful :-)

Starting Your Program

● To start your program, use the command
run

● You can pass any parameters you pass to
the program as parameters of the run
command.

● Example:
– (gdb) run 1 “hello world”

● The program to run is the the one specified
on the GDB command line

Controlling Program Execution

● Hitting CTRL+C stops the program
– In a multi-threaded program all threads stop

● The command step steps into the current
function
– Use stepi for single instruction stepping

● The command next advances to the next
source line

● The command continue lets the program
continue as normal

Source Code Listing

● The command list shows the source
code at the current position
– Additional list commands show the next

lines of source

● You can ask to list a specific file or function
using:
– (gdb) list my_func

● List the source for function my_func()

– (gdb) list hello.cpp:3
● List the file hello.cpp starting from line 3

Symbolic Debugging

● Use the print command to show the
value of a variable, address or expression:
– (gdb) print my_var

– (gdb) print (struct object *)*my_char_ptr

● Use display to follow the changes in
above while stepping through the code

● Use call funcname(params...) to
call a function
– (gdb) call debug_func(1)

Misc. Information

● Use info threads to view information
on current threads

● Use info registers to list the CPU
registers and their contents, for a selected
stack frame
– Register name as argument means describe

only that register

● Many more info commands available

– See help info for detail

Breakpoints

● Use break [LOCATION] [thread
THREADNUM] [if CONDITION] to set a
break point
– LOCATION is a line number, function name or

* and an address

– THREADNUM is a thread number. The
breakpoint will only be valid for that thread

– CONDITION is a boolean expression. The
breakpoint will happen only if it is true

● Multiple breakpoints at one place are permitted,
and useful if conditional

Breakpoints Examples

● (gdb) break main

– Break at entrance to main()
● (gdb) break hello.cpp:3

– Break in the third line of hello.cpp
● (gdb) break thread 3 *0xdeadbeef

– Break when EIP is 0xdeadbeef in thread 3

● (gdb) break func if (my_global==42)

– Break in func() if my_global equals 42

Remote Debugging

● Sometime we want to debug a program on
a different machine:
– Problem occurs on remote customer server

accessible only via network

– Can't put source on customer machine

– Don't have room on customer machine for
source and debug information

– No debugger on customer machine

– Embedded device

Remote Debugging (cont')

● Let's define terms:
– Our workstation with the debugger and source

shall be called host

– Customer machine, with the executable is
called target

● On the host we need:
– Debugger, source, executable and libraries

with debug information

● On the target we need:
– Executable and debugger agent

Debugging Agent

● We don't need a full debugger on the target

● We need a small agent that the debugger can
talk to

● The GDB agent is called GDBServer

● It can start a program under the agent or attach
to an already running program

● GDB and GDBServer communicate either via a
TCP socket or via the serial port

Remote Debug Example

● On the target:
– $ gdbserver /dev/ttyS0 my_prog 12 3

● Load my_prog with parameters 12 3 and wait for
the debugger to connect on the first serial port

– $ gdbserver 0.0.0.0:9999 my_prog 12 3

● Load my_prog with parameters 12 3 and wait for
the debugger to connect on TCP port 9999

– $ gdbserver 0.0.0.0:9999 –attach 112
● Attach agent to the process with PID 112 and wait

for the debugger to connect on TCP port 9999

Remote Debug Example (cont')

● On the host:
– $ gdb my_prog

● Start GDB
– (gdb) set solib-absolute-prefix /dev/null

– (gdb) set solib-search-path /path/to/target/libs

● Set host path to target libraries with debug
information

– $ target remote 192.1.2.3:9999

● Connect to GDBServer on IP 192.1.2.3 port 9999

Remote Debugging Tips

● Your first automatic breakpoint will be before
main() in the guts of the C library

– So just do break main and continue
● If the path to the copy of target libraries on the

host is wrong or the target and host files do not
match, you will see many strange errors

● If the target GDBserver is not installed or the file
libthread_db.so is missing, you will not be able to
see or debug threads

Automation

● You can specify GDB commands to be run
automatically when a breakpoint is hit
using the command <breakpoint
number> command

● You can put GDB command in a text file
and run it by using the source <file
name> command

● The file .gdbinit is called in such way
automatically every time GDB starts

Eclipse

● Eclipse is an open source community
whose projects are focused on building an
open development platform comprised of
extensible frameworks, tools and run times
for building, deploying and managing
software across the life cycle.

● CDT is the name of the C/C++
development plug-in.

● Eclipse/CDT contains a graphical GDB
front end.

Debugging With Eclipse/CDT

1. From your open
project, open the Run

menu and Choose
“Debug...”

Creating a Debug Profile

2.Create a
new debug

profile

4. Choose
project and

binary

3.Give it a
name

Configuring The Debugger

5. Choose
type

(local/remote)

6. Add path to
GDB and init

file

5. Choose
type

(local/remote)

Configure Dynamic Libraries

7. If debugging
a remote
machine,

configure path
to shared libs.

Choosing Connection Type

8. If debugging a
remote machine

choose connection
(serial or TCP) and

provide details

9. Use the
“Apply” button
to save your
debug profile

10. Click “Debug” to
start debugging.

Eclipse Debug session
Step,
Next,

Continue
buttons

Threads
and call
stacks

Source
code

Status,
memory
watches

Breakpoints, registers,
variables and signals

Symbols

Debugging Linux Applications

Chapter 3

Smashing the Stack for Fun and Profit

The Call Stack

● The call stack stores information about the
active subroutines of a computer program.

● The active subroutines are those which
have been called but have not yet
completed execution by returning.

● This kind of stack is also known as an
execution stack, control stack, function
stack, or run-time stack, and is often
abbreviated to just "the stack".

Functions of the Call Stack

● Storing the return address
– So we'll know to which function to return to.

● Local data storage
– This is where the tmp, i and myStr's are

placed in memory.

● Parameter passing
– This is how parameters are passed to

functions.

● Pointer to current instance
– C++ this.

Call Stack Structure

int
DrawLine
(int x1, int y1, int x2,
int y2)
{

int tmp;
char myarr[254];
...
return 0;

}

int
DrawSquare
(int x1, int y1, int x2,
int y2)
{

int i;
...
return 0;

}

Locals of
DrawLine

Return Address

Parameters for
DrawLine

Locals of
DrawSquare

Return Address

Parameters for
DrawSquare

Top of Stack

Stack frame
of DrawLine

Stack frame
of DrawSquare

Frame Pointer

Stack Pointer

.

.

.

Use of the Call Stack

● Call site processing
– Push parameters into the stack and call.

● Callee processing
– Subroutine prologue gets parameters, saves

room for locals.

● Return processing
– Subroutine epilogue undo prologue, pop

stack, return to caller

● Unwinding
– Exception handling

Buffer Overflow

● A buffer overflow is an anomalous
condition where a process attempts to
store data beyond the boundaries of a
fixed-length buffer.

● The result is that the extra data overwrites
adjacent memory locations.

● The overwritten data may include other
buffers, variables and program flow data
and may cause a process to crash or
produce incorrect results.

Buffer Overflow on the Stack

int main(void)
{

int B = 3;
char A[8];

printf(“%d\n”, B);
strcpy(A,"excessive");
printf(“%d\n”, B);

return 0;
}

bash$./program
3
228
bash$

A

0

A

0

A

0

A

0

A

0

A

0

A

0

A

0

B

0

B

3

A

's'

A

's'

A

'i'

A

'v'

A

'e'

A

'x'

A

'c'

A

'e'

B B

e 0

Buffer before strcpy...

Buffer after strcpy...

Writing to A changed the value
of B because we overflowed the
buffer of A.

Buffer Overflow on the Stack (cont')
bar(X,Y)
{

char A[4];
int B;
strcpy(A,"HAX0R!#@!%");
return;

}

foo(Z,N)
{

int A;
int B;
klunky(0,0);
...

}

bar parametersbar local variables

A

0

A

0

A

0

A

0

B

4

B

2 3 2 1

Return Address

5

X

0

X

0

Y

11

Y

12

...

...

bar parametersbar local variables

A

H

A

A

A

X

A

0

B

R

B

! 6 6 6

Return Address

6

X

0

X

0

Y

11

Y

12

...

...

bar return address

Stack after overflow (return address points somewhere else)

Normal Stack (return address points to foo)

bar return address

Protecting from
Stack Buffer Overflows

● Choice of programming language
– Python, Ada, JAVA and C# all have internal

bound checking as a language feature

● Use of safe libraries and calls
– Use strncpy rather then strcpy, etc...

– Use verified libraries, such as Vstr or Erwin

● Stack-Smashing Protection (SSP)
– Compiler or library extension that adds

automatic checks against stack overruns

Example of Stack Buffer Overflow

● The GoAhead web server is
an open standards web
server for embedded
systems

● Version 2.1 shipped with a
stack buffer overflow bug

● The bug could be used to
force the web server to run
arbitrary commands

● Let's see if you can spot it

Stack Overflow Example
int websValidateUrl(webs_t wp, char_t *path)
{
 /* Array of ptr's to URL parts */
 char_t *parts[64];
 char_t *token, *dir, *lpath;
 int i, len, npart;
...

/* Copy the string so we don't destroy the original
*/

 path = bstrdup(B_L, path);
 websDecodeUrl(path, path, gstrlen(path));

 len = npart = 0;
 parts[0] = NULL;
 token = gstrtok(path, T("/"));

/* Look at each directory segment and process
 * "." and ".." segments. Don't allow the browser
 * to pop outside the root web. */

 while (token != NULL) {
 if (gstrcmp(token, T("..")) == 0) {
 if (npart > 0) {
 npart--;
 }

 } else if (gstrcmp(token, T(".")) != 0) {
 parts[npart] = token;
 len += gstrlen(token) + 1;
 npart++;
 }
 token = gstrtok(NULL, T("/"));
 }
...

/* Look at each directory segment and process
 * "." and ".." segments
 * Don't allow the browser to pop outside the
 * root web.
 */
 while (token != NULL) {
 if (gstrcmp(token, T("..")) == 0) {
 if (npart > 0) {
 npart--;
 }

 } else if (gstrcmp(token, T(".")) != 0) {
 parts[npart] = token;
 len += gstrlen(token) + 1;
 npart++;
 }
 token = gstrtok(NULL, T("/"));
 }

/* Create local path for document. Need extra
 * space all "/" and null.
 */

if (npart || (gstrcmp(path, T("/")) == 0)
 || (path[0] == '\0')) {
...

} else {
 bfree(B_L, path);
 return -1;
 }

return 0;

}

Example Explanation
/***
 *
 * Validate the URL path and process ".."
 * path segments. Return -1 if the URL
 * is bad.
 */

int websValidateUrl(webs_t wp, char_t *path)
{
 /* Array of ptr's to URL parts */
 char_t *parts[64];

 char_t *token, *dir, *lpath;
 int i, len, npart;

 a_assert(websValid(wp));
 a_assert(path);

 dir = websGetRequestDir(wp);
 if (dir == NULL || *dir == '\0') {
 return -1;
 }

/*
 * Copy the string so we don't destroy the original
 */
 path = bstrdup(B_L, path);
 websDecodeUrl(path, path, gstrlen(path));

 len = npart = 0;
 parts[0] = NULL;
 token = gstrtok(path, T("/"));

/* Look at each directory segment and process
 * "." and ".." segments
 * Don't allow the browser to pop outside the
 * root web.
 */
 while (token != NULL) {
 if (gstrcmp(token, T("..")) == 0) {
 if (npart > 0) {
 npart--;
 }

 } else if (gstrcmp(token, T(".")) != 0) {
 parts[npart] = token;
 len += gstrlen(token) + 1;
 npart++;
 }
 token = gstrtok(NULL, T("/"));
 }

/* Create local path for document. Need extra
 * space all "/" and null.
 */

if (npart || (gstrcmp(path, T("/")) == 0)
 || (path[0] == '\0')) {
...

} else {
 bfree(B_L, path);
 return -1;
 }

return 0;

}

There are only 64
places in the parts
array, but the loop
never checks for
overflow!

Use After Free

● Use after free is a common programming
error in which a resource is used after it no
longer belongs to the user

● Use after free bugs can be sometimes very
difficult to spot, because the location of the
program crash or error is often where the
resource has been allocated legally by
another user of the resources, which is
suddenly corrupted

Volatile Stack References

● Local variables are stored on the stack
● After returning from the function, the stack

is unwound
● Returning a reference (a pointer to)

information on the stack is a common bug
● However, because of the stack behavior,

the data on the stack remains valid until
another function is called

Volatile Stack Reference
int * bar(int y)
{

int i=5;
...
return &i;

}

int baz(int z)
{

char arr[5];

memset(arr,5,z);
...
return 0;

}

int * foo(int x)
{

int * p;
p = bar(x+5);
baz(z);

return p;
}

Locals of
foo

Return Address

Parameters for
foo

Top of Stack

Stack frame
of foo

.

.

.

Foo() is
called.

Volatile Stack Reference

int * bar(int y)
{

int i=5;
...
return &i;

}

int baz(int z)
{

char arr[5];

memset(arr,5,z);
...
return 0;

}

int * foo(int x)
{

int * p;
p = bar(x+5);
baz(z);

return p;
}

Locals of
bar

Return Address

Parameters for
bar

Locals of
foo

Return Address

Parameters for
foo

Top of Stack

Stack frame
of bar

Stack frame
of foo

.

.

.

Foo() calls
bar().

Volatile Stack Reference

int * bar(int y)
{

int i=5;
...
return &i;

}

int baz(int z)
{

char arr[5];

memset(arr,5,z);
...
return 0;

}

int * foo(int x)
{

int * p;
p = bar(x+5);
baz(z);

return p;
}

Locals of
foo

Return Address

Parameters for
foo

Top of Stack

Stack frame
of foo

.

.

.

bar()
returns
control to
foo().

Volatile Stack Reference
int * bar(int y)
{

int i=5;
...
return &i;

}

int baz(int z)
{

char arr[5];

memset(arr,5,z);
...
return 0;

}

int * foo(int x)
{

int * p;
p = bar(x+5);
baz(z);

return p;
}

Locals of
baz

Return Address

Parameters for
baz

Locals of
foo

Return Address

Parameters for
foo

Top of Stack

Stack frame
of baz

Stack frame
of foo

.

.

.

foo() calls
baz().

Stack Overflow

● In some operating systems, the size of the
stack that is allocated to a process (or
thread) is fixed

● On these systems, a program can overflow
is stack – write more to the stack then is
allocated to it

● In Linux, the stack is allocated dynamically
per use, so this bug cannot occur

Debugging Linux Applications

Chapter 4

The Heap and Dynamic Allocations

Dynamic Allocations

● Dynamic memory allocation is the
allocation of memory storage for use in a
program during runtime

● The amount of memory allocated is
determined at the time of allocation and
need not be known in advance.

● A dynamic allocation exists until it is
explicitly released, either by the
programmer or by a garbage collector

The Heap

● Usually, memory is allocated from a large
pool of unused memory area called the
heap

● Since the location of the allocation is not
known in advance, the memory is
accessed indirectly, via pointers

● The allocator can expand and contract the
heap to fulfill allocation requests

● The heap method suffers from a few
inherent flaws, stemming from
fragmentation

The glibc Allocator

● The GNU C library (glibc) uses the
ptmalloc allocator which uses both brk(2)
and mmap(2)

● The brk(2) system call changes the size
of the heap to be larger or smaller as
needed

● The mmap(2) system call is used when
extremely large segments are allocated

● The data structure used to keep track of
allocation is called the “malloc arena”

The Malloc Arena

Allocated
Memory

prev size

size/flags
nextprev

prev size

size/flags

prev size

size/flags
nextprev

A free chunk A free chunkA used chunk

Prev size: sizeof previous chunk

Flags: PREV_INUSE (previous chunk is in use)
IS_MMAPPED (chunk is mmapped)

Allocation Failure

● malloc is not guaranteed to succeed — if
there is no memory available, or if the
program has exceeded the amount of
memory it is allowed to reference, malloc
will return a NULL pointer

● Many programs do not check for malloc
failure. Such a program would attempt to
use the NULL pointer returned by malloc
as if it pointed to allocated memory, and
the program would crash

Memory Leaks

● When a call to malloc, calloc or realloc
succeeds, the return value of the call
should eventually be passed to the free
function

● If this is not done, the allocated memory
will not be released until the process exits
— in other words, a memory leak will occur

● In long running programs, memory leaks
will result in allocation failure

Memory Leak Example
void *ptr;
size_t size = BUFSIZ;

ptr = malloc(size);

/* some further execution happens here... */

/* now the buffer size needs to be doubled */
if (size > SIZE_MAX / 2) {
 /* handle overflow error */
 return (1);
}
size *= 2;

ptr = realloc(ptr, size);

if (ptr == NULL) {
 return (1);
}

...

Example Explained
void *ptr;
size_t size = BUFSIZ;

ptr = malloc(size);

/* some further execution happens here... */

/* now the buffer size needs to be doubled */
if (size > SIZE_MAX / 2) {
 /* handle overflow error */

 return (1);
}
size *= 2;

ptr = realloc(ptr, size);

if (ptr == NULL) {

 return (1);
}

...

If realloc returned NULL because the
re-allocation failed, realloc will not
free the old buffer and we just lost
track of it because the return value
was written to the variable ptr which
held the pointer to it!

Allocation Debugging

● The malloc implementation in the GNU C
library provides simple means to detect
leaks and obtain information to find the
location

● To do this the application must be started
in a special mode which is enabled by an
environment variable

● There are no speed penalties for the
program if the debugging mode is not
enabled

Tracing malloc

● void mtrace(void)

– This function looks for an environment
variable MALLOC_TRACE. This variable is
supposed to contain a valid file name

– All uses of malloc(), realloc() and free() are
traced and logged into the file

● void muntrace(void)

– This function deinstalls the handlers and then
closes the log file

Use After Free

● After a buffer has been freed, using it is
forbidden. The pointer to the buffer may
still be used by mistake:

 int *ptr = malloc(sizeof (int));
 free(ptr);
 ...
 *ptr = 0;

● The system reuses freed memory, so
writing to a deallocated region of memory
results in overwriting another piece of data
somewhere else in the program

Double Free

● With dynamic allocation, a particularly bad
example of the use after free problem is if
the same pointer is passed to free twice,
known as a double free

● This returns the same memory buffer to
the allocator

● It either causes the allocator to give the
same buffer twice later, or crash the
allocator (we'll say why later)

Freeing Unallocated Memory

● Another problem is when free is passed an
address that wasn't allocated by malloc

● This can be caused when a pointer to a
literal string or the name of a declared
array is passed to free, for example:

char *msg = "Default message";

int tbl[100];

● passing either of the above pointers to free
will result in undefined behavior

Heap Buffer Overflow

● Just like with a stack buffer, a common bug
involves writing beyond the end of the
allocated buffer

● Because of the way the malloc arena is
built, this can manifest in two ways:
– We overwrite a buffer that was allocated to

some other part in the program, making
random changes to its content

– Corruption of the malloc arena. Typically
showing itself as crashes in calls to the
malloc() and free() functions

Heap Buffer overflow scheme

Allocated
Memory

prev size

size/flags

prev size

size/flags

prev size

size/flags
nextprev

Allocated
Memory

Allocated
Memory

prev size

size/flags

prev size

size/flags

prev size

size/flags
nextprev

Allocated
Memory

XXXXXXXXXXXXXXXXXXX

Buffer overflow wrote over
another allocation buffer

Buffer overflow wrote over
malloc management structures
(corrupt malloc arena)

We get a pointer to here from
malloc() but we write beyond
the end of the buffer.

Heap Buffer Overflow Example

● Can you tell what is wrong here?
p = malloc(strnlen(mystr, MAX_LEN));

strncpy(p, mystr, MAX_LEN);

Example Explained

● Can you tell what is wrong here?
p = malloc(strnlen(mystr, MAX_LEN));

strncpy(p, mystr, MAX_LEN);

● In short:
– Assuming size of mystr is smaller than
MAX_LEN, strnlen() will return the size of
mystr

– However, strncpy will write MAX_LEN bytes,
even if mystr is smaller

– In doing so, we'll overrun the p buffer

Heap Consistency Checking

● glibc has two heap debugging functions:
– int mcheck(void (*abortfn) (enum mcheck_status
status))

● Calling mcheck() tells malloc() to perform occasional
consistency checks

● If a check fails it calls the callback function
● These will catch things such as writing past the end of a

block that was allocated with malloc()

– enum mcheck_status mprobe(void *pointer)

● The mprobe() function lets you explicitly check for
inconsistencies in a particular allocated block

● You need to call mcheck() first

Heap Consistency Checking

● Another possibility to check heap related
bugs is to set the environment variable
MALLOC_CHECK_

● It causes glibc to use a special
implementation of malloc which is
designed to catch simple errors
– Errors such as double calls of free with the

same argument, or overruns of a single byte
(off-by-one bugs)

Hook For Malloc

● glibc lets you modify the behavior of
malloc, realloc, and free by specifying
appropriate hook functions

● You can use these hooks to help you
debug programs that use dynamic memory
allocation by writing your own call back
functions to track allocations

● The hook variables are declared in
malloc.h

● The mcheck() function works by installing
such hooks

Debugging Linux Applications

Chapter 5

Multi-Threading and Concurrency

Threads

● Threads in Linux are co-tasks running in
the same process

● Threads share an address space, the
heap, process ID and signal handlers

● Each thread has their own stack, signal
mask and priority (nice level)

● Threads typically run concurrently, at the
same time (in multi processor systems), or
appear to do so (in single CPU systems)

Threads and Processes

Thread 1 Thread
1

Thread
2

Thread
3

Process 123 Process 124

File
Descriptors

Memory Signal
Handlers

File
Descriptors

Memory
Signal

Handlers

Stack

State

Signal
Mask

Stack

State

Signal
Mask

Stack

State

Signal
Mask

Stack

State

Signal
Mask

Priority Priority Priority Priority

Concurrency

● Threads are one of the major sources (but
not the only one!) of concurrency

● Concurrency is the state in which several
task are executing at the same time, and
potentially interacting with each other

● Concurrency requires synchronization of
several threads

● When synchronizations fails, we get bugs

Race Condition

● The main property of concurrency bugs is
that they are time dependent:
– A block of code may function correctly or not,

depending on the exact timing it is called by
one or more threads

● Because of the reference to time, these
bugs care some time referred to as “Race
Conditions”

● They are very tricky to debug

Race Condition Explained
● Consider this piece of code:

static int num = 0;

void AddOne(void) {

num++;

}

● The AddOne() function is compiled into:
– Read the value of num from memory into temporary

register

– Increment the temporary register

– Write back the new value of num into memory

Race Condition Explained (cont')

● If only a single copy of AddOne() runs at a
time (and no one else touches num)
everything is fine

● This will (usually) be the case in a single
threaded application

● What can go wrong in a multi-threaded
application?

● There is a chance that two threads will call
AddOne() at the same time

The Lucky Case
Thread A

Read num to register 1.

Increment register 1.

Write back new value .

Thread B

Read num to register 2.

Increment register 2.

Write back new value .

num=1

num=2

num=3

The not so Lucky Case
Thread A

Read num to register 1.

Increment register 1.

Write back new value .

Thread B

Read num to register 2 .

Increment register 2.

Write back new value .

num=1

num=2

num=2

The value of num depends on the time
the two threads calls AddOne()!

Determining Thread Safety

● Good places to look for problems:

– Accessing global variables or the heap

– Allocating/reallocating/freeing resources that have
global limits (files, sub-processes, etc.)

– Indirect accesses through handles or pointers

– Any visible side-effect (e.g., access to volatile
variables in the C programming language)

● A subroutine is thread-safe, if it only uses stack
variables, arguments passed in, and calls thread-
safe subroutines

Achieving Thread Safety

● Re-entrancy
– Write code that can be run in parallel

– Don't use static or global variables

● Mutual exclusion
– Access to shared data is serialized using locks

● Thread-local storage
– Use variables local to each thread, instead of

global ones

Lock Problems

Don't call a function that
can try to get access to
the same lock

Holding multiple locks is risky!

Locks can also introduce bugs:

Get lock1

Wait for lock1

call

Get lock1

Get lock2

Get lock2

Get lock1

Dead
Lock!

Dead
Lock!

POSIX Mutexes Debugging

● The POSIX mutexes used in Linux can be
initialized with the attribute
PTHREAD_MUTEX_ERRORCHECK

● This will cause the locking functions to be
slower, but will catch many common
errors:
– pthread_mutexattr_settype(&attr,
PTHREAD_MUTEX_ERRORCHECK);

– You will need to add the -D_GNU_SOURCE
compiler flag to use this option

Compiler Optimizations

● The compiler is your friend... Usually. Sometime
it can surprise you

● Compilers work on code serially and thus have
no knowledge of concurrency

● This can lead to correct code being optimized
into bad code by the compiler

– Compiler might put frequently accessed
variables into registers

– Compiler might re-order code for performance
reasons

Compiler Optimization Example

Thread A
DoSomeStuff();

DoSomeMoreStuff();

flag = 1;

Thread B
/* Wait for thread A */

while (!flag) {

sched_yield();

}

DoSomething();

static int flag = 0;

If the compiler puts value of flag in thread A into
a temporary register, this will not work and thread
B will be stuck in the loop forever!
Or it might call DoSomething() before the
while...

The C Volatile Keyword

● The C language gives us a way to tell the
compiler not mess with our code – the
volatile keyword

● When applied to variables it will cause the
compiler to not make any optimization to
access to the data

● It will solve the problem, but at
considerable cost – code slow down

● It is the only option when accessing
hardware memory mapped registers

Memory Barriers

● Most of the time, there is a much better
solution: Using a memory barrier

● A memory barrier tells the compiler to
make sure that all the stores that were
coded before this point are seen before
any of the stores coded after this point

● Careful use of barriers is much better than
using volatile

Memory Barriers in GCC

● This is how to put a memory barrier in
code in GCC:
asm volatile ("" : : : "memory");

● This tell GCC to:
– Not move code around across the barrier

– Write back to memory the values of all
variables in registers before the barrier

– Assume that the content of the variables may
have changed after the barrier

Optimization Example Revisited

Thread A
DoSomeStuff();

DoSomeMoreStuff();

flag = 1;

Thread B
/* Wait for thread A */

while (!flag) {

 barrier();

sched_yield();

}

DoSomething();

static int flag=0;
#define barrier() \

asm volatile ("" : : : "memory");

Now the code is correct!

CPU Optimizations

● The compiler is not the only entity that can
change order of code or memory
operations – so can the CPU

● The issues caused by this are very similar
to the issues caused by the compiler
optimizations

● Hardware memory barriers are CPU
specific assembly instructions
– Different from CPU to CPU...

Bugs and Concurrency

● Many of the bugs presented thus far are
made more complicated to find and fix
when threads are involved

● The symptoms become non deterministic
due to the element of timing

● Adding debugging code or running under
debugger may change the symptoms

Other Sources of Concurrency

● Signal handlers are also sources of (pseudo)
concurrency

● A signal may be caught at any time. The signal
handler interrupts any context

● Unlike threads, locks do not provide a solution as
the signal handler cannot block

● Any use of lock or accessing a shared resources
in a signal handler is suspect

– This includes global variables, pointers etc.

Debugging Linux Applications

Chapter 6

Programmed Debug Assistance

Programmed Debug Assistance

● Good logging practices
● Using the preprocessor:

– Leveled logging macros
– Assert macros

● Signals
● Writing a stack dump function

The System Log

● The system log file is typically
/var/log/messages

● Applications may use the syslog(3)
function in order to log messages to it, via
syslogd(8)

● syslogd(8) supports remote logging

● syslogd(8) configuration file is
syslog.conf(5)

The System Log (cont')

● You can use logger from within shell
scripts or the command line to log:

$ logger -p err “this goes to the log”

System Log Example

...

Jun 4 16:59:40 slimshady kernel: NET: Registered
protocol family 10

Jun 4 16:59:40 slimshady kernel: Disabled Privacy
Extensions on device c02bf040(lo)

Jun 4 16:59:40 slimshady kernel: IPv6 over IPv4
tunneling driver

Jun 4 16:59:42 slimshady dhcdbd: Started up.

Jun 4 16:59:46 slimshady hpiod: 1.7.3 accepting
connections at 2208...

Jun 4 17:19:43 slimshady -- MARK --

Jun 4 17:39:43 slimshady -- MARK --

Jun 4 17:49:41 slimshady exiting on signal 15

...

Logging with syslog(3)

● Use syslog(3) to write messages to the
system log:

#include <syslog.h>

void openlog(const char *ident, int option, int
facility);

void syslog(int priority, const char *format, ...);

void closelog(void);

syslog(3) Tips

● Use the correct log level for every message. This
will enable you later to filter only critical
messages or debug messages

● Sometimes, per-module logging may be helpful.
Add another prefix before every log message
(besides the ident variable).

● syslog is implemented using a Unix domain
socket: the most efficient IPC. You won't beat its
performance, so don't try...

Leveled Logging

● It is recommended to use a system-wide
configurable log level threshold:

int current_log_level = LOG_ERR;

#define LOG(lvl, msg...) do { \

 lvl <= current_log_level ? \

 syslog(lvl, msg) : 0; \

 } while (0)

assert()

● Use glibc's assert() macro in your
debug builds

● Defined in <assert.h>

● In production build, disable assert by
defining the preprocessor token NDEBUG
(no debug)

Signals

● Signals are asynchronous notifications
sent to a process by the kernel or another
process

● Signals interrupt whatever the process was
doing at the time to handle the signal

● The application may register a signal
handler for each signal. The signal handler
is a function that gets called when the
process receives that signal

Signals (cont')

● Two default signal handlers also exist:
● SIG_IGN: Causes the process to ignore the

specified signal
● SIG_DFL: Causes the system to set the

default signal handler for the given signal

● There are two signals which cannot be
caught, blocked or ignored:
● SIG_KILL
● SIG_STOP

Catching Signals

● You can register your own signal handler
by calling signal(3), from <signal.h>:

void (*signal(int sig, void (*func)(int)))(int);

● Confused? Well, I am. This is the
equivalent of:

typedef void (*sighandler_t)(int);

sighandler_t signal(int sig, sighandler_t);

Catching Signals (cont')
● The new signal registration API uses
sigaction(3), from <signal.h>:

int sigaction(int sig, const struct sigaction *act,
struct sigaction *oact);

● sigaction(3) is better than signal(3)
since:
– It is more portable (Sys V)

– It is feature-rich

● However, it is a bit more complicated to
use...

Printing a Stack Dump

● A backtrace is a list of function calls
currently active in a thread

● glibc provides backtrace support for your
program via:

#include <execinfo.h>

int backtrace(void **buffer, int size);

char **backtrace_symbols(void *buffer,

 int size);

Debugging Linux Applications

Chapter 7

Post-Mortem

Check the Log

1.Run tail -f /var/log/messages and
then start the application which fails from a
different shell. Maybe you already got
some hints of what's going wrong in the log

2.If step 1 is not enough then edit
/etc/syslog.conf and change *.info
to *.debug. Run /etc/init.d/syslog
restart and repeat step 1.

Core Dumps
● Some exceptions may result in a core

dump – a record of the application state
(memory) when it crashed

● Since core dump take up a lot of disk
space, most distributions disable the
feature

● To enable core dumps of up to 500 MB
(1024 blocks of 512 bytes):

$ ulimit -c 1024

● Or better – unlimited:

$ ulimit -c unlimited

Core Dump Configuration

● /proc/sys/kernel/core_pattern
(together with
/proc/sys/kernel/core_uses_pid)
describe the core file pattern

● Usually the default is core.<pid>

● So we will see a file such as:

core.4455

Core Dump Configuration (cont')

● For example:

$ echo "core.%e.%p" > /proc/sys/kernel/core_pattern

● Produces the following core dump files
names:

core.<executable>.<pid>

Using the Core File

● First make sure this is your dump by using
the file command:

$ file ./core.4455

./core.4455: ELF 32-bit LSB core file Intel 80386,
version 1 (SYSV), SVR4-style, from 'dump'

● We then start GDB with the core file and
the misbehaving application:

$ gdb ./dump core.4455

Using the Core File (cont')

● gdb will provide you with the EIP which
caused the crash, and tell you which signal
caused the program to be terminated:

$ gdb ./dump core

...

Core was generated by `./dump'.

Program terminated with signal 11, Segmentation
fault.

#0 0x08048384 in croak () at dump.c:9

9 *ip = 7;

(gdb)

Debugging Linux Applications

Chapter 8

Debugging Tools

Debugging Tools

● strace(1)
● ltrace(1)
● POSIX Threads Trace Toolkit
● Dmalloc
● Valgrind

strace(1)

Use strace(1) to trace system calls and
signals when:

● The source code is not available, or
● The application hangs or fails unexpectedly

and you wish to quickly get more
information

What Are System Calls

● The Unix OS provides the application
services via the system call interface

● The C library implements the system calls,
thus programmers need only call C library
functions

Kernel

User-mode
C Library

Application

sys_open()

open()

Output Example
yariv@slimshady:~$ strace ls xxx.c

...

stat64("xxx.c", 0x80620fc) = -1 ENOENT (No
such file or directory)

lstat64("xxx.c", 0x80620fc) = -1 ENOENT (No
such file or directory)

write(2, "ls: ", 4ls:) = 4

write(2, "xxx.c", 5xxx.c) = 5

...

write(2, ": No such file or directory", 27: No such file or
directory) = 27

write(2, "\n", 1) = 1

close(1) = 0

exit_group(2) = ?

Advanced strace(1)

● You can filter interesting system calls using
the various -e flags:

● -e trace=open,close (only open and close)

● -e trace=file (all file related system calls)

●strace(1) can attach to a running process
using the -p <pid> option

● You can also have strace(1) follow
forking children with the -f option

ltrace(1)

● Use ltrace(1) to trace dynamic library
calls

● Very similar to strace(1), in command-
line options as well

● It cannot trace DSOs which were opened
by dlopen()

Output Example
yariv@slimshady:~$ ltrace ls xxx.c

__libc_start_main(0x804e1c0, 2, 0xbffffa74, 0x8056930,
0x8056920 <unfinished ...>

setlocale(6, "")
 = "en_US.UTF-8"

bindtextdomain("coreutils", "/usr/share/locale")
 = "/usr/share/locale"

textdomain("coreutils")
 = "coreutils"

__cxa_atexit(0x8050090, 0, 0, 0xb7faaff4, 0xbffff9d8)
 = 0

isatty(1)
 = 1

...

POSIX Threads Trace Toolkit

● PTT (http://nptltracetool.sourceforge.net/)

● Building it requires patching gcc and rebuilding it

● Generates a trace describing the behavior of
NPTL (Native POSIX Threads Library) threads

● Also provides a graphical trace (Paje-
compatible):

http://nptltracetool.sourceforge.net/

PTT (cont')
PTT version 0.90.0.

The trace was generated on i686 on Mon, 22 May 2006 10:04:16 +0200.

This file is the number 0.

#

#

0000000.016463 Pid 19493, Thread 0x4014aa90 starts user function, version=900000

0000000.016581 Pid 19493, Thread 0x4014aa90 enters function pthread_barrier_init,
barrier=0x8049c78, attribute=(nil), count=2

0000000.016581 Pid 19493, Thread 0x4014aa90 initializes barrier 0x8049c78, left=2

...

0000000.016617 Pid 19493, Thread 0x4014aa90 is blocked on barrier 0x8049c78

0000001.018918 Pid 19493, Thread 0x4074dbb0 enters function pthread_barrier_wait,
barrier=0x8049c78

0000001.018918 Pid 19493, Thread 0x4074dbb0 requires barrier 0x8049c78, lock=0

0000001.018918 Pid 19493, Thread 0x4074dbb0 is blocked

0000001.018918 Pid 19493, Thread 0x4074dbb0 is resumed

Dmalloc

● Debug Malloc Library (http://dmalloc.com/)

● Dmalloc is a dynamic allocations (heap)
debugging library only

● Dmalloc is extremely portable and is known to
work on AIX, *BSD, GNU/Hurd, HPUX, Irix,
Linux, Mac OSX, NeXT, OSF/DUX, SCO,
Solaris, Ultrix, Unixware, MS Windows, and
Unicos.

● Dmalloc replaces malloc(), free() and
friends with its own macros when you #include
<dmalloc.h>

http://dmalloc.com/

Dmalloc (cont')

● Dmalloc supports multi-threaded
applications

● Dmalloc has some C++ support (not as
good as its C support)

● Dmalloc produces a log explaining the
problems found.

● By default, Dmalloc immediately core
dumps when it finds any heap memory
problems

Dmalloc Log Example
1181060733: 10: Dmalloc version '5.5.2' from 'http://dmalloc.com/'

1181060733: 10: flags = 0x4f48d03, logfile 'dmalloc.log'

1181060733: 10: interval = 10, addr = 0, seen # = 0, limit = 0

1181060733: 10: starting time = 1181060733

1181060733: 10: process pid = 20563

1181060733: 10: error details: checking user pointer

1181060733: 10: pointer '0xb7f66f78' from 'unknown' prev access
'bad_alloc.c:20'

1181060733: 10: dump of proper fence-top bytes: 'i\336\312\372'

1181060733: 10: dump of '0xb7f66f78'-8:
'\033\253\300\300\033\253\300\300\000\000\000\000\t\000\000\000
'

1181060733: 10: next pointer '0xb7f66f80' (size 4) may have run
under from 'bad_alloc.c:20'

1181060733: 10: ERROR: _dmalloc_chunk_heap_check: failed OVER
picket-fence magic-number check (err 27)

Valgrind

● Valgrind (http://valgrind.org/)
● Suite of tools for debugging and profiling

Linux applications
● The most useful of the tools is called

Memcheck (also the default tool). We will
focus on it

● Runs on x86, AMD64, PPC 32/64

http://valgrind.org/

Valgrind Tools

● Memcheck – detects memory
management problems

● Cachegrind – cache profiler for I1, D1 and
L2 CPU caches

● Helgrind – multi-threading data race
detector

● Callgrind – heavyweight profiler
● Massif – heap profiler

How Valgrind Works

● The Valgrind core simulates every
instruction the application executes

● It therefore increases code size
considerably and makes the code run
much slower

● For Memcheck:
– Size increased by at least x12

– Running speed is 25-50 times slower

Memcheck

● Valgrind's Memcheck can find:
– Memory leaks

– Illegal read/write operations

– Uses of uninitialized values

– Illegal frees

– Bad system call parameters

– Overlapping blocks in memcpy operations

Valgrind Output Example
$ valgrind ./bad_alloc 2

...

==9472== Use of uninitialised value of size 4

==9472== at 0x406F69B: (within /lib/tls/i686/cmov/libc-2.5.so)

==9472== by 0x407361B: vfprintf (in /lib/tls/i686/cmov/libc- 2.5.so)

==9472== by 0x4079652: printf (in /lib/tls/i686/cmov/libc-2.5.so)

==9472== by 0x804856C: uninit (bad_alloc.c:43)

==9472== by 0x80485F4: main (bad_alloc.c:57)

...

==9472== LEAK SUMMARY:

==9472== definitely lost: 26 bytes in 2 blocks.

==9472== possibly lost: 0 bytes in 0 blocks.

==9472== still reachable: 0 bytes in 0 blocks.

==9472== suppressed: 0 bytes in 0 blocks.

==9472== Use --leak-check=full to see details of leaked memory.

Debugging Linux Applications

Last words of advice...

The Zen of Debugging

“A novice was trying to fix a broken Lisp
machine by turning the power off and on.

Knight, seeing what the student was doing,
spoke sternly: “You cannot fix a machine
by just power-cycling it with no
understanding of what is going wrong.”

Knight turned the machine off and on.

The machine worked.”
-- From the MIT AI Lab Koan collection, via the Jargon file.

Debugging Linux Applications

Appendix A

Libraries

Static Library Creation

● Use the archive utility – ar(1)to create a
static library

● Makefile rule example:

libstat.a:

 gcc -g -c -Wall -o libstat_a.o lib_a.c

 gcc -g -c -Wall -o libstat_b.o lib_b.c

 ar rcs $@ libstat_a.o libstat_b.o

Dynamic Library Creation

● Use gcc to create relocatable objects and
then link them together into a DSO
(Dynamic Shared Object)

● Makefile rule example:
libdyn.so:

 gcc -fPIC -g -c -Wall -o libdyn_a.o lib_a.c

 gcc -fPIC -g -c -Wall -o libdyn_b.o lib_b.c

 gcc -shared -Wl,-soname,libdyn.so.1 \

 -o $@.1.0 libdyn_a.o libdyn_b.o -lc

 ln -s $@.1.0 $@.1

 ln -s $@.1.0 $@

Static and Dynamic Linkage

● The process of linking an application with a
library is the same, regardless of whether it
is a static library or a dynamic library

● Whether we're linking against
libmylib.a or libmylib.so, the syntax
remains the same:

$ gcc -o myapp main.c -L/path/to/lib -lmylib

