

Applied Informatics
C++ Coding Style Guide

Rules and Recommendations
Version 1.3

Purpose of This Document

This document describes the C++ coding style employed by Applied Informatics.

The document is targeted at developers contributing C++ source code to the products of
Applied Informatics, including contributions to open-source projects like the POCO C++
Libraries.

Copyright, Licensing, Trademarks, Disclaimer

Copyright © 2006-2010, Applied Informatics Software Engineering GmbH. All rights reserved.

This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view
a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

All trademarks or registered marks in this document belong to their respective owners.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Applied Informatics. This document is provided "as is" without
warranty of any kind, either expressed or implied, including, but not limited to, the particular
purpose. Applied Informatics reserves the right to make improvements and/or changes to this
document or the products described herein at any time.

Acknowledgements

This work is based on various guidelines found on the internet, especially the rules and
recommendations by Mats Henricson and Erik Nyquist. Also incorporated are ideas and
recommendations from various other sources. See the Appendix for a list of recommended
resources.

Table of Contents
1 Introduction .. 5

2 Terminology .. 6

3 General Recommendations ... 8

4 Source Files and Project Structure .. 9
4.1 Structure of Source Code 9
4.2 Naming Files 9
4.3 Project Structure 9
4.4 Whitespace 10
4.5 Comments 11
4.6 Header Files 12

5 Names..15

6 Style ..18
6.1 Classes 18
6.2 Functions 19
6.3 Templates 20
6.4 Compound Statements 20
6.5 Flow Control Statements 20
6.6 Pointers and References 21
6.7 Miscellaneous 22

7 Classes ...23
7.1 Access Rights 23
7.2 Inline Functions 23
7.3 Friends 24
7.4 Const Member Functions 25
7.5 Constructors and Destructors 25
7.6 Assignment Operator 27
7.7 Operator Overloading 28
7.8 Member Function Return Types 29
7.9 Inheritance 29

8 Class Templates..30

9 Functions..31
9.1 Function Arguments 31
9.2 Function Overloading 32
9.3 Formal Arguments 32
9.4 Return Types and Values 32
9.5 Inline Functions 33
9.6 Temporary Objects 33
9.7 General 33

10 Constants ...35

11 Variables ...36

12 Pointers and References...37

13 Type Conversions..38

14 Flow Control ...39

15 Expressions..41

16 Memory and Resources ..42

17 Namespaces..44

18 Error Handling..45

19 Portability...46

20 References and Recommended Reading ...47

21 Appendix: Documentation..49
21.1 General Conventions 49
21.2 Documenting Classes and Structs 49
21.3 Documenting Functions 50
21.4 Documenting Enumerations 51
21.5 Documenting Types 51
21.6 Libraries, Packages and Modules 51

22 Appendix: Abbreviations ...52

Applied Informatics
C++ Coding Style Guide 5/52

1 Introduction
The purpose of this document is to define one style of programming in
C++. The rules and recommendations presented here are not final, but
should serve as a basis for continued work with C++. This collection of rules
should be seen as a dynamic document; suggestions for improvements are
encouraged. Suggestions can be made via e-mail to poco@appinf.com.

Programs that are developed according to these rules and recommendations
should be:

• correct

• easy to maintain.

In order to reach these goals, the programs should:

• have a consistent style,

• be easy to read and understand,

• be portable to other architectures,

• be free of common types of errors,

• be maintainable by different programmers.

Questions of design, such as how to design a class or a class hierarchy, are
beyond the scope of this document. Recommended books on these subjects
are indicated in the appendix entitled References.

In order to obtain insight into how to effectively deal with the most difficult
aspects of C++, the provided example code should be carefully studied. C++
is a difficult language and there may be a very fine line between a feature and
a bug. This places a large responsibility upon the programmer, as this is
always the case when using a powerful tool. In the same way as for C, C++
allows a programmer to write compact and, in some sense, unreadable code.

In order to make the code more compact, the examples provided do not
always follow the rules. In such cases, the broken rule is clearly indicated.

Applied Informatics
C++ Coding Style Guide 6/52

2 Terminology
1. An identifier is a name used to refer to a variable, constant, function

or type in C++. When necessary, an identifier may have an internal
structure consisting of a prefix, a name, and a suffix (in that order).

2. A class is a user-defined data type consisting of data elements and
functions operating on that data. In C++, this may be declared as a
class; it may also be declared as a struct or a union. Variables defined
in a class are called member variables and functions defined in a class
are called member functions.

3. A class/struct/union is said to be an abstract data type if it does not
have any public or protected member variables.

4. A structure is a user-defined consisting of public member variables
only.

5. Public members of a class are member variables and member
functions that are accessible from anywhere by specifying an instance
of the class and the name.

6. Protected members of a class are member variables and member
functions that are accessible by specifying the name within member
functions of derived classes.

7. A class template defines a family of classes. A new class may be
created from a class template by providing values for a number of
arguments. These values may be names of types or constant
expressions.

8. A function template defines a family of functions. A new function
may be created from a function template by providing values for a
number of arguments. These values may be names of types or constant
expressions.

9. An enumeration type is an explicitly declared set of symbolic
integral constants. In C++ it is declared as an enum.

10. A typedef is another name for a data type, specified in C++ using a
typedef declaration.

11. A reference is another name for a given variable. In C++, the
“address of” (&) operator is used immediately after the data type to
indicate that the declared variable, constant, or function argument is a
reference.

12. A macro is a name for a text string defined in a #define statement.
When this name appears in source code, the compiler’s preprocessor
replaces it with the defined text string.

13. A constructor is a function that initializes an object.

14. A copy constructor is a constructor in which the only argument is a
reference to an object that has the same type as the object to be
initialized.

15. A default constructor is a constructor with no arguments.

Applied Informatics
C++ Coding Style Guide 7/52

16. An overloaded function name is a name used for two or more
functions or member functions having different argument types.

17. An overridden member function is a member function in a base
class that is re-defined in a derived class. Such a member function is
declared virtual.

18. A pre- defined data type is a type defined in the language itself,
such as bool or int.

19. A user- defined data type is a type defined by a programmer in a
class, struct, union, enum, or typedef definition or as an
instantiation of a class template.

20. A pure virtual function is a member function for which no
definition is provided. Pure virtual functions are specified in abstract
base classes and must be defined (overridden) in derived classes.

21. An accessor is a function returning the value of a member variable.

22. A mutator is a function modifying the value of a member variable.

23. A forwarding function is a function doing nothing more than
calling another function.

24. A constant member function is a function that must not modify
data members.

25. An exception is a run-time program anomaly that is detected in a
function or member function. Exception handling provides for the
uniform management of exceptions. When an exception is detected, it
is thrown (using a throw expression) to the exception handler.

26. A catch clause is code that is executed when an exception of a given
type is raised. The definition of an exception handler begins with the
keyword catch.

27. An abstract base class is a class from which no objects may be
created; it is only used as a base class for the derivation of other classes.
A class is abstract if it includes at least one member function that is
declared as pure virtual.

28. An iterator is an object which, when invoked, returns the next object
from a collection of objects.

29. The scope of a name refers to the context in which it is visible.

30. A compilation unit is the source code (after preprocessing) that is
submitted to a compiler for compilation (including syntax checking).

Applied Informatics
C++ Coding Style Guide 8/52

3 General Recommendations
Recommendation 1

Optimize code only if you know for sure that you have a performance
problem. Think twice before you begin. Then measure and think again.
C++ compilers are pretty good at optimizing these days. So, source code
that “looks fast” does not necessarily produce faster object code. It only is
harder to understand and maintain.

As C.A.R. Hoare once said: Premature optimization is the root of all evil.

Recommendation 2

Always compile production code with at least a second compiler and on a
second platform. If the code has been developed with Microsoft Visual C++
under Windows XP, compile and test the code with the GNU C++ compiler
on a Unix platform, and vice versa. Even better is testing with a third
compiler, e.g. HP ANSI C++ or Sun Forte C++. This brings to light subtle
errors and portability problems.

Recommendation 3

Always compile at the highest warning level possible. A lot of bugs can be
avoided by paying attention to compiler diagnostics.

Rule 1

If this style guide leaves anything unclear, see how it has been done in the
existing code base and do it accordingly.

Applied Informatics
C++ Coding Style Guide 9/52

4 Source Files and Project Structure

4.1 Structure of Source Code

Rule 2

Header (include) files in C++ always have the file name extension ".h".

Rule 3

Implementation files in C++ always have the file name extension ".cpp".

4.2 Naming Files

Rule 4

Always give a file a name that is unique in as large a context as possible.

A header file for a class should have a file name of the form <class name> +
extension. Use uppercase and lowercase letters in the same way as in the
source code.

Since class names must generally be unique within a large context, it is
appropriate to utilize this characteristic when naming its header file. This
convention makes it easy to locate a class definition using a file-based tool.

4.3 Project Structure

Rule 5

Every project (library or application) has its own directory with a well-
defined structure.

A project directory contains project files, make files, as well as other
directories for header files, implementation files, documentation and the test
suite.

Figure 1 shows the directory hierarchy for a project.

Applied Informatics
C++ Coding Style Guide 10/52

Figure 1: Project directory hierarchy

A test suite is a project in itself and thus has the same general structure,
within the testsuite directory. Since a test suite has no public header
files, there is no include directory in a test suite.

Rule 6

Public header files always go into the include directory or a subdirectory
thereof. To avoid name clashes and for better comprehensibility, the
include directory may contain subdirectories. For libraries, the include
directory usually contains a subdirectory with the same name as the library.

Rule 7

All implementation files and non-public header files go into the src
directory.

Rule 8

All project files, make files and other support files not containing source
code go directly into the project directory.

Recommendation 4

If there is extra documentation for a project (e.g. specifications or standard
documents), this documentation goes into a directory named doc.

4.4 Whitespace

Rule 9

In a header or implementation file, introductory comment, include guards,
#include block, using block and function definitions are separated by
two empty lines. This makes it easier to visually distinguish the various
elements.

Applied Informatics
C++ Coding Style Guide 11/52

Rule 10

The last line in an implementation or header file must be terminated by a
newline. This is required by the C++ standard, but not enforced by most
compilers.

4.5 Comments

Rule 11

Every file that contains source code must be documented with an
introductory comment that provides information on the file name, its
version and its contents.

Rule 12

All files must include copyright information.

Rule 13

All comments are written in English.

Rule 14

Write a comment for every class, public/protected function and
public/protected enum/typedef/struct. The standardization of
comments makes it possible to automatically generate reference
documentation from source code. This is used to keep source code and
documentation together up-to-date. The format of these comments is
described in the Appendix.

Rule 15

Use // for comments.

It is necessary to document source code. This should be compact and easy to
find. By properly choosing names for variables, functions and classes and by
properly structuring the code, there is less need for comments within the
code.

Note that comments in header files are meant for the users of classes, while
comments in implementation files are meant for those who maintain the
classes.

All our code must be copyright marked. If the code has been developed over
a period of years, each year must be stated.

Comments are often said to be either strategic or tactical. A strategic
comment describes what a function or section of code is intended to do, and
is placed before this code. A tactical comment describes what a single line of
code is intended to do, and is placed, if possible, at the end of this line.
Unfortunately, too many tactical comments can make code unreadable. For

Applied Informatics
C++ Coding Style Guide 12/52

this reason, it is recommended to primarily use strategic comments, unless
trying to explain very complicated code.

If the characters // are consistently used for writing comments, then the
combination /* */ could be used to make comments out of entire sections
of code during the development and debugging phases. C++, however, does
not allow comments to be nested using /* */. So it is better to comment
out large sections of code using the preprocessor (#if 0 ... #endif).

Source files containing commented-out code sections must not be checked
in to the SCM repository, as this would confuse other developers working
with that code.

Example 1

Boilerplate text to be included at the beginning of every header or
implementation file:

//
// <FileName>.h
//
// Id
//
// Library: <LibraryName>
// Package: <PackageName>
// Module: <ModuleName>
//
// <One or two sentences describing what the header file is for. Can
// be omitted in source (.cpp) files.>
//
// Copyright (c) 2006, Applied Informatics Software Engineering GmbH.
// All rights reserved.
//
// <License Notice>
//

4.6 Header Files

Rule 16

Every header file must contain a mechanism that prevents multiple
inclusions of the file.

Rule 17

When the following kinds of definitions are used (in implementation files or
in other header files), they must be included as separate header files:

Applied Informatics
C++ Coding Style Guide 13/52

• classes that are used as base classes,

• classes that are used as member variables,

• classes that appear as return types or as argument types in
function/member function prototypes.

• function prototypes for functions/member functions used in inline
member functions that are defined in the file.

Rule 18

Definitions of classes that are only accessed via pointers (*) or references (&)
shall not be included as header files. Forward declarations shall be used
instead. The only exceptions are classes that are in another namespace.

Rule 19

Never specify relative paths (containing “.” and “..”) in #include
directives.

Rule 20

Every implementation file must include the relevant files that contain:

• declarations of types and functions used in the functions that are
implemented in the file.

• declarations of variables and member functions used in the functions
that are implemented in the file.

Rule 21

Every implementation file must, before any other header files, include its
corresponding header file. This ensures that header files are self sufficient.

Rule 22

Use the directive #include "filename.h" for user-prepared include
files.

Rule 23

Use the directive #include <filename.h> for system and compiler-
supplied header files only.

Rule 24

Compiler include paths always point to the include directory in a project
directory. Therefore, if a header file is located in a subdirectory of the
include directory, it must be included with #include
“dir/filename.h”. As a positive side effect, this avoids name clashes if
different projects have a header file with the same name.

Applied Informatics
C++ Coding Style Guide 14/52

The easiest way to avoid multiple includes of files is by using an
#ifndef/#define block in the beginning of the file and an #endif at the
end of the file.

The number of files included should be minimized. If a file is included in an
include file, then every implementation file that includes the second include
file must be re-compiled whenever the first file is modified. A simple
modification in one include file can make it necessary to re-compile a large
number of files.

When only referring to pointers or references to types defined in a file, it is
often not necessary to include that file. It may suffice to use a forward
declaration to inform the compiler that the class exists. Another alternative
is to precede each declaration of a pointer to the class with the keyword
class.

Example 2

Using include guards to prevent multiple inclusions of a header file:

#ifndef Foundation_SharedPtr_INCLUDED
#define Foundation_SharedPtr_INCLUDED

#include "Poco/Foundation.h"

...

#endif // Foundation_SharedPtr_INCLUDED

Applied Informatics
C++ Coding Style Guide 15/52

5 Names
Rule 25

Every class library must define a unique namespace for its globally visible
identifiers.

Rule 26

The identifier of every globally visible class, enumeration type, type
definition, function, constant, and variable in a class library must be inside
the class library’s namespace.

Rule 27

The names of variables, and functions begin with a lowercase letter.

Rule 28

The names of abstract data types, classes, structures, types, and enumerated
types begin with an uppercase letter.

Rule 29

In names that consist of more than one word, the words are written together
and each word that follows the first begins with an uppercase letter. 1

Rule 30

Global names must not begin with one or two underscores (“_” or “__”).
This is forbidden by the C++ standard as such names are reserved for use by
the compiler.

Rule 31

With the exceptions of constants and enumeration values, there are no
underscores in names (after the first character of the name). 2

Rule 32

Do not use type names that differ only by the use of uppercase and
lowercase letters.

1 This is also known as camel-case.
2 The leading underscore in names of private and protected member variables (see Rule 33) does not count here.

Applied Informatics
C++ Coding Style Guide 16/52

Rule 33

The name of a private or protected member variable begins with a single
underscore.3 This is the only underscore in such a name (see Rule 31).

Rule 34

The names of constants and enumeration values are all uppercase. In names
that consist of more than one word, these words are separated by underscore
characters.

Rule 35

Encapsulate global variables and constants, enumerated types, and typedefs
in a class.

Recommendation 5

Names should be self-descriptive yet as brief as possible. Cryptic abbreviated
names are as hard to read as well as too long ones.

Recommendation 6

Names should be pronounceable. It is hard to discuss something that cannot
be pronounced.

Recommendation 7

Names should not include abbreviations that are not generally accepted. A
list of generally accepted abbreviations can be found in the Appendix.

Recommendation 8

A variable holding a pointer should be prefixed with “p”. A value holding a
reference should be prefixed with “r”. A variable holding an iterator should
be prefixed with “it”.

Recommendation 9

Apart from the cases in Recommendation 8, avoid encodings in names.
Encoded names require deciphering. Especially, avoid type-encoded variable
names (Petzold-style Hungarian notation like lpcszName).

3 There are different opinions regarding the validity of leading underscores in class member names. The C++
standard explicitly states that leading underscores are not allowed in global names. Class members are not
global, therefore this rule does not apply to them. Experience with a variety of different compilers does not show
any problems. A commonly used alternative is to append an underscore at the end of a member variable name.

Applied Informatics
C++ Coding Style Guide 17/52

Recommendation 10

Be consistent. If something is a name it should be a name everywhere it is
used (not, e.g. an id somewhere else).

Example 3

Identifier names in a class declaration (comments have been removed):

class Net_API HTTPRequest: public HTTPMessage
{
public:
 HTTPRequest();
 HTTPRequest(const std::string& version);
 HTTPRequest(const std::string& method, const std::string& uri);
 virtual ~HTTPRequest();
 void setMethod(const std::string& method);
 const std::string& getMethod() const;
 void write(std::ostream& ostr) const;
 void read(std::istream& istr);

 static const std::string HTTP_GET;
 static const std::string HTTP_HEAD;
 static const std::string HTTP_PUT;
 static const std::string HTTP_POST;
 static const std::string HTTP_OPTIONS;
 static const std::string HTTP_DELETE;
 static const std::string HTTP_TRACE;
 static const std::string HTTP_CONNECT;

private:
 enum Limits
 {
 MAX_METHOD_LENGTH = 32,
 MAX_URI_LENGTH = 4096,
 MAX_VERSION_LENGTH = 8
 };

 std::string _method;
 std::string _uri;
};

Applied Informatics
C++ Coding Style Guide 18/52

6 Style

6.1 Classes

Rule 36

The public, protected, and private sections of a class are declared in
that order (the public section is declared before the protected section
which is declared before the private section).

Rule 37

With the exception of templates where current compiler technology
commands it, member functions are never defined within the class
definition.

Rule 38

Inline functions are defined in a separate block following the class
declaration.

Recommendation 11

If a member variable has an accessor, but not a mutator, the accessor has the
same name as the variable, sans the underscore prefix. If a member variable
has both an accessor and a mutator, the accessor name has a get prefix and
the mutator name has a set prefix.

By placing the public section first, everything that is of interest to a user is
gathered in the beginning of the class definition. The protected section may
be of interest to designers when considering inheriting from the class. The
private section contains details that should have the least general interest.

A member function that is defined within a class definition automatically
becomes inline. Class definitions are less compact and more difficult to read
when they include definitions of member functions. It is easier for an inline
member function to become an ordinary member function if the definition
of the inline function is placed outside of the class definition.

Example 4

Defining an inline function:

class Foundation_API UUID
{
public:
 ...
 bool operator == (const UUID& uuid) const;
 bool operator != (const UUID& uuid) const;
 bool operator < (const UUID& uuid) const;
 bool operator <= (const UUID& uuid) const;
 bool operator > (const UUID& uuid) const;

Applied Informatics
C++ Coding Style Guide 19/52

 bool operator >= (const UUID& uuid) const;
 ...
};

//
// inlines
//
inline bool UUID::operator == (const UUID& uuid) const
{
 return compare(uuid) == 0;
}

inline bool UUID::operator != (const UUID& uuid) const
{
 return compare(uuid) != 0;
}

...

Example 5

Accessors and mutators:

class Property
{
public:
 Property(const std::string& name);
 Property(const Property& prop);
 ~Property();
 Property& operator = (const Property&);
 const std::string& name();
 void setValue(const std::string& value);
 const std::string& getValue() const;

private:
 Property();

 std::string _name;
 std::string _value;
};

6.2 Functions

Recommendation 12

When declaring functions, the leading parenthesis and the first argument (if
any) are written on the same line as the function name. If space and
readability permit, other arguments and the closing parenthesis may also be
written on the same line as the function name. Otherwise, each additional
argument is written on a separate line, indented with a single tab (with the
closing parenthesis directly after the last argument).

Example 6

Long function declarations:

Applied Informatics
C++ Coding Style Guide 20/52

DateTime& assign(
 int year,
 int month,
 int day,
 int hour = 0,
 int minute = 0,
 int second = 0,
 int millisecond = 0,
 int microseconds = 0);

Recommendation 13

Always write the left parenthesis directly after a function name. There is no
space between the function name, the opening brace and the first argument
declaration. Also there is no space between the last argument and the closing
parenthesis.

6.3 Templates

Rule 39

The template keyword, together with the template argument list, is written
on a separate line before the following class or function definition.

6.4 Compound Statements

Recommendation 14

Braces ("{}") enclosing a block are placed in the same column, on separate
lines directly before and after the block.

The placement of braces seems to have been the subject of the greatest
debate concerning the appearance of both C and C++ code. We recommend
a style that, in our opinion, gives the most readable code. Other styles may
well provide more compact code.

6.5 Flow Control Statements

Recommendation 15

There is always a space between the flow control statement’s keyword and
the opening parenthesis of the control expression. There is no space between
the opening parenthesis and the expression. There is also no space between
the expression and the closing parenthesis.

Recommendation 16

The flow control primitives if, else, while, for and do should be
followed by a block, even if it is an empty block, or consisting of only one
statement.

Applied Informatics
C++ Coding Style Guide 21/52

At times, everything that is done in a loop may be easily written on one line
in the loop statement itself. It may then be tempting to conclude the
statement with a semicolon at the end of the line. This may lead to
misunderstanding since, when reading the code, it is easy to miss such a
semicolon. Also, the semicolon could be deleted by accident, leading to a
hard-to-find bug. It seems to be better, in such cases, to place an empty
block after the statement to make completely clear what the code is doing.
Even more better is to avoid this style altogether.

In certain cases, a code that is more compact might be better readable than
code with many blocks containing only a single statement. As a general rule,
readability must always be preferred to strict style adherence.

Example 7

Blocks and single statements:

int ASCIIEncoding::convert(int ch, unsigned char* bytes, int length) const
{
 if (ch >= 0 && ch <= 127)
 {
 *bytes = (unsigned char) ch;
 return 1;
 }
 else return 0;
}

Example 8

Single-line flow control statements can improve readability by keeping the
code more compact:

void MessageHeader::splitParameters(
 const std::string& s,
 std::string& value,
 NameValueCollection& parameters)
{
 value.clear();
 parameters.clear();
 std::string::const_iterator it = s.begin();
 std::string::const_iterator end = s.end();
 while (it != end && isspace(*it)) ++it;
 while (it != end && *it != ';') value += *it++;
 Poco::trimRightInPlace(value);
 if (it != end) ++it;
 splitParameters(it, end, parameters);
}

6.6 Pointers and References

Recommendation 17

The dereference operator “*” and the address-of operator “&” should be
directly connected with the type names in declarations and definitions.

The characters “*” and “&” should be written together with the types of
variables instead of with the names of variables in order to emphasize that

Applied Informatics
C++ Coding Style Guide 22/52

they are part of the type definition. Instead of saying that *i is an int, say
that i is an int*.

Traditionally, C recommendations indicate that “*” should be written
together with the variable name, since this reduces the probability of making
a mistake when declaring several variables in the same declaration statement
(the operator “*” only applies to the variable on which it operates). Since
the declaration of several variables in the same statement is not
recommended, however, such an advice is unneeded.

Rule 40

Never declare more than one variable in a single statement.

6.7 Miscellaneous

Recommendation 18

Do not use spaces around “.” or “->”, nor between unary operators and
operands.

Recommendation 19

Indentation is done with tabs and the number of spaces in a tab is set to four
in the editor.

Code that is indented with spaces ends up looking messy because after the
third indentation step, developers often lose track of the correct number of
spaces.

Applied Informatics
C++ Coding Style Guide 23/52

7 Classes

7.1 Access Rights

Rule 41

Do not specify public or protected member data in a class.

The use of public variables is discouraged for the following reasons:

1. A public variable represents a violation of one of the basic principles of
object-oriented programming, namely, encapsulation of data. For
example, if there is a class of the type BankAccount, in which
accountBalance is a public variable, the value of this variable may
be changed by any user of the class. However, if the variable has been
declared private, its value may be changed only by the member
functions of the class.

2. An arbitrary function in a program can change public data, leading to
errors that are difficult to locate.

3. If public data is avoided, its internal representation may be changed
without users of the class having to modify their code. A principle of
class design is to maintain the stability of the public interface of the
class. The implementation of a class should not be a concern for its
users.

The use of protected variables in a class is not recommended, since they
become visible to its derived classes. The names of types or variables in a
base class may then not be changed since the derived classes may depend on
them. If a derived class, for some reason, must access data in its base class,
one solution may be to make a special protected interface in the base class,
containing functions that return private data. This solution is not likely to
imply any degradation of performance if the functions are defined inline.

The use of structs is also discouraged since these only contain public data. In
interfaces with other languages (such as C), it may, however, be necessary to
use structs.

7.2 Inline Functions

Recommendation 20

Access functions (accessors) that simply return the value of a member
variable are inline.

Recommendation 21

Forwarding functions are inline.

Applied Informatics
C++ Coding Style Guide 24/52

Recommendation 22

Constructors and destructors should not be inline.

The normal reason for declaring a function inline is to improve its
performance.

Small functions, such as access functions, which only return the value of a
member of the class and so-called forwarding functions that invoke another
function should normally be inline.

Correct usage of inline functions may also lead to reduced code size.

Warning: functions invoking other inline functions often become too
complex for the compiler to be able to make them inline despite their
apparent smallness.

This problem is especially common with constructors and destructors. A
constructor always invokes the constructors of its base classes and member
data before executing its own code. Inline constructors and destructors are
best avoided!

7.3 Friends

Recommendation 23

Friends of a class should be used to provide additional functions that are
best kept outside of the class.

Operations on an object are sometimes provided by a collection of classes
and functions.

A friend is a nonmember of a class that has access to the nonpublic members
of the class. Friends offer an orderly way of getting around data
encapsulation for a class. A friend class can be advantageously used to
provide functions that require data that is not normally needed by the class.

Suppose there is a list class that needs a pointer to an internal list element in
order to iterate through the class. This pointer is not needed for other
operations on the list. There may then be reason, such as obtaining smaller
list objects, for a list object not to store a pointer to the current list element
and instead to create an iterator, containing such a pointer, when it is
needed.

One problem with this solution is that the iterator class normally does not
have access to the data structures that are used to represent the list (since we
also recommend private member data).

By declaring the iterator class as a friend, this problem is avoided without
violating data encapsulation.

Friends are good if used properly. However, the use of many friends can
indicate that the modularity of the system is poor.

Applied Informatics
C++ Coding Style Guide 25/52

7.4 Const Member Functions

Rule 42

A member function that does not affect the state of an object (its instance
variables) is declared const.

Rule 43

If the behavior of an object is dependent on data outside the object, this data
is not modified by const member functions.

Member functions declared as const must not modify member data and
are the only functions that may be invoked on a const object. (Such an
object is clearly unusable without const methods.) A const declaration is
an excellent insurance that objects will not be modified (mutated) when they
should not be. A great advantage of C++ is the ability to overload functions
with respect to their const-ness. Two member functions may have the same
name where one is const and the other one is not.

Non-const member functions are sometimes invoked as so-called “lvalues”
(as a location value at which a value may be stored). A const member
function may never be invoked as “lvalue”.

The behavior of an object can be affected by data outside the object. Such
data must not be modified by a const member function.

In rare cases, it is desirable to modify member variables in a const object.
Such member variables must be declared as mutable.

7.5 Constructors and Destructors

Rule 44

Every class that has pointers as instance variables must declare a copy
constructor (and an assignment operator). The copy constructor may be
private, in which case no implementation is provided.

Rule 45

All classes that can be used as base classes must define a virtual destructor.

Rule 46

If a class has at least one virtual function, it must also have a virtual
destructor.

Rule 47

Every class must have a default (no-argument) constructor and a destructor.
Unless the default constructor is private, an implementation (even if empty)

Applied Informatics
C++ Coding Style Guide 26/52

must be provided for the default constructor. For the destructor, an
implementation must always be provided.

Recommendation 24

Define and initialize member variables in the same order. Prefer
initialization to assignment in constructors.

Recommendation 25

Do not call a virtual function from a constructor or destructor.

Recommendation 26

Avoid the use of global objects in constructors and destructors.

Recommendation 27

Use explicit for single argument non-copy constructors. This helps to
avoid ambiguities caused by implicit type conversions.

A copy constructor is recommended to avoid surprises when an object is
initialized using an object of the same type. If an object manages the
allocation and deallocation of an object on the heap (the managing object
has a pointer to the object to be created by the class' constructor), only the
value of the pointer will be copied. This can lead to two invocations of the
destructor for the same object (on the heap), probably resulting in a run-
time error.

The corresponding problem exists for the assignment operator (“=”).

If a class, having virtual functions but without virtual destructors, is used as
a base class, there may be a nasty surprise if pointers to the class are used. If
such a pointer is assigned to an instance of a derived class and if delete is
then used on this pointer, only the base class' destructor will be invoked. If
the program depends on the derived class' destructor being invoked, the
program will fail.

In connection with the initialization of statically allocated objects, it is not
guaranteed that other static objects will be initialized (for example, global
objects). This is because the order of initialization of static objects that are
defined in different compilation units is not defined in the language
definition.

Example 9

Initialization of member variables in a constructor:

class Property
{
public:
 Property(const std::string& name, const std::string& value);
 ...
private:
 std::string _name;
 std::string _value;

Applied Informatics
C++ Coding Style Guide 27/52

};

// Good:
Property::Property(const std::string& name, const std::string& value):
 _name(name),
 _value(value)
{
}

// Bad:
Property::Property(const std::string& name, const std::string& value)
{
 _name = name;
 _value = value;
}

7.6 Assignment Operator

Rule 48

Every class that has pointers as instance variables must declare an
assignment operator along with a copy constructor. The assignment
operator may be private, in which case no implementation is provided.

Rule 49

An assignment operator performing a destructive action must be protected
from performing this action on the object upon which it is operating.

Recommendation 28

An assignment operator shall return a non-const reference to the assigning
object.

Recommendation 29

Whenever possible, the implementation of an assignment operator shall use
the swap() operation to provide for strong exception safety.

An assignment is not inherited like other operators. If an assignment
operator is not explicitly defined, then one is automatically defined instead.
Such an assignment operator does not perform bit-wise copying of member
data; instead, the assignment operator (if defined) for each specific type of
member data is invoked. Bit-wise copying is only performed for member
data having primitive types.

One consequence of this is that bit-wise copying is performed for member
data having pointer types. If an object manages the allocation of the instance
of an object pointed to by a pointer member, this will probably lead to
problems: either by invoking the destructor for the managed object more
than once or by attempting to use the deallocated object.

If an assignment operator is overloaded, the programmer must make certain
that the base class' and the members' assignment operators are run.

Applied Informatics
C++ Coding Style Guide 28/52

A common error is assigning an object to itself. Normally, destructors for
instances allocated on the heap are invoked before assignment takes place. If
an object is assigned to itself, the values of the instance variables will be lost
before they are assigned. This may well lead to strange run-time errors.

Example 10

Implementing the assignment operator using swap():

Foo& Foo::operator = (const Foo& foo)
{
 Foo tmp(foo);
 swap(tmp);
 return *this;
}

7.7 Operator Overloading

Recommendation 30

Use operator overloading sparingly and in a uniform manner.

Recommendation 31

When two operators are opposites (such as == and !=), it is appropriate to
define both.

Recommendation 32

Do not overload operator &&, operator || or operator , (comma).

Recommendation 33

Do not overload type conversion (cast) operators.

Operator overloading has both advantages and disadvantages. One
advantage is that code using a class with overloaded operators can be written
more compactly (more readably). Another advantage is that the semantics
can be both simple and natural. One disadvantage in overloading operators
is that it is easy to misunderstand the meaning of an overloaded operator (if
the programmer has not used natural semantics). The extreme case, where
the plus-operator is re-defined to mean minus and the minus-operator is re-
defined to mean plus, probably will not occur very often, but more subtle
cases are conceivable.

Designing a class library is like designing a language! If you use operator
overloading, use it in a uniform manner; do not use it if it can easily give rise
to misunderstanding.

Applied Informatics
C++ Coding Style Guide 29/52

7.8 Member Function Return Types

Rule 50

A public member function must never return a non-const reference or
pointer to member data.

A public member function must never return a non-const reference or
pointer to data outside an object, unless the object shares the data with other
objects.

By allowing a user direct access to the private member data of an object, this
data may be changed in ways not intended by the class designer. This may
lead to reduced confidence in the designer's code: a situation to be avoided.

7.9 Inheritance

Recommendation 34

Avoid inheritance for parts-of relations. Prefer composition to inheritance.

Recommendation 35

Give derived classes access to class type member data by declaring protected
access functions.

A common mistake is to use multiple inheritance for parts-of relations
(when an object consists of several other objects, these are inherited instead
of using instance variables. This can result in strange class hierarchies and
less flexible code. In C++ there may be an arbitrary number of instances of a
given type; if inheritance is used, direct inheritance from a class may only be
used once.

A derived class often requires access to base class member data in order to
create useful member functions. The advantage of using protected member
functions is that the names of base class member data are not visible in the
derived classes and thus may be changed. Such access functions should only
return the values of member data (read-only access).

The guiding assumption is that those who use inheritance know enough
about the base class to be able to use the private member data correctly,
while not referring to this data by name. This reduces the coupling between
base classes and derived classes.

Applied Informatics
C++ Coding Style Guide 30/52

8 Class Templates
Recommendation 36

Do not attempt to create an instance of a class template using a type that
does not define the member functions that the class template, according to
its documentation, requires.

Recommendation 37

Take care to avoid multiple definitions of overloaded functions in
conjunction with the instantiation of a class template.

It is not possible in C++ to specify requirements for type arguments for class
templates and function templates. This may imply that the type chosen by
the user, does not comply with the interface as required by the template. For
example, a class template may require that a type argument have a
comparison operator defined.

Another problem with type templates can arise for overloaded functions. If a
function is overloaded, there may be a conflict if the element type appears
explicitly in one of these. After instantiation, there may be two functions
which, for example, have the type int as an argument. The compiler may
complain about this, but there is a risk that the designer of the class does not
notice it. In cases where there is a risk for multiple definition of member
functions, this must be carefully documented.

Recommendation 38

All member functions of a class template are defined inline, inside the class
declaration. At this time this is the only portable way to define class
templates.

Applied Informatics
C++ Coding Style Guide 31/52

9 Functions
Unless otherwise stated, the following rules also apply to member functions.

9.1 Function Arguments

Rule 51

Do not use unspecified function arguments (ellipsis notation).

Recommendation 39

Avoid const pass-by-value function parameters in function declarations.
They are pointless.

Recommendation 40

Avoid functions with too many (rule of thumb: more than five) arguments.
Functions having long argument lists look complicated, are difficult to read,
and can indicate poor design. In addition, they are difficult to use and to
maintain.

Recommendation 41

Prefer references to pointers. Use a pointer only if the argument could be
null or if using a reference would always require dereferencing a pointer
when calling the function.

Recommendation 42

Use constant references (const &) instead of call-by-value, unless using a
pre-defined data type or a pointer.

By using references instead of pointers as function arguments, code can be
made more readable, especially within the function. A disadvantage is that it
is not easy to see which functions change the values of their arguments.
Member functions storing pointers provided as arguments should document
this clearly by declaring the argument as a pointer instead of as a reference.
This simplifies the code, since it is normal to store a pointer member as a
reference to an object.

There are no null references in C++. This means that an object must have
been allocated before passing it to a function. The advantage of this is that it
is not necessary to test the existence of the object within the function.

C++ invokes functions using call-by-value semantics. This means that the
function arguments are copied to the stack via invocations of copy
constructors, which, for large objects, reduces performance. In addition,
destructors will be invoked when exiting the function. const & arguments
mean that only a reference to the object in question is placed on the stack

Applied Informatics
C++ Coding Style Guide 32/52

(call-by-reference) and that the object's state (its instance variables) cannot
be modified. (At least some const member functions are necessary for such
objects to be at all useful.)

9.2 Function Overloading

Recommendation 43

When overloading functions, all variations should have the same semantics
(be used for the same purpose).

Overloading of functions can be a powerful tool for creating a family of
related functions that only differ as to the type of data provided as
arguments. If not used properly (such as using functions with the same
name for different purposes), they can, however, cause considerable
confusion.

Template functions can be a good alternative to overloading.

9.3 Formal Arguments

Rule 52

The names of formal arguments to functions must be specified and must be
the same both in the function declaration and in the function definition.

The names of formal arguments may be specified in both the function
declaration and the function definition in C++, even if the compiler ignores
those in the declaration. Providing names for function arguments is a part of
the function documentation. The name of an argument clarifies how the
argument is used and reduces the need to include comments in a function
definition. It is also easier to refer to an argument in the documentation of a
class if it has a name.

Exception: the name of a unused function argument can be omitted, both in
the declaration and in the definition.

9.4 Return Types and Values

Rule 53

Always specify the return type of a function explicitly. Modern C++
compilers expect this anyway.

Rule 54

A public function must never return a reference or a pointer to a local
variable.

If a function returns a reference or a pointer to a local variable, the memory
to which it refers will already have been deallocated when this reference or
pointer is used. The compiler may or may not give a warning for this.

Applied Informatics
C++ Coding Style Guide 33/52

9.5 Inline Functions

Rule 55

Do not use the preprocessor directive #define to obtain more efficient
code; instead, use inline functions.

Rule 56

Use inline functions when they are really needed.

Inline functions have the advantage of often being faster to execute than
ordinary functions. The disadvantage in their use is that the implementation
becomes more exposed, since the definition of an inline function must be
placed in an include file for the class, while the definition of an ordinary
function may be placed in its own separate file.

A result of this is that a change in the implementation of an inline function
can require comprehensive re-compiling when the include file is changed.

The compiler is not compelled to actually make a function inline. The
decision criteria for this differ from one compiler to another.

9.6 Temporary Objects

Recommendation 44

Minimize the number of temporary objects that are created as return values
from functions or as arguments to functions.

Temporary objects are often created when objects are returned from
functions or when objects are given as arguments to functions. In either
case, a constructor for the object is first invoked; later, a destructor is
invoked. Large temporary objects make for inefficient code. In some cases,
errors are introduced when temporary objects are created. It is important to
keep this in mind when writing code. It is especially inappropriate to have
pointers to temporary objects, since the lifetime of a temporary object is
undefined.

9.7 General

Recommendation 45

Avoid long and complex functions.

Long functions have disadvantages:

1. If a function is too long, it can be difficult to comprehend. Generally,
it can be said that a function should not be longer than 60 lines (or
one page), since that is about how much can be comprehended at one
time. This is also what can be displayed in an editor window without
scrolling.

Applied Informatics
C++ Coding Style Guide 34/52

2. If an error situation is discovered at the end of an extremely long
function, it may be difficult for the function to clean up after itself and
to "undo" as much as possible before reporting the error to the calling
function. By always using short functions, such an error can be more
exactly localized.

Complex functions are difficult to test. If a function consists of 15 nested if
statements, then there are 2**15 (or 32768) different branches to test in a
single function.

Nesting of control structures should not exceed three levels.

Applied Informatics
C++ Coding Style Guide 35/52

10 Constants
Rule 57

Constants are defined using const or enum; never using #define.

The preprocessor performs a textual substitution for macros in the source
code that is then compiled. This has a number of negative consequences. For
example, if a constant has been defined using #define, the name of the
constant is not recognized in many debuggers. If the constant is represented
by an expression, this expression may be evaluated differently for different
instantiations, depending on the scope of the name. In addition, macros are,
at times, incorrectly written.

Rule 58

Avoid the use of numeric values in code; use symbolic values instead.

Numerical values in code (magic numbers) should be viewed with suspicion.
They can be the cause of difficult problems if and when it becomes necessary
to change a value. A large amount of code can be dependent on such a value
never changing, the value can be used at a number of places in the code (it
may be difficult to locate all of them), and values as such are rather
anonymous (it may be that every “2” in the code should not be changed to a
“3”).

From a portability point of view, absolute values may be the cause of more
subtle problems. The type of a numeric value is dependent on the
implementation. Normally, the type of a numeric value is defined as the
smallest type able to hold the value.

Applied Informatics
C++ Coding Style Guide 36/52

11 Variables
Rule 59

Variables are declared with the smallest possible scope.

Rule 60

Each variable is declared in a separate declaration statement.

Rule 61

Every variable that is declared is given an initial value before it is used.

Rule 62

If possible, always use initialization instead of assignment.

A variable ought to be declared with the smallest possible scope to improve
the readability of the code and so that variables are not unnecessarily
allocated. When a variable that is declared at the beginning of a function is
used somewhere in the code, it is not easy to directly see the type of the
variable. In addition, there is a risk that such a variable is inadvertently
hidden if a local variable, having the same name, is declared in an internal
block.

Many local variables are only used in special cases which seldom occur. If a
variable is declared at the outer level, memory will be allocated even if it is
not used. In addition, when variables are initialized upon declaration, more
efficient code is obtained than if values are assigned when the variable is
used.

A variable must always be initialized before use. Normally, the compiler
gives a warning if a variable is undefined. It is then sufficient to take care of
such cases. Instances of a class are usually initialized even if no arguments
are provided in the declaration (the empty constructor is invoked). To
declare a variable that has been initialized in another file, the keyword extern
is always used.

By always initializing variables, instead of assigning values to them before
they are first used, the code is made more efficient since no temporary
objects are created for the initialization. For objects having large amounts of
data, this can result in significantly faster code.

Applied Informatics
C++ Coding Style Guide 37/52

12 Pointers and References
Rule 63

Do not compare a pointer to NULL or assign NULL to a pointer; use 0
instead.

Recommendation 46

Pointers to pointers should whenever possible be avoided.

Recommendation 47

Use a typedef to simplify program syntax when declaring function
pointers.

According to the ANSI-C standard, NULL is defined either as (void*)0 or
as 0. If this definition remains in ANSI-C++, problems may arise. If NULL is
defined to have the type void*, it cannot be assigned an arbitrary pointer
without an explicit type conversion.

Pointers to pointers normally ought not be used. Instead, a class should be
declared, which has a member variable of the pointer type. This improves
the readability of the code and encourages data abstraction. By improving
the readability of code, the probability of failure is reduced. One exception
to this rule is represented by functions providing interfaces to other
languages (such as C). These are likely to only allow pre-defined data types
to be used as arguments in the interface, in which case pointers to pointers
are needed. Another example is the second argument to the main function,
which must have the type char*[].

A function that changes the value of a pointer that is provided as an
argument should declare the argument as having the type reference to
pointer (e.g. char*&).

Applied Informatics
C++ Coding Style Guide 38/52

13 Type Conversions
Rule 64

Use C++ style casts (dynamic_cast<>, static_cast<>,
reinterpret_cast<>, const_cast<>) instead of old-style C casts for
all pointer conversions. This makes type conversions more explicit.

Rule 65

Avoid the use of reinterpret_cast<>.

Exception: low-level code interfacing the operating system or hardware,
where such a cast might be necessary.

Applied Informatics
C++ Coding Style Guide 39/52

14 Flow Control
Rule 66

The code following a case label must always be terminated by either a
break statement, a return statement or a throw statement.

If the code following a case label is not terminated by break, the execution
continues after the next case label. This means that poorly tested code can be
erroneous yet still seem to work.

Rule 67

A switch statement must always contain a default branch that handles
unexpected cases. The default label is always the last label in a switch
statement.

Rule 68

Case labels (and the default label) in a switch statement always have the
same indentation level as the switch statement.

Rule 69

Never use goto.

goto breaks the control flow and can lead to code that is difficult to
comprehend. In addition, there are limitations for when goto can be used.
For example, it is not permitted to jump past a statement that initializes a
local object having a destructor.

Recommendation 48

The choice of loop construct (for, while or do while) should depend on
the specific use of the loop.

Each loop construct has a specific usage. A for loop is used only when the
loop variable is increased by a constant amount for each iteration and when
the termination of the loop is determined by a constant expression. In other
cases, while or do while should be used. When the terminating condition
can be evaluated at the beginning of the loop, while should be used;
do while is used when the terminating condition is best evaluated at the
end of the loop.

Recommendation 49

Use break to exit a loop if this avoids the use of flags.

Recommendation 50

Use inclusive lower and exclusive upper limits.

Applied Informatics
C++ Coding Style Guide 40/52

Instead of saying that x is in the interval x >= 23 and x <= 42, use the
limits x >= 23 and x < 43. The following important claims then apply:

• The size of the interval between the limits is the difference between the
limits.

• The limits are equal if the interval is empty.

• The upper limit is never less than the lower limit.

Being consistent in this regard helps to avoid many difficult bugs.

Example 11

Canonical for loop:

for (int i = 0; i < size; ++i)
{
 ...
}

Example 12

Canonical iterator for loop:

for (Container::const_iterator it = cont.begin(); it != cont.end(); ++it)
{
 ...
}

Example 13

switch statement formatting:

switch (expression)
{
case foo:
 ...
 break;
case bar:
 …
 break;
default:
 poco_bugcheck();
}

Applied Informatics
C++ Coding Style Guide 41/52

15 Expressions
Recommendation 51

Use parentheses to clarify the order of evaluation for operators in
expressions.

There are a number of common pitfalls having to do with the order of
evaluation for operators in an expression. Binary operators in C++ have
associativity (either leftwards or rightwards) and precedence. If an operator
has leftwards associativity and occurs on both sides of a variable in an
expression, then the variable belongs to the same part of the expression as
the operator on its left side.

Recommendation 52

Prefer prefix increment/decrement to the postfix variants.

In doubtful cases, parentheses are always to be used to clarify the order of
evaluation.

Another common mistake is to confuse the assignment operator and the
equality operator. Since the assignment operator returns a value, it is
entirely permitted to have an assignment statement instead of a comparison
expression. This, however, most often leads straight to an error.

C++ allows the overloading of operators, something that can easily become
confusing. For example, the operators << (shift left) and >> (shift right) are
often used for input and output. Since these were originally bit operations, it
is necessary that they have higher priority than relational operators. This
means that parentheses must be used when outputting the values of logical
expressions.

Iterators overload the increment and decrement operators. Using the postfix
increment/decrement operators on an iterator causes the construction of a
temporary object. Therefore prefer the prefix operators.

Recommendation 53

Always have non-lvalues on the left side (0 == i instead of i == 0).

That way compiler works for you. It takes a while to get used to it, but it's
worth it. For intuitiveness sake, this should be done only for == and possibly
!= comparison.

Applied Informatics
C++ Coding Style Guide 42/52

16 Memory and Resources
Rule 70

Do not redefine the global new and delete operators.

Rule 71

When overloading the new operator for a class, always overload the delete
operator too.

Rule 72

Do not use malloc(), realloc() or free().

Rule 73

Always use the array delete operator (delete []) when deallocating arrays.

Recommendation 54

Use smart pointers (Poco::AutoPtr) or shared pointers
(Poco::SharedPtr) wherever possible.

Recommendation 55

Use the RAII (Resource Acquisition Is Initialization) idiom wherever
possible.

Recommendation 56

Avoid global data if at all possible.

Recommendation 57

Do not allocate memory and expect that someone else will deallocate it later.

Recommendation 58

Always assign a new value to a pointer pointing to deallocated memory.

In C++ data can be allocated statically, dynamically on the stack, or
dynamically on the heap. There are three categories of static data: global
data, global class data, and static data local to a function.

In C malloc(), realloc() and free() are used to allocate memory
dynamically on the heap. This may lead to conflicts with the use of the new
and delete operators in C++.

It is forbidden to:

Applied Informatics
C++ Coding Style Guide 43/52

1. invoke delete for a pointer obtained via malloc()/realloc(),

2. invoke malloc()/realloc() for objects having constructors,

3. invoke free() for anything allocated using new.

Avoid whenever possible the use of malloc(), realloc() and free().

If an array a having a type T is allocated, it is important to invoke delete in
the correct way. Only writing delete a; will result in the destructor being
invoked only for the first object of type T. By writing delete [] a; the
destructor will be invoked for all objects that have been allocated earlier.

Static data can cause several problems. In an environment where parallel
threads execute simultaneously, they can make the behavior of code
unpredictable, since functions having static data are not reentrant.

One difference between ANSI-C and C++ is in how constants are declared.
If a variable is declared as a constant in ANSI-C, it has the storage class
extern (global). In C++, however, it normally has the storage class static
(local). The latter means that a new instance of the constant object is created
each time a file includes the file which contains the declaration of the object,
unless the variable is explicitly declared extern in the include file.

An extern declaration in C++ does not mean that the variable is initialized;
there must be a definition for this in a definition file. Static constants that
are defined within a class are always external and must always be defined
separately.

It may, at times, be tempting to allocate memory for an object using new,
expecting someone else to deallocate the memory. For instance, a function
can allocate memory for an object that is then returned to the user as the
return value for the function. There is no guarantee that the user will
remember to deallocate the memory and the interface with the function
then becomes considerably more complex.

Pointers that point to deallocated memory should either be set to 0 or be
given a new value to prevent access to the released memory. This can be a
very difficult problem to solve when there are several pointers pointing to
the same memory, since C++ has no garbage collection.

Applied Informatics
C++ Coding Style Guide 44/52

17 Namespaces
Rule 74

Do not place using namespace in a header file or before an #include.

Rule 75

A source file must not define more than one namespace.

Exception: the use of anonymous namespaces in implementation files.

Recommendation 59

Do not use using namespace. It causes excessive namespace pollution
that may lead to subtle errors. Always be explicit and use non-namespace
using. This is also valid for the std namespace. Do not use using
namespace std;.

Recommendation 60

Write namespace declarations in the following way:

• one namespace declaration per line

• the opening brace is on the same line as the declaration

• add a comment to the closing brace of the namespace

Example 14

Single-level namespace:

namespace Poco {

class ...
 ...
};

} // namespace Poco

Two-level namespace:

namespace Poco {
namespace XML {

class ...
 ...
};

} } // namespace Poco::XML

Applied Informatics
C++ Coding Style Guide 45/52

18 Error Handling
Rule 76

Use C++ exceptions instead of return values to report exceptional program
states.

Rule 77

Always derive exception classes from Poco::Exception or one of its
subclasses. Do not create a separate exception class hierarchy.

Rule 78

Destructors, deallocation and swap never fail (throw exceptions).

Recommendation 61

Use existing exception classes instead of defining new ones.

Recommendation 62

Always throw by value and catch by reference. Do not throw pointer types
or types that are not subclasses of std::exception.

Recommendation 63

Do not use exception specifications (unless you are forced to).

Recommendation 64

Use assertions liberally to document internal assumptions and invariants.
The POCO C++ Libraries provide useful macros for that purpose:

• poco_assert()

• poco_assert_dbg()

• poco_check_ptr()

• poco_bugcheck()

Applied Informatics
C++ Coding Style Guide 46/52

19 Portability
Rule 79

Never rely on implementation defined, unspecified or undefined behavior.

Examples for implementation defined behavior are:

• the number of bits in a byte,

• the size of an int or a bool,

• the signedness of char,

• the linkage of main().

An example for unspecified behavior is the order in which function
arguments are evaluated.

Examples for undefined behavior are:

• the effect of an attempt to modify a string literal,

• the effect of using an invalid pointer value,

• the result of a divide by zero.

Rule 80

Do not use platform-specific types in a public interface or in code that must
be portable.

Examples for such types are DWORD, TCHAR, LPTCSTR, etc.

Rule 81

Do not rely upon absolute sizes of built-in types. If you need fixed-size
types, use the ones provided by the POCO C++ Libraries (Int8, Int16,
Int32, Int64, etc.). Do not assume that int and long have the same size,
or that a pointer always fits into a long.

Rule 82

Take into account that different platforms have different byte orders and
alignment requirements.

Rule 83

Clearly separate platform-specific from portable code.

Applied Informatics
C++ Coding Style Guide 47/52

20 References and Recommended
Reading
The C++ Programming Language, Special Edition

Bjarne Stroustrup

Addison-Wesley Professional, 2000

C++ Coding Standards

Herb Sutter and Andrei Alexandrescu

Addison-Wesley Professional, 2004

Effective C++: 55 Specific Ways to Improve Your Programs and
Designs (3rd Edition)

Scott Meyers

Addison-Wesley Professional, 2005

Effective STL: 50 Specific Ways to Improve Your Use of the
Standard Template Library

Scott Meyers

Addison-Wesley Professional, 2001

Large- Scale C++ Software Design

John Lakos

Addison-Wesley Professional, 1996

Designing and Building Portable Systems in C++

Günter Obiltschnig

Paper, Embedded Systems Conference Silicon Valley 2006

Programming in C++, Rules and Recommendations

Mats Henricson and Erik Nyquist

http://www.chris-lott.org/resources/cstyle/Ellemtel-rules-mm.html#1

Ottinger's Rules for Variable and Class Naming

Tim Ottinger

http://www.chris-lott.org/resources/cstyle/ottinger-naming.html

Applied Informatics
C++ Coding Style Guide 48/52

C and C++ Style Guides

Chris Lott

http://www.chris-lott.org/resources/cstyle/

The Joint Strike Fighter Air Vehicle C++ Coding Standards

Lockheed Martin Corporation

http://www.research.att.com/~bs/JSF-AV-rules.pdf

Applied Informatics
C++ Coding Style Guide 49/52

21 Appendix: Documentation
In order to keep project documentation and source code in sync, reference
documentation is automatically generated from the source code. For this to
work, the documentation for classes, functions, types, etc. has to follow
certain conventions. These are described in the following.

21.1 General Conventions
Documentation that is to be included in the automatically generated
reference documentation uses C++ single-line comments (“//”). To
distinguish documentation from ordinary comments, a documentation
comment begins with three slashes (“///”).

The documentation is always written after the item to be documented. In
the case of a class or function declaration/definition, the documentation is
written immediately before the opening brace (“{“). Also for classes and
functions, the documentation comment is indented one step deeper than the
declaration.

A documentation line that begins with at least three whitespaces is formatted
verbatim. This is useful for example code.

A documentation line that begins with at least three whitespaces, followed
by either a minus sign or an asterisk, is formatted as a bullet list item.

A documentation line that begins with at least three whitespaces, followed
by a digit and a period, is formatted as a numbered list item.

Paragraphs can be separated by inserting an empty documentation line.

21.2 Documenting Classes and Structs
The documentation for a class or struct is written after the “class”
keyword, class name and inheritance list, but before the opening brace.

Example:

class Foundation_API Timer: protected Runnable
 /// This class implements a thread-based timer.
 ///
 /// A timer starts a thread that first waits for a given start
 /// interval.
 /// Once that interval expires, the timer callback is called
 /// repeatedly in the given periodic interval.
 /// If the interval is 0, the timer is only
 /// called once.
 /// The timer callback method can stop the timer by setting the
 /// timer's periodic interval to 0.
 ///
 /// The timer callback runs in its own thread, so multithreading
 /// issues (proper synchronization) have to be considered when
 /// writing the callback method.
 ///
 /// The exact interval at which the callback is called depends on
 /// many factors like operating system, CPU performance and system

Applied Informatics
C++ Coding Style Guide 50/52

 /// load and may differ from the specified interval.
 ///
 /// The timer thread is taken from the global default thread pool, so
 /// there is a limit to the number of available concurrent timers.
{
public:
 ...
};

21.3 Documenting Functions
The documentation for a function is written after the function declaration,
but before the (if present) function body.

The parameters of a function are not documented separately. However, if a
parameter requires special attention, a brief sentence or paragraph about it is
written in the function documentation.

If the function may throw an exception, a paragraph should be written that
describes which exceptions may be thrown under what circumstances.

If the function returns a value, the value should be described in a short
paragraph.

Example 1:

void start(const AbstractTimerCallback& method);
 /// Starts the timer.
 /// Create the TimerCallback as follows:
 /// TimerCallback<MyClass> callback(*this, &MyClass::onTimer);
 /// timer.start(callback);

Example 2:

const std::string& operator [] (int index) const;
 /// Returns the index'th token.
 /// Throws a RangeException if the index is out of range.

Example 3:

 void unloadLibrary(const std::string& path)
 /// Unloads the given library.
 ///
 /// Be extremely cautious when unloading shared libraries.
 /// If objects from the library are still referenced somewhere,
 /// a total crash is very likely.
 ///
 /// If the library exports a function “pocoUninitializeLibrary”,
 /// this function is executed before it is unloaded.
 ///
 /// If loadLibrary() has been called multiple times for the same
 /// library, the number of calls to unloadLibrary() must be the
 /// same for the library to become unloaded.
 {
 FastMutex::ScopedLock lock(_mutex);

 typename LibraryMap::iterator it = _map.find(path);
 ...
 }

Applied Informatics
C++ Coding Style Guide 51/52

21.4 Documenting Enumerations
The documentation for an enumeration is written after the enum keyword
and the optional name, but before the opening brace. The documentation
for each enumeration value is written directly after each value.

Example:

enum Options
 /// Flags that modify the matching behavior.
{
 GLOB_DEFAULT = 0x00, /// default behavior
 GLOB_DOT_SPECIAL = 0x01, /// '*' and '?' do not match '.' at
 /// beginning of subject
 GLOB_DIRS_ONLY = 0x80 /// only glob for directories
};

21.5 Documenting Types
Documentation for at type definition is written immediately after the
typedef statement.

Example:

typedef Int64 TimeVal; /// UTC time value in microsecond resolution

21.6 Libraries, Packages and Modules
Every source file that is part of a library must also belong to a package and a
module. Packages and modules are used to further group functionality in a
library. A package is a group of related classes. Examples are all classes
belonging to the SAX (Simple API for XML) in the XML library, or all
stream classes in the Foundation library. A module usually contains a header
file and its accompanying implementation file, as well as any other files that
cannot be removed without breaking the module.

Libraries and packages are used to structure the automatically generated
reference documentation. Packages are used by the PocoBuilder application
to enable the selection of a subset of the packages and modules in a library to
be included in a custom build of that library.

See Example 1 for how to put library, package and module information in a
source file.

Applied Informatics
C++ Coding Style Guide 52/52

22 Appendix: Abbreviations
Following is a list of common abbreviations that can be used in names.

Impl Implementation

Param Parameter

Ptr Pointer

Prop Property

Val Value

