
C++ Hierarchy Design Idioms

Stephen C. Dewhurst
Semantics Consulting, Inc.

www.semantics.org

C++ Hierarchy Design Idioms: page 2 Copyright © 2001-2005 by Stephen C. Dewhurst

C++ Hierarchy Design Idioms

• Hierarchy Design Idioms
– Data abstraction
– Base class member roles
– Overloading, overriding, and hiding
– Hierarchies and polymorphism
– Conditional code
– Substitutability
– Totalitarianism, tough love, and reuse
– Degenerate hierarchies
– Design for repair
– Composition of simple hierarchies
– Abstract bases, slicing, and copying

C++ Hierarchy Design Idioms: page 3 Copyright © 2001-2005 by Stephen C. Dewhurst

The Advantage of Abstract Data Types

• A type is a set of operations.
• An abstract data type is set of operations with an implementation.
• When we identify objects in a problem domain, the first question we ask

about them is “What can I do with this object?” not “How is this object
implemented?”

• If a natural description of a problem involves employees, contracts, and
payroll records, then the programming language used to solve the
problem should contain Employee, Contract, and PayrollRecord
types.

• This allows an efficient, two-way translation between the problem
domain and the solution domain.

• Software written this way has less “translation noise,” and is simpler
and more correct.

• The purpose of an abstract data type is to extend the programming
language into the problem domain.

C++ Hierarchy Design Idioms: page 4 Copyright © 2001-2005 by Stephen C. Dewhurst

Creating an Abstract Data Type

• Choose a descriptive name for the type.
– If you have trouble choosing a name for the type, you don’t know enough

about what you want to implement to design an abstract data type.
– An abstract data type should represent a single, well-defined concept.

• List the operations that the type can perform.
– An abstract data type is defined by what you can do with it.
– Remember initialization, cleanup, copying, and conversions.

• Design an interface for the type.
– The type should be “easy to use correctly, hard to use incorrectly.”
– Look out for language-specific pitfalls.
– An abstract data type extends the language; do proper language design.
– Put yourself in the place of the user of your type.

• Implement the type.
– Don’t let the implementation affect the interface of the type.
– Implement the contract promised by the type’s interface.

C++ Hierarchy Design Idioms: page 5 Copyright © 2001-2005 by Stephen C. Dewhurst

Bossy Bases

• Well-designed base classes tell derived classes how they may
customize or extend the base class.

• Design totalitarian base classes.
• When deriving, bend to the will of the base class.

When I tell you to jump,
all you can ask is...

class Base {
 public:

virtual ~Base();

virtual bool verify() const = 0;

virtual void doit();

const char *id() const;

void jump();

 protected:
virtual double doHowHigh() = 0;

virtual int doHowManyTimes();
};

I’m a base class.

You must specify how
to verify yourself.You can do it

your way or
my way.

Don’t hide
this function,
live with it. ...how high...

...and how much.

C++ Hierarchy Design Idioms: page 6 Copyright © 2001-2005 by Stephen C. Dewhurst

The Template Method Pattern

• A template method partitions an algorithm into invariant and
variant parts.
– The invariant part is defined in a base class.
– The variant parts of the algorithm are provided as virtual functions that

may be overridden in derived classes.

• A template method gives the base class designer a level of control
somewhere between a non-virtual and virtual function.

class Base {
 public:

//…
void algorithm();

 protected:
virtual bool doHook1() const;
virtual void doHook2() = 0;

};
void Base::algorithm() {

//…
if(doHook1()) {

//…
doHook2();

}
//…

}

C++ Hierarchy Design Idioms: page 7 Copyright © 2001-2005 by Stephen C. Dewhurst

NVI

• Use of Template Method can be pushed to its logical extreme: the non-
virtual interface idiom.

• The public interface is entirely non-virtual (except the destructor).

• This doesn’t affect the user of the Base interface.
• This allows “pre” and “post” code to be added in the base class that

affects all overriding derived classes.

class Base {
 public:

virtual ~Base();
bool verify() const = 0;
void doit();
const char *id() const;
void jump();

 private:
virtual bool doVerify() const = 0;
virtual void doDoit();
virtual double doHowHigh() = 0;
virtual int doHowManyTimes();

};

C++ Hierarchy Design Idioms: page 8 Copyright © 2001-2005 by Stephen C. Dewhurst

Common Sense

• A base class doesn’t always have to have a virtual destructor.

• Just make sure that your base class really is one of these exceptional
cases.

namespace std {
 template <class Arg, class Res>
 struct unary_function {

 typedef Arg argument_type;
 typedef Res result_type;

 };
}

namespace Loki {
 struct OpNewCreator {
 template <class T>
 static T *Create() { return new T; }
 protected:
 ~OpNewCreator() {}
 };
}

C++ Hierarchy Design Idioms: page 9 Copyright © 2001-2005 by Stephen C. Dewhurst

Review: Overloading, Overriding, and Hiding

• Overloading and overriding are two entirely separate concepts.
• Function overloading refers to a set of functions in the same scope

that have the same name and different signatures.

• Overriding refers to a derived class function that has the same name
and signature as a base class virtual function.

• A name in an inner scope hides the same name in outer scopes.

• Careless combination of overloading, overriding, and hiding can make
code difficult to understand and maintain.

class Base {
void f();
virtual void f(int);

};

class Derived : public Base {
void f(int);

};

class Derived2 : public Derived {
int f;

};
Derived2 *d2p = something;
d2p->f(12); // error! f is not a function
d2p->Derived::f(12); // OK

C++ Hierarchy Design Idioms: page 10 Copyright © 2001-2005 by Stephen C. Dewhurst

Hiding Base Class Non-Virtuals

• A base class non-virtual function specifies an invariant that applies to all
derived classes.

• Hiding a base class non-virtual raises the complexity of the hierarchy,
and will lead to misunderstanding and error.

• Hiding non-virtuals defeats polymorphism; different interfaces to the
same object give different behavior.

• Do not hide base class non-virtuals.

class B {
 public:

void f();
void f(int);

};
class D : public B {
 public:

void f();
};

B *bp = new D;
bp->f(); // oops! called B::f() for D object
D *dp = new D;
dp->f(123); // error! B::f(int) hidden

C++ Hierarchy Design Idioms: page 11 Copyright © 2001-2005 by Stephen C. Dewhurst

Overloading Virtual Functions

• Be careful about overloading virtual functions.
• A set of overloaded virtual functions in the base class will be hidden by

a single overriding function in a derived class.
• This will result in different functions being called depending on the

static type used to call the function.

• Don’t overload virtual functions.

class Base {
 public:

virtual void f(double);
virtual void f(int);

};
class Derived : public Base {
 public:

void f(int);
};
// ...
Derived *dp = new Derived;
Base *bp = dp;
bp->f(12.3); // calls Base::f(double)
dp->f(12.3); // calls Derived::f(int)!!!

C++ Hierarchy Design Idioms: page 12 Copyright © 2001-2005 by Stephen C. Dewhurst

Overloading Virtual Functions

• If you need an overloaded member function name, overload non-virtual
member functions that “kick down” to differently-named virtual
functions.

• Derived classes may then override a single base class function without
hiding all the others.

class Base {
 public:

void f(double);
void f(int);

 protected:
virtual void f_double(double);
virtual void f_int(int);

};
inline void f(int i) { f_int(i); }
inline void f(double d) { f_double(d); }

C++ Hierarchy Design Idioms: page 13 Copyright © 2001-2005 by Stephen C. Dewhurst

Virtual Functions and Default Initializers

• A function’s signature does not include default argument
initializers.

• A base class virtual with a default initializer can be overridden by a
derived class function without a default initializer, or with a
different default initializer. This can lead to confusion.

• Avoid default argument initializers for virtual functions.

class Base {
 public:

virtual void f(int = 12);
virtual void g(int = 10);

};
class Derived : public Base {
 public:

void f(int);
void g(int = 5);

};
// ...
Derived *dp = new Derived;
Base *bp = dp;
bp->f(); // calls Derived::f(12)
dp->f(); // error!
bp->g(); // calls Derived::g(10)!
dp->g(); // calls Derived::g(5)

C++ Hierarchy Design Idioms: page 14 Copyright © 2001-2005 by Stephen C. Dewhurst

Abstract and Concrete Classes

• An abstract class can not be used to instantiate an object.
• Base classes represent abstract concepts, and should therefore be

abstract.
– there are no “employees” in the problem domain, so there shouldn’t be any
Employee objects

– there are no “symbol tables” in the compiler, only specific types of symbol
table

• Generic code should be written to a base class’s interface, without
making the assumption that it is dealing precisely with a base class.

• Concrete base classes may give rise to low-level problems.
– Slicing!
– Hard to implement copy operations.

• Class hierarchies should be designed with abstract base classes and
concrete leaves.

C++ Hierarchy Design Idioms: page 15 Copyright © 2001-2005 by Stephen C. Dewhurst

Where Do Hierarchies Come From?

• We may recognize a hierarchy from the top, through specialization.
– “Our application deals with employees.” “What kind of employees are

there?” “The usual: hourly, salaried, and probably some others in the
future.”

• We may recognize a hierarchy from the bottom, through abstraction.
– “I’ve got a class table, a function table, and a global table, and they all have

different implementations.” “Have they got anything in common?” “Well,
they all behave like symbol tables.”

• We may recognize a hierarchy late in development, from
implementation issues.
– “I’ve got a Widget object that may be in my local memory, in shared memory,

or on another node in the network. I’m getting pretty tired of special casing
every time I want to access a Widget.” “Don’t.”

Widget

StdWidget ShmWidget RemoteWidget

Employee

Hourly Salary Temp

C++ Hierarchy Design Idioms: page 16 Copyright © 2001-2005 by Stephen C. Dewhurst

The Meaning of Polymorphism

• Consider a type of financial option, AmOption.
• It is simultaneously an AmOption, an Option, a Deal, and a

Priceable.
• This means it can respond to messages sent to any of its four interfaces.

• This means that an AmOption can leverage generic code written to any
of its base classes’ interfaces.

• Our hierarchy design heuristics tell us how to craft class hierarchies to
make this possible.

Deal

Option

AmOption

Priceable

EurOption

NullDeal

C++ Hierarchy Design Idioms: page 17 Copyright © 2001-2005 by Stephen C. Dewhurst

Static and Dynamic Binding

• Polymorphism depends on dynamic binding.
• Static binding determines what function is going to be called at compile

time, based on the declared type of the object.

• Dynamic binding waits until runtime to determine what function to call.

• Typically, the function called depends on the type of a single object
(single dispatch).

• It’s also possible to implement dynamic binding based on the types of
multiple objects (multiple dispatch).

• An object should exhibit the same behavior no matter which of its
interfaces is used to manipulate it.

Employee *ep = getNextEmployee();
cout << ep->getName() << endl; // calls Employee::getName

Deal *dp = getNextDeal();
dp->validate(); // calls some sort of validate...

AmOption *d = new AmOption;
Option *b = d;
d->price();
b->price(); // should be same behavior!

C++ Hierarchy Design Idioms: page 18 Copyright © 2001-2005 by Stephen C. Dewhurst

Type-Based Conditionals

• We don’t switch on type codes in object-oriented programs.

• The polymorphic approach is more appropriate.

• The advantages are enormous:
– It’s simpler.
– It doesn’t have to be to be recompiled as new employee types are added.
– It is impossible to have type-based runtime errors.
– It’s probably faster and smaller!

• Implement type-based decisions with dynamic binding, not with
conditional control structures.

void process(Employee *e) {
 switch(e->type()) { // evil code!
 case SALARY: fireSalary(e); break;
 case HOURLY: fireHourly(e); break;
 case TEMP: fireTemp(e); break;
 default: throw UnknownEmployeeType();
}

void process(Employee *e)
 { e->fire(); }

C++ Hierarchy Design Idioms: page 19 Copyright © 2001-2005 by Stephen C. Dewhurst

Avoiding Control Structures with Dynamic Binding

• One way to avoid making an incorrect decision is not to make a decision.
• Many conditional constructs can be “encoded” in a class hierarchy.

• We effectively convert conditional code into type-based code.
• Convert conditional control structures into type-based decisions where

appropriate.

Widget

StdWidget ShmWidget RemoteWidget

if(Widget is in local memory)
 w->process();
else if(Widget is in shared memory)
 do horrible things to process it
else if(Widget is remote)
 do even worse things to process it
else
 error();

w->process();

Widget

Before After

C++ Hierarchy Design Idioms: page 20 Copyright © 2001-2005 by Stephen C. Dewhurst

Cosmic Hierarchies

• Overly-inclusive hierarchies are generally bad design.

• Such hierarchies tend to give rise to “containers of anything.”
• Type information is lost, and must be recovered through conditional

code.
– “Ok, thing, I’m going to process you. Are you a vehicle?” “No.” “All right,

are you a contract?” “Nope.” “Well, perhaps you’re an employee?” “Wrong
again.” “I give up!”

• This kind of conditional code is particularly inefficient, hard to
maintain, and prone to error.

• Such hierarchies may also be inefficient.
• Avoid cosmic hierarchies.

Thing

Vehicle ContractEmployee

Hourly Salary Temp

Things *

C++ Hierarchy Design Idioms: page 21 Copyright © 2001-2005 by Stephen C. Dewhurst

Some Bad Code

void process(Thing *a) {
 if(Vehicle *v = dynamic_cast<Vehicle *>(a))
 v->drive();
 else if(Contract *c = dynamic_cast<Contract *>(a))
 c->enforce();
 else if(Employee *e = dynamic_cast<Employee *>(a))
 e->fire();
 else
 throw UnknownAssetType(a);
}

void doThings(list<Thing *> things) {
 for(list<Thing *>::iterator i(things.begin); i != things.end(); ++i)
 try {
 process(*i);
 }
 catch(UnknownThing &ut) {
 // ???
 }
}

C++ Hierarchy Design Idioms: page 22 Copyright © 2001-2005 by Stephen C. Dewhurst

Casting for Flexibility and Disaster

• In order to add functionality, users of the Thing hierarchy may have to
resort to type-based conditional code.

• This approach is both slow and difficult to maintain.
• Alternatively, the Thing hierarchy can provide a hook for a Visitor

pattern implementation.

void process(Thing *a) {
 if(Vehicle *v = dynamic_cast<Vehicle *>(a))
 v->drive();
 else if(Contract *c = dynamic_cast<Contract *>(a))
 c->enforce();
 else if(Employee *e = dynamic_cast<Employee *>(a))
 e->fire();
 else
 throw UnknownThing(a);
}

class ThingVisitor;
class Thing {
 public:

void accept(ThingVisitor &) = 0;
//…

};

C++ Hierarchy Design Idioms: page 23 Copyright © 2001-2005 by Stephen C. Dewhurst

Hierarchies and Reuse

• Class hierarchies promote reuse in two ways.
– code sharing
– interface sharing

• We get code sharing by putting common derived class implementations
in base classes. This is good.

• We get interface sharing by writing substitutable derived classes. This
is better.

• Interface sharing is more important than code sharing. Don’t sacrifice the
base class interface in order to share code.

Employee

Hourly Salary Temp s
h
a
r
e

c
o
d
e

s
h
a
r
e

i
n
t
e
r
f
a
c
e

C++ Hierarchy Design Idioms: page 24 Copyright © 2001-2005 by Stephen C. Dewhurst

Is-A Relationships

• Public inheritance is used to model the is-a relationship.
• Fine. What does the is-a relationship model?
• Is-a does not necessarily mean specialization.

– a Stack is not a List
• Is-a does not necessarily mean subset.

– a Circle is not necessarily an Ellipse
• On the other hand, an is-a relationship may hold between two types that

are not logically related, or whose relationship emerged after analysis,
during design.
– a Model is not a DisplayProtocol, but a Model is-a DisplayProtocol if

it responds to the display protocol
– a Person is not a Persistent, but a Person is-a Persistent if it can be

saved to disk
• Is-a means substitutable.
• Public inheritance should imply substitutability.

C++ Hierarchy Design Idioms: page 25 Copyright © 2001-2005 by Stephen C. Dewhurst

Isa Relationships and Substitutability

• When we analyze a domain, we may recognize isa relationships, and
enshrine them in hierarchies.
– a salaried employee isa employee
– a function symbol table isa symbol table
– a square isa rectangle

• However, substitutability is a low-level property of a hierarchy.
– it depends on the set of operations promised by the base class
– it depends on the current and future uses of the base class interface by

generic code
• For instance, a Square may not be a Rectangle.
• Our base class design heuristics tell us how to communicate the

requirements for substitutability to derived class designers.

• Substitutability is the most important property of a class hierarchy.

Rect

draw()
area()
setWidth()

Square

C++ Hierarchy Design Idioms: page 26 Copyright © 2001-2005 by Stephen C. Dewhurst

• A base class establishes a contract between generic code written to
the contract and derived classes that implement the contract.

• The generic code knows nothing about the derived classes.
• The generic code may have been compiled long before the derived

classes existed.
• The authors of the generic code and base class may have no

knowledge of or control over the derived classes.
• The contract provided by the base class is what allows the derived

classes and generic code to work together.

Base

Derived2

lots of code
written to
base class
interface

Derived1

The Contract

Framework

C++ Hierarchy Design Idioms: page 27 Copyright © 2001-2005 by Stephen C. Dewhurst

Totalitarianism, Substitutability, and Tough Love

• Most code is written in terms of abstract base class interfaces.

• The only way this can work is if every derived class is always
substitutable for each of its public base classes.

• The only way this can work is if base classes are hard on the derived
classes, and if derived classes listen to and obey the base classes.

Priceable Savable

Swap

lots of code
written to
Priceable
interface

lots of code
written to
Savable

interface

C++ Hierarchy Design Idioms: page 28 Copyright © 2001-2005 by Stephen C. Dewhurst

Contracts and Leveraging Generic Code

• A base class specifies a contract.
– generic code is written to the base class interface
– derived classes customize the generic code by being substitutable for the

base class

• The greatest reuse is achieved by leveraging entire subsystems with
substitutable derived classes.

• Base class design is about writing clear contracts.
• Derived class design is about fulfilling base class contracts.
• The base class is ignorant of its derived classes.

Deal

Option

AmOption

Priceable

EurOption

Deal
Subsystem

Pricing
Subsystem

C++ Hierarchy Design Idioms: page 29 Copyright © 2001-2005 by Stephen C. Dewhurst

Attaching Interfaces
• Consider the following interface classes.

• These interface classes would commonly be used to attach attributes
to classes in a single inheritance hierarchy.

class Saveable { // persistent interface
virtual void save() = 0;
// ...

};
class Priceable { // pricing interface

virtual void price() = 0;
// ...

};

class Deal {
 public:
 virtual void validate() = 0;
 //...
};
class Bond : public Deal, public Priceable {
 public:
 void validate();
 void price();
 //...
};
class Swap : public Deal, public Priceable, public Saveable
 {/*...*/};

C++ Hierarchy Design Idioms: page 30 Copyright © 2001-2005 by Stephen C. Dewhurst

dynamic_cast as the Downcast of Doom

• Consider adding a new capability without changing or recompiling the
hierarchy.

• Naive code might simply ask the obvious questions.

• This code is very fragile, slow, and hard to maintain.

void processDeal(Deal *d) {
d->validate();
if(Bond *b = dynamic_cast<Bond *>(d))

b->price();
else if(Swap *s = dynamic_cast<Swap *>(d)) {

s->price();
s->save();

}
}

Deal Priceable Saveable

SwapBondEq

C++ Hierarchy Design Idioms: page 31 Copyright © 2001-2005 by Stephen C. Dewhurst

Capability Queries

• A common organization in OOD is to attach “capabilities” to classes in a
hierarchy through multiple inheritance.

• This is fine.
• The interface classes represent a set of operations; a capability. A

successful cross-cast to the interface type indicates that the unknown
concrete class has that capability.

• This is usually a bad idea.

Deal PriceableSaveable

EqBondSwap

Saveable
subsystem

Priceable
subsystem

Deal *dp = getNextDeal();
Priceable *pp = dynamic_cast<Priceable *>(dp); //can you be priced?
if(pp) {
 // yup.
}
else {
 // nope.
}

C++ Hierarchy Design Idioms: page 32 Copyright © 2001-2005 by Stephen C. Dewhurst

Capability Queries as a Stopgap

• A dynamic_cast can be used to ask if a particular Deal object, referred
to through a base class pointer, may be priced and/or is persistent.

• This code is somewhat less fragile.
• It’s still slow and dangerous.
• Capability queries are not a good base for a design; they are a hack.

void processDeal(Deal *d) {
d->validate();
if(Priceable *p = dynamic_cast<Priceable *>(d))

p->price();
if(Saveable *s = dynamic_cast<Saveable *>(d))

s->save();
}

Deal Priceable Saveable

SwapBondEq

Legal

C++ Hierarchy Design Idioms: page 33 Copyright © 2001-2005 by Stephen C. Dewhurst

A Better Design

• Remember OOD 101?

• This code is (much) faster and simpler, but we had to modify the
hierarchy.

class Deal {
 public:
 virtual void validate() = 0;
 virtual void process() = 0;
 //...
};
class Bond : public Deal, public Priceable {
 public:
 void validate();
 void price();
 void process()
 { validate(); price(); }
};
class Swap : public Deal, public Priceable, public Saveable {
 public:
 void validate();
 void price();
 void save();
 void process()
 { validate(); price(); save(); }
};

C++ Hierarchy Design Idioms: page 34 Copyright © 2001-2005 by Stephen C. Dewhurst

Exponentially Expanding Hierarchies

• A common error among new OO designers is to overuse inheritance.

• Composition, or composition of simpler hierarchies, is usually a better
choice.

Shape

BlueSquare RedTriangleRedSquareBlueCircleRedCircle BlueTriangle

Shape

Square

BlueTriangleBlueSquare

Circle

RedCircle

Triangle

BlueCircle RedTriangleRedSquare

Shape

TriangleSquareCircle

Color

C++ Hierarchy Design Idioms: page 35 Copyright © 2001-2005 by Stephen C. Dewhurst

Wide or Deep Hierarchies

• A very wide or very deep inheritance hierarchy usually indicates a
design flaw.

• A hierarchy that exhibits “exponential expansion” during maintenance
usually indicates a design flaw.

• Generally, the correct design involves composition of simpler
hierarchies.

• Avoid overusing inheritance.
• Use composition of simple hierarchies rather than monolithic hierarchies.

Option

EurBondOption EurEqOptionAmFXOptionAmEqOptionAMBondOption EurFXOption

Option

EurOption
Eq

AmOption
BondFX

Instrument

C++ Hierarchy Design Idioms: page 36 Copyright © 2001-2005 by Stephen C. Dewhurst

Base Classes and Standalone Classes are Different

• There are three types of classes.
– abstract base classes
– concrete derived classes
– standalone classes

• The design heuristics for each of these three types of class are very, very
different. Decide what you’re trying to design before you design it.

• Client code treats base classes very differently from standalone classes.
• Standalone classes that later become base classes wreak havoc on using

code. Start a potential base class off as an abstract base class.

• Classes that are part of a hierarchy and standalone classes come from
different planets.

• Degenerate hierarchies are your friends.

StdEmployee

Employee

C++ Hierarchy Design Idioms: page 37 Copyright © 2001-2005 by Stephen C. Dewhurst

Framework-Oriented Design

• Every significant application has variations, either in “space” or in time.
• Framework-oriented design deals well with these issues.

– supports the open/closed principle (Meyer)
– “build for today, design for tomorrow” (Goldfedder)

• It is a mistake to write an application.
– every significant application should be designed as a framework.
– patterns help a lot here, but remember to be wary of the hype.

C++ Hierarchy Design Idioms: page 38 Copyright © 2001-2005 by Stephen C. Dewhurst

Degenerate Hierarchies
• Recognizing that a class may become a base class in the future, and

transforming it into a simple two-class hierarchy, is an example of
“designing for the future.”

• The alternative of initially employing a concrete class, and
introducing derived types later, would force us, or our users, to
rewrite existing framework code.

• Obviously, this transformation does not make sense for every
concrete class. As designers, we must use our judgement.

StdButton

Button
Button

StdButton

Button

MyButton

XYZButton

ThirdParty

AcmeButton

StdDate

Date
Date NO!

polarImpl

complex
complex NO!

C++ Hierarchy Design Idioms: page 39 Copyright © 2001-2005 by Stephen C. Dewhurst

Inheritance for Code Reuse

• Inheritance is primarily about interface reuse, not code reuse.
• Use of inheritance solely for the purpose of reusing base class

implementations in derived classes often results in unnatural,
unmaintainable, and ultimately more inefficient designs.

• A priori use of inheritance for code reuse will result in less code sharing
than use of inheritance for interface reuse.

• Concentrate on inheritance of interface. Proper and efficient code reuse
will follow automatically.

C++ Hierarchy Design Idioms: page 40 Copyright © 2001-2005 by Stephen C. Dewhurst

Contradictory Design Forces

• Sharing common code in base classes is good.
• Leveraging the base class interface is better.
• Can we have both?

• This introduces an “artificial” class into the hierarchy, but may
sometimes be justified.

ButtonShr

Button

ButtonProx ButtonDec

DecoratorA DecoratorB

lots of
framework

code

StdButton OtherButton

C++ Hierarchy Design Idioms: page 41 Copyright © 2001-2005 by Stephen C. Dewhurst

Observations

• Design patterns are often selected for “force resolution,” but knowledge
of their existence is also a force on the structure of a hierarchy.

• Composition of simple parts is simpler than a monolithic design, but can
represent a more complex structure.

• Designs that promote ignorance and a single point of change are good.
• Code the minimum, but design toward the future.
• Maximum flexibility is not a goal, reasonable flexibility is.
• Idioms are useful only if they are both generally used and sometimes

disregarded.
• There is no substitute for thoughtful abstraction and careful design.

There are no cookbooks for OOD.

C++ Hierarchy Design Idioms: page 42 Copyright © 2001-2005 by Stephen C. Dewhurst

More Information
• Steve Dewhurst is the author of numerous technical articles on C++ programming techniques

and compiler design, is the author of C++ Gotchas and C++ Common Knowledge, and is co-
author of Programming in C++. He is a frequent speaker at industry conferences, a principal
lecturer at The C++ Seminar, is on the advisory board for The C++ Source, and is a
contributing editor for The C/C++ Users Journal.

• Steve has written C++ compilers for both Bell Labs and Glockenspiel, Ltd.,was a member of
the editorial board and columnist for C++ Report, and was a founder, columnist, and member
of the editorial board of The C++ Journal.

• Steve has mentored and consulted with C++/OO projects ranging in size from 1 to over 100
developers, in areas ranging from compilers to image processing, e-commerce, and securities
trading.

• Steve offers training and consulting services in all aspects of C++ programming and design,
including
– Design Patterns
– C++ Gotchas
– Templates and the Standard Template Library
– Introductory C++
– Advanced C++
– Corporate university course licensing, course development, course rejuvenation, and

web casting
• See http://www.semantics.org for more information.
• Steve also maintains a mailing list for periodic and asynchronous announcements that are

likely to be of interest to Steve’s clients, readers, and technical adversaries. The message
volume is low, and is used to announce upcoming conference talks, magazine articles,
courses, web casts, books, and web articles, including his online “Once, Weakly” C++ topic of
the week. http://www.semantics.org/mailinglist.html.

