C++4 FAQSs (SEconD EDITION) !

MARSHALL CLINE GREG LoMow MIKE GIROU

May 2000

1Copyright ©1999 by Addison-Wesley; ISBN 0-201-30983-1



Contents

I Preliminaries

1 Introduction

1.1
1.2
1.3
14
1.5
1.6
1.7

1.8

1.9

What is the purpose of this chapter? . . . . . ... ... .....

Who is the target audience for this book? . . . . ... ... ...
Is this a book about C++ perse? . .. ... ... ... .....
Why do developers need a guidebook for C++ and OO technology?
What kind of guidance is given in the answers to these FAQs? . .
What is the electronic FAQ and why buy this book when the
electronic FAQ is free? . . . . . . . . . .. ... ..
Why should you buy this edition if you already have a copy of
the first edition? . . . . . . .. .. ... . L

2 Basic C4++4 Syntax and Semantics

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

2.15
2.16
2.17
2.18
2.19
2.20

What is the purpose of this chapter? . . . . ... ... ... ...
What are the basics of main()? . . . . ... ... .. ... ....

What are the basics of default parameters? . . . . ... ... ..
What are the basics of local (auto) objects? . . . . .. ... ...
What are the basics of constructing objects using explicit param-

eters? ..o oL
What are the basics of dynamically allocated (new) objects? . . .

What are the basics of passing objects by reference? . . . . . ..
What are the basics of passing objects by value? . . ... .. ..
What are the basics of passing objects by pointer? . . . . .. ..
What are the basics of stream output? . . . . . .. .. ... ...

What are the basics of using classes that contain overloaded op-
erators? . ... L

What are the basics of defining a class? . . . .. ... ... ...
What are the basics of defining member functions? . . . . . . ..

ii

w w w W

T

[«2Ne))

© ©o ©

13



2.21 What are the basics of defining a class that contains a pointer to
an object allocated from the heap? . . . . . ... ... ... ... 28
2.22 What are the basics of global objects? . . . . .. ... ... ... 30
2.23 What are the basics of throwing and catching exceptions? . . . . 32
2.24 What are the basics of inheritance and dynamic binding? . ... 34
3 Understanding the Management Perspective 37
3.1 What is the purpose of this chapter? . . . . . ... ... ... .. 37
3.2 What is the core message of this chapter (and this book)? . . . . 37
3.3 Why are the managers in charge rather than the developers who
understand technology? . . . . . .. .. ... ... . 38
3.4 How can someone manager something they don’t understand? . . 39
3.5 What is the most common mistake on C++ and OO projects? . 39
3.6 What’s the “Software Peter Principle”? . . ... ... ... ... 40
3.7 Should an organization use OO on all its projects? . . . . . . .. 40
3.8 Can OO be ignored until it goes away? . . . . . . ... ... ... 41
3.9 What OO language is best? . . . . . . . ... ... ... ... .. 41
3.10 What is the right approach to processes and tools? . . . . . . .. 42
3.11 What is the right approach with off-the-shelf class libraries and
frameworks? . . . . . . ... 43
4 The Architectural Perspective 44
4.1 What is the purpose of this chapter? . . . . . ... ... ..... 44
4.2  Why is software architecture important? . . . . . ... ... ... 44
4.3 What should the architecture be based on, the problem being
solved or the problem domain? . . . .. ... ... .. ...... 45
4.4 Should the software architecture be based on the policy of the
problem? . ... 46
4.5 Do customers ever change their requirements? . . . . . . .. . .. 47
4.6 Are stable requirements desirable? . . . . ... ... .. ... .. 47
4.7 What is the key to planning for change? . . . . ... .. ... .. 47
4.8 What is a framework? . . . . .. .. ... .. ... ... .. ... 48
4.9 What is the “inversion of control” exhibited by frameworks? . . . 48
4.10 What is an extensible, domain-specific framework? . . . . . . .. 49
4.11 What characteristics make a framework extensible yet domain-
specific? . . .. Lo 49
4.12 What happens if the domain analysis is incorrect? . . . . . . .. 50
4.13 How much effort should be expended to support change — that
is, how much is extensibility worth? . . . .. ... .. ... ... 50
4.14 How does an architect make the software architecture flexible? . 51
4.15 What is the secret to achieving reuse? . . . ... ... ... ... 52
II Object-Oriented Design 53
5 Object-Oriented Fundamentals 55
5.1 What is the purpose of this chapter? . . . . ... ... ... ... 55
5.2  Why is the world adopting OO technology? . . . . ... .. ... 55
5.3 What are some of the benefits of using C++ for OO programming? 56
5.4 What are the fundamental concepts of object-oriented technology? 56

iii



5.5 Why are classes important? . . . . . ... .. ... .. L.
5.6 What is an object? . . . . . .. ... o o
5.7 What are the desirable qualities of an object? . . . . . ... ...
5.8 How are classes better than the three basic building blocks of
procedural software? . . . . . .. .. ... L.
5.9  What is the purpose of composition? . . . . . .. ... ... ...
5.10 What is the purpose of inheritance? . . . . ... ... ... ...
5.11 What are the advantages of polymorphism and dynamic binding?
5.12 How does OO help produce flexible and extensible software? . . .
5.13 How can old code call new code? . . . .. ... ... ... ....
5.14 What is an abstraction and why is it important? . . . . ... ..
5.15 Should abstractions be user-centric or developer-centric? . . . . .
5.16 What’s the difference between encapsulation and abstraction? . .
5.17 What are the consequences of encapsulating a bad abstraction? .
5.18 What’s the value of separating interface from implementation?
5.19 How can separating interface from implementation improve per-
formance as well as flexibility? . . . ... ... ... ...

o7
58
58

59
60
61
61
62
62
65
66
66
67
67

68

5.20 What is the best way to create a good interface to an abstraction? 69

5.21 How are get/set member functions related to poorly designed

5.22 Should there be a get and a set member function for each mem-
ber datum? . . . ...

5.23 Is the real purpose of a class to export data? . . . ... .. ...

5.24 Should OO be viewed as data-centric? . . . ... ... ... ...

Specification of Observable Behavior
6.1 What is the purpose of this chapter? . . . . . ... ... .....
6.2 Should users of a member function rely on what the code actually

6.3 What are the advantages of relying on the specification rather

than the implementation? . . . . . ... ... .. ... ......
6.4 What are advertised requirements and advertised promises? . . .
6.5 How are the advertised requirements and advertised promises of

6.6 Why are changes feared in development organizations that don’t
use specification? . . . . . ... L
6.7 How do developers determine if a proposed change will break

6.8 What are the properties of a substitutable (backward compatible)
change in a specification? . . . . . . ... ... ... ... ...

6.9 How can it be shown that the implementation of a member func-
tion fulfills its specification? . . . . . . . . . . ... .. ... ...

78

80

6.10 Is it possible to keep the specification synchronized with the code? 81

Proper Inheritance

7.1 What is proper inheritance? . . . . . . . .. ... 0.

7.2 What are the benefits of proper inheritance? . . . ... ... ..

7.3  What is improper inheritance? . . . .. ... ... ... ... ..

7.4 Isn’t the difference between proper and improper inheritance ob-
VIOUST . . L

83

83
84



7.5 Is substitutability based on what the code does or what the spec-
ification promises the code will do? . . . . . . . .. .. ... ... 86
7.6 Isit proper to revoke (hide) an inherited public: member function? 88
7.7 What is specialization? . . . . . . .. ... ... .. ... 88
7.8 What do subsets have to do with proper inheritance? . . . . . . . 89
8 Detecting and Correcting Improper Inheritance 90
8.1 Can improper inheritance wreck a project? . . .. ... .. ... 90
8.2 What’s the best way to learn how to avoid improper inheritance? 90
8.3 Is intuition a reliable guide to understanding proper inheritance? 91
8.4 Is an Ostrich a kind-of Bird? . ... .. ... ... .. ..... 91
8.5 Should an overridden virtual function throw an exception? . . . . 93
8.6 Can an overridden virtual function be a no-op? . . . .. ... .. 95
8.7 Why does C++ make it so hard to fix the Ostrich/Bird dilemma? 96
8.8 Should Circle inherit from Ellipse? . .. ... .. ... .... 97
8.9 What can be done about the asymmetric-circle dilemma? . . . . 99
8.10 What is the one issue in these FAQs that doesn’t seem to die? . 100
8.11 Should Stack inherit from List? . . . . . ... ... ... .... 101
8.12 Is code reuse the main purpose of inheritance? . . .. ... ... 102
8.13 Is container-of-thing a kind-of container-of-anything? . . . . . . . 103
8.14 Is bag-of-apple a kind-of bag-of-fruit, assuming bag-of-fruit allows
the insertion of any kind-of fruit? . . . . . .. . ... ... .. 104
8.15 Is parking-lot-for-cars a kind-of parking-lot-for-arbitrary-vehicles
(assuming parking-lot-for-vehicles allows parking any kind-of ve-
hicle? . . . . 107
8.16 Is array-of Derived a kind-of Base? . . . ... ... ... .... 108
8.17 Does the fact that an array-of Derived can be passed as an array-
of Base mean that arrays are bad? . . . . .. ... .. ... ... 110
9 Error Handling Strategies 111
9.1 Is error handling a major source of fundamental mistakes? . . . . 111
9.2 How should runtime errors be handled in C++7 . . .. ... .. 111
9.3 What happens to objects in stack frames that become unwound
during the throw/catch process? . . . . . . . . . .. ... .... 112
9.4 What is an exception specification? . . . . . . .. ... ... ... 112
9.5  What are the disadvantages of using return codes for error han-
dling? . . .. 113
9.6 What are the advantages of throw...catch? . ... .. .. ... 113
9.7 Why is it helpful to separate normal logic from exception handling
logic? . . . . 114
9.8 What is the hardest part of using exception handling? . . . . . . 117
9.9 When should a function throw an exception? . .. ... .. ... 118
9.10 What is the best approach for the hierarchy of exception objects? 120
9.11 How should exception classes be named? . . . . . . . . ... ... 121
9.12 Where do setjmp and longjmp belong in C++7 . . . . ... .. 122
10 Testing Strategies 123
10.1 What is the purpose of this chapter? . . . . . .. ... ... ... 123
10.2 What are the advantages of self-testing objects? . . . . . . . . .. 123



10.3 What are some common excuses people use for not building self-

testing into their objects? . . . . . . .. ... ... ... ... 124
10.4 What will happen if techniques like those presented here are not

used? ..o 125
10.5 When is a class correct? . . . . . . . ... ... 125
10.6 What is behavioral self-testing? . . . . . . .. .. ... ... ... 126
10.7 What is a class invariant? . . . . . . .. .. ... L. 128
10.8 Why should the invariant be captured explicitly? . . . . . .. .. 129

10.9 When should the testInvariant () member function be called? 130
10.10What can be done to ensure that an object doesn’t get blown

away by a wild pointer? . . . . . .. ... .. 130
IIT Language Facilities 133
11 References 135
11.1 What is a reference? . . . . . . . . . . . .. .. ... .. ..., 135
11.2 What does “referent” mean? . . . .. ... ... ... .. .... 136
11.3 When can a reference be attached to its referent? . . . . . . . .. 136
11.4 What happens when a value is assigned to a reference? . . . . . . 136
11.5 What is a local reference? . . . . . . ... .. .. ... ... ... 137
11.6 What does it mean to return a reference? . . . ... ... .. .. 137
11.7 What is the result of taking the address of a reference? . . . . . . 138
11.8 Can a reference be made to refer to a different referent? . . . . . 139
11.9 Why use references when pointers can do everything references
can do? . . ... . 139
11.10Aren’t references just pointers in disguise? . . . . . . . . . .. .. 140
11.11When are pointers needed? . . . . . ... ... ... ... .... 140
11.12Why do some people hate references? . . . . . . . .. . .. .. .. 141
11.13Does int& const x make sense? . . . . .. .. ... ... .... 141
12 New and Delete 143
12.1 Does new do more than allocate memory? . . . . ... ... ... 143
12.2 Why is new better than good old trustworthy malloc()? . . . . . 143
12.3 Does C++ have a counterpart to realloc () that goes along with
new and delete? . . . . . . . ... 144

12.4 Can pointers returned from new be deallocated with free()? Can
pointers returned from malloc() be deallocated with delete? . 144

12.5 Does delete p delete the pointer p or the referent *p? . . . . . . 144
12.6 Should the pointer returned from new Fred() be checked to see
ifit is NULL? . . . . o oo 145
12.7 How can new be convinced to return NULL rather than throw an
exception? . . . .. Lo 145
12.8 How can new be set up to automatically flush pools of recycled
objects whenever memory runs low? . . ... ... ... ... .. 146
12.9 What happens if delete p is called when p is NULL? . . . . . . . 149
12.10What happens when a pointer is deleted twice? . . . . . . .. .. 150
12.11How can an array of things be allocated and deallocated? . . . . 150
12.12What if delete p (not delete[] p) is used to delete an array
allocated via new Fred[n]? . . . . . .. ... ... ... ..... 151

vi



12.13Can the [] of delete[] p be dropped when p points to an array

of some built-in type such as char? . . . . .. ... ... ... .. 151
12.14How is an object constructed at a predetermined position in mem-

OTYT o o 152
12.15How can class Fred guarantee that Fred objects are created only

with new and not on the stack? . . . . .. ... ... .. ... .. 153
12.16How are objects created by placement new destroyed? . .. . .. 154
12.17In p = new Fred(), does the Fred memory “leak” if the Fred

constructor throws an exception? . . . . . .. .. ... ... ... 155

12.181s it legal (and moral) for a member function to say delete this?156
12.19After p=new Fred[n], how does the compiler know that there are

n objects to be destructed during delete[] p? . ... ... ... 157
13 Inline Functions 158
13.1 What is the purpose of inline functions? . . .. ... ... ... 158
13.2 What is the connection between the keyword “inline” and “in-
lined” functions? . . . . . . . . ... ... 159
13.3 Are there any special rules about inlining? . . . . .. .. ... .. 159
13.4 What is the one-definition rule (ODR)? . . . ... .. ... ... 159
13.5 What are some performance considerations with inline functions?160
13.6 Do inlined functions improve performance? . . . .. .. ... .. 160
13.7 Do inlined functions increase the size of the executable code? . . 162
13.8 Why shouldn’t the inlining decision be made when the code is
first written? . . .. ... oL Lo 163
13.9 What happens when a programmer uses an inlined function ob-
tained from a third party? . . . . . .. ... oL 163
13.10Is there an easy way to swap between inline and non-inline
code? ..o 164
14 Const Correctness 167
14.1 How should pointer declarations be read? . . . . .. .. ... .. 167
14.2 How can C++ programmers avoid making unexpected changes
to objects? ... L 167
14.3 Does const imply runtime overhead? . . . . . . . .. ... .. .. 169
14.4 Does const allow the compiler to generate more efficient code? . 169
14.5 Is const correctness tedious? . . . . .. ... .. ... ... ... 169
14.6 Why should const correctness be done sooner rather than later? 170
14.7 What’s the difference between an inspector and a mutator? . . . 171
14.8 When should a member function be declared as const? . . . .. 171

14.9 Does const apply to the object’s bitwise state or its abstract state?172
14.10When should const not be used in declaring formal parameters? 173
14.11When should const not be used in declaring a function return

type? . .o 174
14.12How can a “nonobservable” data member be updated within a

const member function? . . . ... ..o oL 175
14.13Can an object legally be changed even though there is a const

reference (pointer) to it? . . . . . . ... L Lo L 176
14.14Does const_cast mean lost optimization opportunities? . . . . . 177

vii



15 Namespaces 178

15.1 What is the purpose of this chapter? . . . . .. ... ... .... 178
15.2 What is a namespace? . . . . . . . . ... ... 178
15.3 How can code outside a namespace use names declared within

that namespace? . . . . . . .. ... ... 179
15.4 What happens if two namespaces contain the same name? . . . . 180
15.5 What are some of the rules for using namespaces? . . .. .. .. 181
15.6 What is name lookup? . . . . . . .. ... oL 182

15.7 What are the tradeoffs between the various techniques for using
names from a namespace, particularly the standard namespace? . 182

15.8 Can namespaces break code? . . . . ... ... ... ... .... 183
15.9 Do namespaces have any other applications? . . . . . . . ... .. 184
15.10How do namespaces solve the problem of long identifiers? . . . . 184
16 Using Static 185
16.1 What is the purpose of this chapter? . . . . .. ... ... .... 185
16.2 What are static class members? . . . . . . .. ... L. 185
16.3 What is an analogy for static data members? . . . . . . ... .. 186
16.4 Can inline functions safely access static data members? . . . . 188
16.5 What is an analogy for static member functions? . . . . ... .. 189
16.6 How is a static data member similar to a global variable? . . . . 191
16.7 How is a static member function similar to a friend function? . . 192
16.8 What is the named constructor idiom? . . . . . . .. . . ... .. 192
16.9 How should static member functions be called? . . . . . . .. .. 193
16.10Why might a class with static data members get linker errors? . 194
16.11How is a const static data member initialized? . . . . . . .. .. 194
16.12What is the right strategy for implementing a function that needs
to maintain state between calls? . . . . ... ... ... ... .. 195
16.13How can the function call operator help with functionoids? . . . 197

16.141Is it safe to be ignorant of the static initialization order problem? 198
16.15What is a simple and robust solution to the static initialization

order problem? . . . . . ... Lo 199
16.16What if the static object’s destructor has important side effects
that must eventually occur? . . . . . . ... ... ... 200

16.17What if the static object’s destructor has important side effects
that must eventually occur and the static object must be accessed

by another static object’s destructor?. . . . . . . . .. ... ... 201
16.18 What are some criteria for choosing between all these various
techniques? . . . . . . L 203
17 Derived Classes 205
17.1 What is the purpose of this chapter? . . . . . .. ... ... ... 205
17.2 How does C++ express inheritance? . . . . . . ... ... .. .. 205
17.3 What is a concrete derived class? . . . . . . . .. ... ... ... 206
17.4 Why can’t a derived class access the private: members of its
base class? . . . . . ..o 207
17.5 How can a base class protect derived classes so that changes to
the base class will not affect them? . . . . . . ... ... .. ... 209
17.6 Can a derived class pointer be converted into a pointer to its
public base class? . . . . . ... L 210



17.7 How can a class Y be a kind-of another class X as well as getting

the bits of X? . . . . . . . 210

17.8 How can a class Y get the bits of an existing class X without
making Y a kind-of X7 . . ... ..o oo 211

17.9 How can a class Y be a kind-of another class X without inheriting
the bits of X7 . . . . . . . 212
18 Access Control 213
18.1 What is the purpose of this chapter? . . . . . .. ... ... ... 213
18.2 How are private:, protected:, and public: different? . . . . . 213

18.3 Why can’t subclasses access the private: parts of their base class?213
18.4 What’s the difference between the keywords struct and class? 214
18.5 When should a data member be protected: rather than private:?7214

18.6 Why is private: the default access level for a class? . . . . . .. 215
19 Friend Classes and Friend Functions 216
19.1 Whatisa friend? . . . . . . .. . .. . . L oL 216
19.2 What’s a good mental model for friend classes? . . . . . ... .. 217
19.3 What are some advantages of using friend classes? . . . .. . .. 218
19.4 Do friends violate the encapsulation barrier? . . .. .. ... .. 218
19.5 What is a friend function? . . . . . . . . ... ... 218
19.6 When should a function be implemented as a friend function
rather than a member function? . . . . . . .. .. ... ... ... 219
19.7 What are some guidelines to make sure friend functions are used
properly? ... 220
19.8 What does it mean that friendship isn’t transitive? . . . . . . . . 220
19.9 What does it mean that friendship isn’t inherited? . . . . . . .. 222
19.10What does it mean that friends aren’t virtual? . . . ... .. .. 223
19.11What qualities suggest a friend function rather than a member
function? . . . ..o 225
19.12Should friend functions be declared in the private:, protected:,
or public: sectionof aclass? . . . . .. ... ... ... ... .. 227
19.13What is a private class? . . . . . .. ... Lo oL 227
19.14How are objects of a class printed? . . . . . . ... ... ... .. 229
19.15How do objects of a class receive stream input? . . . . . .. . .. 230
20 Constructors and Destructors 231
20.1 What is the purpose of a constructor? . . . ... ... ... ... 231
20.2 What is C++’s constructor discipline? . . . . . . ... ... ... 231
20.3 What is the purpose of a destructor? . . . . . . . ... ... ... 231
20.4 What is C++’s destructor discipline? . . . . . . . . ... ... .. 231
20.5 What happens when a destructor is executed? . . . . . . .. . .. 231
20.6 What is the purpose of a copy constructor? . . .. .. ... ... 231
20.7 When is a copy constructor invoked? . . . . . . ... ... 231
20.8 What is the “default constructor”? . . . . .. ... .. ... ... 232

20.9 Should one constructor call another constructor as a primitive? . 232

20.10Does the destructor for a derived class need to explicitly call the
destructor of its base class? . . . . . . .. ... oL 232

20.11How can a local object be destructed before the end of its function?232

ix



20.12What is a good way to provide intuitive, multiple constructors
foraclass? . . . ...

20.13When the constructor of a base class calls a virtual function, why
isn’t the override called? . . . . . . . .. ... ... ...

20.14When a base class destructor calls a virtual function, why isn’t

21 Virtual Functions

21.1 What is the purpose of this chapter? . . . . ... ... ... ...
21.2 What is a virtual member function? . . . ... ... .. ... ..
21.3 How much does it cost to call a virtual function compared to
calling a normal functions? . . . . ... ...,
21.4 How does C++ perform static typing while supporting dynamic
binding? . . . . . ...
21.5 Can destructors be virtual? . . . . . ... ... L.
21.6 What is the purpose of a virtual destructor? . . . . . . . .. . ..
21.7 What is a virtual constructor? . . . ... . ... ... ... ...
21.8 What syntax should be used when a constructor or destructor

21.9 Should the scope operator :: be used when invoking virtual
member functions? . . . . .. ... L L
21.10What is a pure virtual member function? . . . .. ... ... ..
21.11Can a pure virtual function be defined in the same class that
declares it? . . . . . ...
21.12How should a virtual destructor be defined when it has no code?
21.13Can an ABC have a pure virtual destructor? . . . ... .. ...
21.14How can the compiler be kept from generating duplicate out-lined
copies of inline virtual functions? . . . . . . . .. ... ... ...
21.15Should a class with virtual functions have at least one non-inline
virtual function? . . . . ... ... L

22 Initialization Lists

22.1 What are constructor initialization lists? . . . . . . . . . ... ..
22.2 What will happen if constructor initialization lists are not used?
22.3 What’s the guideline for using initialization lists in constructor
definitions? . . . . . . ... L
22.4 Ts it normal for constructors to have nothing inside their body? .
22.5 How is a const data member initialized? . . . . . . .. ... ...
22.6 How is a reference data member initialized? . . . . . .. ... ..
22.7 Are initializers executed in the same order in which they appear
in the initialization list? . . . . . . . .. ... ... ... .....
22.8 How should initializers be ordered in a constructor’s initialization
List? . e
22.9 Is it normal for one member object to be initialized using another

22.11Are there exceptions to the rule “Initialize all member objects in
an initialization list”? . . . . . ... ... oL oo

232

233



22.12How can an array of objects be initialized with specific initializers?237

23 Operator Overloading 238
23.1 Are overloaded operators like normal functions? . . . . . .. . .. 238
23.2 When should operator overloading be used? . . . . . . ... ... 238
23.3 What operators can’t be overloaded? . . . . . .. ... ... ... 238
23.4 Is the goal of operator overloading to make the class easier to

understand? . . . . ... Lo 238
23.5 Why do subscript operators usually come in pairs? . . . .. . . . 238
23.6 What is the most important consideration for operators such as

+= +and =7 ..o 238
23.7 How are the prefix and postfix versions of operator++ distin-

guished? . . . . . .. 239
23.8 What should the prefix and postfix versions of operator++ return?239
23.9 How can a Matrix-like class have a subscript operator that takes

more than one subscript? . . . . . ... ... oL 239
23.10Can a ** operator serve as an exponentiation operator? . . . . . 239

24 Assignment Operators 240
24.1 What should assignment operators return? . . . . . ... .. .. 240
24.2 What is wrong with an object being assigned to itself? . . . . . . 240
24.3 What should be done about self-assignment? . . . .. ... ... 240
24.4 Should an assignment operator throw an exception after partially

assigning an object? . . . . ... L. oL Lo 240
24.5 How should the assignment operator be declared in an ABC? . . 240

24.6

24.7

24.8

When should a user-defined assignment operator mimic the as-
signment operator that the compiler would generate automatically?240

What should be returned by private: and protected: assign-
ment operators? . . ... ... 241
Are there techniques that increase the likelihood that the compiler-

24.9 How should the assignment operator in a derived class behave? . 241
24.10Can an ABC’s assignment operator be virtual? . .. ... ... 241
24.11What should a derived class do if a base class’s assignment oper-
ator is virtual? . . . . . . . ... 241
24.12Should the assignment operator be implemented by using place-
ment new and the copy constructor? . . ... .. ... ... ... 241
25 Templates 242
25.1 What is the purpose of templates? . . . . ... ... .. ..... 242
25.2 What are the syntax and semantics for a class template? . . . . . 242
25.3 How can a template class be specialized to handle special cases? 244
25.4 What are the syntax and semantics for a function template? . . . 247
25.5 Should a template use memcpy () to copy objects of its template
argument? . ... 247
25.6 Why does the compiler complain about >> when one template is

used inside another? . . . . . . ... ... 249

xi



26 Exception Tactics 251

26.1 What belongs in a try block? . . . . .. ... ... .. 251
26.2 When should a function catch an exception? . . . ... .. ... 251
26.3 Should a catch block fully recover from an error? . . . . . . . .. 252
26.4 How should a constructor handle a failure? . . .. ... .. ... 254

26.5 What are zombie objects (and why should they be avoided)? . . 254
26.6 What should an object do if one of its member objects could

throw an exception during its constructor? . . . . . . . ... ... 255
26.7 Should destructors throw exceptions when they fail? . . . . . .. 257
26.8 Should destructors call routines that may throw exception? . . . 257
26.9 Should resource deallocation primitives signal failure by throwing

an exception? . . ... L. Lo 258
26.10What should the terminate() function do? . . . . .. ... ... 258
26.11What should the unexpected() function do? . . ... ... ... 259

26.12Under what circumstances can an overridden virtual member
function throw exceptions other than those listed by the spec-

ification of the member function in the base class? . . . . .. .. 261
26.13How might the exception-handling mechanism cause a program
to silently crash? . . . . . ... L oL 262
27 Types and RTTI 264
27.1 What is the purpose of this chapter? . . . . ... ... ... ... 264
27.2 What is static type checking? . . . . . ... ... ... .. .... 264
27.3 What is dynamic type checking? . . . ... ... ... ... ... 265
27.4 What is the basic problem with dynamic type checking? . . . . . 267
27.5 How can dynamic type checking be avoided? . . . ... ... .. 267
27.6 Are there better alternatives to dynamic type checking? . . . . . 268
27.7 What is a capability query? . . . . . .. ... 269
27.8 What is an alternative to dynamic type checking with containers? 269
27.9 Are there cases where dynamic type checking is necessary? . . . 270
27.10Given a pointer to an ABC, how can the class of the referent be
found? . . . . .. 271
27.11What is a downcast? . . . . . . .. ..o 273
27.12What is an alternative to using downcasts? . . . . . ... . ... 274
27.13Why are downcasts dangerous? . . . . . . . .. ... ... ... 276

27.14Should the inheritance graph of C++ hierarchies be tall or short? 276
27.15Should the inheritance graph of C++ hierarchies be monolithic

oraforest? . . . ... ... 277
27.16What is Runtime Type Identification (RTTI)? . . ... .. ... 277
27.17What is the purpose of dynamic_cast<T>()? . . ... ... ... 277
27.18Is dynamic_cast<T>() a panacea? . . . ... ... ........ 278
27.19What does static_cast<T>() do? . . ... .. ... ... .... 279
27.20What does typeid() do? . . . .. . . ... .. ... ... ... 279
27.21Are there any hidden costs for type-safe downcasts? . . . . . .. 279

28 Containers 281
28.1 What are container classes and what are the most common mis-

takes made with container classes? . . . . .. .. ... ... ... 281

28.2 Are arrays good or evil? . . . . ..o oL 282

xii



28.3 Should application development organizations create their own

xiii

container classes? . . . . . ... o 282
28.4 What are some common mistakes with containers of pointers? . . 283
28.5 Does this mean that containers of pointers should be avoided? . . 283
28.6 Surely good old-fashioned char* is an exception, right? . . . . . 283
28.7 Can auto_ptr<T> simplify ownership problems with containers
of pointers? . . . . . .. L 284
28.8 Can a Java-like Object class simplify containers in C++7 . . . . 284
28.9 What’s the difference between a homogeneous and a heteroge-
neous container? . . . . . . ... ... e 285
28.101Is it a good idea to use a “best of breed” approach when selecting
container classes? . . . . ... ..o 285
28.11Should all projects use C++’s standardized containers? . . . . . 286
28.12What are the C++ standardized container classes? . . . . . . .. 286
28.13What are the best applications for the standardized C++ se-
quence container classes? . . .. ... ..o 287
28.14What are the best situations for the standardized C++ associa-
tive container classes? . . . . . . .. ... L 290
IV  Topics 292
29 Mixing Overloading with Inheritance 294
29.1 What is the difference between overloaded functions and overrid-
den functions? . . . . .. ... 294
29.2 What is the hiding rule? . . . . . . ... ... oL 295
29.3 How should the hiding rule be handled? . . . .. ... ... ... 298
29.4 What should a derived class do when it redefines some but not all
of a set of overloaded member functions inherited from the base
class? .o 300
29.5 Can virtual functions be overloaded? . . . . . . ... . ... ... 301
30 The Big Three 304
30.1 What is the purpose of this chapter? . . . . . ... ... ... .. 304
30.2 What are the Big Three? . . . ... ... ... ... ... .... 304
30.3 What happens when an object is destroyed that doesn’t have an
explicit destructor? . . . . . ... Lo o 305
30.4 What happens if an object is copied but doesn’t have an explicit
copy constructor? . . . . ... 306
30.5 What happens when an object that doesn’t have an explicit as-
signment operator is assigned? . . . .. ... .. ... ... ... 307
30.6 What is the Law of the Big Three? . . . . . . .. ... ... ... 308
30.7 Which of the Big Three usually shows up first? . . .. ... ... 308
30.8 What is remote ownership? . . . . .. .. ... ... ... 309
30.9 How is remote ownership special? . . . . . . . ... ... ..... 310
30.10What if a class owns a referent and doesn’t have all of the Big
Three? . . . . . . o 310
30.11Are there any C++ classes that help manage remote ownership? 312
30.12Does auto_ptr enforce the Law of the Big Three and solve the
problems associated with remote ownership? . . . . . . .. .. .. 314



30.13Are there cases where one or two of the Big Three may be needed

30.14Are there any other circumstances that might explicitly warrant
the Big Three? . . . . . . . . ... ... ..
30.15Why does copying an object using memcpy() cause a program
crash? . . . . .
30.16Why do programs with variable-length argument lists crash?
30.17Why do programs that use realloc() to reallocate an array of

31 Using Objects to Prevent Memory Leaks

31.1 When are memory leaks important? . . . .. ... ... .. ...
31.2 What is the easiest way to avoid memory leaks? . . . . . . . . ..

321

31.3 What are the most important principles for resource management?324

31.4 Should the object that manages a resource also perform opera-
tions that may throw exceptions? . . . . . . . .. ... ... ...
31.5 Should an object manage two or more resources? . . . . .. ...
31.6 What if an object has a pointer to an allocation and one of the
object’s member functions deletes the allocation? . . . . . ...
31.7 How should a pointer variable be handled after being passed to
delete? . . . . . . .
31.8 What should be done with a pointer to an object that is allocated
and deallocated in the same scope? . . . . .. . ... ... ....
31.9 How easy is it to implement reference counting with pointer se-

31.11How can reference counting be implemented with copy-on-write
semantics for a hierarchy of classes? . . .. ... ... ... ...

32 Wild Pointers and Other Devilish Errors

32.1 What is a wild pointer? . . . . . . ... ... ... L.
32.2 What happens to a program that has even one wild pointer?
32.3 What does the compiler mean by the warning “Returning a ref-
erence to a local object”? . . . . .. ... ... ... ..
32.4 How should pointers across block boundaries be controlled? . . .
32.5 Is the reference-versus-pointer issue influenced by whether or not
the object is allocated from the heap? . . . ... ... ... ...
32.6 When should C-style pointer casts be used? . . . . .. ... ...
32.7 Is it safe to bind a reference variable to a temporary object? . . .
32.8 Should a parameter passed by const reference be returned by
const reference? . . . . . ... ... L
32.9 Should template functions for things like min(x,y) or abs(x)
return a const reference? . . . . .. .. ... L L.
32.10When is zero not necessarily zero? . . . .. ... ... ... ...

33 High-Performance Software

33.1 Is bad performance a result of bad design or bad coding?

Xiv

325
326

328



33.4 What is a disadvantage of lots of references and pointers? . . . . 349
33.5 How else can member objects improve performance over pointers? 351

33.6 Which is better, ++i or i++7 . . . . . . ... 351
33.7 What is the performance difference between Fred x(5); and
Fred y = 5; and Fred z = Fred(5);? . . . ... ... ..... 353
33.8 What kinds of applications should consider using final classes and
final member functions? . . . .. ... oL oL 354
33.9 What isa final class? . . . . . . . . ... .. ... L. 354
33.10What is a final member function? . . . . . . ... ... ... ... 355
33.11How can final classes and final member functions improve perfor-
mance? ... .. e e e e e e e e e e 356
33.12When should a nonfinal virtual function be invoked with a fully
qualified name? . . . . . . ... Lo 357
33.13Should full qualification be used when calling another member
function of the same class? . . . . ... ... ... ... ... .. 358
33.14Do final classes and final member functions cause a lot of code
duplication? . . . . . ... 359
33.15Why do some developers dislike final member functions and final
classes? ..o L 361
33.16Can a programming language — rather than just the compiler —
affect the performance of software? . . . . . .. ... ... .... 361
34 COM and ActiveX 362
34.1 Who should read this chapter? . . .. .. .. ... ... ..... 362
34.2 What is the Component Object Model? . . . . . ... ... ... 362
34.3 What are ActiveX and OLE? . . . . . ... ... .. .. ..... 363
34.4 What does the name Component Object Model mean? . . . . . . 364
34.5 What is a “binary object model”? . . . . . . .. ... ... ... 364
34.6 What are the key features of COM? . . . . ... ... ... ... 365
34.7 What are GUIDs? . . . . ... . ... ... . ... ... ..., 365
34.8 Why does COM need GUIDs (and CLSIDs and IIDs)? . . . . . . 367
34.9 What is an interface? . . . . . . . . .. ... L. 367
34.10What is the IUnknown interface? . . . .. . ... ... ... ... 369
34.11How many ways are there to specify COM interfaces? . ... .. 370
34.12What are COM classes and COM objects? . . . . . . . . . . ... 372
34.13How hard is it for callers to create and use a COM object? . . . 376
34.14How does COM provide language transparency? . ... ... .. 378
34.15How does COM provide location transparency? . . . . ... ... 379
34.16 What types of errors occur due to reference counting? . . . . . . 380
34.17What mechanism does COM define for error handling? . . . . . . 381
34.18How are interfaces versioned? . . . . . .. ... ... ... 381
34.19Is COM object oriented? . . . . . . . . . . ... ... ... .... 382
34.20What is the biggest problem with COM? . . .. ... ... ... 383
34.21What are the major differences between COM and C++7 . . . . 384
34.22What should a class be defined as a COM class? . ... ... .. 386
34.23What is Automation? . . . . ... ... oL 388
34.24What are dispatch interfaces? . . . . . . ... ... oo 388
34.25When should a class expose a Dispatch interface? . . . . . . . .. 389
34.26How does Automation work? . . . . . ... ... oL 390
34.27How does Invoke accomplish all of this? . . . . . ... ... ... 392

XV



34.28What is a type library? . . . . ... ... 392

34.29What are the benefits of using type libraries? . . . . . .. .. .. 393
34.30How do type libraries improve performance? . . . . . . . .. . .. 394
34.31What are dual interfaces? . . . . . ... ... ... ... ... .. 394
34.32What limitations are there on dual interfaces? . . . . . . . . . .. 395
34.33What are OLE custom controls and ActiveX controls? . . . . . . 396
34.34Why do ActiveX controls differ from OLE custom controls? 397
34.35What is a control container? . . . . . . . . ... ... ... ... 398
34.36 What are component categories? . . . . . . . ... .. ... ... 399
34.37What are events? . . . . . . . ... 399
34.38What is DCOM? . . . . . . . . ... 400
34.39How stable is DCOM’s infrastructure? . . . . . . ... ... ... 401
34.40What is COM+7? . . . . . . . . . 401
35 Transitioning to CORBA 403
35.1 What is CORBA? . . . . .. ... ... ... 403
35.2 What isan ORB? . . . . ... ... ... ... . ... ..., 403
35.3 What is IDL? . . . . . .. .. . 403
35.4 What is COS? . . . . . . . . 404
35.5 What is OMA? . . . . . . . . .. e 404
35.6 What is OMG? . . . . . . .. .. 404
35.7 What is the purpose of this chapter? . . . . ... ... ... ... 404
35.8 What is the most important message of this chapter? . . . . . . . 405
35.9 What are the important concepts behind CORBA? . . . . . . .. 405
35.10Isn’t OMG IDL pretty much the same as C++7. . . . . ... .. 406
35.111s the life cycle of a CORBA object the same as the life cycle of
a CH++ object? . . . . . ... 407
35.12Is the C++ code that interacts with the CORBA implementation
portable to a different CORBA vendor? . . .. ... ... .... 408
35.13How do CORBA exceptions compare to C+-+ exceptions? . . . . 408
35.14Which CORBA implementation is best? Is CORBA better than
COMY . . e 409
36 C Language Considerations 410
36.1 What are the main issues when mixing C and C++ code in the
same application? . . . . . .. Lo Lo 410
36.2 How can C++ code call Ccode? . . .. ... ... ... ..... 410
36.3 How can C code call C++ code? . . . .. .. ... ... ..... 411
36.4 Why is the linker giving errors for C functions called from C+
functions and vice versa? . . . . .. ... ... 412
36.5 How can an object of a C++ class be passed to or from a C
function? . . . . ... L 413

36.6 Can a C function directly access data in an object of a C++ class?7414
36.7 Can C++ I/O (<iostream>) be mixed with C I/O (<stdio.h)? 415

36.8 Which is safer: <iostream> or <stdio.h>? . . . ... .. .. .. 416
36.9 Which is more extensible: <iostream> or <stdio.h>? . . . . .. 416
36.10Which is more flexible: <iostream> or <stdio.h>?7 . . . . . . .. 416
36.11Why does it seem that C++ programming feels farther away from

the machine than C? . . . . . . . . . . . . ... .. ... . .... 417

36.12Why does C++ do more things behind your back than C does? . 417

xvi



37 Private and Protected Inheritance 418

37.1 What are private inheritance and protected inheritance? . . . . . 418

37.2 What is the difference between private inheritance and protected
inheritance? . . . . . . . . ... 419

37.3 What is the syntax and semantics for private and protected in-
heritance? . . . . . . ... 419

37.4 When should normal has-a be used, rather than private or pro-
tected inheritance? . . . . . . .. ... L 421

37.5 What are the access rules for public, protected, and private in-
heritance? . . . . . . ... 421

37.6 In a private or protected derived class, how can a member func-

tion that was public in the base class be made public in the
derived class? . . . . . ... L 422

37.7 Should a pointer be cast from a private or protected derived class
toits base class? . . . . . ..o 423
38 Pointers to Member Functions 424
38.1 What is the type of a pointer to a nonstatic member function? . 424

38.2 Can pointers to nonstatic member functions be passed to signal

handlers, X event call-back handlers, and so on, that expect C-
like function pointers? . . . . . . . . .. ... Lo 425

38.3 What is one of the most common errors when using pointers to
member functions? . . . . . .. ..o 426
38.4 How is an array of pointers to nonstatic member functions declared?427
39 The Transition to OO and C+-+ 429
39.1 Who should read this chapter? . .. ... ... ... .. ..... 429
39.2 What are the key messages of this chapter? . . . . .. ... ... 429
39.3 How many stages of technical expertise are there in the transition?430
39.4 Why bother defining levels of expertise? . . . . . ... ... ... 430
39.5 Can OO/C++ be learned from a book? . . . .. ... ... ... 431
39.6 Can OO/C++ be learned from a course? . . ... ... .. ... 431
39.7 What is the key to learning OO/C++? . . . . .. ... ... .. 432
39.8 Are small projects a good way to get your feet wet? . . . . . .. 432
39.9 Does being a good C programmer help when learning OO/C++7 433
39.10What skills help when learning OO/C++? . . . . . . .. ... .. 434

xvii



Acknowledgments

This second edition reflects the help and advice of many people. We are
particularly indebted to Bjarne Stroustrup and Andrew Koenig for their inspi-
ration and advice over the years. Paul Abrahams, Michael Ball, Ian Long, John
Kwan, Jason Pritchard, Christopher Van Wyk, and Steve Vinoski were particu-
larly helpful in the development of this edition. We appreciate the support and
insights of our colleagues and associates, including Mathew Denman, Mike Fer-
retti, Peter Jakab, Charles Martin, Robert Martin, Chris Rooney, Dave Stott,
Toannis Tollis, John Vlissides, Jim Watson, Claudia Woody, Demetrios Yan-
nokopoulos, and Howard Young. Debbie Lafferty was a tremendous supporter
during both editions of this book, and we will always be grateful for her help
and patience.

Special thanks from Marshall to David W. Bray for showing me the realities
of self-directed thinking, to Doug Lea for daily email at 5:30 A.M.(you get a
A++), to Jamshid Afshur, Jr. for a million and one suggestions via email, and
to my colleagues at Clarkson University. Thanks to all of my students and the
many wonderful supporters of the electronic FAQ. Most of al, thank you to Mary
Elaine and to David, Elizabeth, Gabrielle, Peter, Katherine, and Brandon; you
make it worth the trouble.

Special thanks from Greg to Brian Unger and Graham Birtwistle for intro-
ducing me to Simula 67 and object-oriented programming in 1981, long before
it became fashionable. Thank you Brian Unger and Marshall Cline for giving
me the opportunity to pursue interesting projects in stimulating work environ-
ments. Also, thanks to my colleagues from the University of Calgary, Jade
Simulations, Paradigm Shift, Inc., and MT Systems Company for their assis-
tance and support over the years. Thank you, Barb, for all of your support and
for putting up with my unusual work arrangements and bizarre schedules.

Special thanks from Mike to Dix Pettey for showing me what research is all
about, to John Schmidt for teaching me to be practical, and to Len Gollobin for
showing me how to look at problems the right way. The University of Missouri
Mathematics Department will always occupy a special place in my heart for
both personal and professional reasons. Thanks to my children, Beverly and
James, for putting up with a father whose efforts have not always matched his
intentions, and to my special friends Christian, Kelly, and Tamie for being part
of my life.

xviii



Part 1

Preliminaries



Chapters 1 through 4 present an introduction to C++ that provides the basis
for understanding the rest of the materials in this book. This part also provides
professional programmers with insight into how their managers and technical
leaders view life. This material is intended to help developers understand how
their organization works so they can participate more fully in the decision-
making process.



Chapter 1

Introduction

1.1 What is the purpose of this chapter?

To explain what the book is all about, how it is related to the electronic FAQ
and the first edition, and what conventions are used.

This chapter discusses the purpose of the book and the conventions it follows.
This chapter also discusses our approach to FAQs and why you should buy this
book if you have the first edition or have access to the electronic FAQ.

1.2 What are C++ FAQs?

Frequently Asked Questions that should be asked about object-oriented pro-
gramming and C++.

Each FAQ provides specific guidance in the form of in-depth answers. Many
FAQs also provide a complete, working program that illustrates the principles
espoused by the FAQ. The word FAQs is pronounced like ”facts”.

These FAQs aren’t necessarily questions people have asked; rather, they are
the questions people should ask. Although we never say it publicly, most of
these FAQs are based on dumb things we see people do on a fairly regular basis.
We got tired of explaining the same fundamental notions over and over again
and decided to write them down in this book.

On the other hand, you have taken a step toward OO and C++ competence by
purchasing this guidebook; now take the next step by reading and understanding
its message.

1.3 Who is the target audience for this book?

Professional software developers.



This book is aimed at developers including programmers, architects, and de-
signers. It is a fine way for the experienced programmers to learn object-oriented
C++. This book is not for beginners what are just learning to program since it
assumes previous programming background. Familiarity with C wouldn’t hurt
but is not absolutely necessary.

1.4 Is this a book about C++ per se?

This is a C++ book with a twist.

This book focuses on the object-oriented aspects of C++. Thus, whenever you
see the word “C++", you should assume that the words “object-oriented” are
present (and we’ll occasionally inject the words “object-oriented” as a reminder
to the reader).

This book focuses on practical ways to use C+-+; it does not explore all of
the dark corners of the language beloved by “language lawyers”. In this way,
this book is not the traditional C+4 book written from the perspective of the
language and stressing the syntax and features of C++ in all their gory detail.
Instead, this book concentrates on the key aspects of C++ (such as its OO
features) and how to apply them effectively. Another reason for this approach
is that the language is so large that it is hard for developers to understand what
is relevant and how to apply it.

In this vein, one of the main contributions of this book is to focus on the moral
use of C++ rather than simply describing the legal use of C++. in this context,
using C++ morally means adhering to a programming discipline (i.e., a subset
of all possible combinations of all the constructs of C++) that is relatively
risk-free (whereas using C++ legally simply refers to any use of the language
that the compiler accepts). We have found that many of the problems that
developers run into stem from trying to combine C++ features in incompatible
and seemingly random ways; therefore using C++ morally is vital to using C++
effectively.

This book also tries to bridge the gap between software architecture and OO
design and C++ programming (see Chapter 4).

1.5 Why do developers need a guidebook for
C++ and OO technology?

Learning to use C++ and OO properly is a long journey with many pitfalls.

Because of the sophistication and complexity of C++4, developers need a road
map that shows how to use the language properly. For example, inheritance
is a powerful facility that can improve the clarity and extensibility of software,
but it can also be abused in ways that result in expensive design errors.

4



The field of object-oriented technology is large, evolving, and heterogeneous.
Under these circumstances, a guidebook is essential. These FAQs cover the
latest innovations so that you don’t have to stumble around for years learning
the same lessons others have already learned. The FAQs also expose incorrect
and questionable practices.

To be effective, programmers need to understand the language features and
how the features of the language can be combined. For example, pointer arith-
metic and the is-a conversion (see FAQ 2.24) are both useful, but combining
them has some subtle edge effects that can cause big problems; see FAQ 8.16.
Similar comments apply when combining overloading and overriding (FAQ 29.2),
overriding and default parameters, abstract base classes and assignment (FAQ
24.5), and so on. So it is not enough to understand each feature of C++.

1.6 What kind of guidance is given in the an-
swers to these FAQs?

Explanations of language features, directions for using these features properly,
and guidelines indicating programming practices to avoid.

The FAQs can be divided into roughly three categories:

1. FAQs that explain what a particular language feature is and how to use
it in compliance with C++ semantics.

2. FAQs that explain how to use C++ properly. Some of these answers deal
with only a single language feature, while others explain how to use several
different language features in concert. Combining language features allows
sophisticated designs that can simultaneously satisfy multiple technical
requirements and business goals.

3. FAQs that expose poor programming practices. These show design and
programming practices that are legal in C+4 but should be avoided be-
cause they can lead to programs that are bug-ridden, hard to comprehend,
expensive to maintain, difficult to extend, and lacking reuse value.

1.7 What is the electronic FAQ and why buy
this book when the electronic FAQ is free?

The electronic FAQ is a set of C+4 questions and answers, originally prepared
and distributed on the Internet by Marshall Cline. The Internet version is
currently updated and distributed by Marshall and is available through the
news group comp.lang.c++. This book has substantially more material than
the electronic FAQ.

This book and the electronic FAQ were inspired by a seemingly unquenchable
thirst among C++ developers for more and better information about C+-+
through comp.lang.c++. Addison-Wesley decided to provide an expanded form
of that information in book format.



This book covers a broader range of topics and goes into greater depth than
the electronic FAQ. It provides deeper coverage of the key points with extensive
new examples.

Most of the programming examples are working, stand-alone programs, com-
plete with their own main(), all necessary #include files, and so on. All exam-
ples have been compiled directly from the source text of the book; those that
are complete programs have also been run.

1.8 Why should you buy this edition if you al-
ready have a copy of the first edition?

Because the world has changed and you want to keep up with technology.

The OO world and the C++ language have changed significantly in the last
few years. There are new language constructs such as Run Time Type Iden-
tification (RTTT) and namespaces. The Standard Template Library (STL) is
a massive addition to the C++ body of essential knowledge. Design notation
has apparently standardized on the Unified Modeling Language (UML). Java,
CORBA, and ActiveX are now topics that every C++ developer needs to un-
derstand. The goal of this second edition is to bring you up to speed on all of
these new developments while still keeping the pithy style and FAQ format that
was so well received in the first edition.

Finally, the second edition is much more self-contained than the first, with lots
of syntax and semantics. We’ve appreciated all your comments and suggestions
and have tried to accommodate them wherever possible.

1.9 What conventions are used in this book?

The undecorated word inheritance means “public inheritance”. Private or
protected inheritance is referred to explicitly.

Similarly the undecorated term derived class means “public derived class”.
Derived classes produced via private or protected inheritance are explicitly des-
ignated “private derived class” or “protected derived class”, respectively.

The class names Base and Derived are used as hypothetical class names to
illustrate the general relationship between a base class and one of its (publicly)
derived classes.

The term out-lined function indicates a function that is called via a normal
CALL instruction. In contrast, when an inlined function is invoked, the compiler
inserts the object code for that function at the point-of-call.

6



The term remote ownership is used when an object contains a pointer to
another object that the first object is responsible for deleting. The default
destruction and copy semantics for objects that contain remote ownership are
incorrect, so explicit controls are needed.

To allow compilation while simplifying the presentation to the reader, exam-
ples that use the standard library have a line that says using namespace std;.
This dumping of the entire standard namespace is acceptable as a short-term
conversion technique or as a pedagogical aid, but its use in production systems
is controversial. Most authorities recommend introducing class names as needed
or using the std:: qualifier.

The term OO is used as an abbreviation for “object-oriented”.
The term method is used as a synonym for “member function”.

NULL is used rather than 0 to make the code more readable. Organizational
standards and guidelines should be consulted before the reader continues this
practice.

The term C programming language refers to the ISO version of C.

The compiler is assumed (per the C++ Standard) to insert an implicit return
0; at the end of main().

The intrinsic data type bool is used, which has literal values true and false.
For compilers that don’t have a built-in bool type, insert the following at the
beginning of each example:

typedef char bool; const bool false=0; const bool true=1;

The expression new MyClass, where MyClass is some type, is assumed to
throw an exception if it runs out of memory — it never returns NULL. Most
compilers implement this correctly, but some do not.

Most examples use protected: data rather than private: data. In the
real world, this is appropriate for most developers and most applications, but
framework developers probably should not use protected: data, since this
would create a data coupling between the derived classes and the protected:
data of the base class. In general, framework developers should use private:
data with protected: access functions.

Type names (names of classes, structs, unions, enums, and typedefs) start
with a capital letter; preprocessor symbols are all capitals; all other identifiers
start with a lowercase letter. Data member names and class-scoped enumera-
tions end with a single underscore.

It is assumed that the file extensions .cpp and .hpp are appropriate. Some
compilers use a different convention.



Universal Modeling Language (UML) notation is used to express design rela-
tionships.

The following priorities were used in designing the examples: (1) unity of
purpose, (2) compactness, and (3) self-contained functionality. In other words,
each example demonstrate one basic point or technique, is as short as possible,
and, if possible, is a complete, working program. The examples are not intended
for plug-in reuse in industrial-strength settings because balancing the resultant
(subtle) tradeoffs would conflict with these priorities.

To avoid complicating the discussions with finding the optimal balance be-
tween the use of virtual and inline for member functions, virtual is used
more often than strictly necessary (see FAQ 21.15). To achieve compactness,
some member functions are defined in the class body even if they wouldn’t nor-
mally be inline or even if moving them down to the bottom of a header file
would improve specification (see FAQ 6.5). Uncalled functions are often left un-
defined. Some functions that are called are also undefined, since compactness is
a higher priority than self-contained functionality. Also for compactness, exam-
ples are not wrapped in preprocessor symbols that prevent multiple expansions
(see FAQ 2.16).

The examples put the public: part at the beginning of the class rather than
at the end of the class. This makes it easier for those who simply want to
use the class as opposed to those who want to go in and change the internal
implementation of the class. This is normally the right tradeoff since a class is
normally used a lot more often than it is changed.

It is assumed that the C++ compiler and standard library are both compliant
with the Standard and work correctly. In the real world, this is probably not a
safe assumption, and you should be cautious.



Chapter 2

Basic C++4 Syntax and
Semantics

2.1 What is the purpose of this chapter?

To present the fundamentals of C++4 syntax and semantics.

This chapter provides a brief overview of C++ syntax and semantics. It
covers topics such as main(), creating and using local, dynamically allocated,
and static objects, passing C++ objects by reference, by value, and by pointer,
default parameters, C++ stream I/0, using classes with operator overloading,
using templates, using auto_ptr to prevent memory leaks,throwing and catch-
ing exceptions, and creating classes including member functions, const member
functions, constructors, initialization lists, destructors, inheritance, the is-a con-
version, and dynamic binding.

Experienced C++ programmers can skip this chapter.

2.2 What are the basics of main()?

It’s the application’s main routine.

Object-oriented C++ programs consist mostly of classes, but there’s always at
least one C-like function: main(). main() is called more or less at the beginning
of the program’s execution, and when main() ends, the running system shuts
down the program. main() always returns an int, as shown below:

int main()
{

/...
}

main() has a special feature: There’s an implicit return 0; at the end. Thus
if the flow of control simply falls off the end of main (), the value 0 is implicitly



returned to the operating system. Most operating systems interpret a return
value of 0 to mean “program completed successfully.”

main is the only function that has an implicit return 0; at the end. All
other routines that return an int must have an explicit return statement that
returns the appropriate int value.

Note that this example shows main() without any parameters. However,
main() can optionally declare parameters so that it can access the command
line arguments, just as in C.

2.3 What are the basics of functions?

Functions are one of the important ways to decompose software into smaller,
manageable chunks. Functions can have return values (for example, a function
that computed a value might return that value), or they can return nothing.
If they return nothing, the return type is stated as void and the function is
sometimes called a procedure.

In the following example, function f () takes no parameters and returns noth-
ing (that is, its return type is void), and function g() takes two parameters of
type int and returns a value of type float.

void f£()
{

/...
}

float g(int x, int y)
{

float sum
float avg
return avg;

X + y;
sum / 2.0;

3

int main()

{

£0O;

float z = g(2, 3);
}

2.4 What are the basics of default parameters?

C++ allows functions to have default parameters. This is useful when a
parameter should have a specified value when the caller does not supply a value.
For example, suppose that the value 42 should be passed to the function f ()
when the caller does not supply a value. In that case, it would make the calling
code somewhat simpler if this parameter value were supplied as a default value:

10



void f(int x=42); // Declare the default parameter(s) in the
// function declaration
void f(int x) // Don’t repeat the default parameter(s) in
// the function definition
{
// ...
}

int main()
{
£(29); // Passes 29 to £()
£f(); // Passes 42 to £()
}

2.5 What are the basics of local (auto) objects?

C++ extends the variable declaration syntax from built-in types (e.g., int
i;) to objects of user-defined types. The syntax is the same: TypeName VariableName.
For example, if the header file “Car.hpp” defines a user-defined type called Car,
objects (variables) of class (type) Car can be created:

#include "Car.hpp" // Define class Car

void £()

{
Car a; // 1: Create an object
a.startEngine(); // 2: Call a member function
a.tuneRadioTo("AM", 770); // 3: Call another member function

} // 4. Destroy the object

int main()
{

£O;
}

When control flows over the line labeled 1: Create an object, the runtime
system creates a local (auto) object of class Car. The object is called a and can
be accessed from the point where it is created to the } labeled 4: Destroy the
object.

When control flows over the line labeled 2: Call a member function, the
startEngine () member function (a.k.a. method) is called for object a. The
compiler knows that a is of class Car so there is no need to indicate that the
proper startEngine() member function is the one from the Car class. For
example, there could be other classes that also have a startEngine () member
function (Airplane, LawnMower, and so on), but the compiler will never get
confused and call a member function from the wrong class.

11



When control flows over the line labeled 3: Call another member function,
the tuneRadioTo () member function is called for object a. This line shows how
parameters can be passed to member functions.

When control flows over the line labeled 4: Destroy the object, object a is
automatically destroyed. If the Car class has some special cleanup activities
that need to take place when an object goes away, the writer of the class would
include a destructor in the class and the runtime system would automagically
call the destructor (dtor) when the object goes away; see FAQ 20.3. Local
objects such as a are sometimes called automatic objects or stack objects, and
they are said to go out of scope at the } line.

UML uses the following notation to show a class Car that contains member
functions startEngine() and turnRadioTo():

2.6 What are the basics of constructing objects
using explicit parameters?

Constructors are special member functions that are called to initialize an

object. If parameters are needed, the parameters can be supplied in the param-

eters, (). If no parameters are needed on a local object, parentheses must not
be provided. Here is an example:

#include "Car.hpp"

void f£()
{
Car a; // 1: Create a "default" Car object
Car b(100, 73) ; // 2: Pass explicit parameters to
// Car’s constructor
// ...
}
int main()
{
£0O;
}

When control flows over line 1, a local Car object is created and initialized by
the class’s default constructor. The default constructor is the constructor that
can be called with no parameters (see FAQ 20.8).

When control flows over line 2, another local Car object is created and ini-
tialized, this time by passing two int parameters to a constructor of class Car.
The parameters (100, 73) are presumably used to set up the object (e.g., ini-
tial values for various state variables). Line 1 and 2 probably call different
constructors (but see FAQ 2.4 on default parameters).

12



Note that in the following example b is not a Car object. Instead b is a
function that returns a Car by value.

void g()
{

Car a; // a is a Car object

Car b(); // b is not a Car object!
}

2.7 What are the basics of dynamically allocated
(new) objects?

C++ allows objects to be allocated dynamically using the new operator. Dy-
namic allocation is also known as allocating from the heap. As shown, a Car
object can be allocated from the heap using the syntax new Car (). The result
is stored in a CarPtr pointer. CarPtr is an alias for an auto_ptr, which is a
“safe pointer type”. The typedef syntax establishes this alias relationship.

#include <memory> // This gets the definition for auto_ptr
#include <string>
using namespace std;

#include "Car.hpp"
typedef auto_ptr<Car> CarPtr;

void £()

{
CarPtr p(new Car()); // 1: Create an object
p->startEngine() ; // 2: Call a member function
p->tuneRadioTo("AM", 770); // 3: Call another member function

} // 4: Destroy the Car object

int main()
{

£O;
+

When control flows over the line labeled 1: Create an object, an object is
created dynamically (from the heap). The object is pointed to by the pointer
p. The object can be accessed from the point it is created until the CarPtr is
destroyed at the } (line 4). Note however that the CarPtr can be returned to a
caller. This line is analogous to (but not interchangeable with) the C code p =
malloc(sizeof (Car)). Note that parameters can be passed to the constructor;
e.g.,p = new Car(100, 73);.

When control flows over the line labeled 2: Call a member function, the
startEngine () member function is called for the object pointed to by p. The
line labeled 3: Call another member function is similar, showing how to pass
parameters to member functions of dynamically allocated objects.

13



When control flows over the line labeled 4: Destroy the Car object, the Car
object pointed to by p is destroyed. If the Car class has a destructor, the
runtime system automagically calls the destructor (dtor) when control flows
over this line.

Note that dynamically allocated objects don’t have to be destroyed in the
same scope that created them. For example, if the function said return p;,
the ownership of the Car object is passed back to the function’s caller, meaning
that the Car object won’t be destroyed until the } of the caller (or the caller’s
caller if the caller does likewise, and so on):

CarPtr g(O)
{
CarPtr p(new Car());
/...
return p; // The caller is now responsible for deleting the
// Car object

}

void h()

{
CarPtr p = g(); // Ownership is transferred from g() to h() here
/...

} // The Car object dies here

Note to C programmers: It is generally considered bad form to use raw Car*
pointers to hold the result of the new Car () operation. This is a big change from
the way pointers are handled in the C language. There are many reasons for
this change: the C++ approach makes “memory leaks” less likely (there is no
explicit use of free(p) or delete p, so programmers don’t have to worry about
accidentally forgetting the deallocation code or jumping around the deallocation
code), the C++ approach makes “dangling references” less likely (if C-like Carx*
pointers are used, there is a chance that someone will inadvertently access the
memory of the Car object after it is deleted), and the C++ approach makes the
code “exception safe” (if a C-like Car* were used, any routine that could throw
an exception would have to wrapped in a try...catch block; see FAQ 2.23.

2.8 What are the basics of local objects within
inner scopes?

C++ local objects die at the } in which they were created. This means they
could die before the } that ends the function:

#include "Car.hpp"
void £Q)
{

Car a;

14



for (int 1 = 0; i < 10; ++i) {
Car b; // 1: Create a Car object on each iteration
/] ...

} // 2: Each iteration’s b dies here

/...
} // 3: Object a dies here

int main()
{

£0O;
}

The line labeled 1: Create a Car object on each iteration is within the loop
body, so a distinct Car object that is local to the loop body is created on each
iteration.

Note that C++ allows loop variables (int i in the example) to be created
inside the for parameters. Loop variables that are declared this way are local
to the loop: they cannot be accessed after the } that terminates the for loop.
This means that a subsequent for loop could use the same loop variable. Note
that this is a new language feature, and compilers may not uniformly support
this rule in all cases.

Also notice that, unlike C, variables do not have to be declared right after
a {. It is not only allowable but also desirable to declare C++ variables just
before they are first used. Doing so allows their initialization to be bypassed
if the section of code they are in is bypassed, and it allows the introduction of
other runtime variables in their initialization if the code is not bypassed. So
there is never anything to lose, indeed there is sometimes something to gain, by
declaring at first use.

2.9 What are the basics of passing objects by
reference?
Passing objects by reference is the most common way to pass objects to

functions. C programmers often have a hard time adjusting to pass-by-reference,
but it’s generally worth the pain to make the transition.

#include "Car.hpp"

void f(Car& a)

{
a.startEngine(); // Changes main()’s object
/...

}

void g(const Car& b) // Note the const

15



{
b.startEngine(); // Error: Can’t change an object via a
// const reference
/...
}

main()

{
Car x;
f(x);
g(x);

}

Function £ () illustrates pass-by-reference (the & between the type name and
the parameter name indicates pass-by-reference). In this case, a is main()’s
x object — not a copy of x nor a pointer to x, but another name for x itself.
Therefore anything done to a is really done to x; for example, a.startEngine ()
actually invokes x.startEngine().

Function g() illustrates pass-by-reference-to-const. Parameter b is the caller’s
object, just as before, but b has an additional restriction: it can only inspect
the object, not mutate the object. This means g() has a look-but-no-touch
agreement with its callers — g() guarantees to its callers that the object they
pass will not be modified. For example, if a programmer erroneously called
b.startEngine (), the compiler would detect the error and would issue a diag-
nostic at compile time (assuming startEngine() is not a const member func-
tions; see FAQ 2.17). Reference-to-const is similar in spirit to pass-by-value
(see FAQ 2.10), but is implemented much more efficiently.

2.10 What are the basics of passing objects by
value?

Beware: passing objects by value can be dangerous in some situations. Often
it is better to pass objects by reference-to-const (FAQ 2.9) than to pass them
by value. For example, pass-by-value won’t work if the destination type is
an abstract base class (see FAQ 2.24) and can result in erroneous behavior
at runtime if the parameter’s class has derived classes (see FAQ 24.12, 28.4).
However if the class of the parameter is guaranteed not to have derived classes,
and if the function being called needs a local copy to work with, pass-by-value
can be useful.

#include "Car.hpp"
void f(Car a)

{
a.startEngine(); // Changes a local copy of the original object

3

int main()

16



{
Car x;
f(x);
}

Since £()’s a is a copy of main()’s x, any changes to a are not reflected in x.

2.11 What are the basics of passing objects by
pointer?

Passing objects by pointer is not commonly used. The most common ap-
proaches are pass-by-reference and pass-by-auto_ptr. Pass-by-reference is used
when the caller wants to retain ownership of the object (that is, when the caller
wants to access the object after the call returns to the caller). Pass-by-auto_ptr
is used when the caller wants to transfer ownership of the object to the called
routine (that is, when the caller wants the object to get deleted before the called
routine returns to the caller).

#include <memory>
using namespace std;

#include "Car.hpp"
typedef auto_ptr<Car> CarPtr;

void f(Car& c)
{
c.startEngine();
/...
} // The Car object is not deleted at this line

void g(CarPtr p)
{
p—>startEngine();
/...
¥ // The Car object is deleted at this line

int main()
{
CarPtr p (new Car());
f(xp); // Pass-by-reference; *p can be used after this line
g(p); // Pass-by-auto_ptr; *p cannot be used after this line
}

If the intent is for the caller to retain ownership of the object, pass-by-
reference should generally be used. If the intent is for the ownership to be
passed to the called routine, pass-by-auto_ptr should be used. About the only
time pass-by-pointer should be used is when (1) the caller should retain owner-
ship and (2) the called routine needs to handle “nothing was passed” (i.e., the

17



NULL pointer) as a valid input. In the following example, note the explicit test
to see if the pointer is NULL.

#include <memory>
using namespace std;

#include "Car.hpp"
typedef auto_ptr<Car> CarPtr;

void h(Car* p)

{
if (p == NULL) {
/...
} else {
p->startEngine() ;
/...
}
} // As in pass-by-reference, the Car object is not
// deleted at this line
void iQ)
{
h(NULL) ; // NULL is a valid parameter to function h()

CarPtr p (new Car());
h(p.get()); // Pass-by-pointer; *p can be used after this line
/] ...

} // The Car object is deleted at this line

2.12 What are the basics of stream output?

C++ supports C-style output, such as the printf () family of functions.
However it is often better to use the native C++ output services. With the
native C++ output services, output is directed to an output stream object.
For example, cout is an output stream object that is attached to the process’s
standard output device, often to the terminal from which the program is run.
Syntactically these C++ output services look as if they’re shifting things into
the output stream object. The <iostream> header is needed when using these
services:

#include <iostream>
using namespace std;

int main()

{
cout << "Hello world\n"; // line 1
cout << "Hello world" << ’\n’; // line 2
cout << "Hello world" << ’\n’ << flush; // line 3
cout << "Hello world" << endl; // line 4
}

18



Line 1 prints the string "Hello world" followed by a newline character, >\n”’.
This is analogous to the C statement, fprintf (stdout, "Hello world\n");
thus cout is analogous to C’s stdout, and cerr (not shown) is analogous to
stderr.

Line 2 is logically equivalent to line 1: it prints the string “Hello world”, then
it prints a newline character, >\n’. This shows how the << operator can be cas-
caded — allowing multiple things to be printed with the same statement. This is

analogous to the C construct fprintf (stdout, "Y%s%c", "Hello world", ’\n’).

Line 3 also prints "Hello world" followed by a newline, but then it flushes
the output buffer, forcing the characters to be sent to the operating system.
This is normally not necessary with cout, but when output is being sent to a
file it can be important to flush the output buffers at certain times, such as
just before abort () is intentionally called. In C, flushing an output buffer is
accomplished by calling fflush(stdout). Note that flushing the I/O buffers
too much can slow down the application.

Line 4 is a shorthand version of line 3. The symbol endl prints a newline
character, ’\n’, followed by a flush symbol. Because endl flushes the buffer,
it shouldn’t be used very often since it can slow down the application.

2.13 What are the basics of stream input?

C++ supports C-style input, such as the scanf () family of functions. How-
ever it is often better to use the native C++ input services. With the native
C++ input services, information is read from an input stream object. For ex-
ample, cin is an input stream object that is attached to the process’s standard
input device, often to the keyboard from which the program is run. Syntacti-
cally these C++ input services look as if they are shifting things from the input
stream object. The <iostream> header is needed when using these services (the
example uses stream output to prompt for the stream input):

#include <iostream>
#include <string>

using namespace std;

int main()

{
cout << "What’s your first name? " // line 1
string name; // line 2
cin >> name; // line 3
cout << "Hi " << name << ", how old are you? "
int age;
cin >> age; // line 4
}

19



Line 1 prints the prompt. There is no need to flush the stream since cout
takes care of that automatically when reading from cin (see the tie member
function in the iostream documentation for how to do this with any arbitrary
pair of streams).

Line 2 creates a string object called name. Class string is a standard class
that replaces arrays of characters. string objects are safe, flexible, and high
performance. This line also illustrates how C++4 variables can be defined in the
middle of the routine, which is a minor improvement over the C requirement
that variables be defined at the beginning of the block.

Line 3 reads the user’s first name from the standard input and stores the
result in the string object called name. This line skips leading whitespace
(spaces, tabs, newlines, and so on), then extracts and stores the whitespace-
terminated word that follows into variable name. The analogous syntax in C
would be fscanf (stdin, "%s", name), except the C++ version is safer (the
C++ string object automatically expands it storage to accommodate as many
characters as the user types in — there is no arbitrary limit and there is no
danger of a memory overrun). Note that an entire line of input can be read
using the syntax getline(cin, name) ;.

Line 4 reads an integer from the standard and stores the result in the int ob-
ject called age. The analogous syntax in C would be fscanf (stdin, "%d", &age),
except the C++ version is simpler (there is no redundant "%d" format specifier
since the C++ compiler knows that age is of type int, and there is no redun-
dant address-of operator (&age) since the compiler passes the parameter age by
reference).

2.14 What are the basics of using classes that
contain overloaded operators?

They’re easy to use. But when you create your own, make sure the operators
are intuitive and natural.

Here is an example that uses the standard string class:

#include <iostream>
#include <string> /] <——————————— - Defines class string
using namespace std;

void f(const string& firstName, const string& lastName)
{

string fullName = firstName + " " + lastName; // line 1
cout << "Your full name is " << fullName << "\n"; // line 2

3

int main()

{

20



f("Charlie", "Brown");
f("Fred", "Flintstone");
}

The £ () function takes two string objects that will remain unchanged (const stringg;
see FAQ 2.9).

Line 1 concatenates the first name, a space, and then the last name. This
uses the overloaded + operator associated with class string.

Line 2 prints the resulting full name. This uses the overloaded << operator
associated with class string.

2.15 What are the basics of using container classes?

Templates are one of the most powerful code reuse mechanisms in C++. The
most common use for templates is for containers. Container classes are used
to create objects that hold other objects. There are many different container
templates, including linked lists, vectors (arrays), sets, and maps. Container
templates allow programmers to get the benefits of sophisticated data structures,
such as binary trees that always stay balanced, hash tables, skip lists, and splay
trees, without having to know anything at all about the details of those data
structures.

Templates look a little funny at first, but they’re not that much different
from normal classes once you get used to them. The only strange part is the
angle brackets: a vector of Car is declared using the syntax vector<Car>. The
typedef syntax is used for convenient: it creates easy-to-read synonyms such
as CarList.

#include <vector> // Get the standard vector template
#include <string> // Get the standard string class
#include <algorithm>

using namespace std;

#include "Car.hpp" // Get the user-defined Car class
typedef vector<Car> Carlist; // Synonym for convenience

typedef vector<string> Stringlist; // Synonym for convenience

int main()

{
Carlist x; // Create a vector of Car objects
Car a, b, c;
x.push_stack(a); // Append object a to the CarList x

x.push_stack(b) ;
x.push_stack(c) ;
/...

Stringlist y; // Create a vector of string objects

21



y.push_stack("Foo"); // Append string "Foo" to the StringList y
y.push_stack("Bar");

y.push_stack("Baz");

sort(y.begin(), y.end()); // Sort the Stringlist y

/...

This sample code creates two vector objects: x is a vector of Car objects
and y is a vector of string objects. This is analogous to creating two C-like
arrays (Car x[3]; and string y[3];), but vector objects are more flexible,
they can grow to an arbitrary size, they are safer, and they have a lot more
services associated with them. See FAQ 28.13.

UML uses the following notation to show a template vector along with in-
stantiations of that template vector<Car> and vector<string>.

2.16 What are the basics of creating class header
files?

The first step is to remember #ifndef.

When creating a class header file, the first thing to remember is to wrap the
header in #ifndef, #define, and #endif lines, just as with C header files. The
following shows the skeleton of the header file that defines C++ class Car.

#ifndef CAR_HPP
#define CAR_HPP

class Car {
public:
// The member functions for Car objects are declared here
protected:
// The data members for Car objects are declared here
I
#endif

This code might be stored in the header file "Car.hpp".

The public: and protected: parts of the class are different: normal user
code (e.g., main()) can access only public: features. If normal user code
tries to access anything in the protected: part, the user code would get a
compile-time error (not a warning: a true error, something that would have to
be fixed before getting the code to compile). This is called encapsulation, and
is described further in FAQ 5.16.

22



Although public: and protected: are quite different with respect to encap-
sulation, they are very similar otherwise. The public: part can also contain
data, and the protected: part can also contain member functions. In fact,
they are completely symmetrical: data and member functions can be declared
in either section. It’s generally considered unwise (and unnecessary) to create
public: data, but protected: member functions are fairly common and quite
useful. For example, protected: member functions can be helper functions
that are used mainly by the public: member functions (analogous to static
functions within a module in C).

2.17 What are the basics of defining a class?

By convention, the public: part goes first. The following example shows the
header file that defines C++ class Car.

#ifndef CAR_HPP
#define CAR_HPP

#include <string>

class Car {

public:
virtual void startEngine(); // Line 1
virtual void isRunning() const; // Line 2

virtual void tuneRadioTo(const string& band, int freq); // Line 3
protected:
bool isRunning_; // Line 4
bool radioOnAM_;
int radioFreq_;
s
#endif

Line 1 declares a member function of class Car. This member function doesn’t
take any parameters. Note that C programmers use (void) to declare a func-
tion that takes no parameters, but this is not necessary in C++. Be warned
that some C++ developers consider the (void) syntax in C++ code to be an
indicator that the author of the code is still a warmed-over C programmer —
that the author hasn’t yet made the paradigm shift. This is an unfair judgment,
but it might be wise to use () rather than (void) in C++ code.

Line 2 declares another member function, this time returning a bool (the bool
data type has two values: true and false). The member function’s name is
designed to make sense in an if statement, e.g., if (myCar.isRunning())...
The const on the right side means that the member function is an inspector —
it promises not to change the object. This let users know that the Car object
won’t suddenly change inside a statement such as if (myCar.isRunning()). It
is a good idea to make every member function that is logically an inspector with
a const; otherwise the compiler will give error messages when someone calls one

23



of these member functions via a reference-to-const or a pointer-to-const (see
FAQ 2.9, 2.11).

Line 3 declares another member function, this time taking two parameters.
Member functions that don’t have a const on the right side are known as
mutator member functions, since they can change the object. For example, the
statement myCar . tuneRadioTo ("AM", 770) probably makes changes to the Car
object called myCar.

Line 4 declares a data member. By convention, data member names end
with an underscore. This particular data member is presumably used by the
isRunning() member function.

UML uses the following notation to show a class Car that contains member
functions startEngine(), isRunning(), and tuneRadioTo(), and that con-
tains data members called isRunning_, radioOnAM_, and radioFreq.:

2.18 What are the basics of defining member
functions?

Member functions are normally defined in the source file associated with the
class (but see FAQ 13.1). For example, if the header file is called "Car.hpp",
the source file might be called "Car.cpp". Here is an example of the header file
Car .hpp:

#ifndef CAR_HPP
#define CAR_HPP

class Car {
public:
virtual void startEngine(); // Declare a member function
/...
protected:
bool isRunning_;
bool radioOnAM_;
int radioFreq_;
3
#endif

Here is an example of the source file Car. cpp:

#include "Car.hpp" // Get the Car class

void Car::startEngine()

{
isRunning_ = true; // Define a member function
VA

s

#endif

24



The line void Car::startEngine() tells the compiler that this is the defi-
nition of the startEngine () member function from the Car class. If this just
said void startEngine() {...} the compiler would think that a non-member
function was being defined, as opposed to the startEngine () member function
of the Car class.

The line isRunning_ = true; sets the protected: data member isRunning_
to true. If Car a; a.startEngine(); has been executed, this line would set
a.isRunning_ to true (even though a.isRunning_ is protected: it does exist
and can be accessed by member functions of the Car class).

2.19 What are the basics of adding a construc-
tor to a class?

A constructor (a.k.a. ctor) is a special member function that is called when-
ever an object of the class is created. This gives the class developer a chance
to initialize the object’s member data so that the rest of the member functions
can assume that they have a coherent object to work with. Syntactically con-
structors are member functions with the same name as the class; they are not
virtual, and they have no return type.

Like normal member functions, constructors are declared in the class’s body,
which normally appears in the class’s header file. For example, the header file
for class Car might be file Car.hpp. Here is an example showing the declaration
of some constructors in header file Car.hpp:

#ifndef CAR_HPP
#define CAR_HPP

class Car {
public:
Car(); // Declare a constructor
Car(int initRadioFreq, int horsepower); // Declare another constructor
/...
protected:
bool isRunning_;
bool radioOnAM_;
int radioFreq_;
int horsepower_;
};
#endif

The first constructor takes no parameters and is called whenever an object
is created without parameters. For example, the first constructor is used to
initialize the first two Car objects created in the following function, and the
second constructor (the one that takes two parameters of type int) is used to
initialize the third and fourth Car objects created in the following function £ ().

25



void £()
{

Car al; // The first ctor is used to initialize al and *pl

Car* pl = new Car();

Car a2(880, 200); // The second ctor is used to initialize a2 and *p2

Car *p2 = new Car(880, 200);

/...

Constructors are often defined in the source file associated with the class.
For example, the source file associated with class Car might be file "Car.cpp".
Here is an example showing the definition of the first constructor in source file
Car.cpp:

#include "Car.hpp" // Get the Car class

Car::Car() // Define a constructor
: isRunning_ (false)

, radioOnAM_ (true)

, radioFreq_ (880)

, horsepower_(150)

/...

The line Car: : Car () tells the compiler that this is the definition of a construc-
tor of class Car. Thus constructors are normally of the form X: :X(/*...%/).

The line : isRunning_(false) initializes the protected: data member
isRunning_ to false; radioOnAM_, radioFreq_, and horsepower_ are initial-
ized similarly. This list of initializations between the : and the { is allowed only
in constructors and is called an initialization list. Since the goal of the con-
structor is to initialize the object to a coherent state, all of an object’s member
variables should be initialized in every constructor.

Since the second constructor takes parameters, it probably uses these param-
eters to initialize the member variables in the Car object. For example the
two parameters might be used to initialize the radio’s frequency and the car’s
horsepower:

Car::Car(int initRadioFreq, int horsepower)
: isRunning_ (false)

, radioOnAM_ (false)

, radioFreq_ (initRadioFreq)

, horsepower_(horsepower)

/...

26



2.20 What are the basics of adding a destructor
to a class?

Every class can optionally have a destructor (a.k.a. dtor). A destructor is
a special member function that is automatically called whenever an object of
the class is destroyed. This feature of C++ allows the class developer to close
any files the object has opened, release any memory the object has allocated,
unlock any semaphores the object has locked, and so on. In general, this gives
an object a chance to clean up after itself.

Syntactically a destructor is a member function whose name is a tilde charac-
ter (7) followed by the name of the class. Like constructors, destructors cannot
have a return type. Unlike constructors, destructors can, and often are declared
with the virtual keyword, and a class can have only one destructor. Like all
member functions, a destructor is declared in the class body, which normally
appears in the class’s header file. For example, the header file for class Car
might be file Car.hpp.

#ifndef CAR_HPP
#define CAR_HPP

class Car {

public:
virtual ~“Car(); // Declaration of a destructor
/...

protected:

/...

};

#endif

Destructors often defined in the source file for class Car, such as in file
Car.cpp:

#include "Car.hpp"

Car::"Car()
{
/... // <---- Clean-up code goes here

}

If a class doesn’t have a destructor, the compiler conceptually gives the class
a destructor that does nothing. Therefore if a class doesn’t need to do anything
special inside its destructor, the easiest thing to do is to not even declare a
destructor. In fact, in applications that follow the guidelines of this book, a
destructor is needed only in a relatively small percentage of the classes.

27



2.21 What are the basics of defining a class that
contains a pointer to an object allocated
from the heap?

Overview: (1) Try to avoid this situation. (2) If it can’t be avoided, use an
auto_ptr.

Try to avoid defining a class that contains a pointer to an object allocated
from the heap. For example, consider the situation where a car contains an
engine. There are two choices: the preferred way would be for the engine object
to be physically embedded inside the car object, and the undesirable way would
be for the car object to contain a pointer to the engine object, where the car
allocates the engine object from the heap. Here is a sample Engine class:

#include <iostream>
using namespace std;

class Engine {

public:
Engine();
virtual void start();
+;
Engine: :Engine()
{
cout << "Engine constructor\n";
}
void Engine::start()
{
cout << "Engine::start()\n";
}

The car class shown in the following code, class Car, uses the preferred ap-
proach: each Car object physically contains its Engine object. Compared to
using a pointer to an Engine allocated from the heap, the technique shown in
class Car is easier, safer, and faster, and it uses less memory.

class Car {

public:
Car();
virtual void startEngine();
protected:
Engine e_; // Physically embed an Engine object inside every
// Car object
I
Car::Car()
e O // Initialize the Engine object that’s inside

28



// the Car object
{
// Intentionally left blank
}

void Car::startEngine()
{
e_.start(); // Call the start() member function of the Engine
// object

Although this is the preferred approach, sometimes it is necessary, or perhaps
expedient, to allocate the inner object from the heap and have the outer object
contain a pointer to the inner object. When this happens, an auto_ptr should
be used:

#include <memory> [/ <———m—mmmm To get auto_ptr
using namespace std;
typedef auto_ptr<Engine> EnginePtr;

class Car {
public:
Car();
virtual void startEngine();
virtual ~“Car();
Car(const Car& c); // This can be ignored for now
// see FAQ 30.12
Car& operator= (const Car& c); // This can be ignored for now
// see FAQ 30.12

protected:
EnginePtr p_; // Every Car object contains an auto_ptr to
// its Engine object
I
Car::Car()

: p_ (new Engine()) // Allocate an Engine object for the Car object

{
// Intentionally left blank

}
void Car::startEngine()
{
p_—>start(); // Call the start() member function of the
// Engine Object
}

Logically this second example is still a contains or has-a relationship, but
physically the implementation is somewhat different. Note the three extra mem-
ber functions that must be declared in the second version of class Car. These

29



extra member functions are needed because an auot_ptr is used to hold the
car’s Engine object.

The most important message here is that it is much less dangerous to use
auto_ptr than to use a raw hardware pointer, such as Car*. Thus the following
technique should not be used.

class Car {
public:
Car();
virtual void startEngine();
virtual ~“Car();
Car(const Car& c); // This can be ignored for now;
// see FAQ 30.12
Car& operator= (const Car& c); // This can be ignored for now;
// see FAQ 30.12
protected:
Enginex p_; // Bad form: Try to avoid raw hardware pointers
// to allocated objects
};

The particular dangers of using raw hardware pointers are outlined later in
the book, but for now simply use an auto_ptr as shown in the second example.

2.22 What are the basics of global objects?

Although C++ allows global objects to be declared outside any class, it is
generally better if global objects are declared as static data members of some
class. Generally a static data member is declared in the protected: section of
the class, and if desired, public: static member functions are provided to get
and/or set that protected: static data member.

For example, consider keeping track of the number of Car objects that cur-
rently exist. Since it would be quite cumbersome if every single Car object had
to correctly maintain the current number of Car objects, it is better to store
this value in a global variable, that is, as a static data member of the Car class.
Since external users might want to find out how many Car objects exist, there
should be a public: static member function to get that number. But since it
would be improper for anyone but the Car class to change the value of this vari-
able, there should not be a public: static member function to set the number
of Car objects. The following class illustrates the static data member and the
public: static access member function.

#include <iostream>
using namespace std;

class Car {

public:
Car();

30



“Car();
Car(const Car& c);
static int num(); // Member function to access num_

protected:
static int num_; // Declaration of the static data member
};
Car::Car()
{
++num_;
}
Car::"Car()
{
--num_;
}
int Car::num()
{
return num_;
}
int Car::num_ = 0; // Definition of the static data member

Note that static data members must be defined in a source file. It is a common
C++ error to forget to define a static data member, and the symptoms are
generally an error message at link time. For example, static data member
Car::num_ might be defined in the file associated with class Car, such as file
Car.cpp.

Unlike normal data members, it is possible to access static data members
before the first object of the class is created. For example, it is possible to
access static data member Car: :num_ before the first Car object is created, as
illustrated in the main() routine that follows:

int main()
{
cout << "Before creating any cars, num() returns "
<< Car::num() << "\n";
Car a, b, c;
cout << "After creating three cars, num() returns "
<< Car::num() << "\n";

The output of this main() routine is:

Before creating any cars, num() returns O
After creating three cars, num() returns 3

31



It is also possible to use user-defined classes to define static data members.
For example, if there were some sort of registry of Car objects and if the registry
were conceptually a global variable, it would be better to define the registry as
a static data member of the Car class. This is done just like the static int data
member shown: just replace the type int with the type of the registry, and
replace the initializer “= 0;” with whatever is appropriate as the initializer for
the class of the registry.

2.23 What are the basics of throwing and catch-
ing exceptions?

Exceptions are for handling errors. If a function cannot fulfill its promises
for some reason, it should throw an exception. This style of reporting errors
is different from the way many other programming languages report errors —
many languages use a return code or error code that the caller is supposed to
explicitly test. It sometimes takes a little while before new C++ programmers
become comfortable with the C++ way of reporting errors.

In the example code, function processFile() is supposed to process the
specified file. The file name is specified using an object of the standard string
class. If the file name is not valid (for example, if it contains illegal characters)
or if the file does not exist, processFile() cannot proceed, so it throws an
exception. In the case of an invalid file name, processFile () throws an object
of class BadFileName; in the case of a nonexistent file, it throws an object of
class FileNotFound.

Functions isValidFileName () and fileExists () represent routines that de-
termine if a given file name is valid and exists, respectively. As shown below,
isValidFileName () always returns true (meaning “yes, the filename is valid”)
and fileExists() always returns false (meaning “no, the file does not exist”),
but in practice these routines would make system calls to determine the proper
result.

#include <iostream>
#include <string>
using namespace std;

class BadFileName { };
class FileNotFound { };

bool isValidFileName(const string& filename) throw()

{
// Pretend this checks if filename is a valid filename
return true;

}

bool fileExists(const string& filename) throw()
{

// Pretend this checks if filename exists as a file

32



return false;

}

void processFile(const string& filename)
throw(BadFileName, FileNotFound)
{
if (! isValidFileName(filename))
throw BadFileName();

if (! fileExists(filename))
throw FileNotFound();

// the filename is valid and exists; process the file:
// ...
}

void f(const string& filename) throw()
{
try {
processFile(filename) ;
// ...
}
catch (BadFileName& e) {
cout << "Invalid file name: " << filename << "\n";
}
catch (FileNotFound& e) {
cout << "File not fond: " << filename << "\n";
}
}

try and catch are keywords. The code within the block after the try keyword
is executed first. In this case, £() calls processFile(). In a real application,
processFile() often succeeds (that is, it often returns normally without throw-
ing an exception), in which case the runtime system continues processing the
code in the try block, then skips the catch blocks and proceeds normally. In the
case when an exception is thrown, control immediately jumps to the matching
catch block. If there is no matching catch block in the caller, control imme-
diately jumps back to the matching catch block in the caller’s caller, caller’s
caller’s caller, and so on, until it reaches the catch (...) block in main(),
shown below. catch(...) is a special catch-all block: it matches all possible
exceptions.

int main()
{
try {
f("input-file.txt");
// ...
}
catch (...) {
cout << "Unknown exception!\n";

33



The throw() declarations after the signature of the various functions (e.g.,
throw() after the signature of function £ () and throw(BadFileName, FileNotFound)
after the signature of function processFile()) are the function’s way of telling
callers what it might throw. Functions that say throw() are effectively saying,

“This function doesn’t throw any exceptions.” Functions that say throw(BadFileName,
FileNotFound) are effectively saying, “This function might throw a BadFileName
object or a FileNotFound object but nothing else.”

2.24 What are the basics of inheritance and dy-
namic binding?

Inheritance is a powerful tool that enables extensibility. It allows the software
to capture the is-a or kind-of relationship (although as will be shown in FAQ 7.1,
the phrase, “is substitutable for”, more accurately captures the true meaning of
inheritance).

In the following example, class Vehicle is defined with = 0; after the dec-
laration of the startEngine() member function. This syntax means that the
startEngine () member function is pure virtual and the Vehicle class is an
abstract base class, or ABC. In practice, this means that Vehicle is an impor-
tant class from which other classes inherit, and those other derived classes are,
in general, required to provide a startEngine() member function.

Class Vehicle {

public:
virtual void startEngine() = 0;
virtual ~“Vehicle(); // Destructors of ABCs are often virtual
}s
Vehicle::"Vehicle()
{
// Intentionally left blank
}

The idea with ABCs is to build the bulk of the application so that it knows
about the ABCs but not the derived classes. For example, the following function
is aware of the ABC Vehicle but is not aware of any of the derived classes.

void f(Vehicle& v)

{
/...
v.startEngine();
/...

}

34



If the ABCs are designed properly, a large percentage of the application will be
written at that level. Then new derived classes can be added without impacting
the bulk of the application. In other words, the goal is to minimize the ripple
effect when adding new derived classes. For example, the following derived
classes can be added without disturbing function £ ().

#include <iostream>
using namespace std;

class Car : public Vehicle {

public:
virtual void startEngine();
s
void Car::startEngine()
{
cout << "Starting a Car’s engine\n";
}
class NuclearSubmarine : public Vehicle {
public:
virtual void startEngine();
s

void NuclearSubmarine::startEngine()
{
cout << "Starting a NuclearSubmarine’s engine\n";

3

The reason these won’t disturb the code in function £ () (and recall, function
£ () represents the bulk of the application) is because of two features of C++:
the is-a conversion and dynamic binding. The is-a conversion says that an
object of a derived class, such as an object of class Car, can be passed as a base
reference. For example, the following objects ¢ and s can be passed to function
£(). Thus the compiler allows a conversion from a derived class (e.g., a Car
object) to a base class (e.g., a Vehicle reference).

int main()

{
Car c;
NuclearSubmarine s;
f(c);
f(s);

The is-a conversion is always safe because inheritance means “is substitutable
for”. That is, a Car is substitutable for a Vehicle, so it won’t surprise function
£ () if v is in fact referring to a Car.

35



Dynamic binding is the flip side of the same coin. Whereas the is-a conversion
safely converts from derived class to base class, dynamic binding safely converts
from base class back to derived class. For example, the line v.startEngine() in
function £ () actually calls the appropriate startEngine () member function as-
sociated with the object. That is, when main() passes a NuclearSubmarine into
£ (line £(s) inmain()), v.startEngine() calls the startEngine() member
function associated with class NuclearSubmarine. This is extremely powerful,
since class NuclearSubmarine might have been written long after function £ ()
was written and compiled and put into a library. In other words, dynamic bind-
ing allows old code (f ()) to call new code (NuclearSubmarine: :startEngine())
without the old code needing to be modified or even recompiled. This is the
essence of extensibility: the ability to add new features to an application with-
out significant impact to existing code. It is doable with C+-+, but only when
the design considerations are carefully thought through ahead of time; it does
not come free.

UML uses the following notation to show inheritance.

36



Chapter 3

Understanding the
Management Perspective

3.1 What is the purpose of this chapter?

To improve the effectiveness of developers by presenting the management
perspective on common software questions.

All too often, developers live in their own world of technology and miss the
“big picture”. As a result, they lose credibility with decision makers by empha-
sizing peripheral issues, or they fail to sell a laudable idea because it was not
packaged and presented effectively. Since this book aims to improve the overall
effectiveness of developers, we will show how decision makers think by drawing
on our own experience as managers and executives, as well as the insights we’ve
gained from others and from work we’ve done as architects and developers.

3.2 What is the core message of this chapter
(and this book)?

To increase effectiveness by being business-centric rather than technology-
centric.

Technology does not exist in a vacuum. It exists in a complex milieu of
customers, budgets, competitors, organizational goals, product features, time
to market, and so on. In this world, there are no context-free notions of “good”
and “bad” (and anyone who proclaims one technique or methods as universally
bad or another as universally good is hopelessly technocentric). So to make
good decisions we need a context, which is defined by looking at the business
objectives and using them to help define what “good” means (and what “bad”
means). With the context properly defined, it is possible to evaluate technology
trade-offs in a manner that always keeps the business objectives in mind.

37



This message is in stark contrast to what technologists typically preach.
For example, technologists typically promote one design method (or inheri-
tance model or programming language) over another using a universal notion of
“good” and “bad” — they have an answer even though they don’t know what
the question is; one size fits all. It’s as if they are saying, “I know what’s good
for you even though I don’t understand your world.”

This does not imply that different technologies don’t have different trade-offs
— they do. But the trade-offs can be evaluated only by looking at the business
objectives and requirements. This leads to the following high-level process.

1. Examine the business objectives (why the application/system is being
built).

2. Then examine the requirements (what the application/system should do).

3. Then examine all the alternate design techniques (how the application/system
should be built).

And always make the less important decisions (such as various design tech-
niques and ultimately the programming techniques) in light of the more im-
portant decisions (such as what the system is supposed to do and, even more
important, why it is being built in the first place).

3.3 Why are the managers in charge rather than
the developers who understand technology?

Because most organizations have a culture that assumes that managers are
long-term and developers are replaceable parts.

Managers are supposed to understand the goals of the organization and to
ensure that the goals are achieved, often using technology in one form or an-
other. Their job is to represent the organization, and in many cases they have
a fiduciary responsibility (and personal liability) if things go wrong. In their
view, developers are transient and are often more interested in technology than
the welfare of the organization. This may or may not be true, and the average
tenure of CIOs in probably shorter than the average tenure of developers, but
what’s important is the perception, not the reality.

The message is that developers can increase their influence in the organization
by demonstrating that they understand the organization’s business objectives
and that they are committed to achieving the business objectives rather than
being committed to playing around with the coolest techno-gadgets. This means
making sure business issues always dominate technology issues. It also means
presenting proposals in terms that managers can understand, including staffing,
schedules, opportunity costs, risk, and dollars and cents. Try it some time. It
works.

38



3.4 How can someone manager something they
don’t understand?

People have been doing it for years; managers hardly ever understand what
they are managing.

Should the CEO of IBM know how to configure computers? Or issue ex-
pense checks? Or control the building temperature? No. The CEO’s job is to
understand strategy, directions, and politics; too much knowledge about opera-
tional minutiae would indicate misfocused energies. The same sort of thinking
applies to every level of management, down to the first-level supervisor. Be-
sides, if CEOs did understand the low-level details, they’d probably drive the
developers crazy micromanaging them.

So managers shouldn’t try to be technology experts. But how can they man-
age anyway? Anyone who has ever raised children has experienced keeping
control without having a clue about what they were doing or what the children
were saying. Managing a software project is the same thing, only the children
are older and there are books that explain their lingo.

Of course, there are good managers and bad managers. Good managers lead
their teams, set realistic goals, get needed resources, mentor team members,
take care of administrative issues, and communicate business objectives. In
other words, good managers are worthy individuals who need all the help and
support they can get. So the wise developer educates the managers and becomes
a reliable source of knowledge and common sense, the trusted person. Such
developers protect their managers from themselves and learn to speak their
language. Manipulate your managers like your children manipulate you!

3.5 What is the most common mistake on C+-+
and OO projects?

Unnecessary complexity — the plague of OO technology.

Complexity, like risk, is a fact of life that can’t be avoided. Some software
systems have to be complex because the business processes they represent are
complex. But unfortunately many intermediate developers try to “make things
better” by adding generalization and flexibility that no one has asked for or will
ever need. The customer wants a cup of tea, and the developers build a system
that can boil the ocean [thanks to John Vlissides for this quip]. The result
is unnecessary complexity, which increases the risk of failure. The intentions
might be good but the result can be deadly.

Here are a few guidelines.
e Don’t solve problems that don’t need to be solved.

e Don’t worry about the future until you’re sure you can survive the present.

39



Don’t build things for the fun of it.

The organization’s health is more important than the developer’s desire
to play with the latest whiz-bang tool or technique.

Don’t add risk without a compelling and measurable benefit to the project.

e Don’t invest in the future if your current project is in trouble.

Avoid the “death by one thousands cut” syndrome by a