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Part I

Preliminaries
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Chapters 1 through 4 present an introduction to C++ that provides the basis
for understanding the rest of the materials in this book. This part also provides
professional programmers with insight into how their managers and technical
leaders view life. This material is intended to help developers understand how
their organization works so they can participate more fully in the decision-
making process.
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Chapter 1

Introduction

1.1 What is the purpose of this chapter?

To explain what the book is all about, how it is related to the electronic FAQ
and the first edition, and what conventions are used.

This chapter discusses the purpose of the book and the conventions it follows.
This chapter also discusses our approach to FAQs and why you should buy this
book if you have the first edition or have access to the electronic FAQ.

1.2 What are C++ FAQs?

Frequently Asked Questions that should be asked about object-oriented pro-
gramming and C++.

Each FAQ provides specific guidance in the form of in-depth answers. Many
FAQs also provide a complete, working program that illustrates the principles
espoused by the FAQ. The word FAQs is pronounced like ”facts”.

These FAQs aren’t necessarily questions people have asked; rather, they are
the questions people should ask. Although we never say it publicly, most of
these FAQs are based on dumb things we see people do on a fairly regular basis.
We got tired of explaining the same fundamental notions over and over again
and decided to write them down in this book.

On the other hand, you have taken a step toward OO and C++ competence by
purchasing this guidebook; now take the next step by reading and understanding
its message.

1.3 Who is the target audience for this book?

Professional software developers.
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This book is aimed at developers including programmers, architects, and de-
signers. It is a fine way for the experienced programmers to learn object-oriented
C++. This book is not for beginners what are just learning to program since it
assumes previous programming background. Familiarity with C wouldn’t hurt
but is not absolutely necessary.

1.4 Is this a book about C++ per se?

This is a C++ book with a twist.

This book focuses on the object-oriented aspects of C++. Thus, whenever you
see the word “C++”, you should assume that the words “object-oriented” are
present (and we’ll occasionally inject the words “object-oriented” as a reminder
to the reader).

This book focuses on practical ways to use C++; it does not explore all of
the dark corners of the language beloved by “language lawyers”. In this way,
this book is not the traditional C++ book written from the perspective of the
language and stressing the syntax and features of C++ in all their gory detail.
Instead, this book concentrates on the key aspects of C++ (such as its OO
features) and how to apply them effectively. Another reason for this approach
is that the language is so large that it is hard for developers to understand what
is relevant and how to apply it.

In this vein, one of the main contributions of this book is to focus on the moral
use of C++ rather than simply describing the legal use of C++. in this context,
using C++ morally means adhering to a programming discipline (i.e., a subset
of all possible combinations of all the constructs of C++) that is relatively
risk-free (whereas using C++ legally simply refers to any use of the language
that the compiler accepts). We have found that many of the problems that
developers run into stem from trying to combine C++ features in incompatible
and seemingly random ways; therefore using C++ morally is vital to using C++
effectively.

This book also tries to bridge the gap between software architecture and OO
design and C++ programming (see Chapter 4).

1.5 Why do developers need a guidebook for
C++ and OO technology?

Learning to use C++ and OO properly is a long journey with many pitfalls.

Because of the sophistication and complexity of C++, developers need a road
map that shows how to use the language properly. For example, inheritance
is a powerful facility that can improve the clarity and extensibility of software,
but it can also be abused in ways that result in expensive design errors.
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The field of object-oriented technology is large, evolving, and heterogeneous.
Under these circumstances, a guidebook is essential. These FAQs cover the
latest innovations so that you don’t have to stumble around for years learning
the same lessons others have already learned. The FAQs also expose incorrect
and questionable practices.

To be effective, programmers need to understand the language features and
how the features of the language can be combined. For example, pointer arith-
metic and the is-a conversion (see FAQ 2.24) are both useful, but combining
them has some subtle edge effects that can cause big problems; see FAQ 8.16.
Similar comments apply when combining overloading and overriding (FAQ 29.2),
overriding and default parameters, abstract base classes and assignment (FAQ
24.5), and so on. So it is not enough to understand each feature of C++.

1.6 What kind of guidance is given in the an-
swers to these FAQs?

Explanations of language features, directions for using these features properly,
and guidelines indicating programming practices to avoid.

The FAQs can be divided into roughly three categories:

1. FAQs that explain what a particular language feature is and how to use
it in compliance with C++ semantics.

2. FAQs that explain how to use C++ properly. Some of these answers deal
with only a single language feature, while others explain how to use several
different language features in concert. Combining language features allows
sophisticated designs that can simultaneously satisfy multiple technical
requirements and business goals.

3. FAQs that expose poor programming practices. These show design and
programming practices that are legal in C++ but should be avoided be-
cause they can lead to programs that are bug-ridden, hard to comprehend,
expensive to maintain, difficult to extend, and lacking reuse value.

1.7 What is the electronic FAQ and why buy
this book when the electronic FAQ is free?

The electronic FAQ is a set of C++ questions and answers, originally prepared
and distributed on the Internet by Marshall Cline. The Internet version is
currently updated and distributed by Marshall and is available through the
news group comp.lang.c++. This book has substantially more material than
the electronic FAQ.

This book and the electronic FAQ were inspired by a seemingly unquenchable
thirst among C++ developers for more and better information about C++
through comp.lang.c++. Addison-Wesley decided to provide an expanded form
of that information in book format.
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This book covers a broader range of topics and goes into greater depth than
the electronic FAQ. It provides deeper coverage of the key points with extensive
new examples.

Most of the programming examples are working, stand-alone programs, com-
plete with their own main(), all necessary #include files, and so on. All exam-
ples have been compiled directly from the source text of the book; those that
are complete programs have also been run.

1.8 Why should you buy this edition if you al-
ready have a copy of the first edition?

Because the world has changed and you want to keep up with technology.

The OO world and the C++ language have changed significantly in the last
few years. There are new language constructs such as Run Time Type Iden-
tification (RTTI) and namespaces. The Standard Template Library (STL) is
a massive addition to the C++ body of essential knowledge. Design notation
has apparently standardized on the Unified Modeling Language (UML). Java,
CORBA, and ActiveX are now topics that every C++ developer needs to un-
derstand. The goal of this second edition is to bring you up to speed on all of
these new developments while still keeping the pithy style and FAQ format that
was so well received in the first edition.

Finally, the second edition is much more self-contained than the first, with lots
of syntax and semantics. We’ve appreciated all your comments and suggestions
and have tried to accommodate them wherever possible.

1.9 What conventions are used in this book?

The undecorated word inheritance means “public inheritance”. Private or
protected inheritance is referred to explicitly.

Similarly the undecorated term derived class means “public derived class”.
Derived classes produced via private or protected inheritance are explicitly des-
ignated “private derived class” or “protected derived class”, respectively.

The class names Base and Derived are used as hypothetical class names to
illustrate the general relationship between a base class and one of its (publicly)
derived classes.

The term out-lined function indicates a function that is called via a normal
CALL instruction. In contrast, when an inlined function is invoked, the compiler
inserts the object code for that function at the point-of-call.
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The term remote ownership is used when an object contains a pointer to
another object that the first object is responsible for deleting. The default
destruction and copy semantics for objects that contain remote ownership are
incorrect, so explicit controls are needed.

To allow compilation while simplifying the presentation to the reader, exam-
ples that use the standard library have a line that says using namespace std;.
This dumping of the entire standard namespace is acceptable as a short-term
conversion technique or as a pedagogical aid, but its use in production systems
is controversial. Most authorities recommend introducing class names as needed
or using the std:: qualifier.

The term OO is used as an abbreviation for “object-oriented”.

The term method is used as a synonym for “member function”.

NULL is used rather than 0 to make the code more readable. Organizational
standards and guidelines should be consulted before the reader continues this
practice.

The term C programming language refers to the ISO version of C.

The compiler is assumed (per the C++ Standard) to insert an implicit return
0; at the end of main().

The intrinsic data type bool is used, which has literal values true and false.
For compilers that don’t have a built-in bool type, insert the following at the
beginning of each example:

typedef char bool; const bool false=0; const bool true=1;

The expression new MyClass, where MyClass is some type, is assumed to
throw an exception if it runs out of memory — it never returns NULL. Most
compilers implement this correctly, but some do not.

Most examples use protected: data rather than private: data. In the
real world, this is appropriate for most developers and most applications, but
framework developers probably should not use protected: data, since this
would create a data coupling between the derived classes and the protected:
data of the base class. In general, framework developers should use private:
data with protected: access functions.

Type names (names of classes, structs, unions, enums, and typedefs) start
with a capital letter; preprocessor symbols are all capitals; all other identifiers
start with a lowercase letter. Data member names and class-scoped enumera-
tions end with a single underscore.

It is assumed that the file extensions .cpp and .hpp are appropriate. Some
compilers use a different convention.
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Universal Modeling Language (UML) notation is used to express design rela-
tionships.

The following priorities were used in designing the examples: (1) unity of
purpose, (2) compactness, and (3) self-contained functionality. In other words,
each example demonstrate one basic point or technique, is as short as possible,
and, if possible, is a complete, working program. The examples are not intended
for plug-in reuse in industrial-strength settings because balancing the resultant
(subtle) tradeoffs would conflict with these priorities.

To avoid complicating the discussions with finding the optimal balance be-
tween the use of virtual and inline for member functions, virtual is used
more often than strictly necessary (see FAQ 21.15). To achieve compactness,
some member functions are defined in the class body even if they wouldn’t nor-
mally be inline or even if moving them down to the bottom of a header file
would improve specification (see FAQ 6.5). Uncalled functions are often left un-
defined. Some functions that are called are also undefined, since compactness is
a higher priority than self-contained functionality. Also for compactness, exam-
ples are not wrapped in preprocessor symbols that prevent multiple expansions
(see FAQ 2.16).

The examples put the public: part at the beginning of the class rather than
at the end of the class. This makes it easier for those who simply want to
use the class as opposed to those who want to go in and change the internal
implementation of the class. This is normally the right tradeoff since a class is
normally used a lot more often than it is changed.

It is assumed that the C++ compiler and standard library are both compliant
with the Standard and work correctly. In the real world, this is probably not a
safe assumption, and you should be cautious.
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Chapter 2

Basic C++ Syntax and
Semantics

2.1 What is the purpose of this chapter?

To present the fundamentals of C++ syntax and semantics.

This chapter provides a brief overview of C++ syntax and semantics. It
covers topics such as main(), creating and using local, dynamically allocated,
and static objects, passing C++ objects by reference, by value, and by pointer,
default parameters, C++ stream I/O, using classes with operator overloading,
using templates, using auto ptr to prevent memory leaks,throwing and catch-
ing exceptions, and creating classes including member functions, const member
functions, constructors, initialization lists, destructors, inheritance, the is-a con-
version, and dynamic binding.

Experienced C++ programmers can skip this chapter.

2.2 What are the basics of main()?

It’s the application’s main routine.

Object-oriented C++ programs consist mostly of classes, but there’s always at
least one C-like function: main(). main() is called more or less at the beginning
of the program’s execution, and when main() ends, the running system shuts
down the program. main() always returns an int, as shown below:

int main()
{

// ...
}

main() has a special feature: There’s an implicit return 0; at the end. Thus
if the flow of control simply falls off the end of main(), the value 0 is implicitly
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returned to the operating system. Most operating systems interpret a return
value of 0 to mean “program completed successfully.”

main is the only function that has an implicit return 0; at the end. All
other routines that return an int must have an explicit return statement that
returns the appropriate int value.

Note that this example shows main() without any parameters. However,
main() can optionally declare parameters so that it can access the command
line arguments, just as in C.

2.3 What are the basics of functions?

Functions are one of the important ways to decompose software into smaller,
manageable chunks. Functions can have return values (for example, a function
that computed a value might return that value), or they can return nothing.
If they return nothing, the return type is stated as void and the function is
sometimes called a procedure.

In the following example, function f() takes no parameters and returns noth-
ing (that is, its return type is void), and function g() takes two parameters of
type int and returns a value of type float.

void f()
{
// ...

}

float g(int x, int y)
{
float sum = x + y;
float avg = sum / 2.0;
return avg;

}

int main()
{
f();
float z = g(2, 3);

}

2.4 What are the basics of default parameters?

C++ allows functions to have default parameters. This is useful when a
parameter should have a specified value when the caller does not supply a value.
For example, suppose that the value 42 should be passed to the function f()
when the caller does not supply a value. In that case, it would make the calling
code somewhat simpler if this parameter value were supplied as a default value:
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void f(int x=42); // Declare the default parameter(s) in the
// function declaration

void f(int x) // Don’t repeat the default parameter(s) in
// the function definition

{
// ...

}

int main()
{
f(29); // Passes 29 to f()
f(); // Passes 42 to f()

}

2.5 What are the basics of local (auto) objects?

C++ extends the variable declaration syntax from built-in types (e.g., int
i;) to objects of user-defined types. The syntax is the same: TypeName VariableName.
For example, if the header file “Car.hpp” defines a user-defined type called Car,
objects (variables) of class (type) Car can be created:

#include "Car.hpp" // Define class Car

void f()
{
Car a; // 1: Create an object
a.startEngine(); // 2: Call a member function
a.tuneRadioTo("AM", 770); // 3: Call another member function

} // 4. Destroy the object

int main()
{
f();

}

When control flows over the line labeled 1: Create an object, the runtime
system creates a local (auto) object of class Car. The object is called a and can
be accessed from the point where it is created to the } labeled 4: Destroy the
object.

When control flows over the line labeled 2: Call a member function, the
startEngine() member function (a.k.a. method) is called for object a. The
compiler knows that a is of class Car so there is no need to indicate that the
proper startEngine() member function is the one from the Car class. For
example, there could be other classes that also have a startEngine() member
function (Airplane, LawnMower, and so on), but the compiler will never get
confused and call a member function from the wrong class.
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When control flows over the line labeled 3: Call another member function,
the tuneRadioTo() member function is called for object a. This line shows how
parameters can be passed to member functions.

When control flows over the line labeled 4: Destroy the object, object a is
automatically destroyed. If the Car class has some special cleanup activities
that need to take place when an object goes away, the writer of the class would
include a destructor in the class and the runtime system would automagically
call the destructor (dtor) when the object goes away; see FAQ 20.3. Local
objects such as a are sometimes called automatic objects or stack objects, and
they are said to go out of scope at the } line.

UML uses the following notation to show a class Car that contains member
functions startEngine() and turnRadioTo():

2.6 What are the basics of constructing objects
using explicit parameters?

Constructors are special member functions that are called to initialize an
object. If parameters are needed, the parameters can be supplied in the param-
eters, (). If no parameters are needed on a local object, parentheses must not
be provided. Here is an example:

#include "Car.hpp"

void f()
{
Car a; // 1: Create a "default" Car object
Car b(100, 73) ; // 2: Pass explicit parameters to

// Car’s constructor
// ...

}

int main()
{
f();

}

When control flows over line 1, a local Car object is created and initialized by
the class’s default constructor. The default constructor is the constructor that
can be called with no parameters (see FAQ 20.8).

When control flows over line 2, another local Car object is created and ini-
tialized, this time by passing two int parameters to a constructor of class Car.
The parameters (100, 73) are presumably used to set up the object (e.g., ini-
tial values for various state variables). Line 1 and 2 probably call different
constructors (but see FAQ 2.4 on default parameters).
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Note that in the following example b is not a Car object. Instead b is a
function that returns a Car by value.

void g()
{
Car a; // a is a Car object
Car b(); // b is not a Car object!

}

2.7 What are the basics of dynamically allocated
(new) objects?

C++ allows objects to be allocated dynamically using the new operator. Dy-
namic allocation is also known as allocating from the heap. As shown, a Car
object can be allocated from the heap using the syntax new Car(). The result
is stored in a CarPtr pointer. CarPtr is an alias for an auto ptr, which is a
“safe pointer type”. The typedef syntax establishes this alias relationship.

#include <memory> // This gets the definition for auto_ptr
#include <string>
using namespace std;

#include "Car.hpp"
typedef auto_ptr<Car> CarPtr;

void f()
{
CarPtr p(new Car()); // 1: Create an object
p->startEngine(); // 2: Call a member function
p->tuneRadioTo("AM", 770); // 3: Call another member function

} // 4: Destroy the Car object

int main()
{
f();

}

When control flows over the line labeled 1: Create an object, an object is
created dynamically (from the heap). The object is pointed to by the pointer
p. The object can be accessed from the point it is created until the CarPtr is
destroyed at the } (line 4). Note however that the CarPtr can be returned to a
caller. This line is analogous to (but not interchangeable with) the C code p =
malloc(sizeof(Car)). Note that parameters can be passed to the constructor;
e.g., p = new Car(100, 73);.

When control flows over the line labeled 2: Call a member function, the
startEngine() member function is called for the object pointed to by p. The
line labeled 3: Call another member function is similar, showing how to pass
parameters to member functions of dynamically allocated objects.
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When control flows over the line labeled 4: Destroy the Car object, the Car
object pointed to by p is destroyed. If the Car class has a destructor, the
runtime system automagically calls the destructor (dtor) when control flows
over this line.

Note that dynamically allocated objects don’t have to be destroyed in the
same scope that created them. For example, if the function said return p;,
the ownership of the Car object is passed back to the function’s caller, meaning
that the Car object won’t be destroyed until the } of the caller (or the caller’s
caller if the caller does likewise, and so on):

CarPtr g()
{
CarPtr p(new Car());
// ...
return p; // The caller is now responsible for deleting the

// Car object
}

void h()
{
CarPtr p = g(); // Ownership is transferred from g() to h() here
// ...

} // The Car object dies here

Note to C programmers: It is generally considered bad form to use raw Car*
pointers to hold the result of the new Car() operation. This is a big change from
the way pointers are handled in the C language. There are many reasons for
this change: the C++ approach makes “memory leaks” less likely (there is no
explicit use of free(p) or delete p, so programmers don’t have to worry about
accidentally forgetting the deallocation code or jumping around the deallocation
code), the C++ approach makes “dangling references” less likely (if C-like Car*
pointers are used, there is a chance that someone will inadvertently access the
memory of the Car object after it is deleted), and the C++ approach makes the
code “exception safe” (if a C-like Car* were used, any routine that could throw
an exception would have to wrapped in a try...catch block; see FAQ 2.23.

2.8 What are the basics of local objects within
inner scopes?

C++ local objects die at the } in which they were created. This means they
could die before the } that ends the function:

#include "Car.hpp"

void f()
{
Car a;

14



for (int i = 0; i < 10; ++i) {
Car b; // 1: Create a Car object on each iteration
// ...

} // 2: Each iteration’s b dies here

// ...
} // 3: Object a dies here

int main()
{
f();

}

The line labeled 1: Create a Car object on each iteration is within the loop
body, so a distinct Car object that is local to the loop body is created on each
iteration.

Note that C++ allows loop variables (int i in the example) to be created
inside the for parameters. Loop variables that are declared this way are local
to the loop: they cannot be accessed after the } that terminates the for loop.
This means that a subsequent for loop could use the same loop variable. Note
that this is a new language feature, and compilers may not uniformly support
this rule in all cases.

Also notice that, unlike C, variables do not have to be declared right after
a {. It is not only allowable but also desirable to declare C++ variables just
before they are first used. Doing so allows their initialization to be bypassed
if the section of code they are in is bypassed, and it allows the introduction of
other runtime variables in their initialization if the code is not bypassed. So
there is never anything to lose, indeed there is sometimes something to gain, by
declaring at first use.

2.9 What are the basics of passing objects by
reference?

Passing objects by reference is the most common way to pass objects to
functions. C programmers often have a hard time adjusting to pass-by-reference,
but it’s generally worth the pain to make the transition.

#include "Car.hpp"

void f(Car& a)
{
a.startEngine(); // Changes main()’s object
// ...

}

void g(const Car& b) // Note the const
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{
b.startEngine(); // Error: Can’t change an object via a

// const reference
// ...

}

main()
{
Car x;
f(x);
g(x);

}

Function f() illustrates pass-by-reference (the & between the type name and
the parameter name indicates pass-by-reference). In this case, a is main()’s
x object — not a copy of x nor a pointer to x, but another name for x itself.
Therefore anything done to a is really done to x; for example, a.startEngine()
actually invokes x.startEngine().

Function g() illustrates pass-by-reference-to-const. Parameter b is the caller’s
object, just as before, but b has an additional restriction: it can only inspect
the object, not mutate the object. This means g() has a look-but-no-touch
agreement with its callers — g() guarantees to its callers that the object they
pass will not be modified. For example, if a programmer erroneously called
b.startEngine(), the compiler would detect the error and would issue a diag-
nostic at compile time (assuming startEngine() is not a const member func-
tions; see FAQ 2.17). Reference-to-const is similar in spirit to pass-by-value
(see FAQ 2.10), but is implemented much more efficiently.

2.10 What are the basics of passing objects by
value?

Beware: passing objects by value can be dangerous in some situations. Often
it is better to pass objects by reference-to-const (FAQ 2.9) than to pass them
by value. For example, pass-by-value won’t work if the destination type is
an abstract base class (see FAQ 2.24) and can result in erroneous behavior
at runtime if the parameter’s class has derived classes (see FAQ 24.12, 28.4).
However if the class of the parameter is guaranteed not to have derived classes,
and if the function being called needs a local copy to work with, pass-by-value
can be useful.

#include "Car.hpp"

void f(Car a)
{
a.startEngine(); // Changes a local copy of the original object

}

int main()
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{
Car x;
f(x);

}

Since f()’s a is a copy of main()’s x, any changes to a are not reflected in x.

2.11 What are the basics of passing objects by
pointer?

Passing objects by pointer is not commonly used. The most common ap-
proaches are pass-by-reference and pass-by-auto ptr. Pass-by-reference is used
when the caller wants to retain ownership of the object (that is, when the caller
wants to access the object after the call returns to the caller). Pass-by-auto ptr
is used when the caller wants to transfer ownership of the object to the called
routine (that is, when the caller wants the object to get deleted before the called
routine returns to the caller).

#include <memory>
using namespace std;

#include "Car.hpp"
typedef auto_ptr<Car> CarPtr;

void f(Car& c)
{
c.startEngine();
// ...

} // The Car object is not deleted at this line

void g(CarPtr p)
{
p->startEngine();
// ...

} // The Car object is deleted at this line

int main()
{
CarPtr p (new Car());
f(*p); // Pass-by-reference; *p can be used after this line
g(p); // Pass-by-auto_ptr; *p cannot be used after this line

}

If the intent is for the caller to retain ownership of the object, pass-by-
reference should generally be used. If the intent is for the ownership to be
passed to the called routine, pass-by-auto ptr should be used. About the only
time pass-by-pointer should be used is when (1) the caller should retain owner-
ship and (2) the called routine needs to handle “nothing was passed” (i.e., the
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NULL pointer) as a valid input. In the following example, note the explicit test
to see if the pointer is NULL.

#include <memory>
using namespace std;

#include "Car.hpp"
typedef auto_ptr<Car> CarPtr;

void h(Car* p)
{
if (p == NULL) {
// ...

} else {
p->startEngine();
// ...

}
} // As in pass-by-reference, the Car object is not

// deleted at this line

void i()
{
h(NULL); // NULL is a valid parameter to function h()

CarPtr p (new Car());
h(p.get()); // Pass-by-pointer; *p can be used after this line
// ...

} // The Car object is deleted at this line

2.12 What are the basics of stream output?

C++ supports C-style output, such as the printf() family of functions.
However it is often better to use the native C++ output services. With the
native C++ output services, output is directed to an output stream object.
For example, cout is an output stream object that is attached to the process’s
standard output device, often to the terminal from which the program is run.
Syntactically these C++ output services look as if they’re shifting things into
the output stream object. The <iostream> header is needed when using these
services:

#include <iostream>
using namespace std;

int main()
{
cout << "Hello world\n"; // line 1
cout << "Hello world" << ’\n’; // line 2
cout << "Hello world" << ’\n’ << flush; // line 3
cout << "Hello world" << endl; // line 4

}
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Line 1 prints the string "Hello world" followed by a newline character, ’\n’.
This is analogous to the C statement, fprintf(stdout, "Hello world\n");
thus cout is analogous to C’s stdout, and cerr (not shown) is analogous to
stderr.

Line 2 is logically equivalent to line 1: it prints the string “Hello world”, then
it prints a newline character, ’\n’. This shows how the << operator can be cas-
caded — allowing multiple things to be printed with the same statement. This is
analogous to the C construct fprintf(stdout, "%s%c", "Hello world", ’\n’).

Line 3 also prints "Hello world" followed by a newline, but then it flushes
the output buffer, forcing the characters to be sent to the operating system.
This is normally not necessary with cout, but when output is being sent to a
file it can be important to flush the output buffers at certain times, such as
just before abort() is intentionally called. In C, flushing an output buffer is
accomplished by calling fflush(stdout). Note that flushing the I/O buffers
too much can slow down the application.

Line 4 is a shorthand version of line 3. The symbol endl prints a newline
character, ’\n’, followed by a flush symbol. Because endl flushes the buffer,
it shouldn’t be used very often since it can slow down the application.

2.13 What are the basics of stream input?

C++ supports C-style input, such as the scanf() family of functions. How-
ever it is often better to use the native C++ input services. With the native
C++ input services, information is read from an input stream object. For ex-
ample, cin is an input stream object that is attached to the process’s standard
input device, often to the keyboard from which the program is run. Syntacti-
cally these C++ input services look as if they are shifting things from the input
stream object. The <iostream> header is needed when using these services (the
example uses stream output to prompt for the stream input):

#include <iostream>
#include <string>
using namespace std;

int main()
{
cout << "What’s your first name? " // line 1
string name; // line 2
cin >> name; // line 3

cout << "Hi " << name << ", how old are you? "
int age;
cin >> age; // line 4

}
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Line 1 prints the prompt. There is no need to flush the stream since cout
takes care of that automatically when reading from cin (see the tie member
function in the iostream documentation for how to do this with any arbitrary
pair of streams).

Line 2 creates a string object called name. Class string is a standard class
that replaces arrays of characters. string objects are safe, flexible, and high
performance. This line also illustrates how C++ variables can be defined in the
middle of the routine, which is a minor improvement over the C requirement
that variables be defined at the beginning of the block.

Line 3 reads the user’s first name from the standard input and stores the
result in the string object called name. This line skips leading whitespace
(spaces, tabs, newlines, and so on), then extracts and stores the whitespace-
terminated word that follows into variable name. The analogous syntax in C
would be fscanf(stdin, "%s", name), except the C++ version is safer (the
C++ string object automatically expands it storage to accommodate as many
characters as the user types in — there is no arbitrary limit and there is no
danger of a memory overrun). Note that an entire line of input can be read
using the syntax getline(cin, name);.

Line 4 reads an integer from the standard and stores the result in the int ob-
ject called age. The analogous syntax in C would be fscanf(stdin, "%d", &age),
except the C++ version is simpler (there is no redundant "%d" format specifier
since the C++ compiler knows that age is of type int, and there is no redun-
dant address-of operator (&age) since the compiler passes the parameter age by
reference).

2.14 What are the basics of using classes that
contain overloaded operators?

They’re easy to use. But when you create your own, make sure the operators
are intuitive and natural.

Here is an example that uses the standard string class:

#include <iostream>
#include <string> // <---------------- Defines class string
using namespace std;

void f(const string& firstName, const string& lastName)
{
string fullName = firstName + " " + lastName; // line 1
cout << "Your full name is " << fullName << "\n"; // line 2

}

int main()
{
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f("Charlie", "Brown");
f("Fred", "Flintstone");

}

The f() function takes two string objects that will remain unchanged (const string&;
see FAQ 2.9).

Line 1 concatenates the first name, a space, and then the last name. This
uses the overloaded + operator associated with class string.

Line 2 prints the resulting full name. This uses the overloaded << operator
associated with class string.

2.15 What are the basics of using container classes?

Templates are one of the most powerful code reuse mechanisms in C++. The
most common use for templates is for containers. Container classes are used
to create objects that hold other objects. There are many different container
templates, including linked lists, vectors (arrays), sets, and maps. Container
templates allow programmers to get the benefits of sophisticated data structures,
such as binary trees that always stay balanced, hash tables, skip lists, and splay
trees, without having to know anything at all about the details of those data
structures.

Templates look a little funny at first, but they’re not that much different
from normal classes once you get used to them. The only strange part is the
angle brackets: a vector of Car is declared using the syntax vector<Car>. The
typedef syntax is used for convenient: it creates easy-to-read synonyms such
as CarList.

#include <vector> // Get the standard vector template
#include <string> // Get the standard string class
#include <algorithm>
using namespace std;

#include "Car.hpp" // Get the user-defined Car class
typedef vector<Car> CarList; // Synonym for convenience
typedef vector<string> StringList; // Synonym for convenience

int main()
{
CarList x; // Create a vector of Car objects
Car a, b, c;
x.push_stack(a); // Append object a to the CarList x
x.push_stack(b);
x.push_stack(c);
// ...

StringList y; // Create a vector of string objects
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y.push_stack("Foo"); // Append string "Foo" to the StringList y
y.push_stack("Bar");
y.push_stack("Baz");
sort(y.begin(), y.end()); // Sort the StringList y
// ...

}

This sample code creates two vector objects: x is a vector of Car objects
and y is a vector of string objects. This is analogous to creating two C-like
arrays (Car x[3]; and string y[3];), but vector objects are more flexible,
they can grow to an arbitrary size, they are safer, and they have a lot more
services associated with them. See FAQ 28.13.

UML uses the following notation to show a template vector along with in-
stantiations of that template vector<Car> and vector<string>.

2.16 What are the basics of creating class header
files?

The first step is to remember #ifndef.

When creating a class header file, the first thing to remember is to wrap the
header in #ifndef, #define, and #endif lines, just as with C header files. The
following shows the skeleton of the header file that defines C++ class Car.

#ifndef CAR_HPP
#define CAR_HPP

class Car {
public:
// The member functions for Car objects are declared here

protected:
// The data members for Car objects are declared here

};
#endif

This code might be stored in the header file "Car.hpp".

The public: and protected: parts of the class are different: normal user
code (e.g., main()) can access only public: features. If normal user code
tries to access anything in the protected: part, the user code would get a
compile-time error (not a warning: a true error, something that would have to
be fixed before getting the code to compile). This is called encapsulation, and
is described further in FAQ 5.16.
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Although public: and protected: are quite different with respect to encap-
sulation, they are very similar otherwise. The public: part can also contain
data, and the protected: part can also contain member functions. In fact,
they are completely symmetrical: data and member functions can be declared
in either section. It’s generally considered unwise (and unnecessary) to create
public: data, but protected: member functions are fairly common and quite
useful. For example, protected: member functions can be helper functions
that are used mainly by the public: member functions (analogous to static
functions within a module in C).

2.17 What are the basics of defining a class?

By convention, the public: part goes first. The following example shows the
header file that defines C++ class Car.

#ifndef CAR_HPP
#define CAR_HPP

#include <string>

class Car {
public:
virtual void startEngine(); // Line 1
virtual void isRunning() const; // Line 2
virtual void tuneRadioTo(const string& band, int freq); // Line 3

protected:
bool isRunning_; // Line 4
bool radioOnAM_;
int radioFreq_;

};
#endif

Line 1 declares a member function of class Car. This member function doesn’t
take any parameters. Note that C programmers use (void) to declare a func-
tion that takes no parameters, but this is not necessary in C++. Be warned
that some C++ developers consider the (void) syntax in C++ code to be an
indicator that the author of the code is still a warmed-over C programmer —
that the author hasn’t yet made the paradigm shift. This is an unfair judgment,
but it might be wise to use () rather than (void) in C++ code.

Line 2 declares another member function, this time returning a bool (the bool
data type has two values: true and false). The member function’s name is
designed to make sense in an if statement, e.g., if (myCar.isRunning())...
The const on the right side means that the member function is an inspector —
it promises not to change the object. This let users know that the Car object
won’t suddenly change inside a statement such as if (myCar.isRunning()). It
is a good idea to make every member function that is logically an inspector with
a const; otherwise the compiler will give error messages when someone calls one
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of these member functions via a reference-to-const or a pointer-to-const (see
FAQ 2.9, 2.11).

Line 3 declares another member function, this time taking two parameters.
Member functions that don’t have a const on the right side are known as
mutator member functions, since they can change the object. For example, the
statement myCar.tuneRadioTo("AM", 770) probably makes changes to the Car
object called myCar.

Line 4 declares a data member. By convention, data member names end
with an underscore. This particular data member is presumably used by the
isRunning() member function.

UML uses the following notation to show a class Car that contains member
functions startEngine(), isRunning(), and tuneRadioTo(), and that con-
tains data members called isRunning , radioOnAM , and radioFreq :

2.18 What are the basics of defining member
functions?

Member functions are normally defined in the source file associated with the
class (but see FAQ 13.1). For example, if the header file is called "Car.hpp",
the source file might be called "Car.cpp". Here is an example of the header file
Car.hpp:

#ifndef CAR_HPP
#define CAR_HPP

class Car {
public:
virtual void startEngine(); // Declare a member function
// ...

protected:
bool isRunning_;
bool radioOnAM_;
int radioFreq_;

};
#endif

Here is an example of the source file Car.cpp:

#include "Car.hpp" // Get the Car class

void Car::startEngine()
{
isRunning_ = true; // Define a member function
// ...

};
#endif
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The line void Car::startEngine() tells the compiler that this is the defi-
nition of the startEngine() member function from the Car class. If this just
said void startEngine() {...} the compiler would think that a non-member
function was being defined, as opposed to the startEngine() member function
of the Car class.

The line isRunning_ = true; sets the protected: data member isRunning_
to true. If Car a; a.startEngine(); has been executed, this line would set
a.isRunning_ to true (even though a.isRunning_ is protected: it does exist
and can be accessed by member functions of the Car class).

2.19 What are the basics of adding a construc-
tor to a class?

A constructor (a.k.a. ctor) is a special member function that is called when-
ever an object of the class is created. This gives the class developer a chance
to initialize the object’s member data so that the rest of the member functions
can assume that they have a coherent object to work with. Syntactically con-
structors are member functions with the same name as the class; they are not
virtual, and they have no return type.

Like normal member functions, constructors are declared in the class’s body,
which normally appears in the class’s header file. For example, the header file
for class Car might be file Car.hpp. Here is an example showing the declaration
of some constructors in header file Car.hpp:

#ifndef CAR_HPP
#define CAR_HPP

class Car {
public:
Car(); // Declare a constructor
Car(int initRadioFreq, int horsepower); // Declare another constructor
// ...

protected:
bool isRunning_;
bool radioOnAM_;
int radioFreq_;
int horsepower_;

};
#endif

The first constructor takes no parameters and is called whenever an object
is created without parameters. For example, the first constructor is used to
initialize the first two Car objects created in the following function, and the
second constructor (the one that takes two parameters of type int) is used to
initialize the third and fourth Car objects created in the following function f().
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void f()
{
Car a1; // The first ctor is used to initialize a1 and *p1
Car* p1 = new Car();

Car a2(880, 200); // The second ctor is used to initialize a2 and *p2
Car *p2 = new Car(880, 200);

// ...
}

Constructors are often defined in the source file associated with the class.
For example, the source file associated with class Car might be file "Car.cpp".
Here is an example showing the definition of the first constructor in source file
Car.cpp:

#include "Car.hpp" // Get the Car class

Car::Car() // Define a constructor
: isRunning_ (false)
, radioOnAM_ (true)
, radioFreq_ (880)
, horsepower_(150)
{
// ...

}

The line Car::Car() tells the compiler that this is the definition of a construc-
tor of class Car. Thus constructors are normally of the form X::X(/*...*/).

The line : isRunning_(false) initializes the protected: data member
isRunning_ to false; radioOnAM_, radioFreq_, and horsepower_ are initial-
ized similarly. This list of initializations between the : and the { is allowed only
in constructors and is called an initialization list. Since the goal of the con-
structor is to initialize the object to a coherent state, all of an object’s member
variables should be initialized in every constructor.

Since the second constructor takes parameters, it probably uses these param-
eters to initialize the member variables in the Car object. For example the
two parameters might be used to initialize the radio’s frequency and the car’s
horsepower:

Car::Car(int initRadioFreq, int horsepower)
: isRunning_ (false)
, radioOnAM_ (false)
, radioFreq_ (initRadioFreq)
, horsepower_(horsepower)
{
// ...

}
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2.20 What are the basics of adding a destructor
to a class?

Every class can optionally have a destructor (a.k.a. dtor). A destructor is
a special member function that is automatically called whenever an object of
the class is destroyed. This feature of C++ allows the class developer to close
any files the object has opened, release any memory the object has allocated,
unlock any semaphores the object has locked, and so on. In general, this gives
an object a chance to clean up after itself.

Syntactically a destructor is a member function whose name is a tilde charac-
ter (~) followed by the name of the class. Like constructors, destructors cannot
have a return type. Unlike constructors, destructors can, and often are declared
with the virtual keyword, and a class can have only one destructor. Like all
member functions, a destructor is declared in the class body, which normally
appears in the class’s header file. For example, the header file for class Car
might be file Car.hpp.

#ifndef CAR_HPP
#define CAR_HPP

class Car {
public:
virtual ~Car(); // Declaration of a destructor
// ...

protected:
// ...

};
#endif

Destructors often defined in the source file for class Car, such as in file
Car.cpp:

#include "Car.hpp"

Car::~Car()
{
// ... // <---- Clean-up code goes here

}

If a class doesn’t have a destructor, the compiler conceptually gives the class
a destructor that does nothing. Therefore if a class doesn’t need to do anything
special inside its destructor, the easiest thing to do is to not even declare a
destructor. In fact, in applications that follow the guidelines of this book, a
destructor is needed only in a relatively small percentage of the classes.
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2.21 What are the basics of defining a class that
contains a pointer to an object allocated
from the heap?

Overview: (1) Try to avoid this situation. (2) If it can’t be avoided, use an
auto_ptr.

Try to avoid defining a class that contains a pointer to an object allocated
from the heap. For example, consider the situation where a car contains an
engine. There are two choices: the preferred way would be for the engine object
to be physically embedded inside the car object, and the undesirable way would
be for the car object to contain a pointer to the engine object, where the car
allocates the engine object from the heap. Here is a sample Engine class:

#include <iostream>
using namespace std;

class Engine {
public:
Engine();
virtual void start();

};

Engine::Engine()
{
cout << "Engine constructor\n";

}

void Engine::start()
{
cout << "Engine::start()\n";

}

The car class shown in the following code, class Car, uses the preferred ap-
proach: each Car object physically contains its Engine object. Compared to
using a pointer to an Engine allocated from the heap, the technique shown in
class Car is easier, safer, and faster, and it uses less memory.

class Car {
public:
Car();
virtual void startEngine();

protected:
Engine e_; // Physically embed an Engine object inside every

// Car object
};

Car::Car()
: e_ () // Initialize the Engine object that’s inside
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// the Car object
{
// Intentionally left blank

}

void Car::startEngine()
{
e_.start(); // Call the start() member function of the Engine

// object
}

Although this is the preferred approach, sometimes it is necessary, or perhaps
expedient, to allocate the inner object from the heap and have the outer object
contain a pointer to the inner object. When this happens, an auto_ptr should
be used:

#include <memory> // <----------------------- To get auto_ptr
using namespace std;
typedef auto_ptr<Engine> EnginePtr;

class Car {
public:
Car();
virtual void startEngine();
virtual ~Car();
Car(const Car& c); // This can be ignored for now

// see FAQ 30.12
Car& operator= (const Car& c); // This can be ignored for now

// see FAQ 30.12
protected:
EnginePtr p_; // Every Car object contains an auto_ptr to

// its Engine object
};

Car::Car()
: p_ (new Engine()) // Allocate an Engine object for the Car object
{
// Intentionally left blank

}

void Car::startEngine()
{
p_->start(); // Call the start() member function of the

// Engine Object
}

Logically this second example is still a contains or has-a relationship, but
physically the implementation is somewhat different. Note the three extra mem-
ber functions that must be declared in the second version of class Car. These
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extra member functions are needed because an auot_ptr is used to hold the
car’s Engine object.

The most important message here is that it is much less dangerous to use
auto_ptr than to use a raw hardware pointer, such as Car*. Thus the following
technique should not be used.

class Car {
public:
Car();
virtual void startEngine();
virtual ~Car();
Car(const Car& c); // This can be ignored for now;

// see FAQ 30.12
Car& operator= (const Car& c); // This can be ignored for now;

// see FAQ 30.12
protected:
Engine* p_; // Bad form: Try to avoid raw hardware pointers

// to allocated objects
};

The particular dangers of using raw hardware pointers are outlined later in
the book, but for now simply use an auto_ptr as shown in the second example.

2.22 What are the basics of global objects?

Although C++ allows global objects to be declared outside any class, it is
generally better if global objects are declared as static data members of some
class. Generally a static data member is declared in the protected: section of
the class, and if desired, public: static member functions are provided to get
and/or set that protected: static data member.

For example, consider keeping track of the number of Car objects that cur-
rently exist. Since it would be quite cumbersome if every single Car object had
to correctly maintain the current number of Car objects, it is better to store
this value in a global variable, that is, as a static data member of the Car class.
Since external users might want to find out how many Car objects exist, there
should be a public: static member function to get that number. But since it
would be improper for anyone but the Car class to change the value of this vari-
able, there should not be a public: static member function to set the number
of Car objects. The following class illustrates the static data member and the
public: static access member function.

#include <iostream>
using namespace std;

class Car {
public:
Car();
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~Car();
Car(const Car& c);
static int num(); // Member function to access num_

protected:
static int num_; // Declaration of the static data member

};

Car::Car()
{
++num_;

}

Car::~Car()
{
--num_;

}

int Car::num()
{
return num_;

}

int Car::num_ = 0; // Definition of the static data member

Note that static data members must be defined in a source file. It is a common
C++ error to forget to define a static data member, and the symptoms are
generally an error message at link time. For example, static data member
Car::num_ might be defined in the file associated with class Car, such as file
Car.cpp.

Unlike normal data members, it is possible to access static data members
before the first object of the class is created. For example, it is possible to
access static data member Car::num_ before the first Car object is created, as
illustrated in the main() routine that follows:

int main()
{
cout << "Before creating any cars, num() returns "

<< Car::num() << "\n";
Car a, b, c;
cout << "After creating three cars, num() returns "

<< Car::num() << "\n";
}

The output of this main() routine is:

Before creating any cars, num() returns 0
After creating three cars, num() returns 3
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It is also possible to use user-defined classes to define static data members.
For example, if there were some sort of registry of Car objects and if the registry
were conceptually a global variable, it would be better to define the registry as
a static data member of the Car class. This is done just like the static int data
member shown: just replace the type int with the type of the registry, and
replace the initializer “= 0;” with whatever is appropriate as the initializer for
the class of the registry.

2.23 What are the basics of throwing and catch-
ing exceptions?

Exceptions are for handling errors. If a function cannot fulfill its promises
for some reason, it should throw an exception. This style of reporting errors
is different from the way many other programming languages report errors —
many languages use a return code or error code that the caller is supposed to
explicitly test. It sometimes takes a little while before new C++ programmers
become comfortable with the C++ way of reporting errors.

In the example code, function processFile() is supposed to process the
specified file. The file name is specified using an object of the standard string
class. If the file name is not valid (for example, if it contains illegal characters)
or if the file does not exist, processFile() cannot proceed, so it throws an
exception. In the case of an invalid file name, processFile() throws an object
of class BadFileName; in the case of a nonexistent file, it throws an object of
class FileNotFound.

Functions isValidFileName() and fileExists() represent routines that de-
termine if a given file name is valid and exists, respectively. As shown below,
isValidFileName() always returns true (meaning “yes, the filename is valid”)
and fileExists() always returns false (meaning “no, the file does not exist”),
but in practice these routines would make system calls to determine the proper
result.

#include <iostream>
#include <string>
using namespace std;

class BadFileName { };
class FileNotFound { };

bool isValidFileName(const string& filename) throw()
{
// Pretend this checks if filename is a valid filename
return true;

}

bool fileExists(const string& filename) throw()
{
// Pretend this checks if filename exists as a file
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return false;
}

void processFile(const string& filename)
throw(BadFileName, FileNotFound)
{
if (! isValidFileName(filename))
throw BadFileName();

if (! fileExists(filename))
throw FileNotFound();

// the filename is valid and exists; process the file:
// ...

}

void f(const string& filename) throw()
{
try {
processFile(filename);
// ...

}
catch (BadFileName& e) {
cout << "Invalid file name: " << filename << "\n";

}
catch (FileNotFound& e) {
cout << "File not fond: " << filename << "\n";

}
}

try and catch are keywords. The code within the block after the try keyword
is executed first. In this case, f() calls processFile(). In a real application,
processFile() often succeeds (that is, it often returns normally without throw-
ing an exception), in which case the runtime system continues processing the
code in the try block, then skips the catch blocks and proceeds normally. In the
case when an exception is thrown, control immediately jumps to the matching
catch block. If there is no matching catch block in the caller, control imme-
diately jumps back to the matching catch block in the caller’s caller, caller’s
caller’s caller, and so on, until it reaches the catch (...) block in main(),
shown below. catch(...) is a special catch-all block: it matches all possible
exceptions.

int main()
{
try {
f("input-file.txt");
// ...

}
catch (...) {
cout << "Unknown exception!\n";
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}
}

The throw() declarations after the signature of the various functions (e.g.,
throw() after the signature of function f() and throw(BadFileName, FileNotFound)
after the signature of function processFile()) are the function’s way of telling
callers what it might throw. Functions that say throw() are effectively saying,
“This function doesn’t throw any exceptions.” Functions that say throw(BadFileName,
FileNotFound) are effectively saying, “This function might throw a BadFileName
object or a FileNotFound object but nothing else.”

2.24 What are the basics of inheritance and dy-
namic binding?

Inheritance is a powerful tool that enables extensibility. It allows the software
to capture the is-a or kind-of relationship (although as will be shown in FAQ 7.1,
the phrase, “is substitutable for”, more accurately captures the true meaning of
inheritance).

In the following example, class Vehicle is defined with = 0; after the dec-
laration of the startEngine() member function. This syntax means that the
startEngine() member function is pure virtual and the Vehicle class is an
abstract base class, or ABC. In practice, this means that Vehicle is an impor-
tant class from which other classes inherit, and those other derived classes are,
in general, required to provide a startEngine() member function.

Class Vehicle {
public:
virtual void startEngine() = 0;
virtual ~Vehicle(); // Destructors of ABCs are often virtual

};

Vehicle::~Vehicle()
{
// Intentionally left blank

}

The idea with ABCs is to build the bulk of the application so that it knows
about the ABCs but not the derived classes. For example, the following function
is aware of the ABC Vehicle but is not aware of any of the derived classes.

void f(Vehicle& v)
{
// ...
v.startEngine();
// ...

}
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If the ABCs are designed properly, a large percentage of the application will be
written at that level. Then new derived classes can be added without impacting
the bulk of the application. In other words, the goal is to minimize the ripple
effect when adding new derived classes. For example, the following derived
classes can be added without disturbing function f().

#include <iostream>
using namespace std;

class Car : public Vehicle {
public:
virtual void startEngine();

};

void Car::startEngine()
{
cout << "Starting a Car’s engine\n";

}

class NuclearSubmarine : public Vehicle {
public:
virtual void startEngine();

};

void NuclearSubmarine::startEngine()
{
cout << "Starting a NuclearSubmarine’s engine\n";

}

The reason these won’t disturb the code in function f() (and recall, function
f() represents the bulk of the application) is because of two features of C++:
the is-a conversion and dynamic binding. The is-a conversion says that an
object of a derived class, such as an object of class Car, can be passed as a base
reference. For example, the following objects c and s can be passed to function
f(). Thus the compiler allows a conversion from a derived class (e.g., a Car
object) to a base class (e.g., a Vehicle reference).

int main()
{
Car c;
NuclearSubmarine s;
f(c);
f(s);

}

The is-a conversion is always safe because inheritance means “is substitutable
for”. That is, a Car is substitutable for a Vehicle, so it won’t surprise function
f() if v is in fact referring to a Car.
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Dynamic binding is the flip side of the same coin. Whereas the is-a conversion
safely converts from derived class to base class, dynamic binding safely converts
from base class back to derived class. For example, the line v.startEngine() in
function f() actually calls the appropriate startEngine() member function as-
sociated with the object. That is, when main() passes a NuclearSubmarine into
f() (line f(s) in main()), v.startEngine() calls the startEngine() member
function associated with class NuclearSubmarine. This is extremely powerful,
since class NuclearSubmarine might have been written long after function f()
was written and compiled and put into a library. In other words, dynamic bind-
ing allows old code (f()) to call new code (NuclearSubmarine::startEngine())
without the old code needing to be modified or even recompiled. This is the
essence of extensibility: the ability to add new features to an application with-
out significant impact to existing code. It is doable with C++, but only when
the design considerations are carefully thought through ahead of time; it does
not come free.

UML uses the following notation to show inheritance.
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Chapter 3

Understanding the
Management Perspective

3.1 What is the purpose of this chapter?

To improve the effectiveness of developers by presenting the management
perspective on common software questions.

All too often, developers live in their own world of technology and miss the
“big picture”. As a result, they lose credibility with decision makers by empha-
sizing peripheral issues, or they fail to sell a laudable idea because it was not
packaged and presented effectively. Since this book aims to improve the overall
effectiveness of developers, we will show how decision makers think by drawing
on our own experience as managers and executives, as well as the insights we’ve
gained from others and from work we’ve done as architects and developers.

3.2 What is the core message of this chapter
(and this book)?

To increase effectiveness by being business-centric rather than technology-
centric.

Technology does not exist in a vacuum. It exists in a complex milieu of
customers, budgets, competitors, organizational goals, product features, time
to market, and so on. In this world, there are no context-free notions of “good”
and “bad” (and anyone who proclaims one technique or methods as universally
bad or another as universally good is hopelessly technocentric). So to make
good decisions we need a context, which is defined by looking at the business
objectives and using them to help define what “good” means (and what “bad”
means). With the context properly defined, it is possible to evaluate technology
trade-offs in a manner that always keeps the business objectives in mind.
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This message is in stark contrast to what technologists typically preach.
For example, technologists typically promote one design method (or inheri-
tance model or programming language) over another using a universal notion of
“good” and “bad” — they have an answer even though they don’t know what
the question is; one size fits all. It’s as if they are saying, “I know what’s good
for you even though I don’t understand your world.”

This does not imply that different technologies don’t have different trade-offs
— they do. But the trade-offs can be evaluated only by looking at the business
objectives and requirements. This leads to the following high-level process.

1. Examine the business objectives (why the application/system is being
built).

2. Then examine the requirements (what the application/system should do).

3. Then examine all the alternate design techniques (how the application/system
should be built).

And always make the less important decisions (such as various design tech-
niques and ultimately the programming techniques) in light of the more im-
portant decisions (such as what the system is supposed to do and, even more
important, why it is being built in the first place).

3.3 Why are the managers in charge rather than
the developers who understand technology?

Because most organizations have a culture that assumes that managers are
long-term and developers are replaceable parts.

Managers are supposed to understand the goals of the organization and to
ensure that the goals are achieved, often using technology in one form or an-
other. Their job is to represent the organization, and in many cases they have
a fiduciary responsibility (and personal liability) if things go wrong. In their
view, developers are transient and are often more interested in technology than
the welfare of the organization. This may or may not be true, and the average
tenure of CIOs in probably shorter than the average tenure of developers, but
what’s important is the perception, not the reality.

The message is that developers can increase their influence in the organization
by demonstrating that they understand the organization’s business objectives
and that they are committed to achieving the business objectives rather than
being committed to playing around with the coolest techno-gadgets. This means
making sure business issues always dominate technology issues. It also means
presenting proposals in terms that managers can understand, including staffing,
schedules, opportunity costs, risk, and dollars and cents. Try it some time. It
works.

38



3.4 How can someone manager something they
don’t understand?

People have been doing it for years; managers hardly ever understand what
they are managing.

Should the CEO of IBM know how to configure computers? Or issue ex-
pense checks? Or control the building temperature? No. The CEO’s job is to
understand strategy, directions, and politics; too much knowledge about opera-
tional minutiae would indicate misfocused energies. The same sort of thinking
applies to every level of management, down to the first-level supervisor. Be-
sides, if CEOs did understand the low-level details, they’d probably drive the
developers crazy micromanaging them.

So managers shouldn’t try to be technology experts. But how can they man-
age anyway? Anyone who has ever raised children has experienced keeping
control without having a clue about what they were doing or what the children
were saying. Managing a software project is the same thing, only the children
are older and there are books that explain their lingo.

Of course, there are good managers and bad managers. Good managers lead
their teams, set realistic goals, get needed resources, mentor team members,
take care of administrative issues, and communicate business objectives. In
other words, good managers are worthy individuals who need all the help and
support they can get. So the wise developer educates the managers and becomes
a reliable source of knowledge and common sense, the trusted person. Such
developers protect their managers from themselves and learn to speak their
language. Manipulate your managers like your children manipulate you!

3.5 What is the most common mistake on C++
and OO projects?

Unnecessary complexity — the plague of OO technology.

Complexity, like risk, is a fact of life that can’t be avoided. Some software
systems have to be complex because the business processes they represent are
complex. But unfortunately many intermediate developers try to “make things
better” by adding generalization and flexibility that no one has asked for or will
ever need. The customer wants a cup of tea, and the developers build a system
that can boil the ocean [thanks to John Vlissides for this quip]. The result
is unnecessary complexity, which increases the risk of failure. The intentions
might be good but the result can be deadly.

Here are a few guidelines.

• Don’t solve problems that don’t need to be solved.

• Don’t worry about the future until you’re sure you can survive the present.
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• Don’t build things for the fun of it.

• The organization’s health is more important than the developer’s desire
to play with the latest whiz-bang tool or technique.

• Don’t add risk without a compelling and measurable benefit to the project.

• Don’t invest in the future if your current project is in trouble.

Avoid the “death by one thousands cut” syndrome by avoiding unnecessary
complexity.

3.6 What’s the “Software Peter Principle”?

The Software Peter Principle is in operation when unwise developers “im-
prove” and “generalize” the software until they themselves can no longer un-
derstand it, then the project slowly dies.

The Software Peter Principle can ruin projects. The insidious thing about the
Software Peter Principle is that it’s a silent killer — by the time the symptoms
are visible, the problem has spread throughout every line of code in the project.
Foolish managers deal with symptoms rather than prevention, and they think
everything is okay unless there are visible bugs. Yet the problem isn’t bugs,
at least initially. The problem is that the project is collapsing under its own
weight.

The best way to avoid this problem is to build to the skill level of the main-
tainers, not of the developers. If the typical maintainer won’t understand the
software then it’s simply too complex for the organization to maintain. This
means avoiding tricky, sophisticated, subtle, clever techniques unless there is
a compelling reason for them. Cleverness is evil; use it only when necessary.
Shown concern for the long-term health of the system being developed.

3.7 Should an organization use OO on all its
projects?

No!

The organization is in some business other than OO programming, and tech-
nology is a means to an end. Developers might want to use OO because it is
intellectually stimulating, but the people in charge have other goals and proba-
bly don’t care what sort of technology is employed.

The message for developers is to focus presentations and justifications on
achieving business goals, and make sure that OO is presented as an effective tool
for achieving the desired business results rather than a “cool” techie thing. Show
why it’s relevant. Above all, don’t use the “it’s the latest and greatest” argument
as a justification: that angle has been overused for too many years and almost
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always turns off the listener. Also, don’t use the “it will keep the developers
happy” approach: most managers think that they are the people who need to
be kept happy and that developers are transient, replaceable components.

3.8 Can OO be ignored until it goes away?

No!

Some developers fight against OO, and some managers take a “let’s wait for
it to go away just like (fill in the blank) did.” But the fact is that OO and C++
aren’t going away so everyone might as well get on board. There are lots of
technical arguments for the superiority of this technology, but the best reason is
nontechnical: this is the way the world is moving. Too many people have sunk
too much money into building products based on OO for it to go away. And
the only way to take advantage of the advances in software engineering in the
last decade or two is to utilize a modern programming language such as C++.

So the reluctant developer should get on board. The trend is inevitable and
there is nothing to be gained by fighting the inevitable. If management is
doing the foot dragging, don’t waste time with technical superiority arguments.
Focus instead on the business issues, such as availability of tools, components,
and people.

3.9 What OO language is best?

Whichever one works best for the organization.

We believe in honesty, not advocacy, and the honest answer is that there
is no single answer. What is the organization’s policy regarding languages?
Must there be one and only one official language? What is the skill level of
the staff? Are they gung-ho developers with advanced degrees in computer
science/engineering or people who understand the business and have survival
skills in software? Do they already have OO skills? In which language(s)? What
sort of software development is being done: extending someone else’s framework
or building from scratch for resale? What sort of performance constraints does
the software have? Is it space constrained or speed constrained? If speed, is it
typically bound by I/O, network, or CPU? Regarding libraries and tools, are
there licensing considerations? Are there strategic partnership relationships that
affect the choice of languages? Many of these questions are nontechnical, but
they are the kind of questions that need to be answered the “which language”
issue can be addressed.

Regarding the choice between C++ and Java, java is a simpler language and
thus it is generally easier to use. However C++ is more established and allows
finer control over resources (for example, memory management), and this is re-
quired for some applications. Also, C++ has language features such as destruc-
tors, conversion operators and operator overloading that can be intimidating to
many developers but are essential for building frameworks that hide complexity
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from users. Building the same framework in Java will necessarily expose some
internal complexity to the developers who need to extend the framework. So
C++ will always be needed, but it isn’t the only answer and it isn’t always the
best answer.

The messages can be summarized neatly. (1) Avoid language bigotry and
language wars. (2) Never, never present language trade-offs to management
exclusively using technical criteria — when choosing between languages, the
most important issues are typically business issues, not technical issues. (3)
Don’t assume that the organization wants to be the leading edge. (4) Don’t
assume that the organization has a primary goal of furthering the careers of its
developers.

3.10 What is the right approach to processes
and tools?

Select processes and tools based on business considerations rather than purely
on technical grounds. Buy tools, don’t build them. Customize existing pro-
cesses; don’t invent your own.

In general, the selections should be popular enough that they’ll be around in
five years, should be mature, should be consistent with the organization’s skill
levels, and should allow hiring new people who already have the necessary skills.

An important consideration is that the process should allow local variations.
IBM’s WSDDM is an example of this.

Technologists waste a lot of energy arguing the virtues and vices of the various
design notations. As usual, business considerations should dominate technical
considerations. UML is currently the most popular notation, and it is used in
this book.

The emerging method of analysis and design from the “three amigos” (Booch,
Jacobson, and Rumbaugh) associated with UML is pretty good and has been
well received by the marketplace.

With respect to design tools, beware of “tool worship”. Remember: tools
don’t produce designs; people produce designs. Tools capture the thoughts of
the design team, but before the tool can add value, the design team first has to
think some reasonably good thoughts. Some tools also generate skeleton code,
but that’s helpful only if the design is good. So tools are good, in that they
capture and transmit ideas in a uniform manner, but underneath it all, design
is much more human than mechanical.
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3.11 What is the right approach with off-the-
shelf class libraries and frameworks?

Buy, don’t build.

Unless there’s a compelling reason, don’t roll your own class library or tech-
nical framework from scratch. There was a time when there wasn’t much in the
way of technical frameworks and class libraries, and back then it made sense
to roll your own. But those days have passed. Note that it is still not possible
to buy much in the way of industry-specific frameworks, so there is an ongoing
need to build “business frameworks”, but most technology-oriented frameworks
are abundantly available.

For example, people using distributed objects should choose between a CORBA
implementation and the latest variation of DCOM/COM+. It will be a hard
decision and it can’t be analyzed in one paragraph, but the important idea is to
avoid building a custom ORB unless there is some compelling reason to do so.
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Chapter 4

The Architectural
Perspective

4.1 What is the purpose of this chapter?

To discuss the relationship between software architecture and OO design and
OO programming.

It is critical to plan for change in the software system as well as in the people
who will be used to construct and maintain the software. Good architecture is
the key to planning for and responding to change.

Many of the design and programming principles advocated in this book are
rooted in software architecture. For example, an important architectural prin-
ciple is to reduce unnecessary coupling, and this book discusses how C++ can
be used to decrease coupling. Thus it is important to understand the architect’s
perspective and to know how to translate architectural principles into C++
constructs.

In this book, the term software architecture is used rather broadly to describe
several activities that occur early in the development cycle, including domain
analysis and defining the logical (rather than physical) organization of the sys-
tem.

4.2 Why is software architecture important?

Because it is vital to producing good software.

Good software is correct, usable, maintainable, testable, flexible, documented,
solves a meaningful problem, performs well, and has an acceptable cost owner-
ship. In other words, it gets the job done. It is the job of the system architect(s)
to understand and balance a wide range of competing forces (business forces,
management forces, and technical forces) and lay the groundwork for the rest
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of the team to produce good software. If the architecture is inadequate or
inappropriate, everyone ends up paying a penalty.

First, every system has an architecture. Either it is explicitly defined, docu-
mented, and serves as a solid basis for ongoing system development, or it evolves
haphazardly as a by-product of hundreds of ill-considered and inconsistent de-
cisions.

Second, don’t believe anyone who says that a system doesn’t need an archi-
tecture or that time and money can be saved by skipping the definition of the
system’s architecture. Building a system without an architecture is like building
an office building without blueprints — sure, the thing might get finished, but
it probably won’t fulfill its goals, it will probably cost more than it should, and
there is a greater risk that it will collapse.

Third, software architecture techniques, OO methods, design patterns, tools,
and programming languages are mature enough that there is no reason for any
system to be developed without an adequate architecture.

Fourth, good software does not have to be OO software (gasp!) and does
not have to be reusable (gasp again!). Too many projects have suffered from
excessive worrying about reuse and not enough worrying about usability. And
sometimes the concerns about what someone might want the software to possibly
do someday leads to complexity that precludes it ever meeting its immediate
requirements.

From an architectural perspective, the moral is to favor conservatism and to
realize that common sense should prevail. This profession is tough enough; don’t
try to accomplish any more than is necessary and don’t push the technological
envelope without good reason. It is better to err on the conservation side and
build a practical system. At least that way you get a chance to live and fight
another day. This chapter discusses some of the important issues in making
software usable, extensible, and reusable through the use of OO techniques.

4.3 What should the architecture be based on,
the problem being solved or the problem do-
main?

The problem domain.

One of the primary goals of the software architect is to build a system that
will survive changes in requirements and that can be adapted to new and related
problems. To achieve this goal the system architecture must have a stable base.
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The specification of a single problem that is to be solved is unstable, since it
depends on he whims of the customer and therefore is unsuitable as the basis
for the system architecture. The problem domain is much more stable, because
it is an artifact of the world in which the customer lives.

For example, every order entry system must deal with orders, customers,
prices, quantities, payments, addresses, sales reports, and so on. These entities
represent the problem domain and are stable across all order entry systems.

However, each particular order entry system has different parameters that
reflect the customer’s current requirements based on the current business situa-
tion, including different placement of fields on the screen, different colors for dif-
ferent fields, different currencies for multinational applications, and so on. Fur-
thermore, some order entry systems are implemented as PC applications, others
are implemented as Web-based applications, while others are implemented as
Interactive Voice Response systems.

The moral for the software architect is that the system architecture should
be based on the problem domain because the needs of customers change more
rapidly than their world does.

4.4 Should the software architecture be based
on the policy of the problem?

No — that would be totally insane.

The policy of any single problem is unstable. Software systems based on the
least stable element (the problem) are inflexible, cannot respond to changing
requirements, an are doomed to become brittle.

Software should be written so that changing the requirements doesn’t break
the architecture. Basing the architecture on the most stable element, the prob-
lem domain, accomplishes this objective.

Note that software can survive problem changes only within the confines of
the problem domain. It’s unreasonable to expect a system that was originally
designed for the problem domain of compilers to work for cellular telephones,
since this would be changing the problem domain rather than just the problem.

From an architectural standpoint, the message is to usually emphasize the
problem domain rather than technical infrastructure. However, there are occa-
sional counter-examples, and this is why intimate knowledge of both technology
and the problem domain is so important.
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4.5 Do customers ever change their requirements?

Ha, ha, ha! The only customers who don’t change their requirements are dead
customers. In all of recorded history, no customer has ever changed his/her mind
less than twice (and the poor customer who only made two sets of changes
was hit by a meteorite on the way to sending in the third set of changes).
While it is true that some requirement changes can be avoided with foresight,
it is also true that most requirement changes occur for perfectly valid reasons.
Between the beginning of a project and the first release, requirements change
due to changing market conditions, changing business objectives, competitive
pressure, and changing technology. In the longer term (after the first release),
requirements change for all the same reasons.

The message here is that changing requirements are a fact of life and the wise
team plans for them rather than complaining about them.

4.6 Are stable requirements desirable?

No — the only software that doesn’t have to be changed is software no one
uses.

If the job is done right the first time, people will use the software again.
And since everything else in life seems to change rapidly, it is certain that the
software will need to be updated, expanded, changed, or revised. The only way
to have stable requirements is for the product to be so bad that no one wants
to use it. Stable requirements reflect a dead product. Stable requirements are
an enemy, not a friend.

The wise architect knows that change is inevitable and has the judgment
needed to balance the short-term and long-term requirements in a way that
the developers can implement. On the other hand, the developer needs to
understand that adding nonrequested flexibility “just in case someone needs it”
is not a responsible action.

4.7 What is the key to planning for change?

Understanding the problem domain.

Almost every OO analysis and design method promotes understanding the
problem domain through some form of domain analysis. This is the process
of becoming familiar with the problem domain by (among other things) inter-
viewing domain experts, analyzing existing business processes, working with
customers, and validating and refining these findings. This process produces a
model of the problem domain including domain objects, services provided by
these objects, and the interaction patterns of these objects.
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The domain model is the extensible, flexible, reusable basis on which the soft-
ware architecture should be based. The beauty of OO technology and C++ is
that public inheritance (see FAQ 2.24, 7.1) can be used to reflect the fundamen-
tal, immutable properties of the problem domain and the domain model. In this
way, the public inheritance relationships model the problem domain rather than
depending on the fickle requirements of the even more fickle customer. Thus
the architecture can and should be made to reflect the problem domain rather
than the particular problem at hand.

These issues will be discussed at great length later in this book.

The key is to recognize that OO technology provides flexibility when the do-
main analysis is solid and the software faithfully reflects the domain analysis.
Under these circumstances, changing the details of the problem creates inciden-
tal disturbances rather than fundamental disruptions.

4.8 What is a framework?

A framework is a thematic collection of software that is used to build appli-
cations.

A framework is a set of class libraries plus models of interaction and coop-
eration between the various objects of the various hierarchies. The framework
defines a generic program structure that is suitable for building a group of re-
lated applications or systems. Usually the framework provides default behavior
for common situations while allowing the default behavior to be easily overrid-
den with application-specific behavior when necessary. That is, the framework
is designed to be customized for solving a specific problem or building a specific
business application.

In C++, the most important artifacts in the generic program structure are
usually abstract base classes (ABCs) (see FAQs 2.24, 17.3). The framework
also prescribes the valid interactions among the objects. In C++, the default
behavior and the ability to customize the framework is usually accomplished
using inheritance and dynamic binding.

4.9 What is the “inversion of control” exhibited
by frameworks?

The Hollywood model: Don’t call us, we’ll call you.

In traditional applications, the application programmer writes the main event
loop and this “main program” reaches out and calls reusable library routines as
needed. This is “piecewise reuse”: The idea is to reuse little pieces of software
but leave it up to the application programmer to write the main program. In
this approach, the called chunks of software are the reusable assets and the main
program is the “glue code” that is application specific.
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Frameworks are just the opposite: the framework — not the application code
— controls the flow of execution, and the framework reaches out and calls the
application-specific code written by the application developer as needed. This
is made possible because the framework is specially designed to call virtual
functions to perform operations that are expected to be application specific.
Thus, the application programmer specializes the framework by overriding these
virtual functions as necessary (see FAQ 2.24).

This version of control is a powerful and useful concept, but it is initially quite
uncomfortable for developers and their managers. For some reason, everyone
emotionally equates the word “reuse” with calling little chunks of reusable code;
they have a hard time seeing that frameworks (where reuse involves a big chunk
of reusable code calling small chunks of application-specific code) provide higher
degrees of reuse.

4.10 What is an extensible, domain-specific frame-
work?

A competitive advantage.

An extensible, domain-specific framework models the key abstractions of the
problem domain. Domain-specific frameworks, along with the classes from
general-purpose class libraries (see FAQ 28.1), are the building blocks for con-
structing applications/systems for that problem domain.

An extensible, domain-specific framework should have as much domain-specific
knowledge as possible while remaining as independent as possible from any sin-
gle problem being solved. If there is not enough domain-specific knowledge,
future developers must largely rediscover the problem domain. If it has too
much problem-specific knowledge, future developers will always be fighting the
problem-specific assumptions.

4.11 What characteristics make a framework ex-
tensible yet domain-specific?

Mechanism rich, policy free.

In this context, mechanism refers to anything (information, data, procedures,
processes) that is intrinsic to the problem domain; policy refers to anything
that is likely to change or to be application specific. Examples of mechanism
in order processing systems might include payment methods such as purchase
orders, cash, cash on delivery, and credit cards, whereas the interest rate of late
payment might be an example of policy.
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So the ideal extensible, domain-specific framework is rich in the mechanism
of the problem domain but free from policy within the problem. This makes it a
suitable basis for a wide range of applications without forcing every organization
to adopt the same policies. If it isn’t mechanism rich, future developers won’t
get as much “oomph” (a technical term) as they might otherwise. If it isn’t
policy free, future developers will have to work around the obsolete policy.

Deciding what is mechanism and what is policy is an art. Within an extensible
framework for order processing systems, is assuming that all transactions can
be processed in a single currency an example of mechanism or policy? Clearly,
this is situation specific. For some organizations this assumption is perfectly
reasonable and it can be built into the mechanism of the framework. For other
organizations the currency might change from transaction to transaction, in
which case the decision of which currency to use is a policy decision that should
not be built into the mechanism of the framework.

4.12 What happens if the domain analysis is in-
correct?

It costs money.

Once a domain analysis mistake has been discovered, randomly patching the
code makes matters worse. Instead of patching code, fix the domain analysis
error. Unfortunately, fixing domain analysis errors often breaks existing code.

Even though changing existing code is expensive, it is often far more expensive
to continue building the software based on a faulty domain analysis. Domain
analysis errors usually make software brittle.

That’s why it has been said that domain-analysis errors are ten times more
costly to fix than programming errors. If you must make changes, sooner is
often much cheaper than later.

4.13 How much effort should be expended to
support change — that is, how much is ex-
tensibility worth?

It depends on the specific situation, but don’t focus on supporting change to
the point that the project won’t finish on time.

An extensible product isn’t worth much if it has no users. On the other
hand, having lots of users but inflexible software means that enhancing and
maintaining the software will be an expensive proposition. In today’s rapidly
changing business climate it can be deadly to have an inflexible software product.
It’s a delicate balancing act.
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Here is a real-life example that illustrates this issue. Two organizations had
similar products. One used OO technology to achieve extensibility (a new release
every six months); the other shipped a new release every two years. Not only
did the rapid-fire organization create four times as many sales opportunities
per customer than its slower counterpart, it also used its enhanced features to
become the market leader.

The only software that never changes is software that no one uses. Successful
software will need to be changed. The hard decision is the judgment call as
to the risk/reward ratio for investing in future extensibility. Once this decision
has been made, it is important that the developer not undo the decision by
gratuitously enhancing the system without authorization. Too many developers
add flexibility to the software just because it can be done, paying no attention
to whether it should be done.

4.14 How does an architect make the software
architecture flexible?

Intentionally.

The main message here is that flexibility is not something that comes auto-
matically, even with OO. The other message is that it is not possible to create
infinitely flexible software without introducing unmanageable complexity, so the
only alternative is to rely on knowledge of the problem domain to make wise
choices.

Here’s a way to do it.

1. Write down the specific places where the architects and analysts think the
software needs to be flexible. Make sure the list isn’t too long.

2. Throw out everything on the list that a user/customer wouldn’t pay real
money for. Usually this means discarding all the “technical flexibility
spots” such as swapping out class libraries, since customers are usually
willing to pay only for things that affect the external behavior, not the
internal implementation of external behavior. Again, make sure the list
isn’t too long.

3. Do a cost/benefit analysis on each of the remaining line items. Get the
customer to add whatever survives this analysis to the “Nonfunctional
Requirements Specification” or other appropriate document, just to make
sure the customer realizes what’s going on.

Don’t try to create software that’s like a rubber band — flexible in every
conceivable direction. Instead, identify a few specific places where the system
needs to be flexible and do a good job with those places. If you get this point
wrong, you’ll end up with massive unnecessary complexity and your project will
probably fail.
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4.15 What is the secret to achieving reuse?

Building a reuse culture.

Some aspects of reuse are technical (such as carrying out successful domain
analysis and building extensible, domain-specific frameworks), but the real prob-
lems come from human issues. Developers need to lose the attitude that says,
“I want to build my own infrastructure because it’s more fun and enhances my
career” and “I don’t trust or want to understand someone else’s work, so I’ll do
everything from scratch.” If the human issues aren’t resolved, the technology
questions become immaterial.

Enlightened leadership and an appropriate reward system can sometimes over-
come these problems, but sometimes the project team itself can foster the right
attitude. In one case the developers decided that working together was impor-
tant, and they used the word “big” to describe people and actions that con-
tributed to reuse (as in “That is big of you”) and conversely the word “small”
to describe people and actions that were petty or self-centered. Thus the words
“big” and “small” became an informal mechanism for the team to enforce and
reinforce their culture in a reasonably non-threatening way.

The architectural perspective is to recognize that reuse is much more than a
technical question and that there are inherent limits on what is possible. There
is no point in investing development effort to achieve reuse if the organizational
culture will keep the reuse from actually occurring.
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Part II

Object-Oriented Design
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Chapters 5 through 10 cover design issues related to the use of C++ as an
object-oriented programming language. An understanding of these principles is
essential to using C++ effectively, particularly for large projects.
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Chapter 5

Object-Oriented
Fundamentals

5.1 What is the purpose of this chapter?

To explain fundamental OO concepts.

C++ is a huge language that can be used in many ways. The preceding chap-
ters on management and architectural perspectives limit the ways the language
is used, which makes life simpler for developers and maintainers. This chapter
further limits the ways in which the language can be (mis)used.

In this book, we assume an OO approach and the C++ presentation reflects
this bias. Some readers will need a refresher on OO concepts, and others need
to become familiar with our terminology. Hence this chapter presents the basic
OO ideas and philosophies that are used throughout the book. Don’t take this
to mean that all programs must use OO (they don’t) or that “C++ as a better
C” has no place in life (it does).

5.2 Why is the world adopting OO technology?

Because OO can handle change more effectively than its predecessors.

The former paradigm (structured analysis, design, and programming) enabled
the design and construction of huge software systems. However, these systems
lack the flexibility required to meet the demands placed on software in today’s
rapidly changing business environment. Thus, the old paradigm died from its
own success: it created demand that it couldn’t satisfy.

As users demanded more from software, economics dictated a better paradigm,
and object-oriented technology is that better approach. This book is not just
about technology; it also focuses on how to apply technology in a practical way
to achieve the goals of the organization.
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A cynic might note that the world is adopting OO technology whether it
makes sense or not, because most of the software tools being built today assume
OO orientation. The conviction of the early pioneers that OO was the best
approach was a self-fulfilling prophecy.

5.3 What are some of the benefits of using C++
for OO programming?

Large user community, multiparadigm language, performance, and legacy
code access.

C++ is an object-oriented programming language with a very broad base of
users. This large and thriving user community has led to high-quality compilers
and other development tools for a wide range of systems. It has also led to
the availability of learning aids, such as books, conferences, bulletin boards,
and organizations that specialize in training and consulting. With that much
support, investing in C++ is a relatively safe undertaking.

C++ is a multiparadigm language. This allows developers to choose the
programming style that is right for the task at hand. For example, a traditional
procedural style may be appropriate for performing a simple task such as writing
the code within a small member function.

C++ software can be performance and memory efficient, provided it is de-
signed properly. For example, well-designed, object-oriented software is nor-
mally comprehensible and therefore amenable to performance tuning. In addi-
tion, C++ has low-level — and often dangerous — facilities that allow a skilled
C++ developer to obtain appropriate levels of performance.

C++ is (mostly) backward compatible with C. This is useful in very large
legacy systems where the migration to OO normally occurs a few subsystems
at a time rather than all at once. In particular, C++’s backward compatibility
makes it relatively inexpensive to compile legacy C code with a C++ compiler,
allowing the old, non-OO subsystems to coexist with the new OO subsystems.
Furthermore, simply compiling the legacy C code with a C++ compiler subjects
the non-OO subsystems to the relatively stronger type-safety checks of a C++
compiler. In today’s quality-sensitive culture, this makes good business sense.

5.4 What are the fundamental concepts of object-
oriented technology?

Objects, classes, and inheritance.

By definition, object-oriented programming languages must provide objects,
classes, and inheritance. In addition, polymorphism and dynamic binding are
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also required for all but the most trivial applications. Together, these five fea-
tures provide the tools for fulfilling the goals of OO: abstraction, encapsulation,
comprehensibility, changeability, and reusability.

An object is a software entity that combines state and behavior. A class is a
programming construct that defines the common state and behavior of a group
of similar objects; that is, a class has a name, and it describes the state (member
data) and services (member functions) provided by objects that are instances of
that class. The runtime system creates each object based on a class definition.

As an analogy, consider a home. A home is like an object since it has state
(whether the lights are on, ambient temperature, and so on) and it provides
services (a button that opens the garage door, a thermostat that controls the
temperature, an alarm system that detects intruders, and so on). To carry
the home metaphor a bit further, a blueprint for a home is like a class since a
blueprint defines the characteristics of a group of similar homes.

Simple data types as int and float can be thought of as classes; variables of
these types can be thought of as objects of the associated class.

Classes can be related by inheritance. In C++, inheritance facilitates poly-
morphism and dynamic binding. Polymorphism allows objects of one class to be
used as if they were objects of another, related class. Dynamic binding ensures
that the code that is executed is always consistent with the type of the object.
Rather than selecting the proper code fragment by some ad hoc technique such
as complex decision logic, the proper code fragment is automatically selected in
a manner that is both extensible and always correct. Together, these allow old
code to call new code; new classes can be added to a working system without
affecting existing code.

5.5 Why are classes important?

Classes are the fundamental packaging unit of OO technology.

Classes are a way to localize all the state (data) and services (typically mem-
ber functions) associated with a cohesive concept. The main idea is to orga-
nize things so that when changes to the concept or abstraction occur (as is
inevitable), it will be possible to go to one place to make the necessary modifi-
cations. We have seen examples in the procedural world where a simple change
required modifying dozens of source code files. This shouldn’t happen with
a proper OO class definition, but we recall one C++ project where a simple
change required modifying 46 different files. Obviously, the people responsible
for this failure didn’t “get it”; they may have been using C++, but they weren’t
using it properly. It’s easy for beginners, no matter how much experience they
have, to fall into this trap.
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Here is the skeletal syntax for a typical class definition:

class ClassName {
public:

// Public member functions declared here
protected:

// Protected data and member functions declared here
private:

// Private data and member functions declared here
};

Here is the UML representation of a class.

5.6 What is an object?

It depends on who you are.

To a programmer, an object is a region of storage with associated semantics.
To a designer, an object is any identifiable component in the problem domain.
In the following diagram recRoomTV is an object of class TV.

After a declaration such as int i;, i is said to be an object of type int. In
OO/C++, an object is usually an instance of a class.

Here is the UML notation of an object:

5.7 What are the desirable qualities of an ob-
ject?

A ideal object is a service provider that is alive, responsible, and intelligent.

Each object is an independent entity with its own lifetime, internal state, and
set of services. Objects should be alive, responsible, and intelligent agents. Ob-
jects are not simply a convenient way to package data structures and functions
together. The fundamental purpose of an object is to provide services.

Ideal objects should be alive so that they can take care of themselves. They are
born (constructed), live a full and productive life, and die (destroyed). objects
are expected to do something useful and maintain themselves in a coherent
state. The opposite of “alive objects” is “dead data”. Most data structures in
procedural programs are dead in the sense that they just lie there in memory
and wait for the functions to manipulate them.
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Ideal objects should be responsible so that you can delegate to them. Since
they are alive, they have rights and responsibilities. They have the right to
look after their own affairs — programmers do not reach into their innards and
manipulate them, and they are responsible for providing one or more services.
This means that other objects (“users”) can delegate work to them instead of
having to do everything for themselves. This helps produce more modular and
reusable software that consists of many objects, each of which does one thing.

Ideal objects should be intelligent so that they can provide services to their
users, thus simplifying user code. For example, the knowledge of how to do
some task (whether it is simple or complex) resides in only one place, inside
the object. Users simply request the service; they concentrate on what needs to
be done rather than how it’s done. Effectively this moves complexity from the
many to the few.

The benefits of moving complexity from the many to the few are all around
us. As an analogy, consider how airlines might consider getting rid of all those
expensive pilots and let the customers fly the airplanes for a rental fee like the
car rental companies do. However, this would require, among other things, that
every traveler be trained as a pilot, making air travel both more complicated and
more accident prone. Instead, airlines move the intelligence regarding cockpit
controls from the many to the few — from every traveler using the airlines to
the pilots. The result is simpler and safer for travelers (users) and cheaper for
the airlines (servers).

As a practical matter, this means that the first step for a new class is to
write down its roles and responsibilities. This helps clarify why the class exists,
whether or not it is needed, and what services it should provide. Defining
the responsibilities of all objects prevents confusion and simplifies the design
process.

5.8 How are classes better than the three basic
building blocks of procedural software?

A class is better than a C-style struct, better than a module, and better
than a C-style function.

A class can be thought of as a C-style struct that is also alive and intelligent.
Take away all the member functions from a class, make everything public:,
eliminate inheritance, and remove all the static member data and functions;
the result is a traditional C-style struct. A C-style struct supports multiple
instances, but it is difficult to encapsulate its implementations properly. Classes
support both multiple instances and encapsulation. When a C-style struct
dreams about growing up, it dreams of being a class.

A class can be thought of as a module that also provides natural support for
multiple instances and inline functions. Take away from a class all the non-
static member data and the non-static member functions and force all remaining
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static member functions to be non-inline, and the result is a traditional
module. Modules support encapsulation, but creating multiple instances of
a module is cumbersome. Classes support both encapsulation and multiple
instances. When a module dreams about growing up, it dreams of being a class.

A class can be thought of as a C-style function that can maintain state between
invocations in a thread-safe manner and can also provide multiple services. If
there were exactly one instance of a class, and all its member functions except
for exactly one public: member function were removed, the result would be a
C-style function (the object’s member data would correspond to static data
that is local to the function). C-style functions support computation, but it’s
cumbersome to maintain state between calls in a thread-safe manner (using
static local data is not immediately thread safe). However, classes support
computation and can maintain state between calls in a thread-safe manner (each
thread can make a separate local object of the class, so there is no conflict when
multiple threads are accessing their own independent data). When a C-style
function dreams about growing up, it dreams of being a class.

5.9 What is the purpose of composition?

Composition allows software to be developed by assembling existing compo-
nents rather than crafting new ones.

Composition (sometimes called aggregation) is the process of putting an object
(a part) inside another object (the composite). It models the has-a relationship.
For example, a FordTaurus can be composed of, among other things, an Engine,
Transmission, InstrumentPanel, and so on. In other words, a FordTaurus has
an Engine (equivalently, an Engine is part-of a FordTaurus):

#include <iostream>
using namespace std;

class Engine {
public:
virtual void start();

};

void Engine::start()
{
cout << "starting Engine\n";

}

class FordTaurus {
public:
virtual void start();

protected:
Engine engine_; // an Engine is part of a FordTaurus

};
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void FordTaurus::start()
{
cout << "starting FordTaurus\n";
engine_.start();

}

int main()
{
FordTaurus taurus;
taurus.start();

}

Sometimes developers incorrectly use inheritance (kind-of) when they should
use composition. For example, they might make FordTaurus inherit from
Engine, which confuses kind-of with part-of.

5.10 What is the purpose of inheritance?

In C++, inheritance is for subtyping. It lets developers model the kind-of
relationship.

Inheritance allows developers to make one class a kind-of another class. In
an inheritance relationship, the new class is called the derived class and the
original class from which the new class is being derived is called the base class.
All the data structures and member functions that belong to the base class
automatically become part of the derived class.

For example, suppose the class Stack has member functions push() and
pop(), and there is a need for a class PrintableStack. PrintableStack is
exactly like Stack except PrintableStack also provides the member function
print(). Class PrintableStack can be built by inheriting from Stack —
Stack would be the base class and PrintableStack would be the derived class.
The member functions push() and pop() and any others that belong to Stack
automatically become part of PrintableStack, so the only requirement for
building PrintableStack is adding the print() member function to it.

To do something similar in C, the existing Stack source file would be modified
(which is trouble if Stack is being used by other source files and they rely
on the exact layout of Stack) or copied into another file that would then be
tweaked. However, code copying is the least desirable form of reuse: it doubles
the maintenance costs and duplicates any bugs in the original source file. Using
C++ and inheritance, Stack remains unmodified, yet PrintableStack doesn’t
need to duplicate the code for the inherited member functions.

5.11 What are the advantages of polymorphism
and dynamic binding?

They allow old code to call new code in a substitutable fashion.

61



The real power of object-oriented programming isn’t just inheritance; it’s the
ability to treat objects of derived classes as if they were objects of the base class.
The mechanisms that support this are polymorphism and dynamic binding.

Polymorphism allows an object of a derived class to be passed to a function
that accepts a reference or a pointer to a base class. A function that receives
such objects is a polymorphic function.

When a polymorphic function invokes a member function using a base class
reference or pointer, dynamic binding executes the code from the derived class
even though the polymorphic function may be unaware that the derived class
exists. The code that is executed depends on the type of the object rather than
on the type of the reference or pointer. In this way, objects of a derived class
can be substituted for objects of a base class without requiring any changes in
the polymorphic functions that use the objects.

5.12 How does OO help produce flexible and ex-
tensible software?

By minimizing the ripple effect of enhancements.

Even in well-designed structured systems, enhancements often require modi-
fications to significant portions of existing design and code. OO achieves flexi-
bility by (1) allowing the past to make use of the future, and (2) designing for
comprehensibility.

The past can make use of the future when old user code (the past) can reliably
and predictably call new server code (the future) without any modifications to
the old user code. Inheritance, polymorphism, and dynamic binding are used
to achieve this lofty goal.

Comprehensibility allows software to be understood not only by the original
development team, but also by the team making the enhancements. Abstraction
and specification are used to achieve this lofty goal.

This approach can be contrasted with software developed using the tradi-
tional, structured approach, where enhancements or modifications often lead to
a seemingly endless cycle of random modifications (a.k.a hacks) until the system
appears to work.

5.13 How can old code call new code?

Through the magic of polymorphism, inheritance, and dynamic binding.
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In the traditional software paradigm, it is easy for new code to call old code
using subroutine libraries. However, it is difficult for old code to call new code
(unless the old code is modified so that it knows about the new code, in which
case the old code is no longer old).

With object orientation, old polymorphic functions can dynamically bind to
new server code. An object of a derived class can be passed to and used by an
existing polymorphic function without modifying the polymorphic function.

When compiling a polymorphic function, it is as if the compiler looks forward
in time and generates code that will bind to all the classes that will ever be
added. For example, a graphical drawing package might deal with squares,
circles, polygons, and various other shapes. Most of the drawing package’s
services deal with generic shapes rather than a particular kind of shape, like a
square (for example, “if a shape is selected by the mouse, the shape is dragged
across the screen and placed in a new location”). Polymorphism and dynamic
binding allow the drag-and-drop code to work correctly regardless of the kind
of shape being manipulated. To implement this approach, class Shape would
declare virtual functions for drawing and moving. The derived classes would
represent the various kinds of shapes: Square, Circle, and so forth.

#include <iostream>
using namespace std;

class Shape {
public:
Shape(int x, int y) throw();
virtual ~Shape() throw();
virtual void draw() const throw() = 0;
virtual void move(int x, int y) throw() = 0;

protected:
int x_, y_;
void operator= (const Shape& s) throw();
Shape(const Shape& s) throw();

};

Shape::Shape(int x, int y) throw()
: x_(x)
, y_(y)
{ }

Shape::Shape(const Shape& s) throw()
: x_(s.x_)
, y_(s.y_)
{ }

Shape::~Shape() throw()
{ }
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void Shape::operator= (const Shape& s) throw()
{
x_ = s.x_;
y_ = s.y_;

}

void dragAndDrop(Shape& s) throw() // A polymorphic function
{
s.move(42,24); // Dynamic binding calls the "right" code
s.draw(); // (as if the compiler predicted the future)

}

class Square : public Shape {
public:
Square(int x, int y, int width) throw();
virtual void draw() const throw();
virtual void move(int x, int y) throw();

protected:
int width_;

};

Square::Square(int x, int y, int width) throw()
: Shape(x,y)
, width_(width)
{ }

void Square::draw() const throw()
{ cout << "Square::draw\n"; }

void Square::move(int x, int y) throw()
{
x_ = x;
y_ = y;
cout << "Square::move\n";

}

class Circle : public Shape {
public:
Circle(int x, int y, int radius) throw();
virtual void draw() const throw();
virtual void move(int x, int y) throw();

protected:
int radius_;

};

Circle::Circle(int x, int y, int radius) throw()
: Shape(x,y)
, radius_(radius)
{ }

64



void Circle::draw() const throw()
{ cout << "Circle::draw\n"; }

void Circle::move(int x, int y) throw()
{
x_ = x;
y_ = y;
cout << "Circle::move\n";

}

int main()
{
Square s = Square(5, 20, 3);
Circle c = Circle(10, 15, 7);
dragAndDrop(s);
dragAndDrop(c);

}

This dragAndDrop(Shape&) function properly invokes the right member func-
tions from class Square and Circle, even though the compiler didn’t know
about Square and Circle when it was compiling dragAndDrop(Shape&). Here
is the output of this program.

Square::move
Square::draw
Circle::move
Circle::draw

Suppose the function dragAndDrop(Shape&) is compiled on Tuesday, and a
new kind of shape — say a Hexagon — is created on Wednesday. dragAndDrop(Shape&)
works with a Hexagon even though the Hexagon class didn’t exist when dragAndDrop(Shape&)
was compiled.

5.14 What is an abstraction and why is it im-
portant?

An abstraction is a simplified view of an object in the user’s own vocabulary.

In OO and C++, an abstraction is the simplest interface to an object that
provides all the features and services the intended users expect.

An abstraction tells users everything they need to know about an object
but nothing else. It is the well-defined, unambiguously specified interface. For
example, on a vending machine, the abstraction is formed by the buttons and
their meanings; users don’t have to know about levers, internal counters, or
other parts that are needed for the machine to operate. Furthermore the vending
machines’s price list implies a legally binding promise to users: if users put in
the right amount of money, the machine promises to dispense the desired item.
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The key to a good abstraction is deep knowledge of the problem domain. A
good abstraction allows users to use an object in a relatively safe and predictable
manner. It reduces the learning curve by providing a simple interface described
in terms of the user’s own vocabulary.

A good abstraction separates specification from implementation. It doesn’t
expose too much nor does it hide features that users need to know about. If an
abstraction is good, users aren’t tempted to peek at the object’s implementation.
The net result is simpler, more stable user code.

5.15 Should abstractions be user-centric or developer-
centric?

User-centric.

New object-oriented programmers commonly make the mistake of thinking
that inheritance, objects, and so on exist to make it easier to build a class.
Although this developer-centric view of OO software provides a short burst of
improved productivity; it fails to produce a software development culture that
has “sustainable effectiveness”. In other words, a flash in the pan, then nothing.

The only way to achieve long-term success with OO is for developers to focus
on their users instead of on themselves. Ironically, most developers eventually
become users of their own abstractions, so they can help themselves through
their efforts to help others.

Abstractions that involve technology, such as “database” or “communication
link”, are probably developer-centric. The best abstractions use terminology
from the language of the user, such as “general ledger account” or “customer”.

5.16 What’s the difference between encapsula-
tion and abstraction?

Encapsulation protects abstractions. Encapsulation is the bodyguard; ab-
straction is the VIP.

Encapsulation provides the explicit boundary between an object’s abstract
interface (its abstraction) and its internal implementation details. Encapsula-
tion puts the implementation details “in a capsule”. Encapsulation tells users
which features are stable, permanent services of the object and which features
are implementation details that are subject to change without notice.

Encapsulation helps the developers of an abstraction: it provides the free-
dom to implement the abstraction in any way consistent with the interface.
(Encapsulation tells developers exactly what users can and cannot access.) En-
capsulation also helps the users of an abstraction: it provides protection by
preventing dependence on volatile implementation details.
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Abstraction provides business value; encapsulation “protects” these abstrac-
tions. If a developer provides a good abstraction, users won’t be tempted to peek
at the object’s internal mechanisms. Encapsulation is simply a safety feature
that reminds users not to stray over the line inadvertently.

5.17 What are the consequences of encapsulat-
ing a bad abstraction?

Wasted money. Lots of wasted money.

There’s nothing more frustrating than a lousy abstraction that is encapsu-
lated. When a developer encapsulate a bad abstraction, users continually at-
tempt to violate the abstraction’s encapsulation barrier. When that happens,
don’t waste time trying to make it even harder for users to access the object’s
internals; fix the abstraction instead.

Don’t think of encapsulation as a club with which the good guys (the class’s
authors) prevent the bad guys (the class’s users) from looking inside an object.
Object-oriented design and programming is not a contest between developers
and users.

5.18 What’s the value of separating interface
from implementation?

It’s a key to eliminating the ripple effect when a change is made.

Interfaces are a company’s most valuable asset. Maintaining interface consis-
tency across implementation changes is a priority for many companies. Keeping
the interface separate from the implementation allows interface consistency. It
also produces software that is cheaper to design, write, debug, test, and maintain
than other software.

Separating the interface from the implementation makes a system easier to
understand by reducing its overall complexity. Each object needs to know only
about the interfaces — not about the implementations — of the objects with
which it collaborates. This is in stark contrast to most systems, in which it
seems as if every source file knows about the implementation of every other
source file. In one extreme case, 157 different source files had direct access to
a data structure in some other source file (we’re not making this up). Imagine
how expensive it would be to change that data structure in response to a new
customer requirement.

Separating the interface from the implementation also makes a system more
flexible by reducing coupling between components. A high incidence of coupling
between components is a major factor in systems becoming brittle and makes it
difficult to accommodate new customer requirements in a cost-effective manner.
When coupling is strong, a change to one source file affects other source files,
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so they require changes as well. This produces a ripple effect that eventually
cascades through a large part of the system. Since separating the interface from
the implementation reduces coupling, it also reduces ripples. The result is a
more flexible software product and an organization that is better equipped to
keep up with market changes.

Separating the interface from the implementation also simplifies debugging
and testing. The software that provides the interface is the only software that
directly touches the implementation, and therefore is the only software that can
cause nonsensical, incoherent, or inconsistent behavior by the implementation.
For example, if a linked list caches its length and the length counter doesn’t
match the number of links in the list, finding the code that caused this error is
vastly simpler if only a small number of routines can directly access the nodes
and the length counter.

Finally, separating the interface from the implementation encourages software
reuse by reducing education costs for those who want to reuse an object. The
reusers of an object need learn about only the interface rather than the (normally
vastly more complicated) implementation.

5.19 How can separating interface from imple-
mentation improve performance as well as
flexibility?

Late life-cycle performance tuning.

Fact 1: The only objects worth tuning are the ones that create performance
bottlenecks, and the only way to know which objects are the bottlenecks is
to measure the behavior of a running system (profiling). Developers sometimes
think they can predict where the bottlenecks will be, but studies have shown that
they often guess wrong — they cannot reliably predict where the application’s
bottlenecks will be. Therefore, don’t waste time tuning the performance of a
piece of code until actual measurements have shown that it is a bottleneck.

Fact 2: The most potent means of improving performance is changing algo-
rithms and data structures. Hand tuning the wrong algorithm or data structure
has very little benefit compared to finding an algorithm or data structure that
is a better match for the problem being solved. This is especially true for large
problems where algorithms and data structures must be scalable.

These two facts lead to an undeniable conclusion: the most effective per-
formance tuning occurs when the product’s fundamental data structures and
algorithms can be changed late in the product’s life cycle. This can be accom-
plished only if there is adequate separation of interface from implementation.
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For example, it would be expensive to change a sorted array to a binary search
tree in a typical non-OO software product today, because all the places that use
integer indices to access entries would need to be modified to use node pointers.
In other words, the interface is the implementation in typical software today.
The key to solving this problem is to focus on the similarity in the abstractions
rather than the differences in the data structures: sorted arrays and binary trees
are both containers that keep their entries in sorted order. In this light they
are merely alternate implementations of the same abstraction and they should
have the same interface.

The key to late life-cycle performance tuning is to hide performance differences
behind a uniform interface. Thus users code to the abstraction rather than to
the data structure. This allows the data structure and the algorithm to be
replaced at any time.

Ultimately the key is to ask the right questions at the right time. This lofty
goal is achieved by a good software development process (SDP). Unfortunately,
many SDPs cause developers to ask the wrong questions at the wrong time,
often resulting in a premature commitment to an implementation technique.
Even if an SDP uses OO terminology (for example, by using the term object
diagram rather than data structure), the software will be inflexible if the bulk
of its code is aware of relationships that may need to change.

The first programming technique that exploited these ideas was based on ab-
stract data types. The OO paradigm is built on top of the abstract data type
technique: OO adds the ability for the user code to work with all implementa-
tions of an abstraction simultaneously. That is, among other things, OO allows
the data structures to be interchanged dynamically on a case-by-case basis,
which is an improvement over a statically chosen, one-size-fits-all approach.

5.20 What is the best way to create a good in-
terface to an abstraction?

Design the interface from the user’s point of view (i.e., design the interface
from the outside in). In other words, start by writing some sample user code.

Interface design decisions should be based primarily on the users’ external
perspective. In contrast, when the implementation is built before the interface
is designed, the interface inevitably smells like the implementation. If the inter-
face has to be explained to its users in terms of the implementation, then the
implementation becomes cast in concrete.

For example, consider a member function that tells whether a particular in-
teger is a set-of-int. This is a boolean inspector: it inspects (versus mutates)
the set object and it returns a boolean value. A naive name for such a member
function might be Set::isElemOf(int) const. However, putting this name in
an if statement shows that the name gives the wrong connotation, since the
user code reads “if mySet is an element of x”:
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if (mySet.isElemOf(x)) ...

A much better sentence structure would be “if mySet contains x”, which
means the member function would be named contains:

if (mySet.contains(x)) ...

Note that the names of boolean inspectors should imply the meaning of the
true response. For example, File::isOpen() const is better than File::status()
const.

5.21 How are get/set member functions related
to poorly designed interfaces?

Get/set member functions are often used as Band-Aids to patch broken in-
terfaces.

Get/set member functions provide users with access to an object’s internal
data structures. Although get/set member functions appear to encapsulate
the object’s implementation, all they really do is hide the name of a data mem-
ber while exposing the data member’s existence, as well as the relationships
between the data member and all the other data members. In other words,
they expose the implementation technique. Ultimately, the resultant interface
makes the user code dependent on the implementation technique, and changing
the implementation technique breaks user code — the ripple effect.

If a Container class exports information about the binary tree that imple-
ments it (for example, if it exports member functions getLeftChild() and
getRightChild()), the users will be forced to think in terms of binary trees
rather than containers. The result is a cluttered interface in the implementer’s
vocabulary instead of a simple interface defined in the user’s vocabulary.

When an interface is cluttered, the resultant code is more complicated. When
an interface is defined in the implementer’s vocabulary, implementation details
will show through, and changing the implementation technique breaks user code.
Either way, the users lose.

Please don’t think that we are saying that get and set member functions
are always bad. They aren’t, and frameworks such as CORBA automatically
provide get and set member functions for all attributes. The real issue is that
a good object will always have a secret, something that it encapsulates and the
interface hides, and get and set member functions can sometimes undermine
the object’s secrets.

5.22 Should there be a get and a set member
function for each member datum?

Not necessarily.
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Some data members are legitimate part of an object’s interface. Having a
get or set member function for such a datum is appropriate because the datum
represents something that is part of the user’s vocabulary.

One way to tell which data members are a legitimate part of an object’s
interface is by asking a typical user to describe the class in implementation-
independent terms. The words used to describe the class from the user’s vocab-
ulary. The interface should be expressed in the user’s vocabulary.

5.23 Is the real purpose of a class to export
data?

No, the real purpose of a class is to provide services.

A class is a way to abstract behavior, not just a way to encapsulate bits.
A class’s interface must make sense from the outside. If a user expects mem-
ber functions to access an attribute, the member functions should exist. But
remember: the member functions to access an attribute exist because their ex-
istence makes sense in the user’s vocabulary (that is, for outside reasons), not
because there are bits in the object (that is, not for inside reasons).

A class’s interface should be designed from the outside in. It takes a little
while for this to feel comfortable to newcomers, but it is the only right way to
do the job.

This FAQ and the next one reflect a really important lesson learned from
the OO modeling wars in the early 1990s: objects should reflect behaviors and
services. Data modeling per se is inappropriate as an OO technique. There is
still a limited place for data modeling because most project persistence schemes
still end up invoking relational databases as an implementation technique, but
this fact of life doesn’t mean that the data model should bleed through to the
user.

5.24 Should OO be viewed as data-centric?

No, OO should be viewed as behavior-centric.

The data-centric view of OO (the wrong approach) says that objects are
fundamentally buckets of bits and that primary purpose of a class is to export
attributes.

The behavior-centric view of OO (the right approach) sees objects as in-
telligent agents that export useful services. The behavior-centric view of OO
produces more cost-effective systems that are easier to adapt to changing re-
quirements, are easier to tune for performance, and tend to have fewer defects.
The reason for these benefits is simple: behavior-centric systems move common
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code from a class’s users into the class itself, from the many to the few. Coa-
lescing snippets of code that show up in several users reduces maintenance costs
(by reducing code bulk) and avoids duplicating defects.
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Chapter 6

Specification of Observable
Behavior

6.1 What is the purpose of this chapter?

To provide a practical technique that reduces the ripple effect during both
development and maintenance. The technique provided in this chapter is funda-
mental to understanding proper inheritance as well as reducing both short-term
and long-term costs, especially for large systems.

The basic idea is to unambiguously state the external behavior of each mem-
ber function in some well-known location, then for other programmers to rely
on this specification rather than digging into the code and relying on the imple-
mentation. This technique is sometimes called programming by contract, and it
is extremely valuable whenever a software system is large enough that most pro-
grammers can’t remember all the ifs, ands, and buts of every member function
of every class.

6.2 Should users of a member function rely on
what the code actually does or on the spec-
ification?

The specification!

A member function’s specification unambiguously defines its externally ob-
servable behavior across all possible implementations. The specification of a
member function is more than simply the member function’s signature. The
specification captures the essential service that the member function provides
to its users in an implementation-independent fashion. This is an essential part
of abstraction and encapsulation. If a class’s developers do not provide a full
and complete specification, then they have failed as OO programmers because
they have failed to properly separate the interface from the implementation and
they have forced users to look at the implementation.
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Many software organizations systematically fail to observe this critical guide-
line. Developers in these organizations are trained to rely on what the code does
instead of what it promises to do. Users of a member function must be able
to rely only on the member function’s specification, not on the implementation
of the specification. In fact, there are only a few times when users legitimately
need to look at the source code to find out what a member function actually
does (such as when you are inspecting the code to ensure it fulfills its promise).

In the following example, suppose Version1 and Version2 represent two
versions of the sample class. Note that the specification (that is, the description
of the behavior that other programmers are supposed to rely on) of member
function f() did not change even though the implementation of Version2::f()
is different from that of Version1::f().

In this case, the specification says that the member function f() “promises
that the return value will be some even number”, and presumably this captures
the essential behavior of f(). The designer may have done this to allow some
implementations to return 4, while other implementations return a random even
number between 0 and 100, while other implementations return even numbers
less than zero. Users who rely only on this specification won’t be hurt by the
new version since their code would work for any even number. On the other
hand, users who rely on what the code actually does (i.e., who rely on member
function f() always returning 4) could break since they may rely on the value
being greater than zero or greater than 2 or one of a hundred other assumptions.

class Version1 {
public:
int f(); // Promises that the return value will be some

// even number
};

int Version1::f() { return 4; }

class Version2 {
public:
int f(); // Promises that the return value will be some

// even number
};

int Version2::f() { return -2; }

Never assume that a member function will always do what the code currently
does. The code will change, and the specification is generally more stable than
the code.
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6.3 What are the advantages of relying on the
specification rather than the implementa-
tion?

Time, completeness, flexibility, fixability, extensiblity, understandability, and
scalability.

Time: It is far easier to read the member function’s specification than to
reverse-engineer its actual behavior.

Completeness: If a specification is insufficient or absent, the class is broken
and must be fixed. By forcing users to rely on the specification rather than
the implementation, users report an insufficient specification as a serious error.
Thus specifications are developed early in the development life cycle and will be
maintained throughout the life cycle.

Flexibility: The code of a member function may (and generally does) change.
When it does, user code that relies only on the specification doesn’t break,
assuming the new behavior is compatible with the old specification. However,
user code that depends on how the member function was implemented may
break when legitimate modifications are made.

Fixability: A defect can be defined as a member function that doesn’t fulfill its
specification. The right course of action when specifications have been written is
usually to make the member function do what it is supposed to do, rather than
changing the specification to reflect the erroneous implementation. However, it
is unclear how to fix the defect in organizations where specifications are not used
and developers have to rely on what the code does instead of what it promises to
do. When the code is rewritten to fix the defect, other defects will undoubtedly
appear in other portions of the system that relied on the earlier version of code.
This ripple effect results in the development team “chasing” the defect through
the system as they have to make more and more modifications to the system to
try and make it work.

Extensibility: Adaptable specifications give latitude to derived classes. If
users rely on the code of the base class, users may break when supplied with a
derived class.

Understandability: By providing accurate specifications, the system’s behav-
ior can be more easily understood. In systems that don’t use complete and
consistent specifications, the long-term result is an overreliance on those rare
individuals, the system experts, who can understand the entire system at once.
For example, to repair a certain defect, either part X or part Y must be modified.
Without specification of what these parts are supposed to do, only the system
expert can determine whether any other component is going to break if X or
Y are changed. Specifications enable average developers to make more of these
decisions. From a business perspective, this mitigates risk if the system expert
is run over by a truck.
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Scalability: The larger the system the more important it is to separate the
specification from the implementation.

Write code to fulfill a specification, not the other way around.

6.4 What are advertised requirements and ad-
vertised promises?

An advertised requirement is a condition that the user of a member function
must comply with before the member function can be used. Some people use
the term precondition instead of the term advertised requirement.

An advertised promise is a guarantee that a member function makes to its
users. Some people use the term postcondition instead of the term advertised
promise.

When a user fails to fulfill the advertised requirements of a member func-
tion, the member function usually fails to fulfill its advertised promises. For
example, part of the advertised promise for myStack.pop() is that the num-
ber of elements will decrease by one. Therefore the advertised requirements for
myStack.pop() will include !myStack.isEmpty() since myStack.pop()cannot
fulfill this promise when myStack.empty() returns true.

When users fail to fulfill the advertised requirements, member functions nor-
mally throw exceptions. It is also legal, although often less desirable, for mem-
ber functions to respond more severely to users who fail to fulfill the advertised
requirements. For example, if Stack::pop() were invoked in a performance-
critical path of the system, testing the advertised requirement might prove to
be too expensive, in which case Stack::pop() might advertise, “If the Stack
isEmpty(), arbitrarily disastrous things might happen.” This is a trust issue:
such a statement in the requirement makes it the user’s responsibility to guar-
antee that the preconditions are met prior to the call. This is normally done for
performance purposes, where the number of redundant tests and/or the added
complexity of those tests would be prohibitively expensive.

6.5 How are the advertised requirements and
advertised promises of the member functions
specified?

Through the disciplined and consistent use of comments in the class decla-
ration. For example, each member function can have the following lines just
before or just after the declaration:

• // PURPOSE: Tells users the overall purpose of the member function.

• // REQUIRE: Tells users the advertised requirements. Since these must
make sense to users, the text in this section should refer only to parameters
and public: member functions.
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• // PROMISE: Tells users the advertised promises. Since these must make
sense to users, the text in this section should refer only to parameters and
public: member functions.

This technique is illustrated in the following example:

class Empty { };
class Full { };

class Stack {
public:

Stack() throw();
// PURPOSE: initializes a Stack
// REQUIRE: nothing
// PROMISE: size() will be zero

unsigned size() const throw();
// PURPOSE: returns the number of elements on this Stack
// REQUIRE: nothing
// PROMISE: return value will be between 0 and 10 inclusive

int top() const throw(Empty);
// PURPOSE: returns the top element of this Stack
// REQUIRE: size() must not be zero
// PROMISE: nothing

void push(int elem) throw(Full);
// PURPOSE: pushes elem onto the end of this Stack
// REQUIRE: size() must be strictly less than 10
// PROMISE: size() will increase by 1
// PROMISE: top() will be the same as parameter elem

int pop() throw(Empty);
// PURPOSE: pops and returns the top element from this
// REQUIRE: size() must not be zero
// PROMISE: size() will decrease by 1
// PROMISE: Returns the same as if top() were called at the beginning

protected:
int data_[10];
unsigned size_;

};

inline Stack::Stack() throw()
: size_(0)
{ }

inline unsigned Stack::size() const throw()
{ return size_; }
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inline int Stack::top() const throw(Empty)
{
if (size_ == 0)
throw Empty();

return data_[size_-1];
}

inline void Stack::push(int elem) throw(Full)
{
if (size_ == 10)
throw Full();

data_[size_++] = elem;
}

inline int Stack::pop() throw(Empty)
{
if (size_ == 0)
throw Empty();

return data_[--size_];
}

int main()
{
Stack s;
s.push(42);
int elem = s.pop();

}

Keeping a class’s specification in the header file (for example, the .hpp file)
makes it easier for developers to find the specification and keep it synchronized
with the code when changes are needed.

6.6 Why are changes feared in development or-
ganizations that don’t use specification?

Because no one knows what will break.

Changes come in three flavors.

• Type 1: Implementation changes that do not change the interface specifi-
cation.

• Type 2: Interface changes that are substitutable (that is, backward com-
patible).

• Type 3: Interface changes that are non-substitutable (that is, non-backward
compatible).
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Changes of type 1 and type 2 are relatively cheap compared with changes of
type 3, since changes of type 1 and type 2 cannot break user code that relies
only on the specification; changes of type 3 can break user code.

In particular, there is often an enormous ripple effect when non-substitutable
(that is, non-backward compatible) changes are made to a software application’s
interfaces. In some cases organizations can spend more time adjusting their
old code than writing new code. This is especially true for organizations that
are building large, complicated systems or applications. Because of this, it is
important for developers to know what kind of changes they are making.

With proper specification, anyone (including maintenance programmers) can
easily determine whether a proposed change to an interface will break existing
code that uses that interface. Read on for more details.

6.7 How do developers determine if a proposed
change will break existing code?

The specification.

Unfortunately there is often an enormous ripple effect when non-substitutable
(that is, non-backward compatible) changes are made to a software application’s
interfaces. In some cases organizations can spend more time adjusting their old
code than writing new code. This is especially true for organizations that are
building large, complicated systems or applications.

Developers should therefore be somewhat cautious of the difference between
a substitutable change and a change that will break existing user code.

With proper specification, anyone (including maintenance programmers) can
easily determine whether a proposed change to an interface will break existing
code that uses that interface. Ill-specified system typically suffer from “change
phobia”: if anyone even contemplate changing anything, everyone starts send-
ing out their résumés for fear that the system will collapse. Unfortunately,
changes often do make the world fail apart in ill-specified systems. It’s called
maintenance cost and it eats software organizations alive.

6.8 What are the properties of a substitutable
(backward compatible) change in a specifi-
cation?

Require no more, promise no less.
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A change to an interface doesn’t have to break existing code that uses the
interface. If the new specification is substitutable with respect to the old spec-
ification, the user code will not break. Substitutable changes have two distinct
properties. First, any user who fulfilled the old advertised requirements still ful-
fills the new ones (thus the new requirements must not get stronger). Second,
any member function that fulfills the new advertised promises also would have
fulfilled the old ones. In other words, existing user code must be adjusted if
the replacement class requires users to do more and/or promises less than the
original class did.

For example, Mac agrees to mow Lonnie’s lawn for $10. Mac could substitute
his friend, Patches, if the requirements went down (say $5) or if the promises
went up (weeding the garden, for instance). However, Lonnie would be justi-
fiably upset if Patches required more (say $20) or promised less (to mow only
half the lawn, for instance).

In the following example, Version1 and Version2 represent subsequent ver-
sions of some class. Version2 is substitutable for Version1 since Version2
requires no more and promises no less than Version1 (in fact, Version2 re-
quires less and promises more).

class Version1 {
public:
int f(int x);
// REQUIRE: Parameter x must be odd
// PROMISE: Return value will be some even number

};

class Version2 {
public:
int f(int x);
// REQUIRE: Parameter x can be anything
// PROMISE: Return value will be 8

};

For Version2 to be substitutable for Version1, every member function must
be substitutable. That is, every member function for the new version must
require no more and promise no less than the equivalent member function in
the old version. If even one member function is changed such that it requires
more or promises less, the entire class is not substitutable.

6.9 How can it be shown that the implementa-
tion of a member function fulfills its specifi-
cation?

The implementation requires no more than the advertised requirements of its
specification and delivers no less than the advertised promises of its specification.
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The implementation of a member function doesn’t have to be as picky as
its advertise requirements. Also, a member function can deliver more than the
minimum specified by its advertised promises. In the following example, the
actual behavior of Fred::f() is different from its advertisement but different
in a way that is substitutable and thus won’t surprise users.

class Fred {
public:

int f(int i);
// REQUIRE: Parameter i must be odd
// (if i is odd, this doesn’t guarantee to fulfill its PROMISE.)
// PROMISE: Return value will be some even number

};

int Fred::f(int i)
{

if (i % 2 == 0) {
// This could throw an exception here, but doesn’t have to

}

// This is allowed to return any even number,
// but it can do something very specific if desired...
return 8;

}

int main()
{
Fred fred;
int result = fred.f(37);
// This is allowed to assume that result is even
// (but it’s not allowed to assume result is 8.)

}

A specification is said to be adaptable when it is vague enough that an imple-
mentation may actually require less than its advertised requirements or when an
implementation may actually deliver more than its advertised promises. Adapt-
able specifications are common in base classes since the adaptability give extra
latitude to derived classes.

6.10 Is it possible to keep the specification syn-
chronized with the code?

It’s challenging, but it’s doable.

On projects ranging from very small (10K lines of OO/C++) to very large
systems (millions of lines of OO/C++) our experience has shown that this is a
solvable problem.
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Here are some guidelines.

• All developers must be trained to properly specify all classes and member
functions.

• The specifications must be kept with the class declarations (usually in a
header file) so that it is easy for developers and users to refer to them.

• All users must be trained to rely on specifications rather than implemen-
tations.

• Everybody must treat a specification error as a defect that must be fixed
with the same urgency that code defects are fixed.

• Everybody must be trained to recognize the differences between substi-
tutable changes and non-substitutable changes.

It is possible to keep the specification synchronized with the code because
of the nature of specifications. Since specifications describe behavior in terms
that are observable to the user, rather than in terms of the implementation,
specifications tend to be relatively stable compared with the implementation.
Furthermore, since all the other software components of the system are built
by relying on the specification rather than the implementation (see FAQ 6.9),
the specification tend to stabilize fairly early in the product life cycle. So as
a practical matter, the problem isn’t keeping the specification synchronized
with the code but the reverse: making sure the code is synchronized with the
specification. In other words, once a lot of software has been written based on
a particular specification, that specification is more stable than the underlying
code that implements the specification, so the issue is making sure the code
faithfully implements the specification rather than the other way around.

Remember: specifications are prescriptive rather than descriptive. Spec-
ifications prescribe what the code must do rather than describe what the code
already does. If the implementation of a member function and the member func-
tion’s specification disagree, and if a lot of software was already built based on
the specification, it is often easier to change the implementation to be consistent
with the specification rather than the other way around.

In contrast, when there is no explicit specification that programmers can
rely on, the implementation ends up being the de facto specification. Once that
happens any change to the implementation (including fixing bugs in some cases!)
can break the user code. In those cases it is trivial to keep the specification and
the implementation in sync (the implementation is the specification), but it
makes the whole application brittle — any change anywhere can trigger dozens
of other changes.
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Chapter 7

Proper Inheritance

7.1 What is proper inheritance?

When the advertised behavior of the derived class is substitutable for that of
the base class.

Proper inheritance and substitutable behavior can be guaranteed when the
specifications of the member functions of the derived class require no more and
promise no less than the specifications of the corresponding member functions in
the base class(es). The derived class can also add new member functions. The
specification for these new member functions can require as much or promise as
little as they like, since they are not constrained by existing member functions
in any base class.

In the following example, the specification for Derived::f() requires no more
(in fact, it imposes a weaker requirement) and promises no less (in fact, it makes
a stronger promise) than the specification of Base::f(). This will not break
users of the base class, so this is proper inheritance.

#include <iostream>
using namespace std;

class Base {
public:

virtual int f(int x);
// REQUIRE: Parameter x must be an odd number
// PROMISE: Return value will be some even number

virtual ~Base();
};

Base::~Base()
{ }

class Derived : public Base {
public:

virtual int f(int x);

83



// REQUIRE: Parameter x can be any integer
// PROMISE: Return value will be 8

};

int Base::f(int x)
{
if (x % 2 == 0)
throw "Even!";

return x + 1;
}

int Derived::f(int x)
{ return 8; }

void sample(Base& b)
{
// We should only pass odd numbers, since b may actually be a Base...
int result = b.f(37);

// We expect result to be even:
if (result % 2 == 1)
cerr << "PANIC: call the hotline at 1-800-BAD-BUGS\n";

}

int main()
{
Base b; sample(b);
Derived d; sample(d);

}

Note that every member function of the derived class must have substitutable
behavior with respect to the corresponding specification in the base class(es).
If even one derived class member function specifies stronger requirements or
weaker promises than the corresponding specification in the appropriate base
class, the inheritance relationship is improper.

Finally note that this chapter deals with public inheritance. private and
protected inheritance have completely different rules (see FAQ 37.1).

7.2 What are the benefits of proper inheritance?

Substitutability and extensibility.

Substitutability: An object of a properly derived class can be freely and safely
substituted for an object of its base class. For example, suppose a user defines a
function sample(Base& b). If class Derived properly inherits from class Base,
sample(Base& b) will work correctly when an object of class Derived is passed
instead of an object of class Base. In contrast, there is no guarantee that
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sample(Base& b) will work correctly when it is passed an object of a class that
was produced by improper inheritance.

Extensibility: The properly derived class can be freely and safely used in place
of its base class even if the properly derived class is created months or years after
the user code was defined. It’s easy to extend a system’s functionality when
you add properly derived classes that contain enhanced functionality. These
guarantees cannot be made when improper inheritance is used.

Note that these guarantees work only when the user code relies on the specifi-
cation of the base class rather than the (possible more specific) implementation
of the base class (see FAQ 6.2).

7.3 What is improper inheritance?

A design error that creates a mess.

Improper inheritance occurs when the derived class is not substitutable with
respect to its base class(es), that is, when the specification of one or more
inherited member functions either requires more or promises less than the cor-
responding specification in the base class.

One symptom of improper inheritance is that the user code may be forced
to use dynamic typing (that is, runtime type checks, capability queries, and
downcasting) and to treat objects of different derived classes in different ways
(for example, to avoid using some member functions on some derived classes).

Improper inheritance has a nearly unbounded cost on the code that uses
base class pointers and references (recall that this is, by design, the bulk of
the application; see FAQ 2.24). The initial development cost is greater, since
the code that uses base class pointers and references needs to be littered with
runtime type checks and complex decision logic. The long-term maintenance
costs are also greater: every time a new derived class is added, all the runtime
type checks in all the user code must be reanalyzed to ensure that nothing will
break.

Most of the benefits of OO technology vanish when improper inheritance is
employed. In C++, public inheritance should be tied closely to subtyping,
which means public inheritance has a strong semantic meaning. When public
inheritance is used improperly, the software usually ends up being brittle and
over budget and delivered late.

7.4 Isn’t the difference between proper and im-
proper inheritance obvious?

Apparently not.
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Improper inheritance is a very common design error. This seems to be be-
cause developers base inheritance relationships on their intuition rather than
the objective criteria of substitutability.

The following inheritance relationships are improper because the derived class
either requires more or promises less.

• A Stack is not a kind-of List (assuming List provides member functions
that allow insertions in the middle of the list and Stack does not).

• A ListOfApples is not a kind-of ListOfFruit (assuming that any type
of Fruit can be put into a ListOfFruit).

The following inheritance relationships may or may not be proper inheritance
depending on the specified behavior of the base class and the derived class.

• A Circle may not be a kind-of Ellipse.

• An Ostrich may not be a kind-of Bird.

• An Integer may not be a kind-of RationalNumber.

These examples are explained in Chapter 8.

7.5 Is substitutability based on what the code
does or what the specification promises the
code will do?

The specification, not the implementation.

The specification of an overridden member function must require no more and
promise no less than the specification of the corresponding member function in
the base class. The overridden member functions must also correctly implement
whatever specifications they provide. However, when the base class gives an
adaptable specification, the code of the override doesn’t necessarily have to do
the same as the code of the base class.

In the following example, Base::f() provides an adaptable specification: the
code is more specific than the strict minimum guaranteed by the specification.
The code of the derived class isn’t substitutable with respect to the implementa-
tion of the base class, but it is substitutable with respect to the specification of
the base class. Since the user code, sample(Base& b), relies only on the spec-
ification of Base::f() rather than the more specific implementation, this user
code won’t break when it is passed a Derived object. However, if the user code
had relied on the implementation of Base::f(), it would break when passed a
Derived object (it would also break if a legitimate, substitutable modification
was made to Base::f(), such as returning 42).
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#include <iostream>
using namespace std;

class Base {
public:
virtual int f();
// PROMISE: Return value will be some even number

virtual ~Base();
};

Base::~Base()
{ }

class Derived : public Base {
public:
virtual int f();
// PROMISE: Return value will be 8

};

int Base::f()
{
// This is allowed to return any even number...
return 4;

}

int Derived::f()
{
// This must return 8...
return 8;

}

void sample(Base& b)
{
int result = b.f();

// This is allowed to expect result will be even,
// but it must not assume that result is 4.
if (result % 2 == 1)
cerr << "PANIC: call the hotline at 1-800-BAD-BUGS\n";

}

int main()
{
Base b; sample(b);
Derived d; sample(d);

}

Never assume that a class will always be implemented as it is currently im-
plemented (see FAQ 6.2).
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7.6 Is it proper to revoke (hide) an inherited
public: member function?

No.

Never. The rest of the software was written based on the promises made by
the base class (see FAQ 6.2). Since the main idea of polymorphism and dynamic
binding is to pass a derived class object to a function that takes a base class
pointer or reference, this “rest of the system” often works with derived class
objects without knowing it (see FAQ 2.24). Everything works fine as long as
the derived class objects behave like the base class promises they will behave.
However if the derived class is not substitutable for the base class, all that code
that was written based on the base class’s promises (the “rest of the system”)
will break.

In order to be substitutable, the derived class object must support all the
member functions of the base class. If even one of the member functions
promised by the base class has been revoked (hidden) by a derived class, a
large portion of the rest of the system could break.

Public inheritance requires keeping promises — and hiding or revoking promised
behavior will surprise the rest of the system. Too often, programmers try to
use inheritance even when it doesn’t fit the constraints of substitutability. Typ-
ically this means creating a derived class, then trying to revoke (hide) whatever
inherited public: member functions don’t make sense in the derived class.

Revoking an inherited public: member function is evil.

Recall that this chapter covers the guidelines for public inheritance. private
and protected inheritance are different: it is appropriate and proper to revoke
(hide) inherited public: member functions in a private or protected derived
class (see FAQ 37.1).

7.7 What is specialization?

A major source of confusion and design errors.

Some people assume that proper inheritance can be determined by the vague
concept of specialization. For example, if Derived is a special Base, some people
assume that Derived can be derived properly from Base. While this simple
rule works some of the time, it is incorrect often enough to be misleading.
The guiding principle is for the derived class to behave like the base class, and
specialization sometimes leads designers in the wrong direction.

One problem with the concept of specialization is that it can be ambiguous.
Does it mean “better than” (JetPlane is a specialized Plane) or “more skilled”
(Doctor is a specialized Person) or “subset of” (Circle is a specialized Ellipse)
or “more specific” (Unix is a specialized Operating System) or “restricted” (a
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List that can only contain Circle objects is a specialized List that can contain
any Shape)? Because of the potential ambiguity, it is hard to make a blanket
statement about specialization as a reliable approach to public inheritance.

Not only is it ambiguous, but in certain cases it is completely incorrect. In
particular, specialization does not imply that Derived must support all the
operations defined by Base, as is necessary for proper inheritance.

Forget specialization and learn about substitutability.

7.8 What do subsets have to do with proper in-
heritance?

Nothing.

Remember, the goal is to avoid breaking existing code that uses base class
pointers and references. Since elements of a subset don’t necessarily behave
in a backward compatible way with respect to the superset, users might be
surprised if they are passed an element of a subset, and all that code using base
class pointers/references might break. It doesn’t matter that intuition says
otherwise; the fact remains that the whole subset notion is wrong often enough
that it is not a reliable design principle. Consider the following two examples:

• The set of circle is a subset of the set of all ellipses, yet circles can’t
deform themselves asymmetrically, which may be a member function of
class Ellipse (see FAQ 8.8).

• The set of ostriches is a subset of the set of all birds, yet ostriches cannot
fly, which may be a member function of class Bird (see FAQ 8.4).

The root problem with the subsets-mean-subclasses idea is that subsets deal
with values, where objects normally have mutative member functions (deform
asymmetrically, fly, and so on).

Forget subsets and learn about substitutability.
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Chapter 8

Detecting and Correcting
Improper Inheritance

8.1 Can improper inheritance wreck a project?

You bet!

Many important projects go off track because of bad inheritance. It’s a dis-
ease that can eat a project alive. We’ve been asked to look at numerous failed
projects with very large budgets, and improper inheritance is a typical prob-
lem. Small projects can sometimes avoid the full consequences of improper
inheritance if the developers communicate well and the system design is easy
to follow, even if it is incorrect. Large projects don’t have this luxury, and
improper inheritance causes working code to break in ways that can’t be fixed
easily.

The problem is quite real and can be very subtle. In our training and men-
toring experience, very few OO newcomers handle this topic easily.

8.2 What’s the best way to learn how to avoid
improper inheritance?

Work a few simple examples, such as those provided in this chapter. Then get
lots of experience working with people who understand this issue. And ignore
your intuition.

The examples use simple ideas such as birds and ostriches, rational numbers
and integers, stacks and lists, apples and fruits. Real-world problems don’t
directly use these words, but almost every improper inheritance situation maps
to one of these simple examples.

Anyone who doesn’t understand the examples in this chapter will probably
be hurt in the real world.
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8.3 Is intuition a reliable guide to understanding
proper inheritance?

No!

Probably the most important message in this chapter is Don’t trust your
intuition. People who are still ignorant of their ignorance are dangerous. It
takes a while before intuition (or “gut feel”) lines up with proper inheritance.
Until then, get help from someone with battle scars. Don’t be mentored by
anyone with shiny new armor — be mentored by someone whose armor is old
and dented.

8.4 Is an Ostrich a kind-of Bird?

Not if all birds can fly!

Suppose a system uses a base class Bird with member functions altitude()
and fly(), where fly() promises that the bird’s altitude() will be greater
than zero.

class Bird {
public:

int altitude() const;
// PROMISE: Returns this Bird’s current altitude

virtual void fly();
// PROMISE: altitude() will return a value > 0

virtual ~Bird();
};

Bird::~Bird()
{ }

Can an Ostrich class inherit from Bird? Unfortunately, ostriches can’t fly
(that is, the altitude of an ostrich remains at zero when it tries to fly). Despite
its intuitive appeal and regardless of how many other member functions are
inheritable, deriving Ostrich from Bird causes problems. The problems stem
from the inherent incompatibility of the following statements.

1. The altitude of every Bird will be greater than zero when it flies (“all
birds can fly”).

2. Ostrich is a kind-of Bird.

3. The altitude of an Ostrich remains zero after it flies (“ostriches cannot
fly”).
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At least one of the statements must be false; they cannot be simultaneously
satisfied. We examine the impact of invalidating each of three statements. Note
that there is no correct solution; the particular situation dictates whichever is
best (or perhaps least bad).

• Invalidating statement 1 requires changing the behavior of Bird to remove
the promise that the bird’s altitude will be greater than zero when it flies.
Unfortunately, this breaks existing user code that relies on the original
behavior. In a small system, it might be feasible to change all the user
code that is broken, but in large systems this is usually not a practical
alternative.

• Invalidating statement 2 implies that the Ostrich class cannot inherit
from the Bird class even though ostrich is a type of bird in the biological
sense. In this case the reason is that Bird really means Bird That Can Fly.

• Invalidating statement 3 means that the altitude of an Ostrich must be
greater than zero after it flies. To make this option more palatable, one
can imagine that an Ostrich uses some artificial means to increase its
altitude (stairs, a jet-pack, plane tickets, or something like that).

There are two common traps that people typically fall into. The first is to
suggest the following as a fourth alternative: create a class such as AnyBird,
and inherit both Bird and Ostrich from that new base class. Although there
is nothing wrong with this alternative, it is not a fourth alternative. This is
merely a repackaging of alternative 2 since it does not try to make Ostrich
inherit from Bird and does not try to make Ostrich substitutable for Bird.

The second common trap is to assume that there must be some universal right
or best answer for the problem. In reality, it is critical that designers know all
three of the tools that can get them out of an improper inheritance situation.
In other words, when an improper inheritance situation comes up, make sure
to try all three possibilities — do not dismiss any of them ahead of time. For
example, although the third choice (“make the ostrich fly”) seems undesirable
in principle, there are times when it may be the most practical. For example,
if there is enough code that has already been written based on the promise in
the base class, then it will be very expensive to change the base class’s promise,
ruling out alternative 1. Furthermore, if it is important to be able to pass the
derived class into that preexisting code, alternative 2 is ruled out, leaving only
alternative 3.

If the problem is caught early enough in the software development life cycle,
clearly it is still possible to weaken the base class’s promises since there is not
yet a lot of exiting code that relies on the strong promises made by the base
class. So one of the messages here is to think rather than hack. If a problem
like this is detected early enough, the cost will be minimal; if it isn’t caught
until late in the game, the consequences can be pretty grim.

Do not confuse substitutability with subset. Even though the set of ostriches
is a subset of the set of birds (every ostrich is in the set of birds), this does not
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imply that the behavior of Ostrich is substitutable for the behavior of Bird.
The substitutability relation has to do with behavior, not subsets. When evalu-
ating a potential inheritance relationship, the important factor is substitutable
behavior, not subsets (see FAQ 7.8).

8.5 Should an overridden virtual function throw
an exception?

Only if the base class says it might.

It’s appropriate for an override to throw an exception if and only if the speci-
fication of the member function in the base class says it might (there is a special
case for legacy code that considers the absence of an exception specification in
the base class to allow the derived class to throw whatever it wants, but this
is for historical reasons only). Without such a specification in the base class,
throwing an exception in an override is similar to false advertising. For exam-
ple, consider a user-car salesman selling a kind-of car that blows up (that is,
throws an exception) when you turn on the ignition switch. Ralph Nader would
correctly say that such a vehicle isn’t substitutable for a car. Code should do
what the specification says it will do, or other code that relies on those promises
may break.

Also, consider the Ostrich/Bird dilemma. Suppose Bird::fly() promises
never to throw an exception, as follows.

#include <iostream>
using namespace std;

class Bird {
public:

Bird() throw();
virtual ~Bird() throw();
int altitude() const throw();
virtual void fly() throw();
// PROMISE: altitude() will return a number > 0; never throws an exception.

protected:
int altitude_;

};

Bird::Bird() throw()
: altitude_(0)
{ }

Bird::~Bird() throw()
{ }

int Bird::altitude() const throw()
{ return altitude_; }
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void Bird::fly() throw()
{ altitude_ = 100; }

Based on this promise, it is legitimate and appropriate to assume that the
fly() member function will not throw an exception. For example, the following
sample code is decorated with a throw(), meaning that this function promises
not to throw an exception.

void sample(Bird& bird) throw() // Legitimate reliance on what
// Bird::fly() says

{
bird.fly();

}

But suppose Ostrich::fly() is defined to throw an exception, as follows.

class CannotFly { };

class Ostrich : public Bird {
public:
virtual void fly() throw(CannotFly);
// PROMISE: throws an exception despite what Bird says

};

void Ostrich::fly() throw(CannotFly)
{ throw CannotFly(); }

Now suppose someone legitimately passes an Ostrich into the sample() code:

int main()
{
Ostrich bird;
sample(bird); // Legitimate conversion from Ostrich to Bird

}

Unfortunately the program will crash in the sample() function, since the
fly() member function ends up throwing an exception. One cannot blame
main() for passing an Ostrich into the sample() function; after all, Ostrich
inherited from Bird and therefore Ostrich is supposed to be substitutable
for Bird. One cannot blame sample() for believing the promise made by
Bird::fly(); indeed programmers are supposed to rely on the specification
rather than the implementation. So the blame rests with the author of class
Ostrich, who claimed that Ostrich was substitutable for Bird even though it
didn’t behave like a Bird.

The lesson is that improper inheritance cannot be fixed by throwing an excep-
tion if the base class prohibits the throwing of an exception. This is because the
root of improper inheritance is behavior that violates a contract, and throwing
an exception is part of a function’s behavior. Specifically, the behavior of an
overridden virtual function that throws an exception conflicts with a base class
contract that prohibits the throwing of an exception.
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For an exception to this guideline, see FAQ 26.12.

8.6 Can an overridden virtual function be a no-
op?

Only if the base class says it might.

It’s proper for an overridden virtual function to do nothing if and only if the
specification of the member function in the base class tells users that it might
do nothing. Without such a specification in the base class, doing nothing is like
false advertising. For example, consider a used-car salesman selling a kind-of
car where applying the brakes is a no-op (that is, the brake lines have been cut).
Ralph Nader would correctly say that such a vehicle isn’t substitutable for a
car.

Consider the Ostrich/Bird dilemma. Suppose Bird::fly() promises that
the altitude of the Bird will be strictly positive.

#include <iostream>
using namespace std;

class Bird {
public:
Bird() throw();
virtual ~Bird() throw();
int altitude() const throw();
virtual void fly() throw();
// PROMISE: altitude() will return a number > 0; never throws
// an exception.

protected:
int altitude_;

};

Bird::Bird() throw()
: altitude_(0)
{ }

Bird::~Bird() throw()
{ }

int Bird::altitude() const throw()
{ return altitude_; }

void Bird::fly() throw()
{ altitude_ = 100; }

Based on this promise, it is appropriate and normal for users to write code
such as the following.
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void sample(Bird& bird)
{
bird.fly();

if (bird.altitude() <= 0)
cerr << "Error! Call the hotline at 1-800-BAD-BUGS\n";

}

But suppose Ostrich::fly() is defined as a no-op:

class Ostrich : public Bird {
public:
virtual void fly() throw();
// PROMISE: altitude() will still be zero

};

void Ostrich::fly() throw()
{
// Does nothing despite what Bird said (bad!)

}

Now suppose someone legitimately passes an Ostrich into the sample() code:

int main()
{
Ostrich bird;
sample(bird);

}

Note that decorating the Ostrich class with a comment (“I can’t fly”) isn’t
good enough, since many users won’t even be aware that they’re dealing with
an Ostrich.

Trying to make this safe with a canYouFly() query still breaks existing user
code, because calls to bird.fly() need to be patched with a test, “If you can
fly, then fly.” Note also that these capability queries limit extensibility (see FAQ
27.7).

The lesson is that improper inheritance cannot be fixed by having the overrid-
den function do nothing if the contract of the base class says the function will do
something. This is because the root cause of improper inheritance is behavior
that violates a contract and doing nothing can violate a contract. Specifically,
the behavior of an overridden virtual function that does nothing conflicts with
a base class contract that says the member function will do something.

8.7 Why does C++ make it so hard to fix the
Ostrich/Bird dilemma?

The problem is bad domain analysis and has nothing to do with C++.
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The problem of whether or not Ostrich is substitutable for Bird is not a
failure of the C++ language, nor is it a failure of object-oriented technology.
It is a failure of domain analysis. The domain analysis incorrectly concluded
something about the problem domain: that the altitude of all kinds-of birds is
positive when they fly.

Stable OO software depends on both an accurate understanding of the prob-
lem domain and properly encoding problem knowledge in class relationships.
If nobody on the design team understands the problem domain (in this case,
birds), it should not be surprising that the design will be flawed. This under-
scores the critical role of the “domain expert” on OO projects.

8.8 Should Circle inherit from Ellipse?

The answer depends on what class Ellipse promises to do. Circle can be
substitutable for Ellipse only if Circle supports all of the member functions
defined by Ellipse.

Suppose Ellipse has a setSize(x,y) member function that sets the width
and height of the Ellipse.

#include <iostream>
using namespace std;

class Ellipse {
public:
Ellipse(float width, float height) throw();
// PROMISE: width() will return the same as parameter width
// PROMISE: height() will return the same as parameter height

virtual ~Ellipse() throw();
virtual void setSize(float width, float height) throw();
// PROMISE: width() will return the same as parameter width
// PROMISE: height() will return the same as parameter height

float width() const throw();
float height() const throw();

protected:
float width_, height_;

};

Ellipse::Ellipse(float width, float height) throw()
: width_(width) , height_(height)
{ }

Ellipse::~Ellipse() throw()
{ }

void Ellipse::setSize(float width, float height) throw()
{
width_ = width;
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height_ = height;
}

float Ellipse::width() const throw()
{ return width_; }

float Ellipse::height() const throw()
{ return height_; }

Now suppose someone uses an Ellipse and sets its width to 10 and its height
to 20:

void sample(Ellipse& ellipse)
{
// Set the dimensions of the Ellipse to 10x20
ellipse.setSize(10, 20);

// Legitimately rely on the promises made by Ellipse:
if (ellipse.width() != 10 || ellipse.height() != 20)
cerr << "Error! Call the hotline at 1-800-BAD-BUGS\n";

}

In this case, a derived class called Circle would not substitutable for Ellipse
because Circle (presumably) cannot be resized asymmetrically.

class Circle : public Ellipse {
public:
Circle(float initRadius) throw();
// PROMISE: width() will equal initRadius,
// height() will equal initRadius
// But what should we do with setSize(float x, float y); ?

};

Circle::Circle(float initRadius) throw()
: Ellipse(initRadius, initRadius)
{ }

For example, if someone legitimately passed a Circle into function sample(),
then the Circle would get deformed so it is no longer circular:

int main()
{
Circle c(10);
cout << "initial Circle dimensions = "

<< c.width() << "x" << c.height() << "\n";

sample(c);
cout << "final Circle dimensions = "

<< c.width() << "x" << c.height() << ’\n’;
}
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The output of this program is

initial Circle dimensions: 10x10
final Circle dimensions: 10x20

A 10×20 circle is a strange-looking circle!

The lesson is that proper inheritance is based on substitutable behavior.

8.9 What can be done about the asymmetric-
circle dilemma?

Admit that you can’t have it all.

Despite its intuitive appeal, and regardless of how many other member func-
tions are inheritable, deriving Circle from Ellipse causes problems. The prob-
lems stem from the inherent incompatibility of the following statements.

1. Every Ellipse can be stretched asymmetrically.

2. Circle is substitutable for Ellipse.

3. A Circle cannot be stretched asymmetrically.

At least one of those statements must be false. The options are exactly the
same as with the Ostrich/Bird dilemma. Hmmm. Is there a pattern here?
The three options follow.

• Invalidating statement 1 requires that either Ellipse::setSize(x,y) be
removed or given an adaptable specification such as “This may or may
not do something.” Either way, the change may break existing code that
relies on the former promises made by class Ellipse.

• Invalidating statement 2 prohibits passing a Circle as a kind-of Ellipse.

• Invalidating statement 3 means that Circle must be able to stretch asym-
metrically, which is not mathematically desirable.

The basic problem is that Ellipse is too strong. Ellipse has such powerful
member functions that Circle can’t be substituted. The options are to weaken
Ellipse, strengthen Circle, or admit that a Circle isn’t substitutable for an
Ellipse.

The situation occurred as a result f an inadequate domain analysis. Either
the requirements for class Ellipse were not understood or the consequences of
trying to define Circle as substitutable for Ellipse were overlooked. Remem-
ber: do not confuse substitutability with specialization. Because a circle is a
specialized ellipse (circles are ellipses that have an extra symmetry constraint)
does not imply that Circle is substitutable for Ellipse. The substitutabil-
ity relation has to do with behaviors, not specialization. When evaluating a
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potential inheritance relationship, the only criterion should be substitutability.
The derived class should never surprise code that expects a properly functioning
base class.

Note that if Circle::setSize(x,y) is redefined so that it throws an excep-
tion, it would break user code unless the specification of Ellipse::setSize(x,y)
allows exceptions to be thrown. If Circle::setSize(x,y) is redefined to be a
no-op, it would break user code unless the specification of Ellipse::setSize(x,y)
says, “This member function might do nothing.”

There are other ways to illustrate this basic issue. Integer is not substi-
tutable for RationalNumber if RationalNumber has a divide-self-by-two mem-
ber function (unless the divide-self-by-two member function has a weak spec-
ification, such as “Multiplying the result by two might not give the original
number”).

This issue is important because it comes up so often in real-life situations.
This is not about ellipses or birds or integers. This is about wasted money
and failed projects. Unfortunately, the projects that are most vulnerable to
improper inheritance are the larger ones with bigger budgets and more to lose.

8.10 What is the one issue in these FAQs that
doesn’t seem to die?

Trying to solve the “circle deriving from ellipse” relationship by having ellipse
derive from circle.

We like getting e-mail. We like getting letters. We like receiving phone calls.
We appreciate kind words and advice. But, please, no more talk about circles,
ellipses, and how the two can be related. Many people have suggested that a
“solution” to trying to derive a circle from an ellipse is to derive the ellipse
from the circle. That is not a dependable solution, despite the mathematical
arguments, and it misses the fundamental OO issue of substitutability that
is controlled by expectations. Look at it this way: at a topology conference,
everyone “knows” that a coffee cup is the same as a doughnut because their
fundamental groups are the same. But when topologists have breakfast, they
recognize that these two concepts are not substitutable. Most of the time they
manage to eat the donut and pour coffee into the cup. So it’s a question not of
reality but of perception and context.

It really doesn’t matter what mathematics says about circles and ellipses.
The entire discussion comes down to adherence to the specification of the base
class. Reality, mathematical or otherwise, is irrelevant.

Ellipse can be substitutable for Circle if you say so up front and avoid
logical impossibilities. Circle can be substitutable for Ellipse if you say so
up front and avoid logical impossibilities. Ostrich can be substitutable for
CoffeeCup if you push it hard enough, but either Ostrich or CoffeeCup is
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going to have a weird interface. The point is that substitutable interfaces can
be forced or they can be natural, but either way, proper inheritance requires
substitutable interfaces.

8.11 Should Stack inherit from List?

Probably not.

It is tempting to inherit Stack from List to reuse the List class (for example,
if List were a linked list). However, even if List is an abstract class, it will
normally define member functions that aren’t natural for a Stack, and if List
provides member functions that class Stack doesn’t want to support, inheritance
would be wrong.

For example, the public: interface to a typical Stack class might look like
the following (some or all of these member functions may be virtual; this is a
stack of integers — see FAQ 25.2 for how to make it a template).

class Empty { };
class BadPosition { };

class Stack {
public:
void push(int item) throw(); // Push another item onto this
int pop() throw(Empty); // Remove the top item from this
int top() const throw(Empty); // Peek at the top item of this
unsigned size() const throw(); // Returns the number of items

};

In contrast, the public: interface of a typical List class might look like the
following (some or all of these member functions may be virtual; this is a list
of integers — see FAQ 25.2 for how to make it a template).

class List {
public:
void prepend(int item) throw();
void append(int item) throw();
void removeFirst() throw(Empty);
void removeLast() throw(Empty);
void insertAtPosition(int item, unsigned position) throw(BadPosition);
void removeAtPosition(unsigned position) throw(BadPosition,Empty);
int& operator[] (unsigned index) throw(BadPosition,Empty);
int operator[] (unsigned index) const throw(BadPosition,Empty);
unsigned size() const throw();
void setSize(unsigned newSize) throw();
unsigned countMatches(int itemToMatch) const throw();
unsigned findPositionOfMatch(int item) const throw();

};
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If Stack were to inherit from List, Stack would need to support all the
member functions that are in class List, including member functions to access,
insert, and/or remove elements at an arbitrary position within the Stack. If
these member functions are considered inappropriate for Stack, then Stack
should not inherit from List and should use composition instead (see FAQ
5.9).

Remember: do not confuse substitutability and code reuse. Just because
Stack may use the bits and code from List does not imply that Stack is
substitutable for List. The substitutability relation is governed by behavior,
not code reuse. When evaluating a potential inheritance relationship, the only
criterion should be substitutability.

8.12 Is code reuse the main purpose of inheri-
tance?

The main purpose of inheritance is to express an externally meaningful rela-
tionship that describes the behavior of two entities within the problem domain.
This relationship is called the is-substitutable-for relationship, although some-
times the less accurate terms is-a or kind-of are used instead. The critical insight
here is that inheritance springs out of the reality of the problem domain, not out
of a technical goal within the solution domain. The most important code reuse
that comes from (proper) inheritance is the reuse in large systems of existing
code that trusts the new derived class to be substitutable for the base class.
Reusing a snippet of code from another class can be thought of as low-level
reuse.

Inheritance can result in low-level code reuse as a side effect, but low-level
code reuse can also be gained from composition, sometimes more appropriately
than through inheritance. Trying to achieve low-level code reuse via inheritance
often results in improper inheritance. For example, deriving Stack from List
is an attempt to achieve code reuse via inheritance, and it results in improper
inheritance.

As suggested, composition is probably a better technique for this situation. In
the following example, a Stack object is a composite built from a List object.
Thus, class Stack is reusing the code from class List via composition (some or
all of these member functions may be virtual; these classes use integers but
real stacks and lists would be generic via templates; see FAQ 25.1).

class Empty { };
class BadPosition { };

class List {
public:
void prepend(int item) throw();
void append(int item) throw();
int removeFirst() throw(Empty);
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int removeLast() throw(Empty);
void insertAtPosition(int item, unsigned position) throw(BadPosition);
int removeAtPosition(unsigned position) throw(BadPosition,Empty);
int& operator[] (unsigned index) throw(BadPosition,Empty);
int operator[] (unsigned index) const throw(BadPosition,Empty);
unsigned size() const throw();
void setSize(unsigned newSize) throw();
unsigned countMatches(int itemToMatch) const throw();
unsigned findPositionOfMatch(int item) const throw();

protected:
// Implementation intentionally omitted

};

class Stack {
public:
void push(int x) throw();
int pop() throw(Empty);
int top() const throw(Empty);
unsigned size() const throw();

protected:
List list_;

};

void Stack::push(int x) throw()
{ list_.append(x); }

int Stack::pop() throw(Empty)
{ return list_.removeLast(); }

int Stack::top() const throw(Empty)
{ return list_[list_.size()-1]; }

unsigned Stack::size() const throw()
{ return list_.size(); }

Here is the UML notation for composition. In the following example, a Stack
object is a composite built from a List object.

8.13 Is container-of-thing a kind-of container-of-
anything?

No, even if thing is a kind-of anything.

This design error is, unfortunately, both common and disastrous.

Despite its intuitive appeal, container-of-thing is not a kind-of container-of-
anything (more precisely, a container-of-thing is not substitutable for a container-
of-anything). A container-of-anything allows anything to be inserted into it, but
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container-of-thing only allows things to be inserted into it. Therefore, container-
of-thing is strictly less powerful than container-of-anything, and the software
that is based on the promises of container-of-anything breaks when it receives
a container-of-thing instead.

This is often surprising to people new to OO or the study of proper inher-
itance. The reason for the surprise is that people often rely on the intuitive
notion of kind-of, but the intuitive notion is inappropriate as a design princi-
ple. The reasons are that kind of is somewhat muddy (what exactly does it
mean?), and also it is wrong often enough to be unreliable and therefore dan-
gerous. Remember: the most important issue is substitutability. If intuition
and substitutability are in conflict, reject intuition.

8.14 Is bag-of-apple a kind-of bag-of-fruit, as-
suming bag-of-fruit allows the insertion of
any kind-of fruit?

No!

This is a specific example of the general guideline presented in the previous
FAQ.

In the following, Fruit is an ABC, and Apple and Banana are concrete kinds-
of Fruit. The UML diagram and the code are both shown.

#include <iostream>
using namespace std;

class Fruit {
public:
virtual void printClassName() const throw() = 0;
virtual ~Fruit() throw();

};

Fruit::~Fruit() throw()
{ }

class Apple : public Fruit {
public:
virtual void printClassName() const throw();

};

void Apple::printClassName() const throw()
{ cout << "Apple\n"; }

class Banana : public Fruit {
public:
virtual void printClassName() const throw();
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};

void Banana::printClassName() const throw()
{ cout << "Banana\n"; }

The following BagOfFruit class allows insertion and removal of objects of any
kind-of Fruit.

class Full { };
class Empty { };

class BagOfFruit {
public:

BagOfFruit() throw();
unsigned size() const throw();
void insert(Fruit& f) throw(Full);
Fruit& remove() throw(Empty);

protected:
enum { maxSize_ = 20 };
unsigned size_;
Fruit* data_[maxSize_];

};

BagOfFruit::BagOfFruit() throw()
: size_(0)
{ }

unsigned BagOfFruit::size() const throw()
{ return size_; }

void BagOfFruit::insert(Fruit& f) throw(Full)
{

if (size_ == maxSize_) throw Full();
data_[size_++] = &f;

}

Fruit& BagOfFruit::remove() throw(Empty)
{

if (size_ == 0) throw Empty();
return *data_[--size_];

}

The following demonstrates a polymorphic function that inserts any kind of
Fruit into any kind of BagOfFruit. Note that the parameter for bag.insert()
is correct, since class BagOfFruit guarantees that this member function can
accept any kind of Fruit.

void insertFruitIntoBag(BagOfFruit& bag, Fruit& fruit)
{
bag.insert(fruit);

}
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The following BagOfApple class claims (by inheritance) to be a kind-of BagOfFruit.
However, BagOfApple is not substitutable for BagOfFruit. There are several
other things wrong with this class as well; it uses a reference cast, and it hides
BagOfFruit::remove() and BagOfFruit::insert(Fruit&).

class BagOfApple : public BagOfFruit {
public:
BagOfApple() throw();
void insert(Apple& a) throw(Full);
Apple& remove() throw(Empty);

};

BagOfApple::BagOfApple() throw()
: BagOfFruit()
{ }

void BagOfApple::insert(Apple& a) throw(Full)
{ BagOfFruit::insert(a); }

Apple& BagOfApple::remove() throw(Empty)
{ return (Apple&) BagOfFruit::remove(); }

Because class BagOfApple inherits from class BagOfFruit, BagOfApple ob-
jects can be passed to insertFruitIntoBag(). Unfortunately, this permits non-
sensical combinations of bags and fruits to be passed to insertFruitIntoBag().
For example, a banana can be inserted into a BagOfApple.

int main()
{
BagOfApple bagOfApple;
Banana banana;
insertFruitIntoBag(bagOfApple, banana);

cout << "Removing an Apple from bagOfApple: ";
Apple& a2 = bagOfApple.remove();
a2.printClassName();

}

The output of this program follows.

Removing an Apple from bagOfApple: Banana

The pointer (reference) cast in the remove() member function can be blamed,
but the real culprit is improper inheritance. Inheritance must be evaluated using
substitutability, a rigorous criterion, because intuition is often wrong.
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8.15 Is parking-lot-for-cars a kind-of parking-
lot-for-arbitrary-vehicles (assuming parking-
lot-for-vehicles allows parking any kind-of
vehicle?

No!

This is another specific example of the general guideline presented earlier.

In the following, Vehicle is an ABC and Car and NuclearSubmarine are
concrete kinds-of Vehicle.

#include <iostream>
using namespace std;

class Vehicle {
public:
virtual ~Vehicle();

};

Vehicle::~Vehicle()
{ }

class Car : public Vehicle {
public:
virtual void startEngine() throw();

};

void Car::startEngine() throw()
{ cout << "starting a Car...\n"; }

class NuclearSubmarine : public Vehicle {
public:
virtual void launchMissile();

};

void NuclearSubmarine::launchMissile() throw()
{ cout << "starting a War...\n"; }

If a container of Car was a kind-of container of Vehicle, someone might put a
NuclearSubmarine inside the container of Car, then remove the NuclearSubmarine
thinking it was a Car.

This is an egregious error. When startEngine() member function is called,
the launchMissile() may actually be executed (depending on the compiler
and implementation). Thus, starting the car’s engine might inadvertently start
World War III! See the previous FAQ to see the user code that might cause this
to happen.
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The root problem is bad inheritance. A bad design can’t be patched with
a little extra inheritance. Throwing more inheritance at an already defective
design will usually make it worse. If the design is broken, it needs to be fixed,
not patched with clever coding tricks.

8.16 Is array-of Derived a kind-of Base?

No! And the compiler usually doesn’t detect this error.

This is another specific example of the general guideline presented earlier. For
example, suppose class Base has some virtual functions:

#include <iostream>
using namespace std;

class Base {
public:
Base() throw();
virtual ~Base() throw();
virtual void f() throw();

};

Base::Base()
{ }

Base::~Base()
{ }

void Base::f() throw()
{ cout << "Base::f()\n" << flush; }

Suppose class Derived has some data, such as integer i :

class Derived : public Base {
public:
Derived() throw();
virtual void f() throw();

protected:
int i_;

};

Derived::Derived() throw()
: Base()
, i_(42)
{ }

void Derived::f() throw()
{ cout << "Derived::f()\n" << flush; }
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Making a Base pointer refer to the first element in an array-of Derived objects
is okay, provided users never perform pointer arithmetic (such as applying the
subscript operator) using the Base pointer. Subscripting into the array using the
Base pointer is wrong since it will use sizeof(Base) for the pointer arithmetic
rather than sizeof(Derived). Thus, subscripting into the array using the Base
pointer may not refer to any Derived object:

void sample(Base* b) throw()
{
cout << "b[0].f(): " << flush;
b[0].f();
cout << "b[1].f(): " << flush;
b[1].f(); // Bang!

}

int main()
{
Derived d[10];
sample(d);

}

To understand what happened in function sample(), imagine a typical 32-bit
computer that implements virtual functions in the usual way: a single virtual
pointer in the object. In this case sizeof(Base) might be 4 (that is, one
machine word for the virtual pointer), and sizeof(Derived) might be 8 (the
Derived class objects have whatever size was in the Base plus the data from
Derived). But since the compiler only knows that b points to Base in function
sample(), it will use sizeof(Base) when computing subscripts. So b[1] will
be 4 bytes after the beginning of the array, which is somewhere in the middle
of object d[0]!

Regardless of the specifies of the machine used, it is very unlikely that b[1]
will refer to the same address as d[1] since sizeof(Derived) is different than
sizeof(Base). So the best possible outcome would be an immediate system
crash (which is extremely likely; try it!).

This underscores the advantage of using an array-like class instead of using a
C++ array. The compiler would have detected the error in the preceding prob-
lem if a vector<Derived> had been used rather than a Derived[] (vector<T>
is the standard array-like template; see FAQ 28.13). For example, attempting
to pass a vector<Derived> to sample(vector<Base>& a) would have caused a
compile-time error message; see FAQ 8.17. (Remember: don’t use pointer casts
to “cover up” error messages. When you get an error message, fix the under-
lying problem rather than simply trying to get the compiler to stop generating
error messages.)
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8.17 Does the fact that an array-of Derived can
be passed as an array-of Base mean that
arrays are bad?

Yes, arrays are dangerous. Use template container classes instead.

Compared to a C++ array, a template container class (see FAQs 2.15, 28.1)
catches more errors at compile time, thus reducing the reliance on runtime
testing. For example, if the standard template vector<T> had been used, the
previous attempt to pass a vector<Derived> as a vector<Base> would have
been caught at compile time.

#include <vector>
#include <iostream>
using namespace std;

void sample(vector<Base>& a) throw()
{
cout << "a[0].f(): ";
a[0].f();
cout << "a[1].f(): ";
a[1].f();

}

int main()
{
vector<Base> b(10);
sample(b);

#ifdef GENERATE_ERROR
vector<Derived> d(10);
sample(d); // Error caught at compile time (fortunately)

#endif
}

Templates allow the compiler to distinguish between a pointer to a thing and
a reference to an array-of things. In contrast, when C++ arrays were used in
the previous FAQ, the compiler wasn’t able to detect the error of passing an
array-of Derived as if it were a kind-of array-of Base. The compiler detects this
error if templates are used.
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Chapter 9

Error Handling Strategies

9.1 Is error handling a major source of funda-
mental mistakes?

Yes.

Unfortunately, error handling is usually not considered during the design
process in most systems, and instead it is allowed to evolve chaotically and
in an ad hoc manner. Part of this is the old-dog-new-trick problem: many
programmers’ instincts about error handling are based on outdated technology,
which tends to lead them in the wrong direction. The purpose of this chapter
is to present a sound strategy for modern error handling.

A software application’s error-handling strategy must be designed as carefully
as the rest of the system. Without a careful design, error handling will be applied
inconsistently and will create more problems than it solves. Typically, half of a
system’s code is dedicated to handling errors in one way or another, and systems
that attempt to survive faults, as opposed to simply crashing, have even more
to gain from good error-handling strategies.

9.2 How should runtime errors be handled in
C++?

Use C++ exceptions.

The purpose of the C++ exception-handling mechanism is to handle errors
in software composed of independently developed components operating in a
single process and under synchronous control.

In C++, a routine that cannot fulfill its promises should throw an exception.
The caller that knows how to handle this unusual situation can catch the thrown
exception. Callers can specify the types of exceptions they are willing to handle;
exceptions that don’t match the specified types are automatically propagated
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to the caller’s caller. Thus intermediate callers (between the thrower and the
catcher) can simply ignore the exception. Only the original thrower and the
ultimate catcher need to know about the unusual situation.

This is illustrated in the following call graph. In the diagram, main() calls
f(), which calls g(), and so forth. Typically these routines are member func-
tions on objects, but they may also be non-member (“top-level”) functions.
Eventually routine i() detects an erroneous situation such as an invalid pa-
rameter, an invalid return value from another object, an invalid entry in a file,
a network outage, or insufficient memory, and i() throws an exception. The
thrown exception is caught by f(), meaning control is transferred from i() to
f(). Routines g(), h(), and i() are removed from the runtime stack and their
local variables are destructed.

The effect is to separate policy from mechanism. Objects at low levels (such as
i()) have the mechanism to detect and throw exceptions, and objects at higher
levels, such as f(), specify the policy of how exceptions are to be handled.

9.3 What happens to objects in stack frames
that become unwound during the throw/catch

process?

They are properly destructed.

Local objects that reside on the stack between the throw and the catch are
properly destructed in stack order; last constructed, first destructed. The result
is an extension of the C++ destructor discipline, and allocated resources can be
safely kept in an object whose destructor releases the resource. This resource is
often memory, but it could also be files that need to be closed, semaphores that
need to be unlocked, and so on. For example, a local auto ptr should be used
to hold the pointer to an allocated object, as shown in FAQ 2.7.

9.4 What is an exception specification?

A specification indicating which exception objects a function expects to throw.

For example, in FAQ 2.23, routine fileExists() is decorated with the specifi-
cation throw(), indicating that fileExists() never throws any exceptions, and
routine processFile() is decorated with the specification throw(BadFileName,
FileNotFound), indicating that processFile() expects to throw BadFileName
or FileNotFound (or some object derived from those classes) but nothing else.

If a function throws an exception other than those listed in the exception
specification, the unexpected() function is called, which (by default) calls
terminate(), which (by default) calls abort(). See FAQ 26.11 for how to
change this default behavior.
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In general, exception specifications should be used. One place where they are
contraindicated, however, is where bug fixes for very large systems are shipped
to customers in small binary pieces that are “patched” into the original binary.
This is because exception specifications can unnecessarily increase the number
of source files that must be shipped with such a bug fix. However for those
systems that ship bug fixes as a complete executable, exception specifications
should be used.

9.5 What are the disadvantages of using return
codes for error handling?

They don’t separate exceptional logic from normal logic as well as exceptions
do, they impose avoidable overhead, and they can’t be used in constructors.

Return codes are a nice-guy approach; they allow the caller to do something
when an error occurs but they don’t require the caller to do anything or even
notice that the error has occurred.

Return codes require an explicit if-check after every function call. This
spreads the error-handling code into every caller of every function rather than
focusing it on the relatively few routines that can actually correct the problem.
Return codes therefore create a complex chain that is hard to test and maintain
— everyone percolates the error information backward until finally someone is
capable of handling it.

Since testing for return codes requires a conditional branch in the normal
execution path, it imposes runtime costs for situations that rarely occur. When
functions were hundreds of lines long, checking for return codes was a small
percentage of the executable code. But with OO, where member functions
often have less than ten lines of code, return codes would impose an unnecessary
performance penalty.

Return codes can’t be returned from constructors. Fortunately constructors
can (and should) throw exceptions. So using return codes with constructors
can be disastrous since return codes allow errors to remain uncorrected. For
example, if a hash table can’t allocate memory for its hash buckets, it might
set an error flag within it object, hoping the caller will check this flag and do
the right thing. Thus all the object’s callers are expected to check this flag
(presumably another member function that would have to be added), and all
the object’s member functions would also have to check the flag. This adds a
lot of unnecessary decision logic as well as overhead.

9.6 What are the advantages of throw...catch?

Clarity, compiler support, and runtime support.
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The most important advantage is that throw...catch clearly separates nor-
mal logic from exception-handling logic. In contrast, when a function call uses
return codes to signal exceptions, the caller must check the return code with
control flow logic (if). This mingles normal logic with exception-handling logic,
increasing the complexity of both paths.

A second advantage is that throw...catch can transmit an arbitrarily large
amount of information from the throw point to the catch point. This is be-
cause C++ allows arbitrary objects, as opposed to just simple data types, to
be thrown, and these objects can carry behavior as well as data from where the
error is detected to where the error is handled. In contrast return codes are
almost always simple data types such as int.

Also, throw...catch allows different error handlers to be defined for different
types of objects and automatically transfers control to the correct error handler.

Finally, throw...catch is suited for OO programming. In contrast, return
codes are ill suited for OO: since many member functions tend to be short,
return codes would overwhelm the routine’s normal logic with error-handling
logic.

9.7 Why is it helpful to separate normal logic
from exception handling logic?

The program is easier to read because normal logic doesn’t get lost in the
error-handling code.

Consider the following Matrix class.

#include <iostream>
#include <string>
using namespace std;

class Matrix {
public:
Matrix() throw();
// ...

};

Suppose the goal is to create a routine that will add, subtract, multiply, and
divide two matrices (assuming a suitable definition for matrix division). The
routine is supposed to handle any overflow condition by printing a message to
cout, but it is supposed to report any underflow condition back the caller. Two
solutions are presented here: the first uses C++ exceptions and the second uses
return codes.
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The following low-level routines that perform the arithmetic would be an
ideal example for operator overloading, but in an effort to keep the two so-
lutions as similar as possible, normal named functions are used instead. The
header <stdexcept> declares the standard C++ exceptions overflow error
and underflow error.

#include <stdexcept>
using namespace std;

Matrix add(const Matrix& a, const Matrix& b)
throw(overflow_error,underflow_error);

Matrix sub(const Matrix& a, const Matrix& b)
throw(overflow_error,underflow_error);

Matrix mul(const Matrix& a, const Matrix& b)
throw(overflow_error,underflow_error);

Matrix div(const Matrix& a, const Matrix& b)
throw(overflow_error,underflow_error);

The routine that does the actual work, solutionA(), is defined as follows. As
specified, the routine handles overflow errors by printing a message but doesn’t
handle underflow errors, instead (implicitly) passing the underflow exception
back to its caller.

void solutionA(const Matrix& a, const Matrix& b)
throw(underflow_error)

{
try {
cout << "a + b is " << add(a, b) << ’\n’;
cout << "a - b is " << sub(a, b) << ’\n’;
cout << "a * b is " << mul(a, b) << ’\n’;
cout << "a / b is " << div(a, b) << ’\n’;

}
catch (overflow_error& e) {
cout << "overflow: " << e.what() << ’\n’;

}
}

Now consider the same situation using return codes. First the four arithmetic
routines are declared, as before. However, this time two separate return values
are needed: the Matrix result and the return code that indicates whether there
is an error. In this case the Matrix result is passed by reference and the return
code is returned, but these could be reversed easily. The return code has three
optional values: OK, OVERFLOW ERROR, and UNDERFLOW ERROR:

enum ReturnCode {
OK,
OVERFLOW_ERROR,
UNDERFLOW_ERROR

};

ReturnCode add(Matrix& result, const Matrix& a, const Matrix& b);
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ReturnCode sub(Matrix& result, const Matrix& a, const Matrix& b);
ReturnCode mul(Matrix& result, const Matrix& a, const Matrix& b);
ReturnCode div(Matrix& result, const Matrix& a, const Matrix& b);

Up until this point the return code technique is not substantially more (or
less) complex than the technique that uses C++ exceptions. However, the code
that uses the arithmetic routines is much more complex when return codes are
used. This routine needs to explicitly check the return code from each of the
arithmetic calls. This tends to mix the normal logic with the error handling
logic:

ReturnCode solutionB(const Matrix& a, const Matrix& b)
{
Matrix result;
ReturnCode rc;

rc = add(result, a, b);
if (rc == OK) {
cout << "a + b is " << result << ’\n’;

} else if (rc == OVERFLOW_ERROR) {
cout << "overflow error: Matrix + Matrix\n";
return OK; // Overflow has been handled so return normally

} else {
return rc; // Some other error such as Underflow

}

rc = sub(result, a, b);
if (rc == OK) {
cout << "a - b is " << result << ’\n’;

} else if (rc == OVERFLOW_ERROR) {
cout << "overflow error: Matrix - Matrix\n";
return OK;

} else {
return rc;

}

rc = mul(result, a, b);
if (rc == OK) {
cout << "a * b is " << result << ’\n’;

} else if (rc == OVERFLOW_ERROR) {
cout << "overflow error: Matrix * Matrix\n";
return OK;

} else {
return rc;

}

rc = div(result, a, b);
if (rc == OK) {
cout << "a / b is " << result << ’\n’;

} else if (rc == OVERFLOW_ERROR) {
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cout << "overflow error: Matrix / Matrix\n";
return OK;

} else {
return rc;

}

return OK;
}

In this case, the normal logic gets lost in the code for error detection and
error recovery.

9.8 What is the hardest part of using exception
handling?

Deciding what is an error and when an exception should be thrown.

One of the hardest parts of using exception handling is deciding when to
throw an exception. Without proper guidelines, programmers spend endless
hours discussing “Should this function throw an exception when X happens?
What about when Y happens? Or how about when Z happens?” Often these
discussions go in circles with no clear resolution. Usually this happens when
the programmers have not been given any guidelines for deciding what is and
is not an exception. Even worse are situations where exception handling is
added to the system as an afterthought, usually just before it ships, and every
programmer makes up and follows a unique set of ad hoc rules.

A useful guideline is “A function should throw an exception when anything
occurs that prevents it from fulfilling its promises (a.k.a its contract).” One
advantage of this approach is that it ties exception handling to the functional
specification of a class and its member functions — that is, it gives a rational
basis for deciding what is and what is not an exception. Obviously this means
that a function’s promises must be clearly defined before a decision can be made
about whether something is an error (see FAQ 6.4).

Another advantage of this approach is that it clearly separates errors — things
that require an exception to be thrown — from unusual cases, which should not
cause an exception to be thrown. The point is that a function should not throw
an exception just because something unusual happens. Specifically, if a function
detects a situation that happens rarely but that doesn’t prohibit the function
from fulfilling its promises, then it needs to handle the case and should not
throw an exception.

Although its sounds trite, exception handling is for handling errors, not for
handling unusual situations. For example, assume that one of the member
functions of class Gardener is mowing the lawn.
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class Gardener {
public:
void mowTheLawn();

};

void Gardener::mowTheLawn()
{ /* ... */ }

int main()
{
Gardener mac;
mac.mowTheLawn();

}

Is it an error if mac the Gardener is asked to mow the lawn and the lawn
mower runs out of gas? Or if the lawn mower breaks and cannot be fixed until
a new part arrives? Or if mac has taken the day off because he is sick? Or if
mac is too busy? Or if mac gets hit by lightning (a truly exceptional event)?

Ten different people will give ten different answers as to which, if any, of these
are errors. The only way to be sure is to refer to the contract with mac. If the
contract says that someone (not necessarily mac) will mow the lawn some time
after a request is submitted, then none of the situations is an error, because
mac or one of his heirs can eventually fulfill the contract. If the contract says
the lawn will be mowed on the same day that the request is submitted, then
running out of gas might not be an error, but mac’s illness and a breakdown
requiring overnight repairs are errors.

9.9 When should a function throw an excep-
tion?

When it can’t fulfill its promises.

When a function detects a problem that prevents it from fulfilling its promises,
the function should throw an exception. If the function can recover from the
problem so that it can still provide its user with the services it promised, then
it has handled the problem and should not throw an exception.

Ideally, exceptions are rare in practice (less than 1% of the time). If an event
happens much more frequently than this, perhaps it is not an error, and perhaps
the exception-handling mechanism isn’t the right choice.

In the following example, the gardener throws an exception if he cannot mow
the lawn on the same day the user requests the lawn to be mowed. This occurs
when the gardener’s lawn mower runs out of gas after 5:30p.m. (when the gas
stations close).
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#include <iostream>
#include <cstdlib>
#include <stdexcept>
#include <string>
using namespace std;

// pretend this returns the current hour (0 .. 23):
int currentHourHand() throw()
{ return rand() % 24; }

class NoGas : public runtime_error {
public:
NoGas(const string& what) throw();

};

NoGas::NoGas(const string& what)
: runtime_error(what)
{ }

class LawnMower {
public:
LawnMower() throw();
void mowOneRow() throw(NoGas);
void fillErUp() throw(NoGas);
bool empty() const throw();

protected:
unsigned gasLeft_;

};

LawnMower::LawnMower() throw()
: gasLeft_(10)
{ }

void LawnMower::mowOneRow() throw(NoGas)
{
if (empty()) fillErUp();
--gasLeft_;

}

void LawnMower::fillErUp() throw(NoGas)
{
if (currentHourHand() > 17) {
cout << "sorry, gas stations are closed at this hour\n";
throw NoGas("Gas stations are closed");

}
cout << "filling up the tank\n";
gasLeft_ = 10;

}

bool LawnMower::empty() const throw()
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{ return gasLeft_ == 0; }

class Gardener {
public:
Gardener() throw();
void mowTheLawn() throw(NoGas);

protected:
LawnMower mower_;
int rowsInLawn_;

};

Gardener::Gardener() throw()
: mower_()
, rowsInLawn_(25)
{ }

void Gardener::mowTheLawn() throw(NoGas)
{
for (int row = 0; row < rowsInLawn_; ++row) {
cout << "starting to mow a row\n";
mower_.mowOneRow();

}
}

int main()
{
Gardener mac;
try {
cout << "Mac is trying to mow the lawn\n";
mac.mowTheLawn();
cout << "Mac succeeded at mowing the lawn!\n";

}
catch (NoGas) {
cout << "sorry, Mac ran out of gas after 5pm\n";

}
}

9.10 What is the best approach for the hierar-
chy of exception objects?

A monolithic hierarchy of exception classes works best.

Within the limited realm of exception classes, a singly rooted inheritance tree
is superior to a forest of trees. This is an exception (pun intended) to the usual
guideline that C++ class hierarchies should be a forest of trees.

One advantage of a monolithic hierarchy for exception classes is in catch-all
situations. For example, main() often uses a try block that catches all possi-
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ble exceptions. This catch-all block logs the uncaught exception and possibly
restarts main(). This can be done via ellipse (catch(...)), but a monolithic
hierarchy of exception classes allows main()’s catch clause to extract informa-
tion from the exception object by means of member functions provided by the
root class of the exception hierarchy. This allows a more detailed description of
the unknown exception to be logged.

For example, suppose all exceptions are derived form the standard exception
class called exception:

#include <iostream>
#include <exception>
using namespace std;

int main()
{
try {

// The code that would normally go into main() goes here
return 0;

}
catch (const exception& e) {
// Oh No! somehow an exception leaked.
cerr << "uncaught exception: " << e.what() << ’\n’;

}
catch (...) {
cerr << "an exception didn’t inherit from class exception!\n"

<< "contact the company at 1-800-BAD-BUGS\n";
}
return 1;

}

9.11 How should exception classes be named?

Name the error, not the thrower.

The server should throw an exception whose class name describes the error
that occurred rather than describing the code that detected the exception. In
other words, the type of the exception object should embody the meaning of
what went wrong.

For example, if a List class is asked to remove an element and the List
is empty, the List should throw an exception such as EmptyContainer rather
than an exception such as ListError.

The purpose of this advice is to enhance information hiding. For example,
suppose class List is used to build class Queue; the EmptyContainer exception
might be meaningful to users of Queue.
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However, if List threw a ListError, users of Queue would become aware of
the internal implementation details of Queue (that is, it uses a List). Since this
could introduce a ripple effect (for example if the Queue found it more efficient
to use a vector than to use a List, all the users of Queue might have to update
their catch(ListError) blocks), the author of the Queue class would probably
want to catch all these ListError exceptions and repackage them as something
that doesn’t expose the List detail, then throw that more generic object. So
either the author of Queue has extra work to do or the users of Queue end up
knowing too much about how Queue is implemented. Clearly it would have been
easier if List had thrown something generic such as ContainerIsEmpty.

9.12 Where do setjmp and longjmp belong in C++?

In your worst enemy’s code.

Never use setjmp() and longjmp() in C++. Use try/catch/throw instead.
The major problem with longjmp() is that it jumps out of the function without
unwinding the stack, so local (auto) objects aren’t destructed properly. In
contrast, when C++ exceptions are used, local (auto) objects are properly
destructed.
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Chapter 10

Testing Strategies

10.1 What is the purpose of this chapter?

This chapter describes a systematic technique to pinpoint the root cause of a
certain category of bugs.

The chapter is concerned with finding the root cause of problems, not just the
symptoms. This is in contrast with most testing efforts, which focus on exposing
symptoms but don’t provide any formal help in locating the root cause of the
problems.

This chapter also focuses on systematic techniques as opposed to ad hoc or
luck-based debugging.

The basic idea is to bury various checks inside the objects so that the objects
end up checking their own work; thus the notion of self-testing objects.

10.2 What are the advantages of self-testing ob-
jects?

Testing starts earlier, continues longer, requires almost no human interven-
tion, focuses on the most commonly used paths, and adapts as the system
evolves.

There is very little human effort required for objects that test themselves
other than writing the behavioral self-tests and the testInvariant() member
function. The runtime system works a lot harder because it must continually
reverify the object’s state and its transitions, but there is very little human
(payroll-intensive) intervention.

By integrating an object’s test harnesses with the object, the self-testing
strategy reduces reliance on big-bang testing. In practice, self-testing detects
defects earlier than they otherwise would be with traditional, big-bang testing.
This is because every use of the class becomes an impromptu test harness. This
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reduces the cost of finding and repairing defects, and it improves the business
efficiency during system integration. The effect is to change the concept of
testing from an event to a life cycle.

By building self-testing objects, developers ensure that their objects continu-
ally adapt as the system evolves. Thus, when the objects are used in new and
unforeseen ways, the objects continue to verify themselves using the same test
code and against the same standards without anyone having to reverse engineer
them and build new test harnesses.

Since every use of an object becomes a miniature test harness, the overall
effect is to exhaustively test the most commonly used paths through an ob-
ject. This is quite a different result than that provided by most unit testing
approaches, since most unit testing approaches require explicit and often elabo-
rate test harnesses to be built, and these test harnesses typically provide spotty
testing at best.

Finally, since self-testing objects check their own results, traditional test har-
nesses for unit testing are significantly simpler to develop. For example, the test
harnesses don’t need to check the result of an operation, since the object already
checks its own results. This means that the test harnesses don’t need to start
out with some specific set of tests to be run but instead can generate test sce-
narios on the fly by passing randomly generated values into randomly selected
member functions. This can both reduce the cost of building test harnesses for
unit testing and improve their coverage.

The self-testing technique is similar to the quality mandate in manufacturing.
The whole is correct because every part is correct and because every combination
of parts is tested.

10.3 What are some common excuses people use
for not building self-testing into their ob-
jects?

Excuse: “The self-testing code is too trivial to worry about.” Reality: If it’s
that simple, then it will be easy to write.

Excuse: “The self-testing code is too complex.” Reality: If it’s complex, then
it’s worth the trouble no matter how long it takes.

Excuse: “I can’t afford the time to write the self-testing code.” Reality: You
haven’t done your job until your class’s internals are documented.

Excuse: “Calling the self-testing code will consume too much CPU.” Reality:
That’s bogus. You can remove 100% of the runtime overhead by using #ifdef.
Besides, if it’s going to consume a lot of CPU, then either the self-testing checks
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are sophisticated or the class is very important and commonly used, both of
which are arguments in favor of this approach, not against it.

Excuse: “The self-testing code might contain bugs, so the technique would
be worthless.” Reality: Also bogus. If you’re not sure that you can express the
promise (postcondition) and invariant of your own class correctly, then those
promises and invariants should be tested. The self-testing approach provides this
for free since it simultaneously tests the class’s documentation (its promises and
invariants) at the same time as it tests the class’s implementation.

10.4 What will happen if techniques like those
presented here are not used?

The maintenance programmers are doomed to crawl for miles over broken
glass.

Here are some facts. First, in large systems the “distance”, as measured in
statements executed, from where an error occurs to where it is detected by the
program crashing or producing incorrect results is usually very large, sometimes
millions of instructions. Second, one of the most effective techniques for reducing
the time and pain associated with debugging is to minimize this distance, that
is, discover the error as soon as possible after it has occurred. Third, there
are usually thousands of small invariants that programs must maintain to be
correct. Fourth, when programs are built using classes and objects, most of
these little invariants are associated with the classes and objects.

Therefore, by collecting all these small and seemingly inconsequential invari-
ants and attaching them to the right objects in a systematic fashion, it is possi-
ble to build a very robust system that tests itself. This, in turn, minimizes the
amount of broken glass that has to be crawled through in trying to find that one
fault that occurred a few million instructions ago and just caused the system to
crash.

Some programmers build self-testing objects for the good of the team, others
out of enlightened self-interest. Either way, self-testing objects should be built.
After all, no one should have to crawl over broken glass when such a simple and
obvious technique is available.

By the way, if you happen to be the developer who finds everyone else’s bugs
because you are methodical and they are cowboys, then you should be lobbying
hard for your team to use these techniques. Either that or maybe you should
just institute a policy that the cowboys on the team eat the glass you have to
crawl through because they refuse to build self-testing objects.

10.5 When is a class correct?

When it meets or exceeds its external agreements and abides by its internal
constraints.
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A class’s external agreements include requirements imposed on users of the
class and promises made to the users. This behavior is observable in the sense
that it is expressed in terms of the class’s public: member functions. This
behavior can and should be tested. For example, just before a member function
returns, the member function can check that it actually fulfilled its promises
(a.k.a postconditions; see FAQ 6.4). This is called behavioral self-testing, and it
often involves adding checks at the bottom of the member function that check
the member function’s promises. These checks are normally put in an assert()
statement or perhaps in an #ifdef; that way the checks can be removed if they
cause too much performance degradation (see FAQ 10.6).

A class’s internal constraints define the allowed states of data structures as-
sociated with objects of the class. Every object of the class must abide by these
restrictions at all times. The class can and should test these class invariants
(see FAQ 10.7).

10.6 What is behavioral self-testing?

When an object checks its work before letting others see what happened.

The promises made by a member function can be encoded as a test that
is executed at the end of the member function. For example, if the member
function List::removeFirst() promises that List::size() will return one
less than it did before, an explicit test to this effect can be made at the end of the
List::removeFirst() member function. The code associated with behavioral
self-tests can be wrapped in an #ifdef so that it can be easily removed or
reinstalled as desired:

#include <cassert>
#include <cstdlib>
#include <stdexcept>
#include <string>
using namespace std;

class List;

class Node {
private:
friend List;
int elem_;
Node* next_;
Node(int elem, Node* next) throw();

};

Node::Node(int elem, Node* next) throw()
: elem_(elem)
, next_(next)
{ }
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class Empty : public runtime_error {
public:
Empty(const string& what);

};

Empty::Empty(const string& what)
: runtime_error(what)
{ }

class List {
public:
List() throw();
bool empty() const throw();
int size() const throw();
int peekAtFirst() const throw(Empty);
void prepend(int x) throw();
int removeFirst() throw(Empty);
// REQUIRE: empty() must return false
// PROMISE: return value will be the initial value of peekAtFirst().
// PROMISE: size() will be reduced by 1.

List (const List& list) throw(); // copy constructor; not shown
List& operator= (const List& list) throw(); // assignment operator; not shown
~List() throw();

protected:
Node* first_;

};

List::List() throw()
: first_(NULL)
{ }

List::~List() throw()
{ while (first_ != NULL) removeFirst(); }

bool List::empty() const throw()
{ return first_ == NULL; }

int List::size() const throw()
{
int ans = 0;
for (const Node* p = first_; p != NULL; p = p->next_)
++ans;

return ans;
}

int List::peekAtFirst() const throw(Empty)
{
if (empty()) throw Empty("List::peekAtFirst()");
return first_->elem_;

}
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void List::prepend(int x) throw()
{ first_ = new Node(x, first_); }

int List::removeFirst() throw(Empty)
{
if (empty()) throw Empty("List::removeFirst()");

#ifndef NDEBUG
int peekAtFirstInit = peekAtFirst();
int sizeInit = size();

#endif

// remove first element from the List
int result = first_->elem_;
Node* oldFirstNode = first_;
first_ = first_->next_;
delete oldFirstNode;

#ifndef NDEBUG
assert(result == peekAtFirstInit);
assert(size() == sizeInit - 1);

#endif

return result;
}

int main()
{
List a;
a.prepend(42);
a.prepend(24);
int elem = a.removeFirst();

}

Naturally the assert(...) statements can be replaced by other assertion-
checking techniques, if desired. The point is that the object checks its own
results.

10.7 What is a class invariant?

Stuff that’s true whenever anyone else is looking.

The class invariant is the collection of boolean expressions that are always
true for objects of the class. It is normal for a member or friend function
(see FAQ 19.5) to temporarily violate the invariant, but the member or friend
function must restore the invariant before returning to the user.
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Here is the invariant for a Date class, encoded in the protected: testInvariant()
member function.

#include <cassert>

class Date {
public:

// The public: interface for Date goes here...
protected:
void testInvariant() const throw();
int day_;
int month_;
int year_;

};

inline void Date::testInvariant() const throw()
{
assert(day_ >= 1 && day_ <= 31);
assert(month_ >= 1 && month_ <= 12);

}

The statement assert(month_ >= 1 && month_ <= 12); evaluates the con-
ditional as a boolean. If month is out of range, the assertion fails and the
assert() statement causes an error message to be printed and the program to
be killed. During development, the debugger often opens at this point so that
the programmer can determine exactly when went wrong and why. Compiling
with the symbol NDEBUG defined (for example, via the -DNDEBUG option on many
command-line driven compilers) causes the assert() code to vanish completely.

10.8 Why should the invariant be captured ex-
plicitly?

As maintenance documentation and to catch bugs.

The class invariant should be recorded, if for no other reason than as docu-
mentation for future maintainers. Since a developer’s job isn’t done until the
internal constraints of the data structure have been properly documented, there
is really no choice. Someone somewhere has to write down these internal con-
straints.

If the internal constraints of the class’s data structure are to be documented,
the most natural and accessible place is along with the class’s code. And source
code is the most unambiguous way to express this documentation since express-
ing it in a natural language is relatively imprecise.

Plus, if the invariant is captured in a member function, the member function
can be called at strategic moments during an object’s life cycle, which effectively
tests the documentation as well as testing the class’s member functions. In other
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words, this technique makes sure that the invariant is correct and makes sure
that the other member functions don’t violate the invariant. If desired, these
calls to the invariant can be placed in an #ifdef or an assert() so they can
easily be removed before the software is shipped.

In cases where a class has a nontrivial invariant, practical experience has
shown that this can catch a sizeable percentage of a class’s bugs.

10.9 When should the testInvariant() member
function be called?

At the end of constructors to make sure the invariant was established and at
the end of mutator member functions to make sure the invariant was maintained.

Rule 1: Every public: constructor must establish the invariant. Every
public: constructor must initialize its object so that it passes the invariant
test (this means avoiding any technique that allows the object to be initialized
to garbage and requiring the user to call an init() member function). Thus
every public: constructor should call testInvariant() as the last thing it
does. Normally this call should be in an #ifdef or an assert() so that it can
be easily removed or reinstalled as desired.

Rule 2: Every public: member function must maintain the invariant. Every
public: member function may assume that its object passes the invariant
test at the beginning and must restore its object’s invariant by the time it
returns. Thus every public: member function that mutates the object should
call testInvariant() as the last thing it does. Normally this call should be
in an #ifdef or an assert() so that it can be easily removed or reinstalled as
desired.

10.10 What can be done to ensure that an ob-
ject doesn’t get blown away by a wild pointer?

Empower the object to test its invariant at the beginning of every public:
member function and every friend function (see FAQ 19.5).

Wild pointers can corrupt a sleeping object. Wild pointers are the SCUD
missiles of the software world — they are undirected terrorist instruments that
wreak havoc in chaotic ways. Once a wild pointer has scribbled on an object,
the object also exhibits chaotic behavior, often developing wild pointers of its
own. The chain reaction spreads like a virus — each wild pointer infects a
few more objects. Eventually one of the wild pointers attempts to scribble on
something protected by the hardware and then the system crashes.
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Once this chain reaction has occurred, programmers must rely on intuition
and blind luck when looking for the root cause of the problem. We call this
voodoo debugging, since it is about as effective as a fortune teller reading chicken
entrails — indeed, the technology of reading entrails is remarkably similar to
that of reading a core dump after corruption by wild pointers.

An object can help detect wild pointers by beginning all its public: member
functions with a call to testInvariant(). This ensures that the object is still
in a consistent state.

#include <cassert>
using namespace std;

class Date {
public:
Date() throw();
Date& operator++ () throw();
int month() const throw();
int day() const throw();
int year() const throw();

protected:
void testInvariant() const throw();
int month_;
int day_;
int year_;

};

inline void Date::testInvariant() const throw()
{
assert(day_ >= 1 && day_ <= 31);
assert(month_ >= 1 && month_ <= 12);

}

Date::Date() throw()
: month_(7)
, day_ (4)
, year_ (1776)
{
testInvariant(); // public: constructors must establish the invariant

}

int Date::month() const throw()
{
testInvariant(); // Wild pointers can corrupt a sleeping object
return month_;

}

int Date::day() const throw()
{
testInvariant(); // Wild pointers can corrupt a sleeping object
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return day_;
}

int Date::year() const throw()
{
testInvariant(); // Wild pointers can corrupt a sleeping object
return year_;

}

Date& Date::operator++ () throw()
{
testInvariant(); // Wild pointers can corrupt a sleeping object
// ... // Put code to increment the date here
testInvariant(); // public: mutators must maintain the invariant
return *this;

}

Since the assert(...) statements within the testInvariant() member
function vanish when the symbol NDEBUG is defined, and since the testInvariant()
member function is defined using the inline keyword, all the calls to testInvariant()
will vanish when NDEBUG is defined. Normally it is not necessary to define the
symbol NDEBUG until fairly late in the software development cycle, and some
projects (particularly business applications that are not CPU bound) leave it
on even after the software is deployed to its users.
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Part III

Language Facilities
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Chapters 11 through 28 cover the facilities of the C++ language and the
Standard C++ Library. The material is presented in roughly the same order
that the facilities appear in the C++ Standard.
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Chapter 11

References

11.1 What is a reference?

A reference is an alias, an alternate name for an object. References are
frequently used for passing parameters by reference (pass-by-reference; see FAQ
2.9). In the following example, function swap() receives its parameters by
non-const reference since it needs to change the values of the caller’s actual
parameters, in this case main()’s i and j.

#include <iostream>
using namespace std;

void swap(int& x, int& y) throw()
{
int temp = x;
x = y;
y = temp;

}

int main()
{
int i = 5;
int j = 7;
cout << "before: i=" << i << ", j=" << j << ’\n’;
swap(i, j);
cout << "after: i=" << i << ", j=" << j << ’\n’;

}

Here x and y become aliases for main()’s i and j, respectively. The effect is
similar to the C-style pass-by-pointer, but without the caller having to take the
address of the parameters and without the callee having to dereference pointers.
That is, it would be illegal to change swap(i,j) in main() to swap(&i,&j), and
it would be illegal to change x = y in swap() to *x = *y.
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11.2 What does “referent” mean?

“Referent” is a synonym for the object to which the reference refers; see FAQ
2.9. In the following example, j is the reference and i is the referent.

int main()
{
int i;
int& j = i;

}

11.3 When can a reference be attached to its
referent?

A reference can be attached to its referent only at the moment the reference
is initialized. Not only that, C++ requires every reference initialization to have
a referent.

The following example initializes j to be an alias for i, but the initialization
for k is illegal because reference k is not attached to an object.

int main()
{
int i;
int& j = i;

#ifdef GENERATE_ERROR
int& k; //ERROR: references must be initialized

#endif
}

When a function receives a parameter by reference, the reference is initialized
by being attached (bound) to the actual argument provided by the caller.

11.4 What happens when a value is assigned to
a reference?

The reference remains bound to the same referent, and the value of the referent
is changed.

Because a reference is an alias for its referent, anything done to the reference
is actually done to the referent. In particular, a reference is an lvalue (an
expression that can appear on the left side of an assignment operator) for the
referent. Therefore, assigning to a reference changes the referent.

Said another way, a reference is its referent—not a copy of the referent nor a
pointer to the referent, but the referent itself.
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For example, in the following function f(), the first statement changes main()’s
i because the formal parameter x is an alias for i. The second statement also
changes i (as well as x) because the address of i is stored in y. The third
statement does not change i because z is a copy of the original value of i.

void f(int& x, int* y, int z) throw()
{
x = 5; //main()’s i changed to 5
*y = 6; //main()’s i changed to 6
z = 7; //no change to main()’s i

}

int main()
{
int i = 4;
f(i, &i, i);

}

11.5 What is a local reference?

A local reference is a local (auto) reference variable that isn’t a parameter.
The following example illustrates how local references provide a temporary alias
relationship. Integer reference j is an alias for integer i, so changing i to 5
changes j, and changing j changes i.

int main()
{
int i;
int& j = i; //establish the alias relation between j and i
i = 5; //assigning 5 to i, changes both i and j
j = 6; //assigning 6 to j, changes both i and j

}

Local references are not as common as reference parameters. Local references
are sometimes used to avoid recalculating the same location several times; they
allow a function to attach a handle to an object that would otherwise require
nontrivial address computation to access. Applications that do a lot of data
cacheing sometimes use local references.

11.6 What does it mean to return a reference?

The function call expression is an lvalue to the referent.

When a function returns a reference, the function call becomes an lvalue (see
FAQ 11.4) for the referent. This is normally used to allow operator expressions
(such as the subscript operator, the dereference operator, and so on) to be used
as lvalues. The following example shows how returning a reference allows a
subscript operator to be an lvalue.
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#include <iostream>
#include <stdexcept>
using namespace std;

class Array {
public:
float& operator[] (unsigned i) throw(out_of_range);

protected:
float data_[100];

};

inline float& Array::operator[] (unsigned i) throw(out_of_range)
{
if (i >= 100u)
throw out_of_range("Array index is out of range");

return data_[i];
}

int main()
{
Array a;
for (unsigned i = 0; i < 100; ++i)
a[i] = 3.14 * i;

for (unsigned j = 0; j < 100; ++j)
cout << a[j] << ’\n’;

}

Returning a reference to data_[i] doesn’t return a copy of data_[i]; it
returns data_[i] itself. Therefore, anything done to the expression in the caller
(a[i]) is actually done to data_[i]. In the example, the statement a[i] = ...
actually changes data_[i] within object a.

C programmers should note that this allows a function call to appear on the
left side of an assignment operator.

11.7 What is the result of taking the address of
a reference?

The address of a reference is the address of the referent.

Remember that the reference is the referent. Anything done to the reference—
including taking its address—is actually done to the referent. For example, the
following code will print yes since &i will be equal to &j.

#include <iostream>
using namespace std;

void sample(int* p, int* q)
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{
if (p == q)
cout << "yes\n";

else
cout << "no\n";

}

int main()
{
int i = 5;
int& j = i;
sample(&i, &j);

}

11.8 Can a reference be made to refer to a dif-
ferent referent?

No, it can’t.

Unlike a pointer, once a reference is bound to an object, it cannot be made
to refer to a different object. The alias cannot be separated from the referent.

For example, the last line of the following example changes i to 6; it does not
make the reference k refer to j. Throughout its short life, k will always refer to
i.

int main()
{
int i = 5;
int j = 6;
int& k = i; // Bind k so it is an alias for i

k = j; // Change i to 6 -- does NOT bind k to j
}

11.9 Why use references when pointers can do
everything references can do?

Because references are better than pointers for some tasks.

Using a pointer when a reference will do is like using a chain saw to trim your
fingernails—it will do the job, but you’d better be extremely careful.

In C, pointers are used for a variety of tasks because there is no other tool
available for doing these tasks. Programmers learn to live with the dangers of
pointers in C because there is no alternative. It’s as if C gives you a chain
saw and expects you to use it for building houses, shredding paper, trimming
fingernails, and cutting hair.
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When all that’s needed is an alias for an object, a pointer is overkill, but a
reference is ideal. Pointers are a powerful and valuable part of any programmer’s
toolbox. However, they should be used only when necessary. Don’t give a chain
saw to a user who just wants a manicure.

Use references when you can, use pointers when you have to. (See FAQ 11.11.)

11.10 Aren’t references just pointers in disguise?

No, they are not.

It is important to realize that references and pointers are quite different. A
pointer should be thought of as a separate object with its own distinct set of
operations (*p, p->blah, and so on). So creating a pointer creates a new object.
In contrast, creating a reference does not create a new object; it merely creates
an alternative name for an existing object. Furthermore the operations and
semantics for the reference are defined by the referent; references do not have
operations of their own.

In the following example, notice that the assignment 0 to the reference j is
very different than assigning 0 to the pointer p (the 0 pointer is the same as the
NULL pointer; see FAQ 1.9).

int main()
{
int i = 5;
int& j = i; // j is an alias for i
int* p = &i; // p is a new object, not an alias

j = 0; // Changes i
p = 0; // Changes p; does not effect i

}

Because of their low-level nature, pointers are poor substitutions for refer-
ences. Holding on to the belief that pointers and references are the same is
like saying that char* and a string class are the same or that void* and long
are the same—there is a way to map from one to the other but the mapping is
forced and is unnatural. Furthermore, the purpose of programming in C++ is
not to write C++ programs that look just like C programs.

Pointers and references are not the same, even though many compilers imple-
ment them using similar assembly language instructions. This is an implemen-
tation detail that does not change the message of this FAQ.

11.11 When are pointers needed?

References are usually preferred over pointers when aliases are needed for
existing objects, making them useful in parameter lists and as return values.
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Pointers are required when it might be necessary to change the binding to a
different referent or to refer to a nonobject (a NULL pointer). Pointers often
show up as local variables and member objects. An example of this can be seen
in the class Array that follows.

class Array {
public:
int& operator[] (int i); // References in signatures can

// make interfaces intuitive
protected:
int* data_; // Pointers as member data allow reallocation

};

The only time a parameter or return value should be a pointer is when the
function needs to accept or return a sentinel value. In this case the function can
accept or return a pointer and use the NULL pointer as the sentinel value.

11.12 Why do some people hate references?

Most of the complaints we’ve heard about references have come from C pro-
grammers who are new to C++, and the complaints reflect a combination of
teaching old dogs new tricks and the lack of good training on what references
are all about.

If often takes C programmers time to get used to references. In the begin-
ning, C programmers typically complain that pass-by-reference doesn’t require
explicit syntax in the caller’s source code (for example, no & in the caller code).
After using C++ for a while, however, developers realize that this is information
hiding, which is an asset rather than a liability.

An important goal of OO technology is to enable developers to program in
the language of the problem domain rather than the language of the computer.
The information hiding provided by a reference is a small step in the migration.

In C, the maxim is “No hidden mechanism.” C++ intentionally discards this
C maxim since it is inconsistent with the C++ goal of programming in the
language of the problem domain rather than the language of the machine. The
new maxim is “Pay for it only if you use it.”

Write C++ code in the language of the problem domain, not the language of
the machine.

11.13 Does int& const x make sense?

No, it doesn’t. Since a reference is always bound to the same referent, the
const is superfluous and possibly confusing.
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class Fred { };

void f(Fred& const a); // Wrong; should be f(Fred& a); void
g(const Fred& const a); // Wrong; should be g(const Fred& a);

void sample(Fred& a)
{
Fred& const b = a; // Wrong; should be Fred& b = a;
const Fred& const c = a; // Wrong; should be const Fred& c = a;

}
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Chapter 12

New and Delete

12.1 Does new do more than allocate memory?

Yes, it also initializes the new object.

Assuming Fred is a known type, the expression new Fred() is a two-step
operation. The first step is to allocate sizeof(Fred) bytes of memory using a
memory allocator primitive called operator new (size_t nbytes) (size_t is
a typedef for an unsigned integral type such as unsigned int). This mem-
ory allocation primitive is conceptually similar to but not interchangeable with
malloc(size_t nbytes). The second step is to call the appropriate constructor
of the class (Fred::Fred() in this case).

Similarly, delete p is a two-step operation: it first calls the destructor on
the object *p, then it releases the memory pointed to by p using a memory
deallocation primitive. This memory deallocation primitive is called operator
delete (void* p) and is conceptually similar to but not interchangeable with
free(void* p).

12.2 Why is new better than good old trustwor-
thy malloc()?

It does more.

Object construction: In C++, new and delete create and destroy objects. In
contrast, malloc() and free() merely allocate and deallocate memory.

Safety: The new operator returns a pointer of the correct type whereas the
function malloc() returns a void*, which isn’t type safe. The C language
allows a void* to be converted to any other pointer, but this is a dangerous
hole in C’s type-checking system. C++ doesn’t have this weakness: converting
a void* to a different pointer type requires an explicit cast in C++.
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Flexibility: The new operator can be overloaded by a class. For example, new
Fred() can use a different memory allocation primitive than is used by new
Wilma(). In contrast, malloc() cannot be overloaded on a class-by-class basis.

12.3 Does C++ have a counterpart to realloc()

that goes along with new and delete?

No; and don’t use realloc() directly, since bitwise copying of an object of a
user-defined class is evil.

When realloc() needs to move data during the reallocation, it uses a bitwise
copy, which is disastrous for many user-defined classes (see FAQ 30.15). C++
objects know how to copy themselves using their own copy constructors and
assignment operators.

Never use realloc() on objects of user-defined classes. Let the objects copy
themselves. Better yet, use the vector template class rather than pointers to
arrays, and the vector template will take care of reallocation automatically and
correctly (see FAQ 28.13).

12.4 Can pointers returned from new be deallo-
cated with free()? Can pointers returned
from malloc() be deallocated with delete?

No!

It is perfectly legal, moral, and wholesome to use malloc() and delete in
the same program or to use new and free() in the same program. But it is
illegal, immoral, and despicable to call free() on a pointer allocated via new
or to call delete on a pointer allocated via malloc().

Even if it appears to work on your particular compiler on your particular
machine, please don’t do it. Corrupting the heap is a very subtle and disastrous
thing; it’s just not worth the trouble—even if the data type is a simple array of
char; even if some programmers think it would be cool. Just say no.

12.5 Does delete p delete the pointer p or the
referent *p?

The referent *p.

If verbosity were a virtue, the syntax would be changed from delete p to
deleteTheThingPointedToBy p. One could argue that the current syntax is
misleading, but the same abuse of English occurs with free(p) from the C
language: free(p) doesn’t free p; rather it frees the memory pointed to by p.

144



12.6 Should the pointer returned from new Fred()

be checked to see if it is NULL?

No, new Fred() never ever returns NULL. Instead, if new runs out of memory
during new Fred(), it throws an exception of type bad alloc (see FAQ 9.2).

Because of this, the if test in the following example is considered bad form
since it increases code size, increases code complexity, and increases testing
costs, yet it adds no value (remember, exceptions guarantee that p will never
be NULL).

#include <new>
using namespace std;

class Fred { };

void sample() throw(bad_alloc)
{
Fred* p = new Fred();
if (p == NULL) { // Bad Form! Shouldn’t check for NULL
// ...

}
// ...

}

int main()
{ sample(); }

C programmers please note that this behavior is very different from the way
out-of-memory is handled by malloc(). To be safe, every call to malloc() has
to be followed by an explicit if test to see if malloc() returned NULL.

12.7 How can new be convinced to return NULL

rather than throw an exception?

Replace new Fred() with new(nothrow) Fred(). Note that this is a step
backward for the reasons already described, so this technique should not be
extensively used in new C++ code. However this technique is relevant for people
who have to deal with C++ software that was written before new Fred() threw
exceptions.

When preexception C++ code is compiled on a modern C++ compiler, the
use of exceptions may cause the application to crash. In this case, there are two
basic options: update the application by making it exception safe (that is, make
the code do something reasonable even if something such as new throws an ex-
ception), or patch the application by replacing new Fred() with new(nothrow)
Fred(). Often, but not always, it is cheaper to patch it rather than make it
exception safe. The following example demonstrates this technique.
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#include <new>
using namespace std;

class Fred { };

void sample() throw()
{
Fred* p = new(nothrow) Fred(); // Note the nothrow
if (p == NULL) { // This test is required!
// ...

}
}

12.8 How can new be set up to automatically
flush pools of recycled objects whenever
memory runs low?

Applications that do a lot of freestore allocations can sometimes improve
performance by using global pools of recycled objects. For example, when a
dynamically allocated Fred object is no longer needed, the programmer can
say p->discard() rather than delete p, and the discard() member function
adds the object to a static pool of Fred objects. Then when a Fred object
is needed, the programmer says Fred::create() rather than new Fred(), and
the static create() member function returns the first entry from the list (or
returns new Fred() if the list is empty).

Everything works great until memory runs low, at which point the pool
of Fred objects needs to be flushed to free up available memory. It would
be ideal if the runtime system would automatically call some routine such as
Fred::flushPool() whenever new ran low on memory, since the pool could be
flushed without any functional impact. For example, if someone wants to create
a Wilma object and the system runs out of memory because there are too many
recycled Fred objects in the Fred pool, the goal is to have the system automat-
ically call Fred::flushPool(), which actually deletes all the Fred objects on
the recycled list. We set up the Fred class with its pool of recycled list.

#include <new>
using namespace std;

class Fred {
public:
static Fred* create() throw(bad_alloc);

// Named Constructor Idiom; see FAQ 16.08
virtual void discard() throw();

// p->discard() is analogous to delete p
static bool flushPool() throw();

// Returns true if it freed some memory
private:
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Fred() throw();
// Constructor is private: so users can’t say new Fred()

~Fred() throw();
// Destructor is private: so users can’t say delete p

void init() throw();
// Initializes (or possibly re-initializes) the object
// as if it was just created

Fred* nextRecycled_;
static Fred* headRecycled_;

};

void Fred::init() throw()
{
// ... // This is where the constructor’s logic should go
nextRecycled_ = NULL;

}

Fred::Fred()
{ init(); }

Fred::~Fred()
{ } // The destructor doesn’t need to do anything with

// the recycled list

Fred* Fred::headRecycled_ = NULL;

Fred* Fred::create() throw(bad_alloc)
{
if (headRecycled_ == NULL)
return new Fred();

Fred* p = headRecycled_;
headRecycled_ = headRecycled_->nextRecycled_;
p->init(); // Re-initializes the object as if it was just created
return p;

}

void Fred::discard() throw()
{
nextRecycled_ = headRecycled_;
headRecycled_ = this;

}

bool Fred::flushPool() throw()
{
bool stuffGotDeleted = (headRecycled_ != NULL);
while (headRecycled_ != NULL)
delete create();

return stuffGotDeleted;
}
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First, notice how users are prevented from saying new Fred() or delete
p. Instead users must say Fred::create() and p->discard(), respectively.
The discard() member function adds the object to the recycled pool, and
the create() static member function uses the recycled pool if it isn’t empty.
Finally the flushPool() static member function flushes the pool of recycled
Fred objects, and returns a bool indicating whether anything actually was
deleted.

Next, to accomplish the larger goal of having the system automatically call
Fred::flushPool() whenever new runs out of memory, a special function is
created that calls Fred::flushPool() (and possibly other similar pools, such
as Wilma::flushPool()). This special function is known as a new handler and
is called flushAllPools() in the following example. If operator new (size t
nbytes) runs out of memory, it calls this function, which tries to delete some un-
needed memory. If the new handler succeeds at freeing up some storage, it sim-
ply returns to operator new (size t nbytes), and operator new (size t
nbytes) tries the allocation again. If the new handler is unsuccessful at freeing
up storage, it avoids an infinite loop by throwing an exception:

#include <new>
using namespace std;

void flushAllPools() throw(bad_alloc)
{
unsigned n = 0;
n += Fred::flushPool();
// Flush any other pools as well;
// e.g., n += Wilma::flushPool();
if (n == 0) throw bad_alloc(); // Nobody freed memory;

// prevent infinite loop
}

The final step is to register the function flushAllPools() as the official new
handler. This is done using the set_new_handler() function and is normally
called very early in the application’s execution:

int main()
{
set_new_handler(flushAllPools); // Install the "new handler"
// ...

}

The rest is automatic: if someone says new Barney() and the underlying
allocator (operator new (size t nbytes)) runs out of memory, the alloca-
tor automatically calls the new handler (flushAllPools()), which flushes the
Fred pool (Fred::flushPool()). If something actually was flushed, the new
handler returns to operator new (size t), which tries again. If it fails a sec-
ond time, the whole process repeats. Eventually one of two things happens:
either operator new (size t) succeeds, in which case the caller who said new
Barney() will never know that any of this ever happened, or flushAllPools()
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fails to flush anything and throws an exception (in which case the new Barney()
attempt vanishes, and control goes to the appropriate catch handler; see FAQ
9.3). In either case, the users who are saying new Barney() don’t know anything
about the pool mechanism—it is invisible to them.

12.9 What happens if delete p is called when p

is NULL?

Nothing.

Calling delete p when p is NULL is safe and is guaranteed to do nothing.
This simplifies code that uses delete by letting programmers say delete p;
rather than if (p != NULL) delete p;. For example,

#include <iostream>
using namespace std;

class Fred { };

void sample(Fred* p) throw()
{
#if 0
if (p != NULL) // Bad form!

delete p;
#else
delete p; // Good form!

#endif
}

int main()
{
sample(new Fred());
sample(NULL);

}

There are two problems with the explicit if test: first, some people get the
test backwards (e.g., they say if (!p) delete p; which is backward), and
second, if tests significantly increase the cost of testing—to achieve branch
point coverage, both the “if true” and the “if false” branches of every if need to
be exercised. Thus, adding unnecessary branch points, such as if statements,
to an application causes the creation of unnecessary test cases. Conversely,
if a branch point can be removed from the software without complicating or
invalidating something else, in general the expected quality of the software goes
up and the testing cost goes down.
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12.10 What happens when a pointer is deleted
twice?

Catastrophe.

Suppose there is a pointer variable p. The first time delete p is executed,
the object *p is safely destructed and the memory pointed to by p is safely
returned to the heap. The second time the same pointer is passed to delete
without a subsequent new that returned that pointer, the remains of what used
to be an object at *p are passed to the destructor (which could be disastrous),
and the memory pointed to by p is handed back to the heap a second time. This
is likely to corrupt the heap and its list of free memory. The following example
illustrates this situation.

class Fred { };

int main()
{
Fred* p1 = new Fred();
Fred* p2 = p1;
delete p1;
delete p2; // Delete the same pointer twice: DISASTER!

}

12.11 How can an array of things be allocated
and deallocated?

The best way is to be radical. Instead of trying to use an array pointer
correctly, it is easier (and often more efficient) not to use explicit pointers at all
but instead to use a container template such as vector (see FAQ 28.13). Please
don’t use explicit pointers unless it is necessary. Pointers are a source of a lot of
errors; using a good container class library can eliminate many pointer errors.

If it is necessary or desired to use pointers anyway, the right way to allocate
an array of pointers is with p = new Fred[n]. When the array is deallocated,
the [] must appear just after the delete keyword, such as delete[] p;. Here
is an example.

class Fred { };

int main()
{
Fred* p = new Fred[100]; // Allocate an array of Fred
delete[] p; // [] is required when deallocating the array

}

The purpose of the syntactic difference between delete p and delete[] p is
to distinguish deleting a thing from deleting an array of things. This is because
there is no syntactic difference between the type “pointer to a thing” (Fred*)
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and the type “pointer to the first element of an array of things” (Fred*). This
is a feature that C++ inherited from C.

After all this, recall that the real solution is to not use pointers at all but
instead to use a good container class library. For example, when an array of
things is needed, use a container class that implements an array of things, such
as the standard template vector (see FAQ 28.13).

12.12 What if delete p (not delete[] p) is used
to delete an array allocated via new Fred[n]?

Catastrophe.

It is the programmer’s responsibility—not the compiler’s—to verify that the
connection between new[] and delete[] is correct. If it is wrong, don’t expect
either a compiler error message or a clean runtime exception. Expect a disaster.
Worse, the disaster might not show up during testing; it might not show up
until after the software is in the field.

For example, some implementations immediately corrupt the heap when the
[] is omitted when deleting an array of objects; other implementations fail to
destruct all but the first object in the array. The latter could cause memory
leaks if the destructors release memory, cause deadlock if the destructors un-
lock semaphores, compromise system integrity in other ways, or trigger some
combination of any or all of these.

Remember that this headache can be instantly eliminated if container classes,
such as vector, are used instead of raw pointers. Please use raw pointers only
when it’s absolutely necessary.

12.13 Can the [] of delete[] p be dropped when
p points to an array of some built-in type
such as char?

No; there is no reason to do this and it risks an avoidable disaster.

Some programmers tragically think that the [] in the delete[] p exists only
so that the compiler will call the appropriate number of destructors. Following
this reasoning, they assume that the [] are optional when the array is of some
built-in type such as an array of char:

#include <new>
using namespace std;

void sample(int n) throw(bad_alloc)
{
char* p = new char[n];
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// ...
delete p; // ERROR! Should be delete[] p;

}

int main()
{ sample(10); }

The delete p; line above is wrong, and it can cause a disaster at runtime.
In particular, the underlying deallocation primitive called for delete p; is
operator delete (void*), but the deallocation primitive called for delete[]
p; is operator delete[] (void*). The default behavior for the latter is to call
the former, but users are allowed to replace the latter with a different behavior.
For example, someone might replace operator new[] (size t) (the alloca-
tion primitive called for new char[n]) and operator delete[] (void*) with
a separate heap from operator new (size t) and operator delete (void*).
If that happens, the delete p; line sends the pointer to the wrong heap, which
could result in a disaster at runtime.

Remember: use container classes rather than raw pointers. This example
could use the standard string class or perhaps something like the standard
vector template.

12.14 How is an object constructed at a prede-
termined position in memory?

With the placement syntax of the new operator, also known as placement new.

Objects are normally created on the stack, on the heap, or in static memory.
These correspond to automatic allocation, dynamic allocation, and static allo-
cation, respectively. But these normal techniques don’t allow the programmer
to specify the exact address at which the object will live.

Occasionally an object’s desired location is known before the objects is cre-
ated, such as when the hardware uses a piece of storage as a way of communi-
cating with the software. In these cases, placement new can be used.

The following example places an object of class Fred at the hexadecimal
address 0xFEEDBABE and passes (42, 42) to the Fred constructor.

#include "Fred.hpp" // Pretend this defines class Fred
#include <new>
using namespace std;

void sample()
{
void* place = (void*) 0xFEEDBABE;
Fred* p = new(place) Fred(42, 42);
// ...

}
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The storage pointed to by place must be large enough to hold sizeof(Fred)
bytes and must be properly aligned to hold a Fred object. The returned pointer
p is numerically the same as place, but p is a Fred* rather than a void*.

12.15 How can class Fred guarantee that Fred

objects are created only with new and not
on the stack?

The class can make all of its constructors private: or protected: and
can provide static create() member functions. The copy constructor should
also be made private: or protected:, even if it doesn’t need to be defined
otherwise (see FAQ 30.6). The static (or friend) create() functions then
create the object using new and return a pointer to the allocated object. Here’s
an example.

#include <new>
#include <memory>
using namespace std;

class Fred; // Forward declaration
typedef auto_ptr<Fred> FredPtr;

class Fred {
public:
static FredPtr create() throw();
static FredPtr create(int i) throw();
static FredPtr create(const Fred& x) throw();
virtual void goBowling();

private:
Fred(int i=10) throw();
Fred(const Fred& x) throw();
int i_;

};

FredPtr Fred::create() throw(bad_alloc)
{ return new Fred(); }

FredPtr Fred::create(int i) throw(bad_alloc)
{ return new Fred(i); }

FredPtr Fred::create(const Fred& x) throw(bad_alloc)
{ return new Fred(x); }

Fred::Fred(int i) throw() : i_(i) { }
Fred::Fred(const Fred& x) throw() : i_(x.i_) { }

void sample()
{
FredPtr p(Fred::create(5));
p->goBowling();

}
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Note that derived classes can’t be instantiated since all of the constructors are
private:. Derived classes could be instantiated only if some of the constructors
were protected:.

12.16 How are objects created by placement new
destroyed?

By explicitly calling the object’s destructor. This is about the only time a
destructor is called explicitly (see FAQ 20.10). For example, if p is a Fred* that
was returned from placement new, *p can be destructed as follows.

#include <new>
using namespace std;

class Fred {
public:
Fred(int i, int j) throw();
virtual ~Fred() throw();

};

Fred* construct(void* place) throw()
{
Fred* p = new(place) Fred(42, 42);
return p;

}

void destruct(Fred* p) throw()
{
p->~Fred(); // Do this only with placement new

}

void sample() throw()
{
void* place = (void*) 0xFEEDBABE;
Fred* p = construct(place);
// ...
destruct(p);

}

Caution: Do not explicitly call the destructor of an object that will later
be automatically destroyed, such as an object on the stack, an object on the
heap that will be deleted, or a static object. The only time a destructor
should be called explicitly is when the programmer is in total control of the
storage allocation and lifetime of the object—in other words, only with objects
initialized by the placement new syntax.
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12.17 In p = new Fred(), does the Fred memory
“leak” if the Fred constructor throws an
exception?

No, the system straightens things out automatically.

If an exception occurs in the Fred constructor during p = new Fred(), the
sizeof(Fred) bytes that were allocated are automatically released back to the
heap. This is because new Fred() is a two-step process.

1. sizeof(Fred) bytes of memory are allocated using the memory alloca-
tion primitive void* operator new (size t nbytes). This primitive
is similar in spirit to malloc(size t nbytes) (however operator new
(size t) and malloc(size t) are not interchangeable; the two mem-
ory allocation primitives may not even use the same heap!). Recall that
size t is a typedef for some unsigned integral type such as unsigned
int. Many system headers cause this typedef to be defined.

2. A Fred object is constructed in the returned memory location by calling
the Fred constructor. Thus the pointer returned from the first step is
passed as the constructor’s this parameter. The call to the constructor is
conceptually wrapped in a try block so that the memory can be released
if the constructor throws an exception.

Thus the compiler generates code that looks something like that shown in the
following function sample().

#include <new>
using namespace std;

class Fred {
public:
Fred() throw();
virtual ~Fred() throw();

};

void sample() throw(bad_alloc)
{
// Original code: Fred* p = new Fred();
Fred* p = (Fred*) operator new(sizeof(Fred)); // Step 1: Allocate memory
try {
new(p) Fred(); // Step 2: Construct the object (see FAQ 12.14)

}
catch (...) {
operator delete(p); // Deallocate the memory
throw; // Re-throw the exception that the constructor threw

}
}
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The statement new(p) Fred(); is called the placement new syntax (see FAQ
12.14). The effect is to call the Fred constructor, passing the pointer p as the
constructor’s this parameter.

12.18 Is it legal (and moral) for a member func-
tion to say delete this?

Yes, but be careful.

Programmers usually have a hard time emotionally accepting that this is
valid, probably because it seems as if the member function is inside the object
and deleting the object during a member function seems strange. But with care,
this technique can be perfectly safe. Here is how we define “with care”.

1. The this object must have been allocated via new (see FAQ 12.15), not
by new[] (see FAQ 12.11) nor by placement new (see FAQ 12.14) nor by
a local object on the stack nor by a global nor by a member of another
object. It has to have been allocated by plain, ordinary new.

2. The member function that contains delete this; must be the last mem-
ber function that is invoked on the this object.

3. The remainder of the member function after the delete this; line must
not touch any piece of the this object, including calling any other member
functions or touching any data members.

4. No other piece of code should even examine the this pointer itself after
the delete this; line. No one may examine it, compare it with another
pointer, compare it with NULL, print it, cast it, do anything with it.

5. Make sure no one else does a delete on the object. For example, if
the object is still being held by an auto ptr (which would be a good
thing!), the release() member function must be called on the auto ptr;
otherwise the auto ptr will delete the object again, which would be a
disaster. For example:

#include <iostream>
using namespace std;

class Fred {
public:
Fred();
virtual ~Fred();
virtual void discard() throw();

};

void Fred::discard() throw()
{ delete this; }
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12.19 After p=new Fred[n], how does the com-
piler know that there are n objects to be
destructed during delete[] p?

Warning: This FAQ is quite low level. The only people who really need to
worry about this level of detail are those in extremely performance sensitive
situations where CPU cycles are at a premium. Of course it also might be
interesting to those who are just plain curious ...

Whenever some says Fred* p = new Fred[n], the runtime system is required
to store the number of objects, n, in a place that can be retrieved knowing only
the pointer, p. The compiler can use any technique it wants to use, but there
are two popular ones.

1. The code generated by p = new Fred[n] might store the number n in
a static associative array, where the pointer p is used as the lookup
key and the number n is the associated value. For example, using the
standard map template (see FAQ 28.14), this associative array might be
map<void*,size t>. The code generated by delete[] p would look up
the pointer in the associative array, would extract the associated size t,
then would remove the entry from the associative array.

2. The code generated by p = new Fred[n] might allocate an extra sizeof(size t)
bytes of memory (possibly plus some alignment bytes) and put the value n
just before the first Fred object. Then delete[] p would find n by look-
ing at the fixed offset before the first Fred object (that is, before *p) and
would deallocate the memory starting at the beginning of the allocation
(that is, the block of memory beginning the fixed offset before *p).

Neither technique is perfect. Here are a few of the tradeoffs.

1. The associative array technique is slower but safer: if someone forgets the
[] when allocating an array of things, (a) the entry in the associative
array would be a leak, and (b) only the first object in the array would
be destructed. This may or may not be a serious problem, but at least it
might not crash the application.

2. The overallocation technique is faster but more dangerous: if someone
says delete p where they would have said delete[] p, the address that
is passed to operator delete (void* p) would not be a valid heap
allocation—it would be at least sizeof(size t) bytes after a valid heap
allocation. This would probably corrupt the heap. Bang, you’re dead.

157



Chapter 13

Inline Functions

13.1 What is the purpose of inline functions?

In some cases, inline functions make a compute-bound application run
faster.

In a broad sense, the idea behind inline functions is to insert the code of a
called function at the point where the function is called. If done carefully, this
can improve the application’s performance in exchange for increased compile
time and possibly (but not always) an increase in the size of the generated
binary executables. As usual, the devil is in the details. Read the fine print; it
does make a difference.

It is useful to distinguish between “inline”, a keyword qualifier that is simply
a request to the compiler, and “inlined”, which refers to actual inline expansion
of the function. The expansion is more important than the request, because the
costs and benefits are associated with the expansion.

Fortunately C++ programmers normally don’t need to worry whether an
inline function actually is inlined, since the C++ language guarantees that
the semantics of a function cannot be changed by the compiler just because it is
or isn’t inlined. This is an important guarantee that changes the way compilers
might optimize code otherwise.

C programmers may notice a similarity between inline functions and #define
macros. But don’t push that analogy too far, as they are different in some im-
portant ways. For example, since inline functions are part of the language,
it is generally possible to step through them in a debugger, whereas macros
are notoriously difficult to debug. Also, macro parameters that have side ef-
fects can cause surprises if the parameter appears more than once (or not at
all) in the body of the macro, whereas inline functions don’t have these prob-
lems. Finally, macros are always expanded, but inline functions aren’t always
inlined.

158



13.2 What is the connection between the key-
word “inline” and “inlined” functions?

Fans of Alice’s Adventures in Wonderland will appreciate that a function
decorated with the keyword inline may not be inlined, but an inlined function
may not have been specified as inline, while the only sure way to be inlined is
to not exist at all!

A function can be decorated the inline keyword either in the class definition
or in its own definition if the definition physically occurs before the function is
invoked. The compiler does not promise that an inline function will be inlined,
and the details of when/when not are compiler-dependent. For example, many
compilers won’t actually inline recursive and/or very long inline functions. So
an inline function may not be inlined.

On the other hand, any function that is defined within the class body will
be treated implicity as an inline function with or without the explicit inline
keyword. Again, there is no guarantee that it will be inlined, but the compiler
will try anyway. So some functions are inlined without the inline keyword.

Finally, compiler-generated default constructors, copy constructors, destruc-
tors, and assignment operators are treated as inline, and often (but not always)
they end up being inlined because they usually don’t do anything tricky. These
are the functions that are usually inlined, and they don’t even explicitly appear
in the code.

13.3 Are there any special rules about inlining?

Yes. Here are a few rules about inlining.

1. Any source file that contains usage of an inline function must contain
the function’s definition.

2. An inline function must be identically defined everywhere. The easy
way to do this is to define it once, preferably in the class header file, and
include the definition as needed. The hard way is to carefully redefine the
function everywhere and learn the one-definition rule (see FAQ 13.4). But
even the easy way has a potential glitch, so read FAQ 13.4 regardless.

3. main() cannot be inline.

But these are just language rules that tell how to do inline functions. To
find out when to do inline functions, read the rest of this chapter.

13.4 What is the one-definition rule (ODR)?

The ODR says that C++ constructs must be identically defined in every
compilation unit in which they are used.
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For example, if source file foo.cpp and source file bar.cpp are in the same
program and class Fred appears in both source files, then class Fred has to be
identically defined in the two source files. Similarly, the definition of an inline
function must be the same in the two source files.

Here’s what “identically defined” means. With respect to the ODR, two def-
initions contained in different source files are said to be identically defined if
and only if they are token-for-token identical and the tokens have the same
meaning in both source files. The last clause is important: it warns that merely
including the same definition in two places isn’t good enough to prevent ODR
problems, because the tokens (such as typedefs) can have different meanings in
the different locations. Note that “identically defined” does not mean character-
by-character equivalence. For example, two definitions can have different whites-
pace or different comments yet still be “identical”.

13.5 What are some performance considerations
with inline functions?

Here are some important facts about inlined functions.

1. They might improve performance, or they might make it worse (see FAQ
13.6).

2. They might cause the size of the executable to increase, or they might
make it smaller (see FAQ 13.7).

3. When they are nontrivial, they probably will complicate the development
effort if employed too early in the development cycle. Provisions to use
them can be made early but the final decision should be made later (see
FAQ 13.8).

4. When they are provided to third-party programmers, they can make it
difficult to maintain binary compatibility between releases of the software
(see FAQ 13.9).

The only dangerous idea about inlining is the attitude that says, “Fast is
good, slow is bad; inlining is faster, so everything should be inlined.” If only
life were that simple.

13.6 Do inlined functions improve performance?

Inlined functions sometimes improve overall performance, but there are other
cases where they make it worse.

It is reasonable to define functions as inline when they are on the critical
path of a CPU-bound application. For example, if a program is network bound
(spending most of the time waiting for the network) or I/O bound (spending
most of the time waiting for the disk), inlining might not make a significant
impact in the application’s performance since processor performance might not
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be relevant. Even in cases when the program is CPU bound, there is no point
in worrying about optimizing a function unless it is on a critical execution path,
that is, unless it is taking up a major portion of the time consumed by the
program.

In cases where processor optimization is relevant, inline functions can speed
up processing in three ways:

1. Eliminating the overhead associated with the function call instruction

2. Eliminating the overhead associated with pushing and popping parameters

3. Allowing the compiler to optimize the code outside the function call more
efficiently

The first point is worth pursuing only in very exceptional circumstances be-
cause the overhead of the call instruction itself is normally quite small. However,
the call instruction can have some expensive side effects that can be eliminated
when the call is inlined. For example, if the called routine is not inlined, ac-
cessing the called routine’s executable code can cause a page fault (a page fault
happens in virtual memory operating systems when some chunk of the applica-
tion is temporarily stored on disk rather than in memory). In extreme cases,
this can cause a situation called thrashing, a situation in which most of the time
is spent handling page faults. Even when a page fault does not occur (that is,
when the executable code of the called routine is already in memory), the code
of the called routine might not be in the processor’s cache, a situation called a
cache miss. Cache misses can be expensive on certain CPU-bound applications.

The second point can be important, because value semantics can have con-
siderable overhead. A function with many formal parameters, whether they use
value semantics or not, can do quite a bit of stack pushing and popping. Even
if the parameter is a simple built-in type such as int or char, there is some
nontrivial overhead. For example, parameters of built-in types are often located
in one of the processor’s registers, so the caller has to move the parameter out
of the register onto the stack, and the called routine often pulls it back off the
stack into a register, and when the call is finished, the caller pulls it back off
the stack into its original register. All that can normally be eliminated if the
call is inlined.

The third point, also known as procedural integration, is typically the major
source of improvement. By letting the compiler see more code at once (by
integrating the called procedure into the calling code), optimizer can often do
a better job: it can often generate more efficient code.

But performance can be lost as well as gained. Sometimes inlined functions
lead to larger binary files that cause thrashing on virtual memory operating
systems (see FAQ 13.7). But there are other times where the paging performance
is actually improved, because inlining can provide locality of reference and a
smaller working set as well as, paradoxically, smaller executables.
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13.7 Do inlined functions increase the size of the
executable code?

Sometimes yes, sometimes no.

When large functions are inlined, the executable generally grows larger. How-
ever when small functions are inlined, the executable can actually become
smaller, since the amount of executable code needed to call a function, including
pushing all the registers and parameters, can be larger than the amount of code
that would have been generated had the call been inlined.

Consider the following example. With optimization turned on, the size of
the generated code was 33% smaller when the member functions were inlined
compared to when they were not inlined.

class Stack {
public:
Stack() throw();
void push(int elem) throw();
int pop() throw();
int top() const throw();
bool full() const throw();
bool empty() const throw();

protected:
enum { dataMax_ = 10 };
unsigned len_;
int data_[dataMax_];

};

inline Stack::Stack() throw() : len_(0)
{ }

inline void Stack::push(int elem) throw()
{ data_[len_++] = elem; }

inline int Stack::pop() throw()
{ return data_[--len_]; }

inline int Stack::top() const throw()
{ return data_[len_-1]; }

inline bool Stack::full() const throw()
{ return len_ == dataMax_; }

inline bool Stack::empty() const throw()
{ return len_ == 0; }

int main()
{
Stack s;
s.push(0); s.push(1); s.push(2); s.push(3); s.push(4);
s.push(5); s.push(6); s.push(7); s.push(8); s.push(9);
s.pop(); s.pop(); s.pop(); s.pop(); s.pop();
s.pop(); s.pop(); s.pop(); s.pop(); s.pop();

}
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13.8 Why shouldn’t the inlining decision be made
when the code is first written?

Except for trivial access member functions, the information for making intel-
ligent inlining decisions usually comes from profiling actual code, not from the
developer’s intuition.

Intuition is a crummy guide when it comes to performance. There are so many
issues to consider that vary with the compiler, operating system, hardware, and
system configuration that very few programmers can anticipate exactly where
the bottlenecks will occur. Chapter 33, “High-Performance Software”, discusses
this in more detail.

But even if the bottlenecks are known ahead of time, using inline on non-
trivial functions early in the development cycle can add significant frustrations
to the edit-compile-debug cycle. Since inline functions normally are defined
in header files, when an inline function is changed the compiler will normally
recompile every source file (for example, every .cpp file) that includes that func-
tion. This often means recompiling the world, which can take a long, long time
on a medium or large project.

13.9 What happens when a programmer uses
an inlined function obtained from a third
party?

It makes it harder for that third party to maintain binary compatibility be-
tween releases of the third party’s software.

The code of an inlined function is copied into the user’s executables. So
subsequent changes to the inlined function require recompilation of the user’s
code, which can be painful or even politically impossible if there is a vendor-
customer relationship.

For example, vendors who want to provide their customers with binary-
compatible releases of a library must avoid changing any inline functions that
are accessible to their customers. Typically this is done by considering the
implementation of any inline functions that have been shipped to customers
to be “frozen”—frozen code can never, ever change. Recall that the compiler-
synthesized construction, assignment, and destruction routines are implicitly
inline (see FAQ 13.2), so achieving binary compatibility requires these rou-
tines to be explicitly defined as non-inline. For example, if the compiler de-
fines them as inline, and if the class layout ever changes, they will change
from release to release. This includes relatively innocuous changes to the class
layout, such as adding or removing a private: data member.
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Another, more subtle, problem is the potential breakdown of information
hiding. For example, users of an inline function must have a copy of the
source code, and that copy gets bound into their program. Think about that for
a second. Maybe they haven’t read this book, and maybe they don’t understand
the importance of respecting interfaces. Maybe they rely on the implementation
rather than the specification; giving them the code opens up that opportunity.
If so, the implementation techniques are turned into concrete. This makes life
harder.

13.10 Is there an easy way to swap between inline

and non-inline code?

Yes, with a little macro magic.

Most projects should turn off inlining during development. That is, they use
a compiler option that causes the compiler to not inline any inline functions.
This can make the code easier to debug, but it still doesn’t help the edit-compile-
debug problem mentioned in FAQ 13.8. For example, turning off inline expan-
sion via a compiler option does not improve compile-time performance—the
compiler still has to parse the body of every inline function in a header every
time a source file is compiled that includes the header. Furthermore, depending
on the compiler, turning off inline expansion may increase code bulk—the com-
piler may create duplicate static copies of each inline function seen by the
compiler during every compilation unit. Finally, and probably most important,
turning off inline expansion doesn’t help the “recompile the world” problem (see
FAQ 13.8) since the inline functions are still in include files.

Although macros are evil, this is one of the areas where they can be used
to bypass the compile-time overhead mentioned in FAQ 13.8. The strategy is
straightforward. First, define all inline functions outside the class body in a
separate file (call this the .inl file or .ipp file). Then, in the .inl file, change
the keyword inline to the preprocessor symbol INLINE. Finally, conditionally
#include the .inl file from either the bottom of the .hpp file or from the .cpp
file, depending on whether or not INLINE should become inline or nothing.

In the following example, inline.hpp defines a macro INLINE to be either
the keyword inline or nothing, depending on whether the USE INLINE symbol
is #defined. For example, if the compiler supports the -D option as a way
to #define a symbol, compiling with -DUSE INLINE causes INLINE to become
inline. Here is file inline.hpp.

#ifndef INLINE_HPP
#define INLINE_HPP

#ifdef USE_INLINE
#define INLINE inline

#else
#define INLINE /*nothing*/
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#endif

#endif

File Fred.hpp defines class Fred with two member functions, f() and g(). If
the symbol USE INLINE is #defined, file Fred.inl is #included from Fred.hpp.
Here is file Fred.hpp.

#ifndef FRED_HPP
#define FRED_HPP

#include "inline.hpp"

class Fred {
public:
void f() throw(); // No code in the class body
void g() throw();

};

#ifdef USE_INLINE // #ifdef means "if defined"
#include "Fred.inl"

#endif

#endif

File Fred.inl defines Fred::f() preceded with the symbol INLINE. Note
that Fred.inl does not #include "Fred.hpp". Here is file Fred.inl.

#include <iostream>
using namespace std;

INLINE void Fred::f() throw() // Uses INLINE, not inline
{ cout << "Fred::f() is optionally inlined\n"; }

File Fred.cpp defines Fred::g() as non-inline. If the symbol USE INLINE is
not #defined, file Fred.inl is #included from Fred.cpp. Here is file Fred.cpp.

#include "Fred.hpp"
using namespace std;

#ifndef USE_INLINE // #ifndef means "if not defined"
#include "Fred.inl"

#endif

void Fred::g() throw()
{ cout << "Fred::g() is never inlined\n"; }

It is important to note that users of Fred don’t have to be aware of the .inl
file. For example, if file UserCode.cpp uses a Fred object, it won’t need to
change due to the INLINE magic. Here is a sample file that uses a Fred object,
file UserCode.cpp.
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#include "Fred.hpp"

int main()
{
Fred x;
x.f();
x.g();

}

This strategy can be easily modified to allow class-specific inlining. Simply
replace the line #include "inline.hpp" with the contents of that file, then
change USE INLINE to USE INLINE Fred and INLINE to INLINE Fred through-
out.
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Chapter 14

Const Correctness

14.1 How should pointer declarations be read?

Pointer declarations should be read right to left.

If Fred is some type, then

• Fred* is a pointer to a Fred (the * is pronounced “pointer to a”).

• const Fred* is a pointer to a Fred that cannot be changed via that
pointer.

• Fred* const is a const pointer to a Fred. The Fred object can be
changed via the pointer, but the pointer itself cannot be changed.

• const Fred* const is a const pointer to a Fred that cannot be changed
via that pointer.

References are similar: read them right to left.

• Fred& is a reference to a Fred (the & is pronounced “reference to a”).

• const Fred& is a reference to a Fred that cannot be changed via that
reference.

Note that Fred& const and const Fred& const are not included in the sec-
ond list. This is because references are inherently immutable: you can never
rebind the reference so that it refers to a different object.

14.2 How can C++ programmers avoid making
unexpected changes to objects?

With proper use of the keyword const, the C++ compiler detects many
unexpected changes to objects and flags these violations with error messages at
compile time. This is often called const correctness. For example, function f()
uses the const keyword to restrict itself so that it won’t be able to change the
caller’s string object:
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#include <string>
using namespace std;

void f(const string& s) throw(); // Parameter is received
// by reference-to-const

If f() changes its passed string anyway, the compiler flags it as an error at
compile time:

void f(const string& s) throw()
{
#ifdef GENERATE_ERROR
s += "foo"; // Error: The string cannot be mutated via s

#endif
}

In contrast, function g() declares its intent to change the caller’s string
object by its lack of the const keyword in the appropriate place:

void g(string& s) throw(); // Parameter is received by
// reference-to-non-const

For example, it is legal and appropriate for g() to modify the caller’s string
object:

void g(string& s) throw()
{
s += "foo"; // OK: Modifies the caller’s string object

}

Also it would be legal and appropriate for g() to pass its parameter to f(),
since the called function, f(), is at least as restrictive as the caller, g() (in this
case, the called function is actually more restrictive):

void g(string& s) throw()
{
f(s); // OK (though it doesn’t happen to modify

// caller’s string object)
s += "foo"; // OK: Modifies the caller’s string object

}

However, it would be illegal for the opposite to occur. That is, if f() passed
its parameter to g(), the compiler would give an error message since the called
function, g(), is less restrictive than the caller, f():

void f(const string& s) throw()
{
#ifdef GENERATE_ERROR
g(s); // Error: The const string& cannot be passed as a string&

#endif
}
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14.3 Does const imply runtime overhead?

No, there is no runtime overhead. All tests for constness are done at the
compile time. Neither runtime space nor speed is degraded.

14.4 Does const allow the compiler to generate
more efficient code?

Occasionally, but that’s not the purpose of const. The purpose of const is
correctness, not optimization. That is, const helps the compiler find bugs, but
it does not (normally) help the compiler generate more efficient code.

Declaring the constness of a parameter or variable is just another form of type
safety; therefore, const correctness can be considered an extension of C++’s
type system. Type safety provides some degree of semantic integrity by promis-
ing that, for instance, something declared as a string cannot be used as an
int. However, const correctness guarantees even tighter semantic correctness
by making sure that data that is not intended to be changed cannot be changed.
With const correctness, it is easier to reason about the correctness of the soft-
ware. This is helpful during software inspection.

It is almost as if const string and string are of different, but related,
classes. Because type safety helps produce correct software (especially in large
systems and applications), const correctness is a worthy goal.

14.5 Is const correctness tedious?

It is no more tedious than declaring the type of a variable.

In C++, const correctness is simply another form of type information. In
theory, expressing any type information is unnecessary, given enough program-
mer discipline and testing. In practice, developers often leave a lot of interesting
information about their code in their heads where it cannot be exploited or ver-
ified by the compiler. For instance, when programmers write a function such as
the following print() function, they know implicitly that they are passing by
reference merely to avoid the overhead of passing by value; there is no intention
of changing the string during the print() operation.

#include <string>
using namespace std;

void print(string& s); // Does not change s
// Wrong way to document the restriction

If this information is documented only by comments in the code or in a
separate manual, it is easy for these comments to become inconsistent with the
code; the compiler can’t read comments or manuals. The most cost-effective
way to document this information is with the five-letter word const:
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void print(const string& s); // Right way to document the restriction

This form of documentation is succinct, in one place, and can be verified and
exploited by the compiler.

14.6 Why should const correctness be done sooner
rather than later?

Adding constraints later can be difficult and expensive. If a function was not
originally restricted with respect to changing a by-reference parameter, adding
the restriction (that is, changing a parameter from string& to const string&
can cause a ripple through the system. For instance, suppose f() calls g(), and
g() calls h():

#include <string>
#include <iostream>
using namespace std;

void f(string& s) throw();
void g(string& s) throw();
void h(string& s) throw();

int main()
{
string s;
f(s);

}

void f(string& s) throw()
{ g(s); }

void g(string& s) throw()
{ h(s); }

void h(string& s) throw()
{ cout << s << ’\n’; }

Changing f(string&) to f(const string&) causes error messages until g(string&)
is changed to g(const string&). But this change causes error messages until
h(string&) is changed to h(const string&), and so on. The ripple effect is
magnificent—and expensive.

The moral is that const correctness should be installed from the very begin-
ning.
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14.7 What’s the difference between an inspector
and a mutator?

An inspector is a member function that returns information about an object’s
state without changing the object’s abstract state (that is, calling an inspector
does not cause an observable change in the behavior of any of the object’s
member function). A mutator changes the state of an object in a way that
is observable to outsiders: it changes the object’s abstract state. Here is an
example.

class Stack {
public:

int pop(); //Mutator
int numElems() const; //Inspector

};

The pop() member function is a mutator because it changes the Stack by
removing the top element. The numElems() member function is an inspector
because it simply counts the number of elements in the Stack without making
any observable changes to the Stack. The const decoration after numElems()
indicates that numElems() promises not to change the Stack object.

Only inspectors may be called on a reference-to-const or pointer-to-const:

void sample(const Stack& s) throw()
{
s.numElems(); // OK: A const Stack can be inspected

#ifdef GENERATE_ERROR
s.pop(); // Error: A const Stack cannot be mutated

#endif
}

14.8 When should a member function be de-
clared as const?

There are two ways to look at it. When looking at the member function from
the inside out, the answer is “whenever the member function wants to guarantee
that it won’t make any observable changes to its this object.” When looking at
the member function from the outside in, the answer is “whenever a caller needs
to invoke the member function via a reference-to-const or pointer-to-const.”
Hopefully these two approaches end up agreeing with each other. If not, then
the application may have a serious design flaw, or perhaps it needs to be const
overloaded (that is, two member functions with the same name and the same
parameters, but one is a const member function and the other is not).

The compiler won’t allow a const member function to change *this or to
invoke a non-const member function for this object:
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#include <stdexcept>
using namespace std;

class Stack {
public:
Stack() throw();
void push(int elem) throw(runtime_error);

// Throws exception if numElems() is 10
int pop() throw(runtime_error);

// Throws exception if numElems() is 0
int numElems() const throw();

protected:
int numElems_;
int data_[10];

};

int Stack::numElems() const throw()
{

#ifdef GENERATE_ERROR
++numElems_; //ERROR: Can’t modify *this
pop(); //ERROR: pop() isn’t a const member function

#endif
return numElems_;

}

Although not fleshed out in this example, member functions push() and
pop() may throw exceptions in certain circumstances. In this case they throw
runtime error, which is the standard exception class that is thrown for errors
that are detectable only at runtime.

14.9 Does const apply to the object’s bitwise
state or its abstract state?

The const keyword should refer to the object’s abstract state.

The const modifier is a part of the class’s public: interface; therefore, it
means what the designer of the public: interface wants it to mean. As an in-
terface designer, the most useful strategy is to tie const to the object’s abstract
state rather than to its bitwise state. For example, in some circumstances a
member function changes its object’s bitwise state, yet the change doesn’t cause
any observable change to any of the object’s public: member functions (that
is, the abstract state is not changed). In this case, the member function should
still be const since it never changes the meaning of the object (see FAQ 14.12).
It is even more common for a member function to change an object’s abstract
state even though it doesn’t change the object’s bitwise state.

For example, the following MyString class stores its string data on the heap,
pointed to by the member datum data . (The name bad alloc is the stan-
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dard exception class that is thrown when memory is exhausted, and the name
out of range is the standard exception class that is thrown when a parameter
is out of range.)

#include <new>
#include <stdexcept>
#include <iostream>
using namespace std;

class MyString {
public:
MyString(const char* s) throw(bad_alloc);
~MyString() throw();
MyString(const MyString& s) throw(bad_alloc);
MyString& operator= (const MyString& s) throw(bad_alloc);
unsigned size() const throw();
char& operator[] (unsigned index) throw(out_of_range);
char operator[] (unsigned index) const throw(out_of_range);
void toUpper() throw(); //capitalizes the string

protected:
unsigned len_;
char* data_;

};

int main()
{
MyString s = "xyz";
for (unsigned i = 0; i < s.size(); ++i)
cout << "Character #" << i << " is " << s[i] << ’\n’;

s.toUpper();
}

The abstract state of the MyString object s is represented by values returned
by s[i], where i ranges from 0 to s.size()-1, inclusive. The bitwise state
of a MyString is represented by the bits of s itself (that is, by s.len and the
pointer s.data ).

Even though s.toUpper() doesn’t change s.len or the pointer s.data ,
MyString::toUpper() is a non-const member function because it changes the
abstract state (the state from the user’s perspective). In other words, toUpper()
doesn’t change the bitwise state of the object, but it does change the meaning
of the object; therefore it is a non-const member function.

14.10 When should const not be used in declar-
ing formal parameters?

Do not use const for formal parameter types that are passed by value, because
a const on a pass-by-value parameter affects (constraints) only the code inside
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the function; it does not affect the caller. For example, replace f(const Fred
x) with either f(const Fred& x) or f(Fred x).

As a special case of this rule, it is inappropriate to use Fred* const in a
formal parameter list. For example, replace f(Fred* const p) with f(Fred*
p), and replace g(const Fred* const p) with g(const Fred* p).

Finally, do not use Fred& const in any context. The construct is nonsensical
because a reference can never be rebound to a different object. (See FAQ 14.1.)

14.11 When should const not be used in declar-
ing a function return type?

A function that returns its result by value should generally avoid const in
the return type. For example, replace const Fred f() with either Fred f() or
const Fred& f(). Using const Fred f() can be confusing to users, especially
in the idiomatic case of copying the return result into a local.

The exception to this rule is when users apply a const-overloaded member
function directly to the temporary returned from the function. An example
follows.

#include <iostream>
using namespace std;

class Fred {
public:
void wilma() throw() { cout << "Fred::wilma()\n"; }
void wilma() const throw() { cout << "Fred::wilma() const\n"; }

};

Fred f() throw() { cout << "f(): "; return Fred(); }
const Fred g() throw() { cout << "g(): "; return Fred(); }

int main()
{
f().wilma(); // Calls the non-const version of the wilma() member function
g().wilma(); // Calls the const version of the wilma() member function

}

Because f() returns a non-const Fred, f().wilma() invokes the non-const
version of Fred::wilma(). In contrast, g() returns a const Fred, so g().wilma()
invokes the const version of Fred::wilma(). Thus, the output of this program
is as follows.

f(): Fred::wilma()
g(): Fred::wilma() const
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14.12 How can a “nonobservable” data member
be updated within a const member func-
tion?

Preferably the data member should be declared with the mutable keyword.
If that cannot be done, const cast can be used.

A small percentage of inspectors need to make nonobservable changes to
data members. For example, an object whose storage is physically located
in a database might want to cache its last lookup in hopes of improving the
performance of its next lookup. In this case there are two critical issues: (1)
if someone changes the database, the cached value must somehow be either
changed or marked as invalid (cache coherency); (2) the const lookup member
function needs to make a change to the cached value. In cases like this, changes
to the cache are not observable to users of the object (the object does not change
its abstract state; see FAQ 14.9).

The easiest way to implement a nonobservable change is to declare the cache
using the mutable keyword. The mutable keyword tells the compiler that const
member functions are allowed to change the data member.

int readFromDatabase() throw()
{ return 42; } // Pretend this reads from the database

class Fred {
public:
int get() const throw();

private:
mutable int cache_;
mutable bool cacheOk_;

};

int Fred::get() const throw()
{
if (! cacheOk_) {
cache_ = readFromDatabase();
cacheOk_ = true;

}
return cache_;

}

int main()
{
Fred f;
int x = f.get(); // Access the database the first time it’s called
int y = f.get(); // Uses the cache; no database calls
int z = f.get(); // Uses the cache; no database calls

}
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The second alternative is to cast away the constness of the this pointer using
the const cast keyword. In the following example, self is equal to this (that
is, they point to the same object), but self is a Fred* rather than a const
Fred* so self can be used to modify the this object.

class Fred2 {
public:
int get() const throw();

private:
int cache_;
bool cacheOk_;

};

int Fred2::get() const throw()
{
if (! cacheOk_) {
Fred2* self = const_cast<Fred2*>(this);
self->cache_ = readFromDatabase();
self->cacheOk_ = true;

}
return cache_;

}

14.13 Can an object legally be changed even
though there is a const reference (pointer)
to it?

Yes, due to aliasing.

The const part restricts the reference (pointer); it does not restrict the object.
Many programmers erroneously think that the object on the other end of a
const reference (pointer) cannot change. For example, if const int& i refers
to the same int as int& j, j can change the int even though i cannot. This
is called aliasing, and it can confuse programmers who are unaware of it.

#include <iostream>
using namespace std;

void sample(const int& i, int& j) throw()
{
int orig = i;
j++; // Incrementing j can change the int called i
if (i != orig)
cout << "The value of i is different!\n";

}

int main()
{
int x = 3;
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sample(x, x);
}

There is no rule in C++ that prohibits this sort of thing. In fact, it is consid-
ered a feature of the language that programmers can have several pointers or ref-
erences refer to the same object (plus it could not be figured out in some cases,
e.g., if there are intermediate functions between main() and sample(const
int&,int&) and if these functions are defined in different source files and are
compiled on different days of the week). The fact that one of those references
or pointers is restricted from changing the underlying object is a restriction on
the reference (or pointer), not on the object.

14.14 Does const cast mean lost optimization
opportunities?

No, the compiler doesn’t lose optimization opportunities because of const cast.

Some programmers are afraid to use const cast because they’re concerned
that it will take away the compiler’s ability to optimize the code. For example, if
the compiler cached data members of an object in registers, then called a const
member function, in theory it would need to reload only those registers that
represent mutable data members. However in practice this kind of optimization
cannot occur, with or without const cast.

The reason the optimization cannot occur is that it would require the compiler
to prove that there are no non-const references or pointers that point to the
object (the aliasing problem; see FAQ 14.13), and in many cases this cannot be
proved.
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Chapter 15

Namespaces

15.1 What is the purpose of this chapter?

This chapter covers the basic material on namespaces.

The purpose of namespaces is to reduce the number of name clashes that occur
with multiple, independently developed libraries. In the early days of C++,
this was not as big a problem because there weren’t as many C++ libraries
as there are today. This situation changed about the time that the standard
template library was formalized, and today the large number of class libraries
and frameworks on the market accentuates the need for a mechanism to resolve
name conflicts.

The original goal for namespaces was to have an elegant solution that could be
explained to the typical developer in ten minutes and that could be implemented
by a compiler-writer in two weeks. The problem was a bit more difficult than
anticipated, and, like almost every other feature in C++, it has some dark
corners that most people should avoid. But the basic ideas of namespaces are
technically sound and within the grasp of any professional developer.

15.2 What is a namespace?

A namespace is a declarative region that can be used to package names,
improve program readability, and reduce name clashes in the global namespace.
It is an elegant alternative to using prefixes to indicate the sources of names.

At the most basic level, the syntax for namespaces is shown in the following
example.

namespace MySubsystem {
class Fred { // class MySubsystem::Fred
// ...

};

class Wilma { // class MySubsystem::Wilma
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// ...
};

void funct() // function MySubsystem::funct()
{
// ...

}

// Other declarations for MySubsystem go in here...
}

Namespaces facilitate building large systems by partitioning names into logi-
cal groupings.

Namespaces are “open” and can be added to at different places. For most
situations, this incremental approach is probably a better alternative than trying
to specify all of the names in one location, and this approach is used heavily in
the standard library. However the incremental approach must be used carefully,
because the effect is as if the compiler made a single pass and knew about only
the names that were part of the namespace the last time the namespace was
explicitly introduced into the source file.

Namespaces can be nested if desired. Java has a concept similar to namespaces
called packages.

UML expresses namespaces as shown below (they are called packages in
UML):

15.3 How can code outside a namespace use names
declared within that namespace?

One way to use a declaration from a namespace is, for every occurrence, to
use the scope operator :: to prefix the name declared in the namespace with
the name of the namespace. For example,

namespace People {
int fred = 2;
int wilma = 3;

}

void f() throw()
{
int i = People::fred + People::wilma;

}

Another approach is to introduce the equivalent of a local name with what
is known as a using declaration. The function f() from the previous example
cold be written as
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void f2() throw()
{
using People::fred; // Use People’s fred
int i = fred + People::wilma;

}

Another approach is called a using directive. Using this idea, the function
f() from the previous example could be written as

void f3() throw()
{
using namespace People; // Declare all names from People
int i = fred + wilma;

}

Note that a using directive does not declare any variables; it merely makes
names available.

Finally, notice that the global namespace can be thought of as the namespace
without an identifier (i.e., ::fred refers to fred in the global namespace).

15.4 What happens if two namespaces contain
the same name?

Suppose two different namespaces have their own versions of class string.
Both namespaces can be introduced into the same code fragment without con-
flict, as long as there are no unqualified references to string. However, if there
are unqualified references to string, the compiler issues an error because the
unqualified name string is ambiguous. This is illustrated in the following ex-
ample.

namespace A {
int x = 1;
int z = 2;

}

namespace B {
int y = 3;
int z = 4;

}

void doSomethingWith(int i) throw()
{ }

void sample() throw()
{
using namespace A; // OK: Introduces A::x and A::z
using namespace B; // OK: Introduces B::y and B::z
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doSomethingWith( x );
// OK: Unqualified x unambiguously resolves to A::x

doSomethingWith( y );
// OK: Unqualified y unambiguously resolves to B::y

doSomethingWith( A::z );
// OK: The A:: qualifications makes this unambiguous

doSomethingWith( B::z );
// OK: The B:: qualifications makes this unambiguous

#ifdef GENERATE_ERROR
doSomethingWith( z ); // Error: Ambiguous: A::z or B::z?

#endif
}

main()
{ sample(); }

15.5 What are some of the rules for using names-
paces?

The following example due to Stroustrup (C++ Programming Language, Third
Edition, 1997) illustrates some of the basic ideas.

namespace X {
int i, j, k;

}

int k;

void f1() throw()
{
int i = 0;
using namespace X; // make names from X accessible
i++; // local i
j++; // X::j
k++; // error: X::k or global k?
::k++; // the global k
X::k++; // X’s k

}

void f2() throw()
{
int i = 0;
using X::i; // Error: i declared twice in f2()
using X::j;
using X::k; // Hides global k

i++;
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j++; // X::j
k++; // X::k

}

15.6 What is name lookup?

Name lookup, sometimes known as Koenig lookup, is a clever solution to a
difficult problem. Consider the problem of printing a string in the following
example.

#include <iostream>
#include <string>

void sample() throw()
{
std::string s = "hello world";
std::cout << s; // How does the compiler find the proper <<?

}

The operator<< that’s needed is a non-member function that takes a string
as a parameter and is packaged with the string class. How is the compiler
supposed to find the proper operator? One approach is to make all the names
in the entire standard namespace accessible without qualification (e.g., using
namespace std;), but this is an ugly solution that is discussed in FAQ 15.9.
An equally ugly alternative is to change sample() to the following:

void sample2() throw()
{
std::string s = "hello world";
std::operator<< (std::cout, s); // Ugly

}

Koenig lookup is a better alternative. It recognizes that non-member func-
tions associated with a parameter class such as string can be thought of as part
of an extended public: interface, and there is no harm in having the compiler
automatically look for such functions in the same namespace as the parameter
class. This is the technique known as name lookup, and it allows the example
above to work “as is”. The trick is that a class parameter, in this case string,
somehow identifies a namespace, in this case std, and then all the non-member
functions that refer to that parameter class are automatically made available.
It’s a pretty slick idea that usually simplifies life.

15.7 What are the tradeoffs between the various
techniques for using names from a names-
pace, particularly the standard namespace?

Relying solely on the scope operator leads to programs that are hard to read,
particularly for frequently used classes such as string. Clutter is not desirable
in programs that have to be maintained.
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The using declaration is probably the best solution for most cases, because
the developer specifically declares what is intended. But this can be tedious,
particularly when pulling names from the standard library.

The using directive is less desirable than the using declaration because it
pollutes the global namespace unnecessarily and opens the door for later code
breakage. This is because compiler writers and class library providers can add
names to the standard namespace, which means that programs that utilize
using namespace std; can suddenly fail to compile even though the user has
not changed anything.

Despite this, we utilize using namespace std; throughout this book to allow
our examples to compile and to allow the reader who has not read this chapter
yet to muddle through, but this practice has little to recommend it.

15.8 Can namespaces break code?

Namespaces can cause code to suddenly not compile without changes by the
programmer. The easiest way this can occur is discussed in FAQ 15.9, but that
situation involves the conscious use of using directives, so there shouldn’t have
been any surprises at the consequences. Here’s an example that’s a little more
insidious.

Start with a header that declares a namespace MySubsystem and a class Fred
in that namespace. For example, the following might be in file MySubsystem.hpp:

#ifndef MY_SUBSYSTEM_HPP
#define MY_SUBSYSTEM_HPP

namespace MySubsystem {
class Fred { };

}

#endif

Now suppose some user code creates a normal function f() that takes a
parameter of type MySubsystem::Fred:

#include "MySubsystem.hpp"

void f(MySubsystem::Fred& x) throw()
{ }

int main()
{
MySubsystem::Fred x;
f(x); // Uses the global f() that takes

// MySubsystem::Fred& as a parameter
}
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Now suppose a revision of MySubsystem.hpp adds a function f(Fred& x) to
namespace MySubsystem:

#ifndef MY_SUBSYSTEM_HPP
#define MY_SUBSYSTEM_HPP

// This is a revision of the original header
namespace MySubsystem {
class Fred { };
void f(Fred& x) throw();

}

#endif

Suddenly, there is ambiguity as to which f(x) is needed, and the code will
not compile.

There are even more exotic examples, but the main point is that there are
several ways ambiguity can creep in, and the programmer has to resolve the
conflicts manually. This is not a severe problem because the compiler flags it
and it is relatively easy to fix.

15.9 Do namespaces have any other applications?

Namespaces have cleaned up some old problems in two other ways. First,
unnamed namespaces are preferable to the use of static global members and
reduce the number of meanings that can be placed on the word “static”. Second,
using declarations are now the preferred alternative to access declarations that
were used to work around some knotty problems with private inheritance.

15.10 How do namespaces solve the problem of
long identifiers?

There is a simple macro-like solution for the long namespace name problem—

namespace CWLN = CompanyWithLongName;

—which allows the use of either the short or the long form of the name. This
solution is known as namespace aliases.
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Chapter 16

Using Static

16.1 What is the purpose of this chapter?

This chapter explores the issues related to the situation that occurs when a
class contains static data members and/or static member functions.

16.2 What are static class members?

Static class members are data and functions that are associated with the class
itself, rather than with the objects of the class.

In the following example, class Fred has a static data member x_ and an
instance data member y_. There is only one copy of Fred::x_ regardless of how
many Fred objects are created (including no Fred objects), but there is one y_
per Fred object. Thus x_ is said to be associated with the class and y_ is said
to be associated with an individual object of the class. Similarly class Fred has
a static member function f() and an instance member function g().

class Fred {
public:
static void f() throw();

// Member function associated with the class
void g() throw();

// Member function associated with an individual
// object of the class

protected:
static int x_; // Data member associated with the class
int y_; // Data member associated with an individual

// object of the class
};

Everything except instance data members must be defined somewhere, such
as in the Fred.cpp source file:

#include "Fred.hpp"
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void Fred::f() throw() // The static keyword is not used at the
// function’s definition

{ /*...*/ }

void Fred::g() throw()
{ /*...*/ }

int Fred::x_ = 3; // Static data members must be explicitly
// defined in exactly one source file

Static data members are often referred to as class data, and static member
functions are often referred to as class services or class methods.

16.3 What is an analogy for static data mem-
bers?

Static data members are like data located in the factory rather than in the
objects produced by the factory.

In Detroit, there’s big sign with a running total of the number of cars produced
during the current year. But that information isn’t under the hood of any given
cars; all the car knows is a serial number indicating its ordinal number. The
total number of cars produced is therefore factory data.

In the following example, class Car is the factory that is used to produce Car
objects. Every car has a serial number (serial_). The factory keeps count of
the number of cars that have been built via num_, which is a class (or static)
datum; serial_ is an object (or instance) datum. The constructors of class Car
are responsible for incrementing the number of cars that have been built; for
simplicity this number is used as the serial number.

#include <iostream>
using namespace std;

class Car {
public:

Car() throw(); // Increments Car::num_
Car(const Car& c) throw(); // Increments Car::num_

// No need for an explicit assignment operator or destructor
// since these don’t create new Car objects (but see FAQ 30.06).

static int num_; // Class data

private:
int serial_; // Object data
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};

Car::Car() throw()
: serial_(num_)
{
cout << "Car ctor\n";
++num_;

}

Car::Car(const Car& c) throw()
: serial_(num_)
{
cout << "Car copy\n";
++num_;

}

int Car::num_ = 0; // Class data is automatically initialized,
// often before main()

Just as a factory exists before it produces its first object, class (static) data
can be accessed before the first object is instantiated as well as after the last
object has been destroyed.

int main()
{
cout << "Car::num_ = " << Car::num_ << ’\n’;
{
Car a;
cout << "Car::num_ = " << Car::num_ << ’\n’;
Car b;
cout << "Car::num_ = " << Car::num_ << ’\n’;
Car c = a;
cout << "Car::num_ = " << Car::num_ << ’\n’;

}
cout << "Car::num_ = " << Car::num_ << ’\n’;

}

The output is

Car::num_ = 0
Car ctor
Car::num_ = 1
Car ctor
Car::num_ = 2
Car copy
Car::num_ = 3
Car::num_ = 3

Note: See the next FAQ regarding inline functions that access static data
members.

187



16.4 Can inline functions safely access static
data members?

No!

Static data members should normally be accessed by non-inline functions
only (and then only from non-inline functions that are defined in the same
source file as the static data member’s definition). In some cases inline func-
tions can access static member data, but the programmer needs to think through
the issues fairly carefully—they’re somewhat tricky.

Suppose class Fred contains two static data members: Fred::i_ is of type int
and Fred::s_ is of class string, the standard string class. The data member
Fred::i_ is initialized before any code starts running, so Fred::i_ can be
accessed from an inline function. However if an inline function accesses
Fred::s_, and if the inline function is called from another compilation unit,
the inline function might access Fred::s_ before it has been initialized (that
is, before the constructor of Fred::s_ has run). This would be a disaster.

Static data members are guaranteed to be initialized before the first call to any
non-inline function within the same source file as the static data’s definition. In
the following example, file Fred.cpp defines both static data member Fred::s_
and member function Fred::f(). This means that Fred::s_ will be initialized
before Fred::f() is called. But if someone calls inline function Fred::g()
before calling Fred::f(), accessing Fred::s_ could be a disaster since Fred::s_
might not be initialized yet.

Here is file Fred.hpp.

#include <string>
#include <iostream>
using namespace std;

class Fred {
public:
static void f() throw();
static string g() throw();

private:
static string s_;

};

inline string Fred::g() throw()
{ cout << s_; return s_; } // EVIL: Fred::s_ might not be

// initialized yet

Here is file Fred.cpp.

#include "Fred.hpp"
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string Fred::s_ = "Hello\n";

void Fred::f() throw()
{ cout << s_; } // GOOD: Fred::s_ is guaranteed to be initialized

Here is an example showing how the above code could possibly fail (this code
is assumed to be in a different source file, such as main.cpp).

#include "Fred.hpp"

int main()
{ Fred::g(); }

Note that some—but not all—compilers will initialize static data member
Fred::s_ before main() begins. Thus this code is doubly evil since it will subtly
fail on some compilers and accidentally work on others. In fact, its success or
failure might even depend on the order that object files are passed to the linker,
and some visual environments hide the linker so well that many programmers
don’t even know the order in which object files are passed to the linker.

The make matters worse, the following source file, say even-worse.cpp, calls
inline function Fred::g()—therefore accessing Fred::s_—during static ini-
tialization. Many compilers will cause this to happen before main() begins, so
this is even more likely to cause a problem (but again, the problem will depend
randomly on things like the link order, the compiler, the version number, the
phase of the moon, etc.).

#include "Fred.hpp"

string x = Fred::g();

16.5 What is an analogy for static member func-
tions?

Static member functions are like services attached to the factory rather than
services attached to the objects produced by the factory.

#include <cstdlib>
#include <iostream>
using namespace std;

class Car {
public:

Car() throw();
Car(const Car& c) throw();
// No need for an explicit assignment operator or destructor
// since these don’t create new Car objects.
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static int num() throw(); // Class service
int odometer() const throw(); // Object service
void drive() throw(); // Object service: you drive a Car,

// not a factory

private:
static int num_; // Class data
int miles_; // Object data

};

Car::Car() throw() : miles_(0)
{
cout << "Car ctor\n";
++num_;

}

Car::Car(const Car& c) throw() : miles_(c.miles_) {
cout << "Car copy\n";
++num_;

}

int Car::num() throw() // Should be in same source file as num_;
// see FAQ 16.04

{ return num_; }

int Car::odometer() const throw()
{ return miles_; }

void Car::drive() throw()
{ ++miles_; }

int Car::num_ = 0; // Class data is automatically initialized,
// often before main()

Some services make sense only when applied to an object.

void fiddleWithObject(Car& car) throw()
{
while (rand() % 10 != 0)
car.drive();

cout << "car.odometer() = " << car.odometer() << ’\n’;
}

Some services make sense only when applied to the factory.

void fiddleWithClass() throw()
{
cout << "Car::num() returns " << Car::num() << ’\n’;

#ifdef GENERATE_ERROR

190



Car::drive(); // ERROR: Can’t drive a factory
Car::odometer(); // ERROR: Factories don’t have odometers

#endif
}

Since the factory exists before it produces its first object, the factory can
provide services before instantiating an object. That is, fiddleWithClass()
can be called before the first Car object is created and/or after the last Car
object is destructed:

int main()
{
fiddleWithClass();

{
Car a;
fiddleWithClass();
fiddleWithObject(a);

}

fiddleWithClass();
}

16.6 How is a static data member similar to a
global variable?

A static data member is like a global variable with a funny name that does
not need to be public:.

If a class has a static data member, there is only one copy of that datum
even if there are many instances of the class. This is like a global variable. The
difference is that a static data member has a funny (scoped) name (it doesn’t
pollute the global namespace) and it needn’t be public: (static data members
can be private:, protected:, or public:).

These factors allow classes to be the logical packaging device; source files are
reduced to mere buckets of bits and code. There is no need to use source files
for hiding data (for instance, there is no need to use file-scope static data to
hide data in a source file) since the data can now be hidden in a class. This
distinction allows the physical packaging of software to be different from the
logical packaging. For example, physical packaging may be optimized based on
page fault analysis or on compile-time performance or for maintainability, and
so forth.

Global data is rarely used any more. Normally objects and instance data
work fine, but when true global data is required, the right choice is normally to
use static member data (that is, class-scope static data members) or to put the
data in an unnamed namespace.
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16.7 How is a static member function similar to
a friend function?

A static member function is like a friend function with a funny name that
needn’t be public:.

Static member functions and top-level (C-like) friend functions are similar in
that neither has an implicit this parameter, and both have direct access to the
class’s private: and protected: parts.

Except for overloaded operators, most friend functions end up actually being
static member functions, because static member functions have a scoped name
(they don’t pollute the global namespace) and they don’t have to be public:—
they can also be private: or protected:.

16.8 What is the named constructor idiom?

An idiom that allows a specific name for an operation that is similar to a
constructor.

Occasionally, classes have a large suite of overloaded constructors. Because
all constructors for a class have the same name, it can be confusing to select
between the various overloaded constructors. When this happens, the named
constructor idiom may be appropriate.

For example, consider a complex number class, Complex, that supports con-
struction using either polar coordinates (magnitude, angle) or rectangular coor-
dinates (real part, imaginary part). Unfortunately, these constructors are very
similar; both constructors take two floats. Should Complex(2,1) be inter-
preted as specifying polar form (“2 at angle 1”) or as specifying rectangular
form (“2 plus 1 times the imaginary constant”)?

Many potential solutions exist to resolve this ambiguity. A boolean flag could
indicate which is intended, or an extra dummy parameter on one of the construc-
tors could be used to avoid runtime overhead by making the selection at compile
time rather than at runtime. Another solution is to use the named constructor
idiom, which is a way of using static member functions to provide alternative
constructors for a class. Usually, the named constructor idiom results in user
code that is more direct and readable:

#include <cmath>
#include <iostream>
using namespace std;

class Complex {
public:
Complex(float real=0.0) throw();
static Complex rect(float real, float imag) throw();
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static Complex polar(float mag, float ang) throw();
// The so-called named constructors

private:
Complex(float real, float imag) throw();
float real_, imag_;

};

inline Complex::Complex(float real) throw()
: real_(real)
, imag_(0)
{ }

inline Complex::Complex(float real, float imag) throw()
: real_(real)
, imag_(imag)
{ }

inline Complex Complex::rect(float real, float imag) throw()
{ return Complex(real, imag); }

inline Complex Complex::polar(float mag, float ang) throw()
{ return Complex(mag*cos(ang), mag*sin(ang)); }

Both rect() and polar() are static member functions that operate like con-
structors. Users explicitly call whichever version they want.

int main()
{
Complex a; // real part=0, imag part=0
Complex b = 3.14; // real part=3.14, imag part=0
Complex c = Complex::rect(3,2); // real part=3, imag part=2
Complex d = Complex::polar(3,2); // magnitude=3, angle=2 radians

}

16.9 How should static member functions be called?

Explicitly name the class using ::.

For documentation purposes, calls to static member functions should be coded
as Classname::staticMember() rather than as object.staticMember() or
ptr->staticMember(). The :: is a reminder that the member function is
statically bound (see FAQ 21.9) and that the member function is attached to
the class rather than to an individual object of the class.

Calling a static member function Classname::f() from another member
function of class Classname is an exception to this rule. In this case, the call can
be simply f(), since the meaning is usually clear in this context. For example,
when Classname::f() is a protected: static member function of the class,
simply write f() rather than Classname::f().
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16.10 Why might a class with static data mem-
bers get linker errors?

Static data members must be explicitly defined in exactly one source file.

Here’s an example of a header file, such as Fred.hpp.

class Fred {
public:
static int x_; // Declare (not define) static member Fred::x_

};

The linker generates an error (“Fred::x_ is not defined”) unless (exactly)
one of the source files defines Fred::x_. This definition is normally done in the
class’s source file, such as file Fred.cpp:

#include "Fred.hpp"
int Fred::x_ = 42; // Define static member Fred::x_

Note that the explicit initializer (= 42 in the example) is optional. That is,
the line could be changed to

int Fred::x_; // Initialize Fred::x_ to 0

Note that even when the static data member is private: or protected:, it
must still be explicitly defined as shown in one of the two examples.

16.11 How is a const static data member initial-
ized?

A const static data member is declared in the class and is normally defined
(and initialized) in a source file, such as a .cpp file. But in some cases it can be
initialized in the class body proper. For example, integral types, such as int,
unsigned long, char, and so on, are special: they can be initialized where they
are declared in the class body proper.

Here is a sample header file, Fred.hpp.

#include <string>
using namespace std;

class Barney { };

class Fred {
public:
// ...

private:
static const int i_ = 42;
static const char c_ = ’z’;
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// Integral data types can be initialized in the class
// body proper

static const float x_;
static const string s_;
static const Barney b_;

// Nonintegral data types must be defined in the source
// file, not in the class body proper

};

Here is corresponding source file, Fred.cpp.

#include "Fred.hpp"

const float Fred::x_ = 3.14;
const string Fred::s_ = "Hello";
const Barney Fred::b_;

Another common style is to use anonymous (unnamed) enums. This style
is non longer needed, but it is typical in older C++ code. For example, the
static const int i = 42 from the previous example can be replaced by
enum { i_ = 42 }, as shown in the following example.

class Fred {
public:
// ...

private:
enum { i_ = 42 }; // Older style
// static const int i_ = 42; // Newer style

};

In either case, the constant is called Fred::i_, and it can be private:,
protected:, or public:.

16.12 What is the right strategy for implement-
ing a function that needs to maintain state
between calls?

Turn the function into a functionoid. Do not create a function with local
static data.

In C, it was common to create a function that maintained state between calls
by means of local, static data inside the function body. Since this is unsafe in
a multithreaded environment, in C++ such a function should be implemented
as a functionoid, which is a fancy name for a class that has one major member
function. The local static data from the original C-like function should become
nonstatic member data of the functionoid class. The benefit is to allow different
callers to have different values for the datum that used to be static. For example,
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every calling function that wants its own copy of the function’s state can simply
create its own distinct functionoid object.

Viewing a function with local static data as a global functionoid object makes
it clear why the static data is expensive to model (global variables aren’t fun!).
For example, consider the rand() function, which remembers some state be-
tween calls:

int rand() throw()
{
static unsigned long current = 1001; // Bad form: Local static data
current = current * 22695477UL + 1;
return int(current >> 12) & 0x7fff;

}

The static variable current introduces subtle dependencies between users of
the function. Any change in the calling pattern can alter the behavior of this
routine. Such routines are notorious in shared-memory, multithreaded environ-
ment.

A better way to do this is with a class. Every user function that wants a
pseudorandom stream of numbers can create its own object of this class.

#include <iostream>
using namespace std;

class RandomSequence { // Good form: Functionoid
public:
RandomSequence(int initialSeed=1001) throw();
int next() throw();

protected:
unsigned long current_;

};

RandomSequence::RandomSequence(int initialSeed) throw()
: current_(initialSeed)
{ }

int RandomSequence::next() throw()
{
current_ = current_ * 22695477UL + 1;
return int(current_ >> 12) & 0x7fff;

}

The user gets a sequence of random numbers by using the member function
next().

void printRandomSequence() throw()
{
RandomSequence rand;

196



for (int i = 0; i < 10; ++i)
cout << rand.next() << ’ ’;

}

int main()
{ printRandomSequence(); }

Before, there was a global rand() function with a single state variable. Now
there is a local rand object and as many state variables as there are user func-
tions that want an independent pseudorandom sequence. The dependencies
among callers (and especially among the various threads) are eliminated at the
source. There is no more shared static data.

Another reason to create a functionoid object is when a function performs
several distinct operations. In C, such a function would often accept a what-
to-do parameter that selected the operation to be performed. In C++, such
a multioperation function should be implemented as an object. Each distinct
operation performed by the original function should become a distinct member
function on the object. Such an object is also called a functionoid.

16.13 How can the function call operator help
with functionoids?

The function call operator lets users pretend that the functionoid is a function.

In the previous example, class RandomSequence is a functionoid. Unlike a
standard function, RandomSequence can maintain state between calls without
sharing that state between all of its callers.

Functionoids often use the function call operator (operator()()) rather than
a named member function such as next(). In the following code, next() has
been replaced by operator()() in class RandomSequence.

#include <iostream>
using namespace std;

class RandomSequence {
public:
RandomSequence(int initialSeed=1001) throw();
int operator()() throw(); // The name of the member function is operator()

protected:
unsigned long current_;

};

RandomSequence::RandomSequence(int initialSeed) throw()
: current_(initialSeed)
{ }
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int RandomSequence::operator()() throw()
{
current_ = current_ * 22695477UL + 1;
return int(current_ >> 12) & 0x7fff;

}

Given an object of class RandomSequence called rand, users can now use
rand() instead of rand.next():

int main()
{
RandomSequence rand;
for (int i = 0; i < 10; ++i)
cout << rand() << ’ ’;

}

16.14 Is it safe to be ignorant of the static ini-
tialization order problem?

No, ignorance of the static initialization order problem can result in applica-
tion crashes.

The static initialization order problem has to do with the lifetimes of class-
scope static objects and file-scope or namespace-scope objects. These objects
are constructed near the beginning of the application’s execution (often before
main() begins) and are destructed after main() finishes. The nightmare scenario
occurs when there is an order dependency between initializations across different
compilation units (that is, different .cpp files). This can be both dangerous and
subtle.

For example, suppose a constructor of class Fred uses a static data member
of class Wilma, and a user creates a global Fred object. If the static objects
in the user’s source file are initialized before those in the source file containing
Fred’s static data member, Fred’s constructor will access a Wilma object before
it is constructed.

Although this description sounds uncommon, it actually shows up quite often
in practice, especially with factory objects whose constructor registers something
in a “registry” object. For example, Wilma is actually a map (a registry object)
and Fred is a “factory” object whose constructor registers something in the map.

In the following example, the order of the global Fred and the static data
member have been arranged to simulate this disaster.

#include <iostream>
using namespace std;

class Wilma {
public:
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Wilma() throw();
void f() throw();

};

inline Wilma::Wilma() throw() { cout << "Wilma ctor\n"; }
inline void Wilma::f() throw() { cout << "Wilma used\n"; }

class Fred {
public:
Fred() throw();

protected:
static Wilma wilma_;

};

inline Fred::Fred() throw()
{
cout << "Fred ctor\n";
wilma_.f();

}

Fred x;
Wilma Fred::wilma_;

int main()
{ }

The (annotated) output from this program shows that the Wilma object is
used before it is initialized. This is a disaster.

Fred ctor
Wilma used <--- The static object is used
Wilma ctor <--- The static object is constructed

16.15 What is a simple and robust solution to
the static initialization order problem?

A very simple and fairly robust solution is to change the static data member
into a static member function that returns a reference to a dynamically allocated
object. This provides construct on first use semantics, which is desirable in many
situations.

The following code shows how to apply this technique to the example from
the previous FAQ. The static data member Wilma Fred::wilma has been
changed to a static member function, Wilma& Fred::wilma(), and all uses of
Fred::wilma have been changed to Fred::wilma(). Class Wilma is not shown
since it is unchanged from the example in the previous FAQ.

class Fred {
public:
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Fred() throw();
protected:
static Wilma& wilma() throw(); // Used to be static Wilma wilma_;

};

inline Fred::Fred() throw()
{
cout << "Fred ctor\n";
wilma().f(); // Used to be wilma_.f()

}

Fred x;

Wilma& Fred::wilma() throw() // Used to be Wilma Fred::wilma_;
{
static Wilma* p = new Wilma(); // Don’t forget the "static"!
return *p;

}

In the static member function Fred::wilma(), pointer p is static, so the new
Wilma() object is allocated only the first time that Fred::wilma() is called.
All subsequent calls simply return a reference to the same Wilma object.

As shown in the (annotated) output from this program, the Wilma object is
initialized before it is used. This is good.

Fred ctor
Wilma ctor <--- The static object is constructed
Wilma used <--- The static object is used

16.16 What if the static object’s destructor has
important side effects that must eventu-
ally occur?

One limitation of the technique described in the previous FAQ is that it aban-
dons the static Wilma object on the heap—the Wilma object is never destructed.
If the Wilma object’s destructor has important side effects that should eventu-
ally happen, then the implementation of Fred::wilma() needs to be changed
so that it simply returns a local static object by reference.

The following code shows how to apply this technique to the example from the
previous FAQ. The local static pointer static Wilma* p = new Wilma(); has
been changed to simply static Wilma w;, and the return statement simply
returns the local static object w. Class Wilma is not shown since it is unchanged
from the example in the previous FAQ.

class Fred {
public:
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Fred() throw();
protected:
static Wilma& wilma() throw(); // Same as in the previous FAQ

};

inline Fred::Fred() throw()
{
cout << "Fred ctor\n";
wilma().f(); // Same as in the previous FAQ

}

Fred x;

Wilma& Fred::wilma() throw()
{
static Wilma w; // Used to be static Wilma* p = new Wilma();
return w;

}

Since the local static object w is static, it is initialized only the first time
control flows over its declaration, that is, the first time Fred::wilma() is called.
This is the same construct on first use semantics as was described in the previous
FAQ, which is normally quite desirable.

Unfortunately, this solution has its own problems. Remember why this solu-
tion was proposed in the first place: the Wilma object’s destructor has important
side effects that need to eventually occur. Although this second solution guar-
antees that they will occur (assuming the Fred::wilma() function is called at
least once), it introduces a new problem that the previous solution did not have:
a static deinitialization order problem. In particular, if some static object’s de-
structor calls Fred:wilma(), Murphy’s Law says that that call will occur after
the static Wilma object has been destructed. If that may occur, the best solution
is the nifty counter technique, which is described in the next FAQ.

16.17 What if the static object’s destructor has
important side effects that must eventu-
ally occur and the static object must be
accessed by another static object’s destruc-
tor?

This is the most restrictive of all scenarios since it means that the construction
must occur before the object is first used, and it must be destructed after its last
use. The solution is called the nifty counter technique. What happens is that a
static counter is created (the nifty counter) along with a static object in each
source file whose constructor increments this nifty counter and whose destructor
decrements the nifty counter. When the nifty counter is incremented from zero,
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the static object is initialized, and when the nifty counter is decremented to
zero, the static object is destructed.

The following code shows how to apply this technique to the example from
the previous FAQ. The static data member is back, but this time it is a static
pointer. Nested class Fred::Init has a static counter (the nifty counter) called
count_, which is incremented by Fred::Init’s constructor and decremented
by Fred::Init’s destructor. The Fred::wilma_ object is created when the
nifty counter is incremented from zero and is destructed when the counter is
decremented back to zero. Class Wilma is not shown since it is unchanged from
the example in the previous FAQ.

Here is the header file Fred.hpp.

class Fred {
public:
Fred() throw();
class Init; // This declares nested class Fred::Init

protected:
friend Init; // So Fred::Init can access Fred::wilma_
static Wilma* wilma_; // This is now a static pointer

};

class Fred::Init {
public:
Init() throw() { if (count_++ == 0) wilma_ = new Wilma(); }
~Init() throw() { if (--count_ == 0) delete wilma_; }

private:
static unsigned count_;

};

static Fred::Init fredInit; // The key: a static Fred::Init
// object defined in the header file

inline Fred::Fred() throw()
{
cout << "Fred ctor\n";
wilma_->f(); // This is now safe

}

Here is the source file Fred.cpp:

#include "Fred.hpp"

unsigned Fred::Init::count_ = 0;
Wilma* Fred::wilma_ = NULL;

Every source file that includes header file Fred.hpp ends up with its own static
Fred::Init object called fredInit. Since this static object appears very early
in the source file, it is initialized before most other static objects in the source
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file (in particular, it is guaranteed to be initialized before any static object in
the source file could call Fred::Fred(), since the call to any member function
of class Fred can occur only after the header of class Fred has been #included).

Of all the source files that include header file Fred.hpp, one of them, say
foo.cpp, is initialized first. During the static initialization of foo.cpp, the nifty
counter Fred::Init::count_ is incremented from zero, and the Fred::wilma_
object is created. Since the Fred::wilma_ object is initialized before any calls
to any member functions of class Fred can be made, it is guaranteed to be
constructed before it is used.

The static deinitialization situation is similar but opposite. Of all the source
files that include Fred.hpp, one of them, say foo.cpp, is the last one to be
deinitialized. Since deinitialization occurs in bottom to top order, the static
Fred::Init object in file foo.cpp is one of the last things that is destructed
(certainly it is destructed after any static object could call any member function
of class Fred). Therefore the Fred::wilma_ object is destructed just after the
last static object could possibly use it: it will not be used after it has been
destructed.

Unfortunately the nifty counter technique also has problems. Although it
never allows an object to be used either before construction or after destruc-
tion, it does force a small amount of static initialization code into every source
file that includes header file Fred.hpp. This means that a large percentage of
the application needs to be paged into memory during startup, which can sig-
nificantly degrade startup performance, especially if there are a lot of source
files that include headers that use the nifty counter technique.

16.18 What are some criteria for choosing be-
tween all these various techniques?

Here are the pros and cons of each of the three techniques that were presented.

• Construct on first use with new: Users access the static object via a non-
inline access function. The access function has a local static pointer and
allocates the object via new.

– Pro: The technique is easy to remember, simple to use, efficient
during startup, safe during startup, and safe during shutdown.

– Con: The static object is abandoned on the heap—if the static ob-
ject’s destructor has important side effects that must occur, this tech-
nique cannot be used. (See FAQ 16.15.)

• Construct on first use with a local static object: Users access the static
object via a non-inline access function. The access function has a local
static object.

– Pro: The technique is easy to remember, simple to use, efficient
during startup, and safe during startup, and it eventually destructs
the object.
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– Con: The technique is not safe during shutdown—if a static object’s
destructor calls the access function, the static object could be ac-
cessed after it is destroyed, which would be a disaster. (See FAQ
16.16.)

• Nifty counter: The static object is constructed when the nifty counter
is incremented from 0 and is destructed when the nifty counter is decre-
mented to 0.

– Pro: The technique is simple to use, safe during startup, and safe
during shutdown, and it eventually destructs the object.

– Con: Potential performance problem during startup and shutdown.
(See FAQ 16.17.)

In our experience, a significant percentage of static objects that should be
constructed before they are first used are registry objects (for example, a map
object that will be populated during static initialization by other static objects).
In most of these cases, the first technique is sufficient since the map object rarely
has to be destructed—it can be abandoned on the heap. This is good news
because the first technique is easy to use, easy to remember, is fast, and is safe
during both startup and shutdown.
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Chapter 17

Derived Classes

17.1 What is the purpose of this chapter?

This chapter discuss derived classes and inheritance at the programming lan-
guage level. Part II discusses the same information on a design level and should
be read before this chapter. This chapter dwells only on public, single, nonvir-
tual inheritance, which is the most prevalent form. Chapter 38 discusses some
of the other types of inheritance.

17.2 How does C++ express inheritance?

Here is a typical C++ inheritance declaration.

#include <iostream>
using namespace std;

class Vehicle {
public:

virtual void startEngine() throw() = 0;
virtual ~Vehicle() throw();

};

Vehicle::~Vehicle() throw()
{ }

class V8Engine {
public:

void start() throw();
};

void V8Engine::start() throw()
{ cout << "starting V8Engine\n"; }

class Car : public Vehicle {
public:
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virtual void startEngine() throw();
protected:
V8Engine engine_;

};

void Car::startEngine() throw()
{ engine_.start(); }

This relationship can be described in several equivalent ways.

• Car is a kind-of Vehicle.

• Car is derived from Vehicle.

• Car is a subclass of Vehicle.

• Car is a child class of Vehicle (not common in the C++ community).

• Vehicle is the base class of Car.

• Vehicle is the parent class of Car (not common in C++ community).

• Vehicle is the super-class of Car (not common in C++ community).

As a consequence of the kind-of relationship, a Car object can be treated as a
Vehicle object. For example, since function f(Vehicle&) accepts any kind-of
Vehicle, it can be passed a Car or an object of any other class derived from
Vehicle:

void f(Vehicle& v) throw()
{ v.startEngine(); }

int main()
{
Car c;
f(c);

}

UML uses the following notation to show inheritance.

17.3 What is a concrete derived class?

A concrete derived class is a derived class that has no pure virtual functions.

Because an abstract class cannot be instantiated directly, one or more derived
classes are normally defined as implementations of the abstraction provided by
the abstract class. A concrete derived class simply provides definitions for all
its inherited pure virtual functions. If a definition for one of the inherited pure
virtual functions is forgotten, any attempt to instantiate the class results in the
compiler issuing an error message.
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Abstract base class Base has two pure virtual member functions f() and
g(), and derived class Derived provides a definition for f() but not for g().
Therefore Derived is also abstract:

class Base {
public:
virtual void f() throw() = 0;
virtual void g() throw() = 0;

};

class Derived : public Base {
public:
virtual void f() throw();

};

void Derived::f() throw()
{ }

If Derived2 were derived from Derived and Derived2 had to be concrete,
Derived2 would have to provide a definition for g(), but it wouldn’t be required
to override Derived:f(). This is shown in the following example.

class Derived2 : public Derived {
public:
virtual void g() throw();

};

void Derived2::g() throw()
{ }

void sample() throw()
{ Derived2 x; } // OK: Derived2 is a concrete class

17.4 Why can’t a derived class access the private:

members of its base class?

A derived class can’t access the private: members of its base class because
the base class intentionally hides some of its implementation details from its
derived classes.

Suppose class Fred contains a member datum or member function that is
likely to change. Unless derived classes need to access this member, the base
class Fred would be wise to declare the member as private:. This reduces the
ripple effect of changes in the base class. For example, the private: member
can be removed or modified without fear of breaking derived classes. That is,
the derived classes are protected from rewrites whenever the semantics or even
existence of the private: member change.
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For example, class Wilma below can access publ_ and prot_, but cannot
access priv_.

#include <iostream>
using namespace std;

class Fred {
public:
Fred() throw();
int publ_;

protected:
int prot_;

private:
int priv_;

};

Fred::Fred() throw()
: publ_(1)
, prot_(2)
, priv_(3)
{ }

class Wilma : public Fred {
public:
void printem() const throw();

};

void Wilma::printem() const throw()
{
cout << publ_ << ’\n’;

// OK: Derived can access base’s public: stuff
cout << prot_ << ’\n’;

// OK: Derived can access base’s protected: stuff

#ifdef GENERATE_ERROR
cout << priv_ << ’\n’;

// Error: Derived cannot access base’s private: stuff
#endif

}

int main()
{
Wilma a;
a.printem();

}

The designer of a base class gives derived classes access to implementation
details by declaring them as protected:.
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17.5 How can a base class protect derived classes
so that changes to the base class will not
affect them?

The easiest solution is to define a protected: interface in addition to the
public: interface.

A class hierarchy is more resilient to changes if it has two distinct interfaces
for two distinct sets of users.

• Its public: interface serves unrelated classes.

• Its protected: interface serves derived classes.

Both interfaces must be fully specified. For instance, the actual raw data of a
class could be private: with a set of protected: inline member functions
for accessing this data. These inline member functions define an interface be-
tween the derived classes and the raw bits of the base class. Then the private:
data of the base class could be changed within reasonable bounds without af-
fecting the derived classes. It would still be necessary to recompile the derived
classes after a change to the base class, though the source code of the derived
class would not need to be changed unless the protected: interface is modified
in a nonbackward compatible manner.

For example, suppose class Base has an int data member. Base can en-
sure that derived classes do not rely on the specific data structure by making
the data structure private: (in this case, a simple int) and defining inline
protected: members for accessing these data. Derived class Derived accesses
the value using these protected: inline member functions.

class Base {
public:
Base() throw();

protected:
void storeValue(int value) throw();
int retrieveValue() const throw();

private:
int value_;

};

inline Base::Base() throw() : value_(37)
{ }
inline void Base::storeValue(int value) throw()
{ value_ = value; }
inline int Base::retrieveValue() const throw()
{ return value_; }

class Derived : public Base {
public:
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void f(int i) throw();
};

void Derived::f(int i) throw()
{ storeValue(i); }

int main()
{
Derived d;
d.f(42);

}

17.6 Can a derived class pointer be converted
into a pointer to its public base class?

Such conversions are possible and don’t even require a pointer case.

A publicly derived class is a kind-of its base class. By implication, the upward
conversion is perfectly safe, and is quite common. For example, a pointer to a
Car is in fact already pointing at a Vehicle, since a Car is a kind-of a Vehicle.

class Vehicle { };
class Car : public Vehicle { };

void f(Vehicle* v) throw();

void g(Car* c) throw()
{
f(c); //Perfectly safe; no cast needed

}

17.7 How can a class Y be a kind-of another class
X as well as getting the bits of X?

This is easy: use public inheritance.

Here is the C++ syntax for public inheritance.

class X { /*bits and/or code go here*/ };
class Y : public X { /*more bits and/or code go here*/ };

This does two distinct things. First, it provides the kind-of relationship: Y is
a kind-of X, therefore Y supports the same services as X (Y might add some new
member functions as well). Second, it shares bits and code: Y inherits X’s bits
(data structures) and code (algorithms).
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17.8 How can a class Y get the bits of an existing
class X without making Y a kind-of X?

There are three alternatives. The preferred solution is normal composition,
also known as has-a. But in some cases private inheritance should be used, and
in a few cases, protected inheritance should be used.

Here is the class X that will be used in each of the three following examples.

class X {
public:
void f() throw();
void g() throw();

private:
int a_;
float b_;

};

Here is the C++ syntax for composition (that is, Y has-a X). This is the
preferred solution.

class Y1 {
public:

void f() throw();
protected:

X x_; // Composition: Y1 is not a kind-of X
};

void Y1::f() throw()
{ x_.f(); } // Y1 calls member functions in X ("reuse")

Here is the C++ syntax for private inheritance, which is semantically the
same as has-a but with an increased ripple effect (changes to the protected:
part of X can break the private derived class Y2). This is the second of the three
alternatives.

class Y2 : private X { // Private inheritance: Y2 is not a kind-of X
public:

using X::f; // Same semantics as above: Calls to Y2::f()
// end up in X::f()

};

Here is the C++ syntax for protected inheritance, which is semantically the
same as has-a but an even greater ripple effect than private inheritance (changes
to the protected: part of X can break the protected derived class Y3 and can
also break any classes derived from Y3). This is the last of the three alternatives.

class Y3 : protected X { // Protected inheritance: Y3 is not a kind-of X
public:
using X::f; // Same semantics as above: calls to Y3::f()
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// end up in X::f()
};

In all three cases, a Y object has a X object, and users of Y are unaware of
any relationship between Y and X. For example, user code will not break if the
relationship between Y and X changes—or even is eliminated. See FAQ 37.1 for
more information on private and protected inheritance.

17.9 How can a class Y be a kind-of another class
X without inheriting the bits of X?

It’s doable, but C++ has to be outfoxed.

The only mechanism provided by C++ that defines the kind-of relationship
also forces inheriting the bits of the base class. If the base class’s data structures
are inappropriate for certain derived classes, it’s necessary to outfox C++ by
deferring the definition of the bits to the lower levels of the class hierarchy.

One way to do this is to define an ABC that possesses no (or few) internal
data structures, then define the data structures in the concrete derived classes.
In this way, the derived classes define the kind-of relationship, but they don’t
have any bits imposed on them by the base class. For example, both X and Y
would inherit from this common ABC, but they would not inherit from each
other. Strictly speaking, this does not achieve the original goal (Y is not a
kind-of X), but it is normally close enough. The reason is that the bulk of the
system can (hopefully) be written to use the ABC rather than X or Y directly,
and inheritance allows both X and Y to be passed into the bulk of the system.
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Chapter 18

Access Control

18.1 What is the purpose of this chapter?

This chapter presents the three types of access control in C++ classes. Ac-
cess controls allow the programmer to declare a class’s members as public:,
protected:, and/or private:.

18.2 How are private:, protected:, and public:

different?

The situation is similar to personal secrets (shared only with friends), family
secrets (shared with friends and children), and nonsecrets (shared with any-
body), respectively.

A private: member of a class is accessible only by members and friends of
the class.

A protected: member of a class is accessible by members and friends of the
class and by members and friends of derived classes, provided they access the
base member via a pointer or a reference to their own derived class.

A public: member of a class is accessible by everyone.

There is no difference between the access rules for data members and member
functions. “Members and friends of class X” include member functions of class
X, friend functions of class X, and member functions of friend classes of class X.

18.3 Why can’t subclasses access the private:

parts of their base class?

The base class encapsulation has to protect itself from being undermined.
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Suppose a subclass could access the private: portion of its base class. Would
it make sense if just anyone could take away the option for the base class devel-
oper to change internal mechanisms in the future because they had subclassed a
base class and locked in on its implementation? That would not be in anyone’s
best interests. So there is a need for ways to distinguish between

• Mechanisms and services that are available to everyone, the public: in-
terface

• Mechanisms and services that are available only to subclasses, the protected:
interface

• Mechanisms and services that are reserved for change without concern for
breaking user code, the private: interface

Note that this is not a security issue. Developers can always look at the
header files to see what is going on. They key notion is that the designer makes
different promises to different audiences, and access controls provide a way to
do that.

Also, notice that a subclass can access the protected: portion of its base class
only when it acts specifically as a subclass. It cannot access the protected:
portion of an object of its base class that is freestanding or of a different derived
class.

18.4 What’s the difference between the keywords
struct and class?

The difference is mostly perception.

From a pure language perspective, the major difference between the keywords
struct and class is the default access level assigned to members and base
classes. The default access level assigned to members and base classes of a
struct is public:, while the default access level for members and base classes of
a class is private:. Regardless, it is best to put an explicit public, private,
or protected in the base class specifications, and it is usually best for the class
to start with an explicit public:. With that approach, these defaults are of
little consequence in practice.

The perception, however, is very different. A struct is perceived as an open
bucket of bits. Most structs have very few member functions (often they have
only a constructor), and they are often entirely public:.

18.5 When should a data member be protected:

rather than private:?

Some authors discourage protected: data in all cases on the grounds that it
creates a stronger coupling with the derived class. For example, if a derived class
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were written by a customer or some other third party, changing the protected:
data could break the derived class’s code. In these situations, it is far better to
create a protected: access function to the private: data rather than to allow
direct access to protected: data by derived classes.

However, one size does not fit all. Although there are situations when third
parties create derived classes, there are also many situations when they do not.
From a practical standpoint, an organization often has a very well-defined no-
tion of which classes will be inherited from by third parties, which classes will
be inherited from internally, and which classes will not be inherited from at
all. Those who erroneously believe that inheritance is for code reuse will be
alarmed at that last statement, but when proper inheritance is practiced, inher-
itance is planned and prepared for ahead of time; it is not normally something
programmers stumble into. (See FAQs 7.1, 8.12.)

18.6 Why is private: the default access level for
a class?

The default assumption makes small programs easier to read. For example,
when a member function is defined within the class body proper (a practice
that we are not advocating), it is easier to understand the code if the data
appears before the code. Note that the compiler finds the class’s data member
independent of whether it appears before or after the usage, but human readers
don’t usually do a two-pass scan. Since the data is often private:, the default
access level makes it a tiny bit easier when functions are defined within the class
body proper. For example, this is particularly valuable for textbook examples
that define member functions within their class to save presentation space.

But typical development efforts separate a lot of the implementation into a
distinct file, such as a .cpp file. Thus, the problem with the member func-
tion coming before the data doesn’t exist, and there is more reason to put the
public: portion first. This lets the human reader see the interface portion of
the class without having to wade through irrelevant implementation detail.

Different authors take different approaches to this issue, but we probably all
subscribe to the same guiding principle. Any differences are due to our audiences
and presentation style rather than philosophies.
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Chapter 19

Friend Classes and Friend
Functions

19.1 What is a friend?

A friend is an entity to which a class grants access authority.

Friends can be functions, other classes, or individual member functions of
other classes. Friend classes are used when two or more classes are designed to
work together and need access to each other’s implementation in ways that the
rest of the world shouldn’t be allowed to have. In other words, they help keep pri-
vate things private. For instance, it may be desirable for class DatabaseCursor
to have more privilege to the internals of class Database than main() has.

In the early days of OO, people had all sorts of strange ideas. Some people
thought that the class was the fundamental unit that had to be encapsulated
and concluded that friendship was evil. Experience has shown that some ab-
stractions require more than one class, and that the abstraction needs the en-
capsulation barriers more than the component classes. As long as they are used
properly, friends enhance the encapsulation of abstractions.

Friend classes normally imply that one abstraction (a database with multiple
cursors, for example) is implemented using several distinct classes (Database
and DatabaseCursor). Using several classes to implement one abstraction is
especially useful when the various classes have different lifetimes or different
cardinalities. For example, it is likely that there are an arbitrary number of
DatabaseCursor objects for any given Database object.

#include <stdexcept>
#include <string>
using namespace std;

class BTree { /*...*/ };
class Cache { /*...*/ };
class DatabaseCursor;

216



class Database {
public:
unsigned numRecords() const throw();

protected:
friend DatabaseCursor; // Grant access to DatabaseCursor
BTree btree_;
Cache cache_;

};

class DatabaseCursor {
public:
string getCurrentRecord() const throw(out_of_range);
void changeCurrentRecord(const string& record) throw(out_of_range);
void goToNextRecord() throw(out_of_range);

protected:
Database* db_; // The Database to which this cursor object is attached

// Pointers into the BTree and/or Cache go here
};

It would be a bad idea to force class Database and class DatabaseCursor
into one class by moving the member functions of DatabaseCursor into class
Database (so we would now have Database::getCurrentRecord()). This
would impose a one-cursor-per-database policy and would cause Database to
manage both the data and a current position within that data.

The UML diagram for this friendship relationship follows.

19.2 What’s a good mental model for friend classes?

A secret handshake or other technique to exchange information with a con-
fidant in such a way that normal people are unable to access the same secrets.
Friend classes prevent users (the normal people) from seeing the information
being exchanged through the secret codes that connect the various objects (con-
fidants).

The overall effect is to keep private things private.

The alternative to granting special access privileges between the classes would
be for the classes to declare public: member functions that allow anyone to ma-
nipulate the class’s private: members. For instance, in the DatabaseCursor
example, class Database would need to provide public: member functions
to manipulate its cache, B-tree, file system, and so on. Although the imple-
mentation bits would be encapsulated, the implementation technique would be
exposed. Subsequent changes to the implementation technique would break
users’ code.

In the traditional software realm, friendship is called tight cohesion, and is,
within limits, considered good.
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19.3 What are some advantages of using friend
classes?

Friend classes are useful when a class wants to hide features from users that are
needed only by another, tightly coupled class. Compared to making a member
public:, it is sometimes better to make the member private:, which eliminates
potential misuse by unknown users, and grant friendship status to the tightly
cohesive class, thereby keeping implementation details hidden from the rest of
the world.

Friend classes also arise when a member function on a class needs to maintain
state between calls and when multiple copies of this state must exist. Under
these circumstances, the member function becomes a friend class, and the mul-
tiple copies of the state become multiple objects of the friend class.

19.4 Do friends violate the encapsulation bar-
rier?

Not necessarily.

If the encapsulation barrier is narrowly defined as the suite of member func-
tions on a class, then friends violate the encapsulation barrier. However, this
is a naive view of encapsulation, and applying it consistently actually degrades
the overall encapsulation of a system. For example, if another entity needs to
be part of the same abstraction, this naive approach suggests that the first class
should expose its implementation technique via an unnecessarily large suite of
get/set member functions.

The enlightened view is that the encapsulation barrier encapsulates an ab-
straction, not just a class. For example, the earlier example of a database with
multiple cursors illustrates an abstraction that is too rich to be implemented
by a single class. In cases like this, friend classes are a valuable way of hid-
ing the (possibly complex) interrelationships between the various pieces of the
abstraction.

Friends don’t violate the encapsulation barrier; they are part of the encapsu-
lation barrier.

19.5 What is a friend function?

A friend function is a nonmember function that has been granted access to
a class’s non-public: members. This improves an interface without breaking
encapsulation.
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For example, the syntax most objects use for printing is cout << x, where x is
the object being printed and cout is the output stream (ostream) on which the
object is being printed. This printing service is provided by operator<<, which
needs to be a friend function of the class of x rather than a member function of
the class of x, because the ostream needs to be on the left side of the << operator
and the object being printed on the right side. In general, binary operators can
be member functions only if the member function is attached to the left hand
argument of the operator.

#include <iostream>
#include <cstdlib>
using namespace std;

class MyString {
public:
MyString(const char* s="") throw();

~MyString() throw();
MyString(const MyString& s) throw();
MyString& operator= (const MyString& s) throw();
friend ostream& operator<< (ostream& o, const MyString& s) throw();

protected:
char* s_;

};

MyString::MyString(const char* s) throw()
: s_(strdup(s))
{ }

MyString::~MyString() throw()
{ free(s_); }

ostream& operator<< (ostream& o, const MyString& s) throw()
{ return o << s.s_; }

int main()
{
MyString s = "fred";
cout << s << "\n";

}

19.6 When should a function be implemented
as a friend function rather than a member
function?

Whenever it improves readability of user code.

Generally, member functions are used rather than friend functions. However,
if a friend function would make the code that uses the class more readable, a
friend function should be used.
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It is important that the decision be based not on the readability of the code
within the class but rather on the readability of the code that uses the class.
There isn’t that much difference between the internal implementation details
within a friend function and those within a member function. But even more
important is the economics of the situation. It’s more important to focus on the
many users of the class than it is to worry about the class itself.

The point of friend function is that they allow the syntax for the user code to
be intuitive while still maintaining the class’s encapsulation barrier. This can
lead to easier-to-use classes, which reduces education costs and improves the
quality of the user code—intuitive interfaces are abused less often.

19.7 What are some guidelines to make sure
friend functions are used properly?

Friend functions should be part of the class’s public: interface, and their
code should be owned by the class’s owner.

Guideline 1: Friend functions should make the user’s code easier to under-
stand. Look at some sample syntax of how a user would use the class with the
friend function, and compare it with the moral equivalent of the sample syntax
if the friend function were changed into a member function. The friend function
version should be used if and only if it results in more intuitive user code (see
FAQ 19.6).

Guideline 2: Friend function should be used only for operations that are part
of the public: interface of a class. They should not be used every time someone
wants to do something tricky with the class. If a user has a function that needs
to access the innards of your class (for example, because the class’s current
public: interface isn’t powerful enough), fix the problem (the interface) rather
than patching the symptoms. Don’t grant friendship to everyone.

Guideline 3: A friend function or class should be under the political and tech-
nical authority of the same team that owns the class itself. Granting friendship
status to a function or class under the political authority of a team other than
the one implementing the class results in a scheduling headache—changes that
involve coordinating multiple participants who may not always be in a position
to handle the requested modifications in a timely manner is a nightmare.

19.8 What does it mean that friendship isn’t
transitive?

A friend of a friend isn’t (necessarily) a friend.
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Friendship is personal; it is explicitly granted to a particular, named individ-
ual. All friends of a class are declared explicitly in the body of the class. This
clearly identifies the entities that need to be updated when the private: part
of a class is changed.

In the following code, operator<< is a friend of BinaryTree, which is a
friend of BinaryTreeNode, but this code does not make operator<< a friend of
BinaryTreeNode.

#include <iostream>
using namespace std;

class BinaryTreeNode; // Predeclare class BinaryTreeNode

class BinaryTree {
public:
friend ostream& operator<< (ostream& ostr, const BinaryTree& bt) throw();

// operator<< can access BinaryTree
protected:
BinaryTreeNode* root_;

};

class BinaryTreeNode {
public:
// public interface for BinaryTreeNode goes here...

private:
friend BinaryTree; // BinaryTree can access BinaryTreeNode
BinaryTreeNode* left_;
BinaryTreeNode* right_;

};

ostream& operator<< (ostream& ostr, const BinaryTree& bt) throw()
{
// This code can access bt.root_ (it’s a friend of BinaryTree),
// but not bt.root_->left_ (it’s not a friend of BinaryTreeNode).
return ostr;

}

If operator<< needs to access BinaryTreeNode::left or BinaryTreeNode::right ,
it must be made a friend of BinaryTreeNode as well:

class BinaryTreeNode {
public:
// public interface for BinaryTreeNode goes here...

private:
friend BinaryTree; // BinaryTree can access BinaryTreeNode
friend ostream& operator<< (ostream&, const BinaryTree&) throw();

// operator<< can access BinaryTreeNode
BinaryTreeNode* left_;
BinaryTreeNode* right_;

};

221



Note that the compiler doesn’t care where a friend declaration appears
within a class, so the placement is normally done to make the code easily read-
able by other programmers (see FAQ 19.12). In the example, normal users might
be somewhat confused by the friendship relationship between BinaryTreeNode
and operator<<, so it has been moved out of the public: section (the public:
section is where normal users look to find out how to use a class).

19.9 What does it mean that friendship isn’t in-
herited?

Just because someone trusts you does not automatically mean they will trust
your children.

Suppose class Fred grants friendship privileges to another class Base and
class Derived is derived from class Base. Derived does not automatically have
friendship privileges to access the innards of Fred just because its base class is
a friend of Fred. This rule improves encapsulation. Without this rule, anyone
could automatically gain friendship (and access to internals) by deriving from
a known friend.

class Base;

class Fred {
friend Base;

};

class Base {
//member functions of Base are friends of Fred

};

class Derived : public Base {
//member functions of Derived are not friends of Fred

};

In the following example, an EggCarton is not supposed to have more than a
dozen eggs (numEggs_ <= 12). Class EggCartonFiller is trusted not to violate
the semantics of an EggCarton, so EggCarton makes EggCartonFiller a friend.
This friendship allows EggCartonFiller::addAnEgg() to access EggCarton::numEggs_.

class EggCartonFiller; // Tell the compiler that
// "EggCartonFiller" is a class

class EggCarton {
public:
EggCarton() throw(); // Creates an empty carton

private:
friend EggCartonFiller;
int numEggs_; // numEggs_ can’t exceed a dozen

};
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EggCarton::EggCarton()
: numEggs_(0)
{ }

class EggCartonFiller {
public:
void addAnEgg(EggCarton& carton) throw();

};

void EggCartonFiller::addAnEgg(EggCarton& carton) throw()
{
if (carton.numEggs_ < 12)
++ carton.numEggs_;

}

If friendship were inherited, anyone could create a class derived from EggCartonFiller
and possibly violate the semantics of an EggCarton.

class SubversiveFiller : public EggCartonFiller {
public:
void violateEncapsulation(EggCarton& carton) throw();

};

void SubversiveFiller::violateEncapsulation(EggCarton& carton) throw()
{
#ifdef GENERATE_ERROR
carton.numEggs_ = 13; // Compile-time error: Can’t access carton.numEggs_

#endif
}

19.10 What does it mean that friends aren’t vir-
tual?

Friend functions don’t bind dynamically. However there is a simple one-line
idiom that enables the functionality of a virtual function (that is, dynamic
binding) with the syntax of a friend function. This idiom is called the virtual
friend function idiom.

The virtual friend function idiom provides the effect of friend functions that
bind dynamically; it is used when the syntax of a friend function is desired but
the operation must be dynamically bound.

Simply put, use a friend function that calls a protected: virtual member
function. For example, suppose class Shape is an abstract base class (ABC), and
a Shape is printed via cout << aShape, where aShape is a Shape&, which refers
to an object of a derived class, such as Circle. To use the virtual friend function
idiom, operator<< would be a friend of Shape and would call a protected:
pure virtual member function such as print(ostream&) const.
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#include <iostream>
using namespace std;

class Shape {
public:
virtual ~Shape() throw();
friend ostream& operator<< (ostream& ostr, const Shape& s) throw();

protected:
virtual void print(ostream& ostr) const throw() = 0;

};

inline ostream& operator<< (ostream& ostr, const Shape& s) throw()
{
s.print(ostr); // The friend calls a protected: virtual
return ostr;

}

Shape::~Shape() throw()
{ }

Because print() is virtual, the right implementation will always be invoked.
Because print() is pure virtual, concrete derived classes are required to provide
a definition—Shape doesn’t have enough knowledge about itself to print itself.

class Circle : public Shape {
public:
Circle() throw();

protected:
virtual void print(ostream& ostr) const throw();

// Derived classes override the member, not the friend
float radius_;

};

Circle::Circle() throw()
: radius_(42)
{ }

void Circle::print(ostream& ostr) const throw()
{ ostr << "Circle of radius " << radius_; }

Because print() is protected:, users must use the official syntax provided
by operator<< (this avoids cluttering the interface with two ways of doing the
same thing).

void userCode(Shape& s)
{ cout << s << ’\n’; } // Users use the friend, not the member

int main()
{
Circle c;
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userCode(c);
}

The output is

Circle of radius 42

Note that there is only one operator<< for the entire Shape hierarchy. De-
rived classes provide a definition for print(ostream&) const, but they do not
declare or define operator<<.

19.11 What qualities suggest a friend function
rather than a member function?

The three P’s of friendship: position, promotion, or perception.

Position: Use a friend function when the object being operated on can’t
appear as the leftmost argument. For example, the syntax to print an object n
is usually cout << n, where cout can be replaced by any ostream. Notice that
n is not the leftmost argument and therefore operator<< cannot be a member
of n’s class. If operator<< needs access to n’s internal state, it must be a friend
of n’s class.

#include <iostream>
using namespace std;

class Fraction {
public:
Fraction(int num=0, int denom=1) throw();
friend ostream& operator<< (ostream& o, const Fraction& n) throw();

protected:
int num_, denom_;

};

Fraction::Fraction(int num, int denom) throw()
: num_ (num)
, denom_ (denom)
{ }

ostream& operator<< (ostream& o, const Fraction& n) throw()
{ return o << n.num_ << ’/’ << n.denom_; }

int main()
{
Fraction n = Fraction(3,8); // "3/8"
cout << "n is " << n << ’\n’;

}
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Promotion: Use a friend function to allow promotion of the leftmost argu-
ment. For example, the Fraction class might want to support 5*n, where n is
a Fraction object. This may require promoting the leftmost argument from an
int to a Fraction, where this is implemented by passing a single int param-
eter to Fraction’s constructor—Fraction(5). The operator* needs to be a
friend because C++ never automatically promotes the this object in a member
function invocation.

#include <iostream>
using namespace std;

class Fraction {
public:
Fraction(int num=0, int denom=1) throw();
friend Fraction operator* (const Fraction& a,

const Fraction& b) throw();
protected:
int num_, denom_;

};

Fraction::Fraction(int num, int denom) throw()
: num_(num)
, denom_(denom)
{ }

Fraction operator* (const Fraction& a, const Fraction& b) throw()
{ return Fraction(a.num_*b.num_, a.denom_*b.denom_); }

int main()
{
Fraction x = Fraction(3,8); // "3/8"
Fraction y = 5*x;

}

Perception: Use a friend function when it leads to a user syntax that is more
intuitive. For example, two possible syntaxes for computing the square of a
fraction n are n.square() and square(n) (for example, 1/2 squared is 1/4). If
the operation is constructive (if n is unchanged), square(n) may be preferred
because n.square() might be incorrectly perceived as squaring n itself.

#include <iostream>
using namespace std;

class Fraction {
public:
Fraction(int num=0, int denom=1) throw();
friend Fraction square(const Fraction& n) throw();

protected:
int num_, denom_;

};
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Fraction::Fraction(int num, int denom) throw()
: num_(num)
, denom_(denom)
{ }

Fraction square(const Fraction& n) throw()
{ return Fraction(n.num_*n.num_, n.denom_*n.denom_); }

int main()
{
Fraction x = Fraction(3,8); // "3/8"
Fraction y = square(x);

}

Of the three P’s for choosing between friend functions and member functions,
perception is the most subjective. In many cases involving perception, a static
member function such as Fraction::square(n) is better than a friend function.

19.12 Should friend functions be declared in the
private:, protected:, or public: section
of a class?

For documentation purposes, they should be declared in the public: section
of a class. The compiler ignores the access level (private:, protected:, or
public:) where friend functions are declared. However, for documentation
purposes, they should normally be declared in the public: part of the class
since friend functions are inherently public: (most friend functions are non-
member functions and are therefore conceptually declared outside the class).

For an exception to this guideline, see FAQ 19.8.

19.13 What is a private class?

A private class is a class created only for implementation purposes and is
hidden from normal users. Typically, all its constructors (and often all its other
members as well) are private: and it declares another class as its friend.
Because the private class lacks public: constructors or member functions, only
the designated friends and other instances of the private class can create or
use instances of the private class.

For example, the Node class associated with a linked list class might be so
specialized that no other class would benefit from reusing it. In this case the
Node class can be a private class and can declare the linked list class as a
friend. In the following code, class Node is nested inside class List. Although
not strictly part of the private class concept, this technique has the further
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benefit of reducing the number of names in the outer namespace (nesting Node
inside List removes the name Node from the namespace that List is in).

#include <new>
#include <cstdlib>
using namespace std;

class List {
public:
List() throw();
List(const List& a) throw(bad_alloc);
~List() throw();
List& operator= (const List& a) throw(bad_alloc);
void prepend(int e) throw(bad_alloc);
bool isEmpty() const throw();
void clear() throw();

private:
class Node; // The private class is called List::Node
Node* first_;

};

class List::Node {
private: // List::Node has no public: members
friend List; // List::Node declares List as its friend
Node(int e, Node* next=NULL) throw();
Node* next_;
int elem_;

};

List::Node::Node(int e, Node* next) throw()
: next_(next)
, elem_(e)
{ }

List::List() throw()
: first_(NULL)
{ }

List::List(const List& a) throw(bad_alloc)
: first_(NULL)
{ *this = a; }

List::~List() throw()
{ clear(); }

void List::prepend(int e) throw(bad_alloc)
{ first_ = new Node(e, first_); }

bool List::isEmpty() const throw()
{ return first_ == NULL; }
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List& List::operator= (const List& a) throw(bad_alloc)
{

if (this == &a) return *this;
clear();
Node* last = NULL;
for (Node* cur=a.first_; cur!=NULL; cur=cur->next_) {

if (cur==a.first_) {
first_ = last = new Node(cur->elem_);

}
else {

last->next_ = new Node(cur->elem_);
last = last->next_;

}
}
return *this;

}

void List::clear() throw()
{

while (first_)
{

Node* tmpFirst = first_;
first_ = first_->next_;
delete tmpFirst;

}
}

int main()
{
List a;
a.prepend(4);
a.prepend(3);
a.prepend(2);
List b;
b = a;

}

19.14 How are objects of a class printed?

Objects of a class are normally printed via a friend function called operator<<.
Here is an example of such a friend function.

#include <iostream>
using namespace std;

class Fred {
public:
friend ostream& operator<< (ostream& ostr, const Fred& x) throw();

protected:
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int i_;
};

ostream& operator<< (ostream& ostr, const Fred& x) throw()
{
ostr << x.i_;
return ostr;

}

The function operator<< is a friend rather than a member, so the Fred
parameter appears on the right side of the <<.

19.15 How do objects of a class receive stream
input?

Objects of a class normally receive stream input via a friend function called
operator>>. Here is an example of such a friend function.

#include <iostream>
using namespace std;

class Fred {
public:
friend istream& operator>> (istream& istr, Fred& x) throw();

protected:
int i_;

};

istream& operator>> (istream& istr, Fred& x) throw()
{
istr >> x.i_;
return istr;

}

The Fred argument of operator>> is passed by reference (as opposed to
const reference). This allows operator>> to change the caller’s Fred, which is,
of course, the whole point of stream input.
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Chapter 20

Constructors and
Destructors

20.1 What is the purpose of a constructor?

20.2 What is C++’s constructor discipline?

20.3 What is the purpose of a destructor?

20.4 What is C++’s destructor discipline?

20.5 What happens when a destructor is exe-
cuted?

20.6 What is the purpose of a copy constructor?

20.7 When is a copy constructor invoked?
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20.8 What is the “default constructor”?

20.9 Should one constructor call another con-
structor as a primitive?

20.10 Does the destructor for a derived class
need to explicitly call the destructor of
its base class?

20.11 How can a local object be destructed be-
fore the end of its function?

20.12 What is a good way to provide intuitive,
multiple constructors for a class?

20.13 When the constructor of a base class calls
a virtual function, why isn’t the override
called?

20.14 When a base class destructor calls a vir-
tual function, why isn’t the override called?

20.15 What is the purpose of placement new?
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Chapter 21

Virtual Functions

21.1 What is the purpose of this chapter?

21.2 What is a virtual member function?

21.3 How much does it cost to call a virtual
function compared to calling a normal func-
tions?

21.4 How does C++ perform static typing while
supporting dynamic binding?

21.5 Can destructors be virtual?

21.6 What is the purpose of a virtual destruc-
tor?
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21.7 What is a virtual constructor?

21.8 What syntax should be used when a con-
structor or destructor calls a virtual func-
tion in its project?

21.9 Should the scope operator :: be used when
invoking virtual member functions?

21.10 What is a pure virtual member function?

21.11 Can a pure virtual function be defined in
the same class that declares it?

21.12 How should a virtual destructor be de-
fined when it has no code?

21.13 Can an ABC have a pure virtual destruc-
tor?

21.14 How can the compiler be kept from gen-
erating duplicate out-lined copies of inline
virtual functions?
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21.15 Should a class with virtual functions have
at least one non-inline virtual function?
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Chapter 22

Initialization Lists

22.1 What are constructor initialization lists?

22.2 What will happen if constructor initializa-
tion lists are not used?

22.3 What’s the guideline for using initializa-
tion lists in constructor definitions?

22.4 Is it normal for constructors to have noth-
ing inside their body?

22.5 How is a const data member initialized?

22.6 How is a reference data member initial-
ized?
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22.7 Are initializers executed in the same order
in which they appear in the initialization
list?

22.8 How should initializers be ordered in a con-
structor’s initialization list?

22.9 Is it normal for one member object to be
initialized using another member object in
the constructor’s initialization list?

22.10 What if one member object has to be ini-
tialized using another member object?

22.11 Are there exceptions to the rule “Initial-
ize all member objects in an initialization
list”?

22.12 How can an array of objects be initialized
with specific initializers?
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Chapter 23

Operator Overloading

23.1 Are overloaded operators like normal func-
tions?

23.2 When should operator overloading be used?

23.3 What operators can’t be overloaded?

23.4 Is the goal of operator overloading to make
the class easier to understand?

23.5 Why do subscript operators usually come
in pairs?

23.6 What is the most important consideration
for operators such as +=, +, and =?
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23.7 How are the prefix and postfix versions of
operator++ distinguished?

23.8 What should the prefix and postfix ver-
sions of operator++ return?

23.9 How can a Matrix-like class have a sub-
script operator that takes more than one
subscript?

23.10 Can a ** operator serve as an exponenti-
ation operator?
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Chapter 24

Assignment Operators

24.1 What should assignment operators return?

24.2 What is wrong with an object being as-
signed to itself?

24.3 What should be done about self-assignment?

24.4 Should an assignment operator throw an
exception after partially assigning an ob-
ject?

24.5 How should the assignment operator be de-
clared in an ABC?

24.6 When should a user-defined assignment op-
erator mimic the assignment operator that
the compiler would generate automatically?
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24.7 What should be returned by private: and
protected: assignment operators?

24.8 Are there techniques that increase the like-
lihood that the compiler-synthesized assign-
ment operator will be right?

24.9 How should the assignment operator in a
derived class behave?

24.10 Can an ABC’s assignment operator be virtual?

24.11 What should a derived class do if a base
class’s assignment operator is virtual?

24.12 Should the assignment operator be imple-
mented by using placement new and the
copy constructor?
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Chapter 25

Templates

25.1 What is the purpose of templates?

Templates share source code among structurally similar families of classes and
functions.

Many data structures and algorithms can be defined independently of the
type of data they manipulate. A template allows the separation of the type-
dependent part from the type-independent part. The result is a significant
amount of code sharing.

A template is like a cookie cutter: all the cookies it creates have the same
basic shape, though they might be made from different kinds of dough. A class
template describes how to build classes that implement the same data structure
and algorithm, and a function template describes how to build functions that
implement the same algorithm.

In other languages, these facilities are sometimes called parameterized types
or genericity.

Prior to templates, macros were used as a means of implementing generics.
But the results were so poor that templates have superceded them.

25.2 What are the syntax and semantics for a
class template?

The syntax of a class template is the keyword template, some template pa-
rameters, then something that looks a lot like a class. But semantically a class
template is not a class: it is a cookie cutter to create a family of classes.

Consider a container class (see FAQ 2.15). In practice, the C++ source
code for a container that holds ints is structurally very similar to the C++
source code for a container that holds strings. The resulting binary machine
code is probably quite different, since, for example, copying an int requires
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different machine instructions than does copying a string. Trying to make the
binary machine code the same might impose runtime overhead to generalize, for
example, the copying operations for int and string and might also increase
the complexity of the container.

Class templates give programmers another options: capturing the source code
similarity without imposing extra runtime performance overhead. That is, the
compiler generates special purpose code for containers of int, containers of
string, and any others that are needed.

For example, if someone desired a container that acted like an array, in prac-
tice they would probably use the standard class template vector<T>. However,
for illustration purposes we will create a class template Array<T> that acts like
a safe array of T.

template<class T> // T is a type in the declaration that follows
class Array {
public:
Array(unsigned size=10);
Array(const Array<T>& a); //copy constructor
Array<T>& operator= (const Array<T>& a); //assignment

~Array() throw();
unsigned size() const throw();
const T& operator[] (unsigned i) const throw(out_of_range);
T& operator[] (unsigned i) throw(out_of_range);

protected:
unsigned size_;
T* arr_;

};

template<class T> inline Array<T>::Array(unsigned size)
: size_(size)
, arr_(new T[size])
{ }

template<class T> inline Array<T>::~Array() throw()
{ delete[] arr_; }

template<class T> inline unsigned Array<T>::size() const throw()
{ return size_; }

template<class T> inline const T& Array<T>::operator[] (unsigned i)
const
throw(out_of_range)
{
if (i >= size_) throw out_of_range("Array<T>::operator[]"));
return arr_[i];

}

template<class T> inline T& Array<T>::operator[] (unsigned i)
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throw(out_of_range)
{
if (i >= size_) throw out_of_range("Array<T>::operator[] const");
return arr_[i];

}

The template<class T> part indicates that T represents a yet unspecified
type in the class template definition. Note that the keyword class doesn’t
imply that T must be a user-defined type; it might be a built-in type such as
int or float.

The C++ standard defines the term instantiated class to mean the instan-
tiation of a class template, but we will use the term instantiation of a class
template instead, since most C++ programmers think of an instantiated class
as an object rather than another class. When it doesn’t matter whether it is a
class template or a function template, we will drop the qualifying adjective and
refer to the instantiation of a template.

#include <string>
#include "Array.hpp"
using namespace std;

int main()
{
Array<int> ai; ai[5] = 42;
Array<float> af; af[5] = 42.0;
Array<char> ac; ac[5] = ’x’;
Array<string> as; as[5] = "xyz";

}

Normally the compiler creates an instantiation of a class template when the
name of a class template is followed by a particular sequence of template ar-
guments. In this case, the only template argument is a type. The compiler
generates code for the instantiated template by replacing the template argu-
ment T with the type that is supplied, such as int.

25.3 How can a template class be specialized to
handle special cases?

Use explicit specialization.

Sometimes a programmer wants the compiler to bypass the class template
when creating an instantiation of a class template for a particular type and use
a specialized class template instead. For example, suppose that an array of bits
is needed. The natural thing to do is create an Array<bool> using the template
class from FAQ 25.2.

#include "Array.hpp"
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int main()
{
Array<bool> ab;
ab[5] = true;

}

If the previously defined Array template were used to generate the code for
this class, it would end up creating an array of bool which would, at best, be
optimized to be an array of bytes. Clearly a bit array would be more space-
efficient than a byte array. This more space-efficient implementation can be
created by defining class Array<bool> as an explicit specialization of the class
template Array. Notice how class Array<bool> uses a bit array rather than
a byte array.

#include <new>
using namespace std;

template<class T> class Array;

template<> class
Array<bool> {
public:
typedef unsigned char Byte;

class BitRef {
public:
BitRef(Byte& byte, unsigned bit) throw();
operator bool() throw();
BitRef& operator= (bool b) throw();

private:
Byte& byte_;
unsigned bit_;

};

Array(unsigned size=10) throw(bad_alloc);
Array(const Array<bool>& a) throw(bad_alloc);
Array<bool>& operator= (const Array<bool>& a) throw(bad_alloc);
~Array() throw();
unsigned size() const throw();
bool operator[] (unsigned i) const throw();
BitRef operator[] (unsigned i) throw();

protected:
unsigned size_;
Byte* arr_;

};

template<> inline Array<bool>::Array(unsigned size) throw(bad_alloc)
: size_(size)
, arr_ (new Byte[(size+7u)/8u])
{ memset(arr_, ’\0’, (size+7u)/8u); }
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template<> inline Array<bool>::~Array() throw()
{ delete[] arr_; }

template<> inline unsigned Array<bool>::size() const throw()
{ return size_; }

template<> inline bool Array<bool>::operator[] (unsigned i) const
throw()
{ return (arr_[i/8u] >> (i&7u)) & 1u; }

template<> inline Array<bool>::BitRef Array<bool>::operator[]
(unsigned i)
throw()
{ return BitRef(arr_[i/8u], i&7u); }

template<> inline Array<bool>::BitRef::BitRef(Byte& byte, unsigned
bit) throw()
: byte_(byte)
, bit_(bit)
{ }

template<> inline Array<bool>::BitRef::operator bool() throw()
{ return (byte_ >> bit_) & 1u; }

template<>
inline Array<bool>::BitRef& Array<bool>::BitRef::operator= (bool b) throw()
{
if (b) byte_ |= (1u << bit_);
else byte_ &= ~(1u << bit_);
return *this;

}

Array<bool> is an explicit specialization of the class template Array, and
Array<bool> will be used instead of Array whenever an Array<bool> is needed.

int main()
{
Array<int> ai; ai[5] = 42; // Uses the generic class template
Array<float> af; af[5] = 42.0; // Uses the generic class template
Array<char> ac; ac[5] = ’x’; // Uses the generic class template
Array<bool> ab; ab[5] = true; // Uses explicit specialization, not

// the generic class template
}

Explicit specialization are often used to take advantage of special properties
of the type T and achieve space and/or speed benefits that could not be achieved
using the generic class template.
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It is normally best to define the explicit specialization (for example, Array<bool>)
in the same header that defines the template itself (for example, the same header
that define Array<T>). That way the compiler is guaranteed to see the explicit
specialization before any uses of the specialization occur.

25.4 What are the syntax and semantics for a
function template?

The syntax of a function template is the keyword template, some template
parameters, then something that looks a lot like a function. But semantically
a function template is not a function: it is a cookie cutter to create a family of
functions.

Consider a function that swaps its two integer arguments. Just as with Array
in the preceding example, repeating the code for swap() for swapping float,
char, string, and so on, will become tedious. A single function template is the
solution.

template<class T>
void swap(T& x, T& y)
{
T temp = x;
x = y;
y = temp;

}

Every time swap() appears with a new combination of parameter types, the
compiler creates yet another instantiation of the function template. Here is an
example.

#include <string>
using namespace std;

int main()
{

int i, j; /*...*/ swap(i,j); //swap(int&, int&)
char a, b; /*...*/ swap(a,b); //swap(char&, char&)
float c, d; /*...*/ swap(c,d); //swap(float&, float&)
std::string s, t; /*...*/ swap(s,t); //swap(string&,string&)

}

As with class templates, a programmer can get the compiler to bypass the
function template when creating a template function: the programmer simply
needs to manually create a specialized template function.

25.5 Should a template use memcpy() to copy ob-
jects of its template argument?

No.
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An object should be bitwise copied only when it is known that the class of
the object will forever be amenable to bitwise copy. But the class of a template
argument can’t be known. Here is an example.

#include <cstring>
#include <new>
using namespace std;

template<class T>
class Array {
public:
Array(unsigned len=10);
Array(const Array<T>& a); // copy constructor
Array<T>& operator= (const Array<T>& a); // assignment
~Array() throw();
unsigned len() const throw();
const T& operator[] (unsigned i) const throw();
T& operator[] (unsigned i) throw();

protected:
unsigned len_;
T* arr_;

};

template<class T> inline
Array<T>::Array(unsigned len)
: len_(len)
, arr_(new T[len])
{ }

template<class T> inline
Array<T>::~Array() throw()
{ delete[] arr_; }

template<class T> inline
unsigned Array<T>::len() const throw()
{ return len_; }

template<class T> inline
const T& Array<T>::operator[] (unsigned i) const throw()
{ return arr_[i]; }

template<class T> inline
T& Array<T>::operator[] (unsigned i) throw()
{ return arr_[i]; }

template<class T>
Array<T>::Array(const Array<T>& a)
: len_(a.len_)
, arr_(new T[a.len_])
{
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#if 1
for (unsigned i = 0; i < len_; ++i) // Good: The T objects copy themselves
arr_[i] = a.arr_[i];

#else
memcpy(arr_, a.arr_, len_*sizeof(T)); // Bad: Manipulates the T objects

#endif
}

template<class T>
Array<T>& Array<T>::operator= (const Array<T>& a)
{
if (len_ != a.len_) { // Makes self-assignment harmless (see FAQ 24.03)
T* arr2 = new T[a.len_];
delete[] arr_;
arr_ = arr2;
len_ = a.len_;

}

#if 1
// GOOD FORM: lets the T objects copy themselves:
for (unsigned i = 0; i < len_; ++i) // Good: The T objects copy themselves
arr_[i] = a.arr_[i];

#else
// BAD FORM: manipulates the bits of the T objects:
memcpy(arr_, a.arr_, len_*sizeof(T)); // Bad: Manipulates the T objects

#endif

return *this;
}

If a template uses memcpy() to copy some T objects, the template must have
a big, fat, juicy comment warning potential users that a class with nontrivial
copy semantics might destroy the world. For example, if memcpy() were used
in the example class template, and if someone created an Array<string>, it is
likely that the memcpy() would create dangling references and/or wild pointers,
and they would probably crash the application (see FAQ 32.1).

Finally, notice that the member functions that create T objects (that is, the
constructors and the assignment operator) do not have exception specifications
(see FAQ 9.4). This is because the T object’s constructor may throw arbitrary
exceptions, and any restrictions placed on these template member functions
would be wrong for some particular type T.

25.6 Why does the compiler complain about >>

when one template is used inside another?

Maximal munch.
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In the following example, a is a list of vector of int (list and vector are
standard container classes; see FAQ 28.13).

#include <list>
#include <vector>
using namespace std;

int main()
{
list< vector<int> > a;
// ...

}

If the declaration had been written without any spaces between the two >
symbols, such as list<vector<int>>, the compiler would have interpreted the
two > symbols as a single right-shift operator.

Here are the details. The compiler’s tokenizer (something the compiler does
to figure out what a program means) has a rule called the maximal munch
rule: “Read characters out of the source file until adding one more character
causes the current token to stop making sense.” For example, the keyword int
is one token rather than three separate tokens, i, n, and t. Therefore, if the
tokenizer encounters two > symbols together with no whitespace between them,
the maximal munch combines them into one token: >>.
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Chapter 26

Exception Tactics

26.1 What belongs in a try block?

Code that may throw an exception from which this function might be able
to recover.

If the code called from a try block cannot throw an exception, then there is
no need for the try block. Similarly, if the code called from a try block can
throw exceptions but this function cannot recover from the exceptions, then
there is no point in catching the exception and no point in putting the code in
a try block.

Simply put, a function shouldn’t worry about things that it can’t fix. The
important message here is that try...catch is not like old-fashioned error
codes. Programmers who don’t realize the differences put a try block around
every call to every routine that could throw an exception. This is not wise.

26.2 When should a function catch an excep-
tion?

When it knows what to do with it.

There is no point having a function catch an exception if it doesn’t know
what to do with it. If every function had an explicit try and catch for every
function it calls, two of the benefits of C++ exceptions (reduced coding and
testing costs) would be lost. Errors are commonly handled several (often many)
stack frames above where they are detected. Intermediate stack frames normally
ignore exceptions they can’t handle.

Most object-oriented systems designate some objects as controllers. Con-
trollers typically define the policy of the system, and, because of this, they are
often the objects that are best suited for implementing the system’s exception-
handling policy.
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26.3 Should a catch block fully recover from an
error?

If possible. But sometimes the best that can be done is some cleanup and a
rethrow.

If a function can completely recover from the error, then it can either continue
with normal processing or restart the try block (put the try block in a loop,
for example).

If a function can affect a partial, local recovery from the error, the catch
clause can propagate the exception to the calling function either by throwing
the same exception object (throw;) or by throwing a different exception object.

The worst thing to do is to leave the system in an ill-defined state by affecting
a partial, local recovery from the error and then returning to normal processing.
Here is an example of acceptable ways to handle the problem.

The first step is to define some exception classes. For this example, two
exception classes are needed: BadFileName for the file names that are invalid
and AccessViolation for file names that are valid but which refer to files that
cannot be accessed by the current user (for example, insufficient privileges).
Since all exception classes should inherit from a very small number of base
classes (see FAQ 9.10), these exception classes inherit from the standard class
runtime error:

#include <stdexcept>
#include <iostream>
#include <string>
using namespace std;

class BadFileName : public runtime_error {
public:
BadFileName(const string& filename) throw();

};

BadFileName::BadFileName(const string& filename) throw()
: runtime_error("bad file name: " + filename)
{ }

class AccessViolation : public runtime_error {
public:
AccessViolation(const string& filename) throw();

};

AccessViolation::AccessViolation(const string& filename) throw()
: runtime_error("access violation on file " + filename)
{ }
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The next step is to define a File class that pretends to check the file name
and access privileges. The code for this actually uses hard-coded names: the
name BadName.txt represents a bad file name, and the name NoAccess.txt
represents a file that cannot be accessed. In reality this member function would
call some system routines to determine whether the file name was good or bad
and whether the file was accessible or not.

class File {
public:
File(const string& filename) throw(BadFileName, AccessViolation);

};

File::File(const string& filename) throw(BadFileName, AccessViolation)
{
cout << "File::File(): Opening " << filename << "\n";
if (filename == "NoAccess.txt")
throw AccessViolation(filename);

if (filename == "BadName.txt")
throw BadFileName(filename);

cout << " Successfully opened\n";
}

The next step is to declare some functions that catch and partially recover
from these exceptions.

void first(const string& filename) throw();
void second(const string& filename) throw(BadFileName);

int main()
{
first("GoodFile.txt");
first("BadName.txt");
first("NoAccess.txt");

}

void first(const string& filename) throw()
{
try {
second(filename);

}
catch (BadFileName& e) {
cout << " first(): " << e.what() << ": Finish recovery\n";

}
}

void second(const string& filename) throw(BadFileName)
{
try {
File x(filename);

}
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catch (BadFileName& e) {
cout << " second(): " << e.what() << ": Partial recovery\n";
throw; // Rethrow the BadFileName exception

}
catch (AccessViolation& e) {
cout << " second(): " << e.what() << ": Full recovery\n";

}
}

The output of the program is as follows.

File::File(): Opening GoodFile.txt
Successfully opened

File::File(): Opening BadName.txt
second(): bad file name: BadName.txt: Partial recovery
first(): bad file name: BadName.txt: Finish recovery

File::File(): Opening NoAccess.txt
first(): access violation on file NoAccess.txt: Full recovery

26.4 How should a constructor handle a failure?

It should throw an exception.

Some authors suggest that constructors should not throw exceptions. In gen-
eral this is wrong. For example, constructors cannot return an error code, so
attempting to use error codes in inappropriate.

Besides, a failed constructor usually indicates that the object did not achieve a
self-consistent state (for example, it may not have been able to allocate sufficient
memory, the appropriate file may not have existed, and so on). It is error-prone
to let these objects continue to live. For example, if some other member function
of the object used a nonexistent resource, it would be an error.

If a constructor experiences an error and the programmer cannot throw an
exception, another alternative is to mark the object as a zombie (see FAQ 26.5).

26.5 What are zombie objects (and why should
they be avoided)?

Zombie objects are C++’s version of the living dead—objects that aren’t
quite alive but aren’t quite dead either.

When an environment doesn’t support throw or when a programmer decides
to avoid throwing exceptions from constructors (see FAQ 26.4), an object that
can’t finish its constructor can set an internal status flag to indicate that the
object is unusable. Then the class provides a query (inspector) member function
so that users can see whether the object is usable or a zombie.
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The zombie object technique has the unfortunate side effect of allowing objects
to survive even though their constructor failed. This means that all member
functions must first check to make sure the object isn’t a zombie before using
the data inside the object and that all users of an object must check to make
sure the object is usable after creating the object.

In general, the zombie technique is inferior to throwing an exception.

26.6 What should an object do if one of its mem-
ber objects could throw an exception dur-
ing its constructor?

Nothing, but the object and its member objects should be designed to manage
their own destruction.

First some background. When the constructor of a member object throws an
exception, member objects that have already been constructed are destructed.
For example, if an object has member objects x_ and y_, and if x_’s constructor
succeeds (doesn’t throw) and y_’s constructor throws an exception, then x_’s
destructor is invoked. However the object that has member objects x_ and y_
was not fully constructed, so the object’s destructor is not called.

The easiest way to make things work correctly is to ensure that the destructor
for each member object manages its own destruction and does not rely on the
composite’s destructor to do anything important (since the composite’s destruc-
tor is not executed). So x_’s destructor must completely handle the destruction
of x_ without relying on any help from the composite’s destructor. This is
illustrated in the following example.

#include <iostream>
#include <stdexcept>
using namespace std;

class X {
public:
X() throw();

~X() throw();
};

X::X() throw()
{ cout << "X ctor\n"; }

X::~X() throw()
{ cout << "X dtor\n"; }

class Y {
public:
Y() throw(runtime_error);
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};

Y::Y() throw(runtime_error)
{
cout << "Y ctor throwing\n";
throw runtime_error("thrown from Y ctor");

}

class A {
public:
A() throw(int);
~A() throw();
protected:
X x_;
Y y_;

};

A::A() throw(int)
: x_()
, y_() // The exception gets throw from here
{ cout << "A ctor\n"; }

A::~A() throw()
{ cout << "A dtor\n"; }

int main()
{
try {
A a;
cout << "never gets here\n";

}
catch (exception& e) {
cout << "main caught: " << e.what() << endl;

}
}

The output follows.

X ctor
Y ctor throwing
X dtor
main caught: thrown from Y ctor

Because A::~A() was never invoked, it had better not do something important
to x_, because those important things won’t happen if y_’s constructor throws
an exception.

Rule of thumb: Every member object should manage its own destruction.
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Note that C++ also allows programmers to put a try block inside a con-
structor’s initialization list. This can be used when the rule-of-thumb is not
applied.

26.7 Should destructors throw exceptions when
they fail?

No.

If a destructor is invoked during the stack-unwinding process initiated by
the throwing of another exception, and that destructor throws an exception,
terminate() is invoked, which kills the program.

26.8 Should destructors call routines that may
throw exception?

Yes, provided the destructor catches whatever the routines might throw.

If a destructor is called while unwinding the stack caused by another ex-
ception, and that destructor calls a routine f() that throws an exception, the
destructor must catch the second (nested) exception; otherwise the exception-
handling mechanism calls the terminate() function. In plain English: if the
destructor calls something that might throw an exception, the destructor should
catch all possible exceptions.

#include <iostream>
#include <stdexcept>
using namespace std;

void fred() throw(runtime_error)
{
cout << "fred() throwing\n";
throw runtime_error("thrown from fred()");

}

class X {
public:
~X() throw();

};

X::~X() throw()
{
try {
fred();

}
catch (exception& e) {
cout << "handling fred()’s exception: " << e.what() << ’\n’;

}
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}

int main()
{
try {
X x;
cout << "main() throwing\n";
throw logic_error("thrown from main()");

}
catch (exception& e) {
cout << "handling main()’s exception: " << e.what() << ’\n’;

}
}

X::~X() is called as a result of the exception thrown by main(). But X::~X()
calls fred(), which also throws an exception. Fortunately X::~X() catches the
exception thrown by fred(); otherwise terminate() would be called at the end
of X::~X().

The output is

main() throwing
fred() throwing
handling fred()’s exception: thrown from fred()
handling main()’s exception: thrown from main()

26.9 Should resource deallocation primitives sig-
nal failure by throwing an exception?

No.

Examples of resource deallocation primitives include overloads of operator
delete, closing files, unlocking semaphores, and so on.

Because these are commonly called from destructors, they should signal failure
by some means other than throwing an exception. The alternatives range from
printing a diagnostic error message in a log file to halting the system, and the
best choice depends on the circumstances. This reduces the number of cases in
which terminate() is inadvertently called.

26.10 What should the terminate() function do?

Log the error, release all known systemwide resources, and call abort().

The terminate() function is called when the exception-handling system en-
counters an error from which it can’t recover. This happens when main() fails
to catch an exception and when a destructor called by the exception handler
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throws an exception. It is also the default behavior of the unexpected() func-
tion. The set terminate() function can be used to change the behavior of
terminate().

The terminate() function must not return, nor may it throw an exception.
The best approach is to log the catastrophe (flush the file after logging the
error, because abort() doesn’t close open files), release any known systemwide
resources (things that other applications depend on), and call abort().

C’est la vie.

26.11 What should the unexpected() function do?

Log the error and call terminate().

When a function has an exception specifier and the function throws an ex-
ception that doesn’t match anything in its exception specifier list (Murphy’s
Law), the exception-handling mechanism calls unexpected(). By default, the
unexpected() function silently calls the terminate() function, which is termi-
nal. The behavior of unexpected() can and probably should be changed by
using the set unexpected() function:

#include <cstdlib> #include <iostream>
using namespace std;

class Fred { };
class Wilma { };

void sample() throw(Fred)
{
switch (rand() % 3) {
case 0:
cout << "throwing a Fred; ";
throw Fred();

case 1:
cout << "throwing a Wilma; ";
throw Wilma(); //<-------------------- Danger

default:
cout << "returning normally; ";

}
}

Note that the preceding user code expected to throw a Fred but never ex-
pected to throw a Wilma (see the exception specification immediately following
the signature of sample()). In practice, this happens accidentally, such as when
sample() calls a function that calls a function that calls a function that throws
a Wilma. In any case, sample() is erroneous; either it must catch the Wilma or
it must broaden its exception specification list to tell its users that it may throw
a Wilma.
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#include <exception>

void myUnexpected() throw()
{
cout << "unexpected exception!" << endl;
terminate(); // Good night Nurse!

}

int main()
{
// Without this, the program would silently crash:
set_unexpected(myUnexpected);

for (int i = 0; i < 10; ++i) {
try {
cout << "trying: ";
sample();
cout << "no exception thrown\n";

}
catch (Fred) {
cout << "caught a Fred\n";

}
catch (Wilma) {
cout << "caught a Wilma\n";

}
catch (...) {
cout << "this should never happen\n";

}
}

}

Saving the most recently thrown exception in a global variable can enhance
the technique. That way the error message in myUnexpected() can be more
intelligent, especially if all exceptions inherit from a common base class that
provides some identification services. Obviously, access to such global variables
must be serialized in multithreaded environments.

If a program is crashing silently before main() begins, it may be getting an
unexpected exception during static initialization. In this case, it is necessary to
set the unexpected function (set unexpected(myUnexpected);) inside a con-
structor of a static object, but even then there are no guarantees since the static
object may not get constructed (and therefore myUnexpected() function may
not be registered) before the error occurs.

260



26.12 Under what circumstances can an over-
ridden virtual member function throw ex-
ceptions other than those listed by the
specification of the member function in
the base class?

When the exception is an object of a class that is publicly derived from one of
the classes mentioned in the exception specification of the base class’s member
function. This ensures that users of the base class won’t be surprised.

Suppose class Base has member function f() that promises to throw only ob-
jects of class X. If class Derived overrides f() and throws an object of unrelated
class Y, user code will break, because users will get an unexpected exception.
However, Derived::f() can throw an X2 if X2 is derived from X due to the is-a
conversion that allows a derived class reference to automatically be converted
to a base class reference.

#include <cstdlib>
#include <iostream>
using namespace std;

class X { };
class Y { };
class X2 : public X { };

class Base {
public:

virtual void f() throw(X);
//PROMISE: may throw ’X’, but never throws anything else

virtual ~Base() throw();
};

Base::~Base() throw()
{ }

void userCode(Base& base) throw()
{

try {
base.f();
cout << "OK: base.f() didn’t throw anything\n";

}
catch (X& x) {
cout << "OK: base.f() threw an X\n";

}
catch (...) {
cout << "huh? base.f() threw something other than X!\n";

}
}
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class Derived : public Base {
public:
virtual void f() throw(X, X2, Y);
//PROMISE:
// may throw X // OK: Users will be expecting this
// may throw X2 // OK: X2 is derived from X
// may throw Y // Bad form: Violates the promise of Base

};

void Base::f() throw(X)
{ if (rand() % 2 == 0) throw X(); }

void Derived::f() throw(X, X2, Y)
{
int r = rand() % 4;
if (r == 0) throw X(); // OK: Base users are expecting X
if (r == 1) throw X2(); // OK: Base users are expecting X
if (r == 2) throw Y(); // Bad: Base users don’t expect Y

}

int main()
{
Base b;
Derived d;
cout << "using ’Base’\n";
for (int i = 0; i < 10; ++i)
userCode(b);

cout << "using ’Derived’\n";
for (int j = 0; j < 10; ++j)
userCode(d);

}

The overridden member function in the derived class has a weaker promise
than that made by the base class: Base promised not to throw a Y, and Derived
broke this promise.

Weakening a promise breaks user code.

26.13 How might the exception-handling mech-
anism cause a program to silently crash?

Of the zillion reasons a program might silently crash, we’ll point out two that
are related to the C++ exception-handling mechanism.

Possibility 87642: If an exception is thrown but not caught, terminate() is
called, which calls abort() by default. The solution is to wrap main() in a try
block that has a catch (...) clause (see FAQ 9.10). If that doesn’t work, look
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for a constructor of a file-scope static object that might throw an exception.
Another way to handle this problem is to replace the terminate() function
with one that prints an appropriate message before it calls abort().

Possibility 253375: If an exception is thrown that didn’t match anything on
the exception specification list, unexpected() is called, which calls terminate()
by default, which calls abort() by default. The solution is to replace the be-
havior of unexpected() with a function that prints an appropriate message (see
FAQ 26.11).
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Chapter 27

Types and RTTI

27.1 What is the purpose of this chapter?

This chapter explores static and dynamic type checking, both of which are
allowed in C++. Its main theme is that static type checking is always a good
idea, while the impulse to use dynamic type checking should be carefully con-
trolled. In those cases, such as persistence, where some form of dynamic type
checking might be required, runtime type identification (RTTI) should be used.

27.2 What is static type checking?

Static type checking, sometimes known as static typing, is when the compiler
checks the type correctness of operations at compile time. For example, the
compiler checks the parameter types of function arguments and checks that
a member function invocation is guaranteed to work at runtime, then it flags
improper matches as errors at compile time.

In object-oriented programs, the most common symptom of a type mismatch
is the attempt to invoke a member function via a reference to an object, where
the reference’s type and/or the object’s type does not support the member
function. For example, if class X has member function f() but not member
function g() and x is an instance of class X, then x.f() is legal and x.g() is
illegal.

class X {
public:
void f() throw();

};

void X::f() throw()
{ }

int main()
{
X x;
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x.f(); //OK

#ifdef GENERATE_ERROR
//The following error is caught at compile-time
//There is no need for runtime checks
x.g();

#endif
}

Fortunately, C++ catches errors like this at compile time.

27.3 What is dynamic type checking?

Dynamic type checking, sometimes known as dynamic typing, is the determi-
nation of type correctness at runtime.

With dynamic type checking, user code determines whether an object sup-
ports a particular member function at runtime rather than at compile time.
Dynamic type checking is often accompanied by downcasts (see FAQ 27.11)
and can unnecessarily increase the cost of C++ software. Runtime type identi-
fication (RTTI) is one kind of dynamic type checking that is supported directly
by C++.

The following example demonstrates the wrong way to do things. Pretend
that the various escape sequences toggle italics on the various kind of printers.

#include <iostream>
using namespace std;

// pretend this is the escape character
const char* const esc = "ESC";

enum Type { EPSON, PROPRINTER, STAR };

class Printer {
public:
virtual ~Printer() throw();
virtual Type type() const throw() = 0;

};

Printer::~Printer() throw()
{ }

class EpsonPrinter : public Printer {
public:
virtual Type type() const throw();
void italicsEpson(const char* s) throw();

};
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Type EpsonPrinter::type() const throw()
{ return EPSON; }

void EpsonPrinter::italicsEpson(const char* s) throw()
{ cout << esc << "i+" << s << esc << "i-"; }

class ProprinterPrinter : public Printer {
public:
virtual Type type() const throw();
void italicsProprinter(const char* s) throw();

};

Type ProprinterPrinter::type() const throw()
{ return PROPRINTER; }

void ProprinterPrinter::italicsProprinter(const char* s) throw()
{ cout << esc << "[i" << s << esc << "[n"; }

class StarPrinter : public Printer {
public:
virtual Type type() const throw();
void italicsStar(const char* s) throw();

};

Type StarPrinter::type() const throw()
{ return STAR; }

void StarPrinter::italicsStar(const char* s) throw()
{ cout << esc << "x" << s << esc << "y"; }

void printUsingItalics(Printer& p, const char* s) throw()
{
switch (p.type()) {
case EPSON:
((EpsonPrinter&) p).italicsEpson(s);
break;

case PROPRINTER:
((ProprinterPrinter&) p).italicsProprinter(s);
break;

case STAR:
((StarPrinter&) p).italicsStar(s);
break;

default:
cerr << "Call company representative at 1-800-BAD-BUGS\n";

}
}

Although the example uses classes and virtual functions, it is not the best use
of OO technology. The type() member function is used in basically the same
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way that procedural code uses tagged unions (that is, tag fields that indicate
which piece of the union is currently being used). This approach is subject
to error and is nonextensible compared to the proper use of classes and virtual
functions, shown later in this chapter. For example, adding a new kind of printer
requires changes to the printUsingItalics() function and probably to other
functions as well. This is a ripple effect that is typical with non-OO (and bad
OO!) software.

27.4 What is the basic problem with dynamic
type checking?

The basic problem with dynamic type checking is that it uses code to find
code, creating extensibility problems later.

With dynamic type checking, code has to be written to check the type of an
object to see if it supports a particular set of member functions (this is the code
that is doing the finding). Accessing the member functions may require a down
cast to the appropriate pointer type (this is the code that is being searched for).

When the user code uses code to find server code, the user code is more com-
plex and fragile. OO programming is supposed to encapsulate complexity, and
the inappropriate use of dynamic type checking can undo this benefit. Often
dynamic type-checking tests require the user code to know the server’s inheri-
tance hierarchy, in which case changing the server’s inheritance hierarchy breaks
the user code. This is unfortunate, considering that one of the main goals of
object-oriented technology is to reduce maintenance costs.

Dynamic type checking also requires a runtime check to ensure that the ob-
ject supports the requested member function. This is usually implemented using
control flow, such as an if or switch statement. These runtime tests are fre-
quently avoidable if the design exploits the static type-checking capabilities of
the C++ compiler.

Finally, it is much more expensive to catch an error at runtime than it is to
find the same error at compile time. Don’t use dynamic type checking without
a good reason.

27.5 How can dynamic type checking be avoided?

Design. Design. Design.

Circumstances sometimes require the use of dynamic type checking, but un-
fortunately, dynamic type checking is often used when it is not required. Often
dynamic type checking is used because the programmer does not have enough
expertise or does not take the time to produce a good object-oriented design.
When dynamic type checking seems attractive, try revising the design instead.
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After the design has been revisited and dynamic type checking still seems de-
sirable, use it. But be aware of the additional coding, testing, and maintenance
costs.

27.6 Are there better alternatives to dynamic
type checking?

One alternative to dynamic type checking and down casts is dynamic bind-
ing and virtual functions. To use this alternative technique, member functions
that show up only in the derived classes are generalized and moved up to the
base class. Effectively this means that the class selection and down cast is per-
formed automatically and safely by C++. Furthermore, this approach produces
extensible software because it automatically extends itself whenever a new de-
rived class is created—as if an extra case or else if magically appeared in the
dynamic type-checking technique.

The following example is a rework of the code from FAQ 27.3. Compared to
the old class hierarchy, the italicsXXX() member functions from the derived
classes are generalized and moved into the base class as virtual member func-
tion italics(). This results in a substantial simplification of the user code
printUsingItalics(). Instead of selecting printer type based on a type()
member function and using control flow logic to figure out what to do, the user
code simply invokes the new italics() member function.

#include <iostream>
using namespace std;

class Printer {
public:
static const char esc;
virtual ~Printer() throw();
virtual void italics(const char* s) throw() = 0;

};

Printer::~Printer() throw()
{ }

class EpsonPrinter : public Printer {
public:
virtual void italics(const char* s) throw();

};

void EpsonPrinter::italics(const char* s) throw()
{ cout << esc << "i+" << s << esc << "i-"; }

class ProprinterPrinter : public Printer {
public:
virtual void italics(const char* s) throw();

};
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void ProprinterPrinter::italics(const char* s) throw()
{ cout << esc << "[i" << s << esc << "[n"; }

class StarPrinter : public Printer {
public:
virtual void italics(const char* s) throw();

};

void StarPrinter::italics(const char* s) throw()
{ cout << esc << "x" << s << esc << "y"; }

void printUsingItalics(Printer& p, const char* s) throw()
{ p.italics(s); }

From a broader standpoint, complexity is moved from the user code to the
server code, from the many to the few. This is normally the right trade-off.
Furthermore, adding a new kind of Printer doesn’t require existing code to be
modified—reducing the ripple effect when compared to FAQ 27.3.

27.7 What is a capability query?

A capability query is an inspector member function (see FAQ 14.7) that allows
users to determine whether an object supports some other member function.
Capability queries invite inflexibility.

The benefit of capability queries is that they allow a class designer to avoid
thinking about how users will use the objects, instead forcing the user code to
explicitly test the classes and objects to see what capabilities they support.

The problem with capability queries is that they allow a class designer to avoid
thinking about how users will use the objects, instead forcing the user code to
explicitly test the classes and objects to see what capabilities they support.

Capability queries export complexity from the server to the users, from the
few to the many. User code often needs explicit control flow to select operations
based on the results of a capability query—user code uses code to find code
(see FAQ 27.4). This impacts existing user code when new derived classes are
added.

Capability queries are not normally recommended.

27.8 What is an alternative to dynamic type
checking with containers?

Templates offer a viable alternative hen working with containers.
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In the past, some container classes were designed assuming the existence of
some kind of master base class. This has been called the based object approach.
In particular, it was common to encounter container classes that inserted or
extracted elements that were pointers to a single base class, typically called
Object.

Applying the based object approach to containers makes it hard to mix two
or more class libraries. For example, it may not be possible to put an object
from one library into a container from another library, since the master base
classes from the two libraries normally won’t match exactly.

In general, this approach can and should be avoided through the use of tem-
plates or design patterns. The particular problem of extensible container classes
has been elegantly solved in the standard C++ container classes by using tem-
plates and iterators.

Note that Java always inherits all classes from class Object. But since there
is exactly one Object class in Java, as opposed to one per library vendor in
C++, it isn’t as big a problem in Java. The important point is that Java and
C++ are very different in some fundamental ways. Syntactically they appear
to be quite similar, but semantically there are some fundamental differences.
Therefore just because a technique works in one language (say the based object
approach works in Java) does not mean the same approach works or should be
made to work in a different language (see FAQ 28.8).

27.9 Are there cases where dynamic type check-
ing is necessary?

Yes, particularly with persistent heterogeneous objects.

A program can’t have static knowledge about things that existed before the
execution of the program. If objects from several classes were previously stored
in a database, the program that peels the objects off the disk driver’s platter
(or, equivalently, slurps them from a coaxial cable) cannot know the types of
the objects because it didn’t create them.

In these cases, the objects may need to be queried about their types, especially
if the persistent objects are highly heterogeneous. To whatever extent possible,
use the maxim “Ask once, then remember.” In other words, try to avoid asking
an object its type (or its capabilities) every time it is used. This is especially
true if the queries require reasoning about the objects in a nonextensible manner
(that is, control flow logic that uses code to find code; see FAQ 27.4).

Note that it is normally possible to avoid the type queries if the objects are
known to be the same class (homogeneous) or at least known to be derived from
some common ABC that has a fairly rich set of member functions.
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27.10 Given a pointer to an ABC, how can the
class of the referent be found?

This is an idea that should be avoided.

The typical reason for trying to find an object’s class is to use an algorithm
that depends on the object’s class. If the algorithm varies depending on the
derived class, then the algorithm should be a virtual member function in the
class hierarchy. If the algorithm is structurally the same for all derived classes
but has little pieces that differ depending on the derived class, then the little
pieces should be virtual member functions in the class hierarchy. This technique
lets derived classes select the ideal algorithm or algorithm fragments without
any additional branch points in the software (see FAQ 27.4).

For example, finding the minimal distance to a mouse click requires different
algorithms for circles, squares, lines, and so forth. One might be tempted to
write non-OO code such as the following (pretend Position, Shape, Circle,
and so forth, are classes).

int dist_BAD_FORM(Shape& s, Position mouse) throw()
{

Circle* cp = dynamic_cast<Circle*>(&s);
Square* sp = dynamic_cast<Square*>(&s);
Line* lp = dynamic_cast<Line*>(&s);

if (cp != NULL) {
//find the distance from mouse to the Circle, *cp

} else if (sp != NULL) {
//find the distance from mouse to the Square, *sp

} else if (lp != NULL) {
//find the distance from mouse to the Line, *lp

}
}

One problem with this non-OO technique is that adding a new derived class
requires working user code to be modified by adding a new else if section.
Besides the obvious concern that changing working user code may break it, in
large systems it is difficult to find all the places that need to be changed, and
in very large systems there is typically a scheduling problem coordinating the
changes in diverse teams of developers. In one organization the ripple effect
was so bad that it took nine months to add a new gizmo to the system (this
was mainly due to a scheduling concern since the entire system was huge—
in excess of 10 million lines of non-OO code). After a proper OO design of
selected subsystems, the same sorts of additions are now routinely done by a
single person in a single day. 1

1“Lessons Learned from the OS/400 OO Project,” Communications of the ACM. 1995;
38(10):54-64.
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A proper OO design would move the function dist() into the Shape rather
than moving the Shape into the function dist().

#include <iostream>
using namespace std;

class Position { };

class Shape {
public:
virtual ~Shape() throw();
virtual void draw() const throw() = 0;
virtual int dist(Position mouse) const throw() = 0;

};

Shape::~Shape() throw()
{ }

class Circle : public Shape {
public:
virtual void draw() const throw();
virtual int dist(Position mouse) const throw();

};

void Circle::draw() const throw()
{ /*draw a Circle*/ }

int Circle::dist(Position mouse) const throw()
{ /*find the distance from mouse to this Circle*/ }

class Square : public Shape {
public:
virtual void draw() const throw();
virtual int dist(Position mouse) const throw();

};

void Square::draw() const throw()
{ /*draw a Square*/ }

int Square::dist(Position mouse) const throw()
{ /*find the distance from mouse to this Square*/ }

class Line : public Shape {
public:
virtual void draw() const throw();
virtual int dist(Position mouse) const throw();

};

void Line::draw() const throw()
{ /*draw a Line*/ }
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int Line::dist(Position mouse) const throw()
{ /*find the distance from mouse to this Line*/ }

The OO solution greatly reduces the amount of code that needs to be modified
when a new class is added. A little extra design work pays large dividends.

27.11 What is a downcast?

A downcast is the conversion of a Base* to a Derived*, where class Derived
is publicly derived from class Base. A downcast is used when the client code
thinks (or hopes!) that a Base* points to an object of class Derived or a class
derived from Derived and it needs to access a member function that is provided
by Derived but not by Base.

For example, suppose class LiquidAsset is derived from class Asset, and
LiquidAsset is a derived class that is liquidatable but Asset itself is not liqui-
datable. A downcast from an Asset* to a LiquidAsset* allows the liquidation.

#include <iostream>
using namespace std;

class Asset {
public:
virtual ~Asset() throw();
virtual bool isLiquidatable() const throw();

};

Asset::~Asset() throw()
{ }

bool Asset::isLiquidatable() const throw()
{ return false; }

class LiquidAsset : public Asset {
public:
LiquidAsset(int value=100) throw();
int getValue() const throw();
void setValue(int value) throw();
virtual bool isLiquidatable() const throw();

protected:
int value_; //value of this asset

};

LiquidAsset::LiquidAsset(int value) throw()
: value_(value)
{ }
int LiquidAsset::getValue() const throw()
{ return value_; }
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void LiquidAsset::setValue(int value) throw()
{ value_ = value; }
bool LiquidAsset::isLiquidatable() const throw()
{ return true; }

int tryToLiquidate(Asset& asset) throw()
{
int value;
if (asset.isLiquidatable()) {
LiquidAsset& liquidAsset = (LiquidAsset&) asset;
value = liquidAsset.getValue();
liquidAsset.setValue(0);
cout << "Liquidated $" << value << ’\n’;

}
else {
value = 0;
cout << "Sorry, couldn’t liquidate this asset\n";

}
return value;

}

int main()
{
Asset a;
LiquidAsset b;

tryToLiquidate(a);
tryToLiquidate(b);

}

The output of this program follows.

Sorry, couldn’t liquidate this asset
Liquidated $100

Although dynamic cast (see FAQ 27.17) can eliminate the unsafe casts, it
cannot eliminate the nonextensible control flow logic. See FAQ 27.12 for a better
alternative.

27.12 What is an alternative to using downcasts?

Move the user code into the object in the form of virtual functions.

An if-downcast pair can often be replaced by a virtual function call. The
key insight is to replace the capability query with a service request. A service
request is a virtual function that the client can use to politely ask an object to
perform some action (such as “Try to liquidate yourself”).
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To help find the segments of code that will need to be moved into the service
requests, look for those segments of code that use capability queries and depend
on the type of the class. Segments of code that depend on the type of the class
should be moved into the hierarchy as virtual functions; segments of code that
don’t depend on the type of the class can remain user code or can be nonvirtual
member functions in the base class.

In the previous FAQ, the service request in the user code included the en-
tire tryToLiquidate operation (this entire operation depended on the derived
class). The apply this guideline, move the code for this operation into the class
hierarchy as a virtual function.

#include <iostream>
using namespace std;

class Asset {
public:
virtual ~Asset() throw();
virtual int tryToLiquidate() throw();

};

Asset::~Asset() throw()
{ }

int Asset::tryToLiquidate() throw()
{
cout << "Sorry, couldn’t liquidate this asset\n";
return 0;

}

class LiquidAsset : public Asset {
public:
LiquidAsset(int value=100) throw();
virtual int tryToLiquidate() throw();

protected:
int value_; //value of this asset

};

LiquidAsset::LiquidAsset(int value) throw()
: value_(value)
{ }

int LiquidAsset::tryToLiquidate() throw()
{
int value = value_;
value_ = 0;
cout << "Liquidated $" << value << ’\n’;
return value;

}
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int sample(Asset& asset)
{ return asset.tryToLiquidate(); }

int main()
{
Asset a;
LiquidAsset b;

sample(a);
sample(b);

}

The output of this program follows.

Sorry, couldn’t liquidate this asset
Liquidated $100

In the previous FAQ, the downcast was explicit and was therefore subject to
human error. In the revised solution, the conversion from Asset* to LiquidAsset*
is implicitly part of the virtual function call mechanism. LiquidAsset::tryToLiquidate()
does not need to downcast the this pointer into a LiquidAsset*.

Think of a virtual function call as an extensible if-downcast pair that always
down casts to the right type.

27.13 Why are downcasts dangerous?

Downcasts override the help a compiler can give and rely solely on the knowl-
edge of the programmer.

A downcast from a base class pointer to a derived class pointer instructs the
compiler to blindly reinterpret the bits of the pointer. But if you’ve guessed
wrong about the object’s class, you’re in big trouble—the coerced pointer can
create havoc. Learn about type-safe downcasting with RTTI (see FAQ 27.16)
instead, but more important, avoid downcasts entirely.

27.14 Should the inheritance graph of C++ hi-
erarchies be tall or short?

The inheritance graph should be a forest of short trees.

When the inheritance graph is too tall, downcasts are common. This is be-
cause the type of the pointer is often sufficiently different from the type of the
object that the desired member function is available only by downcasting the
pointer. Also, the deeper the graph, the less likely that the inheritance relation-
ships are proper. A tall graph is frequently a sign of an uninformed attempt at
code reuse. Remember: inheritance is not for code reuse (see FAQ 8.12).

276



The type-safe philosophy espoused in this book discourages the unnecessary
use of downcasting, even if downcasts are checked first.

27.15 Should the inheritance graph of C++ hi-
erarchies be monolithic or a forest?

The inheritance graph should be a forest.

The inheritance hierarchy of well-designed C++ software is normally a forest
of little trees rather than a large, monolithic tree. Monolithic trees usually result
in excessive use of downcasting. The type-safe philosophy espoused in this book
discourages the use of the downcasting.

27.16 What is Runtime Type Identification (RTTI)?

RTTI is the official way in standard C++ to discover the type of an object and
to convert the type of a pointer or reference (that is, dynamic typing). The need
came from practical experience with C++. RTTI replaces many homegrown
versions with a solid, consistent approach. It has many features and capabilities;
this chapter discusses dynamic cast<T>(), static cast<T>(), and typeid().
Other features, such as const cast() and reinterpret cast(), and issues
related to multiple/private/protected/virtual inheritance are not discussed.

27.17 What is the purpose of dynamic cast<T>()?

It’s a way to see if an object supports a given interface at runtime. It can be
a bit complicated, so this simplified FAQ covers only the normal situations that
occur repeatedly.

Very loosely speaking, dynamic cast<T>(x) is like the old-style cast (T)x,
meaning that it casts the value of x to the type T (T is normally either a pointer
or a reference to some class). dynamic cast<T>(x) has several important ad-
vantages over the old-style cast. It never performs an invalid conversion since
it checks that the cast is legal at runtime, and the syntax is more obvious and
explicit than the old-style cast, thus appropriately calling attention to the con-
version.

If p is a pointer, dynamic cast<Fred*>(p) converts p to a Fred* like (Fred*)p,
but if the conversion is not valid, it returns NULL. If r is a reference, dynamic cast<Fred&>(r)
converts r to a Fred& just like (Fred&)r, but if the conversion is not valid, an
exception of type bad cast is thrown. A conversion is valid if the object pointed
to by p (or referred to by r) is either a Fred or a publicly derived class of Fred.
Here is some sample syntax.

#include <iostream>
using namespace std;
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class Shape {
public:
virtual ~Shape() throw();
// ...

};

Shape::~Shape() throw()
{ }

class Circle : public Shape { /*...*/ };
class Square : public Shape { /*...*/ };

void sample(Shape* p) throw()
{
Circle* cp = dynamic_cast<Circle*>(p);
if (cp != NULL) {
cout << "The object is a Circle\n";

} else {
cout << "The object is not a Circle\n";

}
}

int main()
{
Circle c;
Square s;
sample(&c);
sample(&s);

}

When dynamic cast<T>(p) is being used to perform a downcast, p’s type
must designate a class with at least one virtual function (or be NULL). However,
this restriction does not apply to potential recipients of the cast, such as cp in
the example.

27.18 Is dynamic cast<T>() a panacea?

No, like everything else, dynamic cast<T>() can be misused.

It’s a horrible design error, but some programmers (mis)use dynamic cast<T>()
in huge if / then / else blocks to determine an object’s type and then take
the appropriate action. This situation screams out for virtual functions and
dynamic binding, not the extensibility-killing misuse of RTTI (see FAQ 27.3).

Also, watch out for performance hits due to this implementation technique.
It is all too easy to think of dynamic cast<T>() as a constant-time operation,
when in fact it may take linear time and chew up CPU cycles if the inheritance
hierarchies are deep or if the advice about huge if blocks has been ignored.

278



27.19 What does static cast<T>() do?

It tells the compiler, “Trust me.”

Sometimes the programmer knows the type of an object and has to or wants
to let the compiler in on the secret. static cast<T>() is the standard C++
way to do this at compile time. There are situations where either the knowledge
to make the cast exists only in the programmer’s mind or the runtime system
cannot do the job because of technical reasons. Here is some sample syntax.

Target* tg = static_cast<Target*>(src); // just do it

The C++ dynamic cast<T>() is better than C-style casting because it stands
out in the code and explicitly states the programmer’s understanding and in-
tentions. It also understands and respects const and access controls.

27.20 What does typeid() do?

It determines the precise type of an object at runtime.

Given a reference or pointer as input, typeid() returns a reference to a stan-
dard library class called type info. type info has a name() member function
that returns the name of the parameter’s type in an implementation-specific
format. This name represents the precise, lowest-level type of the object. If the
value of the pointer is NULL, typeid() throws a bad typeid exception.

Note that dynamic cast<T>(p) and static cast<T>(p) are template func-
tions, where T is the template parameter and p is the function parameter, but
typeid() is not a template function.

typeid() and dynamic cast<T>() are two sides of the same coin. They both
take a base class pointer or reference that may refer to a derived class object. But
typeid() returns a class name whereas dynamic cast<T>() is passed a class
name. typeid() is used to discover the object’s exact class, but it doesn’t covert
the pointer; dynamic cast<T>() converts the pointer but doesn’t determine the
object’s exact class—the pointer may be converted to some intermediate base
class rather than to the object’s exact class.

The character representation of the class name from name() is stored in sys-
tem memory and must not be deleted by the programmer.

27.21 Are there any hidden costs for type-safe
downcasts?

Yes, type-safe downcasts have five hidden costs.
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Although type-safe downcasts never cast a pointer to an incorrect type, they
have five hidden costs. They increase coding cost, maintenance cost, testing
cost, runtime CPU cost, and extensibility cost.

1. Coding cost: Type-safe downcasts move complexity from the server code
into the user code, from the few to the many.

2. Maintenance cost: Moving code from the server code to the user code
increases the overall software bulk.

3. Testing cost: A test harness must be devised to exercise every if, including
the ifs used to test the type safety to the downcasts.

4. Runtime CPU cost: Additional code must be executed to test the type
safety of the downcasts. This is not a constant time cost, by the way, since
it may be necessary to search an entire inheritance hierarchy.

5. Extensibility cost: The additional control flow code needs to be modified
when new derived classes are added.

The underlying cause for these costs lies with the style of programming im-
plied by type-safe downcasts rather than with the downcasts themselves. Em-
bracing the more extensible style of programming that does not use unnecessary
downcasts is part of using C++ properly.
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Chapter 28

Containers

28.1 What are container classes and what are
the most common mistakes made with con-
tainer classes?

Containers are objects that hold other objects (see FAQ 2.15). For example,
a linked list of string objects is a container—users can add numerous elements
(or element objects) to the list, and in this case all the elements are of type
string. The closest that the core C++ language comes to container classes is
the array—but see FAQ 28.2 to find out why C++ arrays should not be used.

Unfortunately programmers’ instincts tend to lead them in the wrong di-
rection with containers. This may be because of past experience with other
programming languages or it may be for some other reason, but whatever the
reason the result is the same: programmers tend to make common and serious
mistakes with containers that lead to bugs. Here are a few common mistakes.

• Using arrays rather than safe container classes (the “Grandma used ar-
rays” fiasco; see FAQ 28.2)

• Rolling your own container classes from scratch (the “not invented here”
fiasco; see FAQ 28.3)

• Containers of pointers (the “random object ownership” fiasco; see FAQ
28.4)

• Containers of char* (the “string contents vs. string address” fiasco; see
FAQ 28.6)

• Containers of auto_ptr<T> (the “transfer of object ownership” fiasco; see
FAQ 28.7)

• Inheriting everything from Object (the “based object” fiasco; see FAQ
28.8)

• Selecting incompatible vendors for container classes (the “best of breed”
fiasco; see FAQ 28.10)
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28.2 Are arrays good or evil?

Arrays are evil. They have their place in some specialized applications, but
they should be avoided.

The most common mistake with container classes is failing to use them and
substituting arrays instead. Unfortunately, this is not only a fairly common
mistake, it’s also a very dangerous mistake. Arrays simply aren’t safe. They’re
pointers in disguise, and pointers aren’t safe. Yes, Grandma used pointers and
survived, but given the relative size and complexity of today’s software systems
and given all the other things that need to be handled, raw pointers or arrays
generally aren’t worth the risk. Instead pointers and arrays should be wrapped
inside a safe interface—a container class.

Avoid using arrays and pointers. Use container classes instead.

28.3 Should application development organiza-
tions create their own container classes?

No. Too many application development organizations roll their own container
classes from scratch. This is often motivated by the “not invented here” (NIH)
syndrome, which is lethal to any kind of reuse.

The problems with application development organizations rolling their own
container classes include the following.

• Increased development costs: It’s normally far cheaper to pay for a class
library than to pay yourself to write your own.

• Increased long-term costs: Building your own means increasing your main-
tenance costs, which is usually the last thing you want to do.

• Degraded quality: Application developers are not usually experts in the in-
tricacies of data structures, so they often do a mediocre job with container
classes—reinventing the wheel is bad enough, but usually they reinvent a
flat tire.

• Lack of flexibility and versatility: It is hard for an in-house development
team to compete with the well-funded software houses in developing soft-
ware that is flexible enough to meet the needs of the whole industry. This
flexibility may be very important later in the life cycle.

• Loss of focus: Application developers should focus on getting the applica-
tion done on time and within budget, not on plumbing.

• Missed opportunities for standardization: It makes sense for the containers
to be as standardized as the basic language types for both training and
maintenance considerations.
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28.4 What are some common mistakes with con-
tainers of pointers?

Lifetime errors caused by ownership confusion.

Be careful about containers of pointers. A container of pointers contains
pointers to the objects that are inserted into the container, whereas a container
of values contains copies of the objects that are inserted into the container. The
main purpose of a container of pointers is to hold on to the identities of certain
objects, but the main purpose of a container of values is to hold on to the state
of certain objects.

Containers of pointers allow objects to be inserted without copying, allow
the contained objects to be distinguished by identity rather than merely by
state or value, and allow objects of classes within an inheritance lattice to be
inserted without slicing (a.k.a. chopped copies). However, containers of pointers
can create a difficult relationship between the user of the container and the
container. For example, if a pointer to an object is in some container and
someone else deletes the object, the container ends up with a dangling reference
(see FAQ 24.4). In some cases this means that an object needs to know all the
containers that point to it, which sometimes requires each object to maintain
a container of container pointers. Sometimes users can’t even change an object
without informing all the containers that point to the object. For example, if a
user changes an object’s state and a container’s order semantics depend on the
object’s state, the innocent change might subtly break the container’s invariant.
This becomes very messy and complex.

28.5 Does this mean that containers of pointers
should be avoided?

The rule of thumb is to use containers of values when you can, use containers
of pointers when you must.

Containers of pointers must be used when the identity of the contained objects
matters, in addition to their state. For example, containers of pointers must be
used when the same instance must be “in” several containers at the same time.

Another reason containers of pointers are used is when the cost to copy an
object into and out of a container is too large, but in this case judicious use
of reference counting (see FAQ 31.9) and copy on write (see FAQ 31.10) can
reduce the copying cost significantly.

28.6 Surely good old-fashioned char* is an ex-
ception, right?

Wrong!
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For example, if a container of char* is used when the goal is to have a
container of strings, lookup requests may fail since the container will be looking
for a particular pointer rather than for the contents of the string. To make
matters worse, if a string buffer is used to build the string foo and that is
inserted into the container and the string buffer is later changed to junk, the
container will appear to contain junk rather than foo.

If a string is desired, a string class should be used and char* should be
avoided. Every compiler vendor has a string class, and there is a standard C++
string class called string.

28.7 Can auto ptr<T> simplify ownership prob-
lems with containers of pointers?

No, auto_ptr<T> usually makes things worse!

Generally speaking, auto_ptr<T> should not be used inside container classes.
For example, if a List of Fred pointers is desired, it is usually bad to use a
List<auto_ptr<Fred> >. The reason is that copying an auto_ptr<T> makes
changes to the original, in addition to the obvious changes to the copy. In
particular, the ownership of the referent is transferred to the copy, so the original
will be NULL. For example, if someone retrieved a copy of an element in the
List, that would copy the auto_ptr<T>, which would transfer ownership of the
referent to the copy and the auto_ptr<T> in the List would be NULL.

28.8 Can a Java-like Object class simplify con-
tainers in C++?

No, that usually makes things worse!

Java is not C++. C++ is not Java. Just because something works well in
Java doesn’t mean it will work well in C++ or vice versa. Java has automatic
garbage collection, C++ has destructors (FAQ 2.20); Java has a ubiquitous
base class Object, C++ has templates (FAQ 2.15). For a lot of reasons, Java’s
container classes all take Object pointers, and they work well. It’s possible
to do the same thing in C++, but in C++ this technique tends to be more
complex and expensive than using templates. For example, when Fred objects
are inserted into a list of Object*, the only thing that is known about them
is that they are some kind of Object. When these objects are accessed from
the list, the programmer has to carefully find out what the objects really are
and typically has to downcast the Object* before anything useful can be done
with the objects. This is another form of dynamic type checking, and it can be
expensive to write, test, and maintain (see FAQ 27.3).

Forcing things to inherit from a common base class such as Object is called
the based object approach. See the next FAQ for more details on these hetero-
geneous containers.
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28.9 What’s the difference between a homoge-
neous and a heterogeneous container?

The elements of a homogeneous container are all of the same type; the ele-
ments of a heterogeneous can be of different types.

Containers come in many shades of gray. Generally speaking, the more hetero-
geneous the element types are, the less type safe the container is. For example,
the ultimate heterogeneous container is a container of void* in which the var-
ious elements could point to objects of any type. Even though this seems to
optimize flexibility, in practice such containers are nearly worthless. In partic-
ular, putting things into such a container is easy (any object of any type can
be inserted), but when an element is removed, the user of the container knows
nothing about the element’s type.

A more useful form of heterogeneous container is one that requires its elements
to point to objects derived from some specific base class, often an ABC. This
base class typically has all or nearly all the member functions provided by the
actual objects referenced by the container. For example, one might have a list
of Shape* where the actual referents might be objects of class Square, Circle,
Hexagon, and so on.

Note that the based object approach (see the previous FAQ) is another form
of heterogeneous container.

28.10 Is it a good idea to use a “best of breed”
approach when selecting container classes?

Not usually.

For small projects, it’s often desirable to select each component using a best
of breed approach. That is, select the best of breed in category X, the best of
breed in category Y, and so on.

But for large, mission-critical projects, it is very important to reduce the
overall system complexity, and selecting the very best container classes could
actually make things worse (see also FAQ 39.8). Most vendors’ GUI frameworks
are designed to work very well with the vendor’s container classes. In some cases,
this increases the integration costs of mixing container classes from one vendor
and GUI classes from another. Database, network, and other infrastructure
frameworks are similar: it is often difficult and/or risky to mix libraries and
frameworks classes from different vendors.

When this mix-and-match problem occurs, the low-cost, low-risk approach is
often to select the container classes that “go with” the rest of the infrastructure.
Usually that means that the container classes are less than ideal, often frustrat-
ing programmers who don’t see the big picture. But remember: the goal is to
reduce the overall system complexity, and container classes are only one piece.
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28.11 Should all projects use C++’s standard-
ized containers?

Not always, because of big picture issues. We hope that someday the software
industry will fully embrace standardized containers, but until then, be prepared
to make decisions that will be uncomfortable.

When compared to other container classes, C++’s standardized containers
have several benefits.

• They are standardized and are therefore portable.

• They are fast—very, very fast.

However in large and/or mission-critical applications, integration issues often
dominate. When this happens, it may be better in the overall scheme of things
to use a vendor’s proprietary container classes (see FAQ 28.10). Programmers
who have not worked on large and/or mission-critical projects where integration
issues became a problem do not understand this and usually argue in favor of
the portability or performance of the standardized container classes.

For example, in some cases a particular vendor’s library is considered essential
to the project’s success, and the library might be (shouldn’t be, but in the real
world it might be) tightly integrated with the container classes from the same
vendor. In such a case, the cost and risk of integrating standard containers might
not be worth the benefit. It’s a dilemma of local versus global optimization.

Of course there are some cases where performance or portability is more
important than integration. In these cases the standardized C++ container
classes should be considered, even if integrating them with the other third-party
libraries requires some invention.

28.12 What are the C++ standardized container
classes?

The C++ container classes are part of what was formerly known as the stan-
dard template library (STL). They include the following container classes.

• vector<Value> (see FAQ 28.13).

• list<Value> (see FAQ 28.13).

• deque<Value> (see FAQ 28.13).

• set<Value> (see FAQ 28.14).

• multiset<Value> (see FAQ 28.14).

• map<Key,Value> (see FAQ 28.14).

• multimap<Key,Value> (see FAQ 28.14).
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28.13 What are the best applications for the
standardized C++ sequence container classes?

Operations that make sense for a linear sequence of objects.

The sequence container classes store their objects in a linear sequence. They
include the following container classes.

• vector<T>

• list<T>

• deque<T>

They all expand themselves to allow an arbitrary number of elements to be
inserted, and all provide numerous operations. The biggest difference between
them is related to performance. For example, vector<T> has very fast array-
like access to random elements and very fast insertions and removals at the end;
list<T> is not as fast to access a random element, but it is faster when inserting
in the middle or at the beginning; deque<T> is like vector<T> except that it
also has very fast insertion and removal of elements at the beginning.

Some of the operations that can be performed on a sequence follow. In the
following descriptions, first and toofar represent iterators within a container,
and “the range [first,toofar)” means all the elements starting at first up
to but not including the element at toofar.

Selected nonmutating sequence operations:

• for_each(first, toofar, function) applies the function to each ele-
ment in the range [first,toofar).

• find(first, toofar, const T& value) finds the first element that is
equal to value in the range [first,toofar), returning the corresponding
iterator (or toofar if nothing matched). find if() is similar, but it takes
a predicate to determine if the element matches.

• adjacent_find(first, toofar) finds the first adjacent pair of elements
that are equal in the range [first,toofar), returning the corresponding
iterator (or toofar if nothing matched). An optional binary predicate can
be given to determine if an adjacent pair matches.

• count(first, toofar, const T& value, result) counts the number
of elements in the range [first,toofar) that are equal to value and
stores that number in the by-reference parameter result. count if() is
similar, but it takes a predicate to determine if the element matches.

• mismatch(first, toofar, first2) finds the first mismatch between the
two sequences. The elements from sequence 1 are in the range [first,toofar),
and the corresponding elements from sequence 2 start at first2. An op-
tional binary predicate can be used to determine if elements match.
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• equal(first, toofar, first2) checks two sequences for element-by-
element equality. It returns true if and only if the elements of sequence
1 in the range [first,toofar) match the corresponding elements of se-
quence 2 starting at first2. An optional binary predicate can be used to
determine if elements match.

• search(first, toofar, first2, toofar2) finds a subsequence within
a sequence. An optional binary predicate can be given to determine if an
adjacent pair matches.

Selected mutating sequence operations:

• copy(first, toofar, dest) copies elements from the range [first,toofar)
into the sequence starting at dest. copy backward() is similar, but it
copies elements from right to left, which is especially useful when sliding a
sequence a few slots to the right (that is, when the source and destination
ranges overlap).

• swap_ranges(first, toofar, first2) swaps the contents of the ele-
ments from range [first,toofar) with the corresponding elements from
sequence 2 starting at first2.

• swap(a, b) swaps the values of the elements or the entire sequences.

• transform(first, toofar, dest, unaryOp) calls unaryOp() on each
element in the range [first,toofar) and copies the results into sequence
2 starting at dest.

• transform(first, toofar, first2, dest, binaryOp) calls binaryOp(),
passing an element from sequence 1 in the range [first,toofar) and the
corresponding element from sequence 2 starting at first2, and copies the
results into sequence 3 starting at dest.

• replace(first, toofar, const T& oldValue, const T& newValue) re-
places all elements equal to oldValue in the range [first,toofar) with
newValue. replace if() is similar, but it takes a predicate to deter-
mine if the element matches. replace copy() and replace copy if()
are similar except that the original sequence is unchanged, and the results
are copied to a second sequence.

• fill(first, toofar, const T& value) fills the range [first,toofar)
with copies of value. fill n() is similar, but it takes a starting iterator
and a number.

• generate(first, toofar, generator) fills the range [first,toofar)
with the results of successively calling generator(). generate n() is
similar, but it takes a starting iterator and a number.

• remove(first, toofar, const T& value) removes those elements from
the range [first,toofar) that are equal to value. remove if() is
similar, but it takes a predicate to determine if the element matches.
remove copy() and remove copy if() are similar except that the origi-
nal sequence is unchanged, and the results are copied to a second sequence.
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• unique(first, toofar) removes successive duplicates from the range
[first,toofar). An optional binary predicate can be given to determine
if an adjacent pair matches. unique copy() is similar except that the
original sequence is unchanged, and the results are copied to a second
sequence.

• reverse(first, toofar) reverses the elements of the range [first,toofar).
reverse copy() is similar except that the original sequence is unchanged,
and the results are copied to a second sequence.

• rotate(first, middle, toofar) rotates the range [first,toofar) around
the iterator middle. rotate copy() is similar except that the original se-
quence is unchanged, and the results are copied to a second sequence.

• random_shuffle(first, toofar) randomly shuffles the elements in the
range [first,toofar).

• partition(first, toofar, unaryOp) partitions the range [first,toofar)
by moving elements where unaryOp() returns true to the left, the others
to the right. stable partition() is similar, but it preserves the relative
order of the elements within each group.

Selected sorting and related operations:

• All the operations in this section take an optional binary predicate used
to compare two elements.

• sort(first, toofar) sorts the elements in the range [first,toofar).

• stable_sort(first, toofar) sorts the elements in the range [first,toofar)
and never reverses two elements that compare as equal.

• binary_search(first, toofar, const T& value) looks for value in
the sorted sequence range [first,toofar) and returns true or false
based on whether value was found.

• includes(first, toofar, first2, toofar2) checks if the first multi-
set [first,toofar) is a subset of the second multiset [first2,toofar2).

• set_union(first, toofar, first2, toofar2, dest) copies into dest
the union of the first set [first,toofar) and the second set [first2,toofar2).

• set_intersection(first, toofar, first2, toofar2,dest) copies into
dest the intersection of the first set [first,toofar) and the second set
[first2,toofar2).

• set_difference(first, toofar, first2, toofar2, dest) copies into
dest the difference between the first set [first,toofar) and the second
set [first2,toofar2).

• min_element(first, toofar) finds the minimum element within the
range [first,toofar). max element() is analogous.
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28.14 What are the best situations for the stan-
dardized C++ associative container classes?

Operations that make sense for keyed containers of objects.

The associative container classes store their objects so that the keys are in
a sorted order based on a comparison object or function. They include the
following container classes.

• set<T>

• multiset<T>

• map<Key,Value>

• multimap<Key,Value>

They all expand to allow an arbitrary number of elements to be inserted, and
all provide numerous operations. set<T> and multiset<T> allow the insertion,
lookup, and removal of keys, with multiset<T> allowing multiple copies of the
same key value (some libraries use the term “bag” for this). map<Key,Value>
and multimap<Key,Value> allow values to be inserted, looked up, and removed
by their key, with multimap<Key,Value> 1 allowing multiple values associated
with the same key value.

Here are some selected ways to use the standard map<Key,Value> class.

#include <string>
#include <map>
#include <iostream>
using namespace std;

typedef map<string,int> AgeMap; // A typedef can make the rest
// easier to read

int main()
{
AgeMap age;

// The subscript operator is used to access an element in the map
age["Fred"] = 42;
age["Barney"] = 38;
int n = age["Fred"];
int numElements = age.size();

// Removing an element from the map:
age.erase("Barney");

// Iterators are used to loop through all the elements within the map

1In the original copy it is multiset<T> but apprently it is a typo.
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for (AgeMap::iterator p = age.begin(); p != age.end(); ++p)
cout << "age of " << p->first << " is " << p->second << "\n";

// Iterators can be used to check if an entry is in the map
AgeMap::const_iterator q = age.find("Fred");
if (q == age.end())
cout << "Fred isn’t in the map\n";

else
cout << "Fred is in the map; his age is " << q->second << "\n";

}
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Part IV

Topics
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Chapters 29 through 39 present programming guidelines for writing robust
C++ programs, ways to avoid C++ errors, and information on how C++ works
with other technologies. It concludes with a discussion of the learning curve,
training, and mentoring.
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Chapter 29

Mixing Overloading with
Inheritance

29.1 What is the difference between overloaded
functions and overridden functions?

Overloading has the same scope, same name, different signatures, and virtual
is not required. Overriding has different scopes, same name, same signatures,
and virtual is required.

The term signature designates the combination of a function’s name, the types
and order of its parameters, and, if the function is a nonstatic member function,
its const and/or volatile qualifiers.

Overloading occurs when two or more functions are in the same scope (for
example, both in the same class or both at namespace scope) and have the same
name but different signatures. Overriding occurs when a class and one of its
derived classes both define a member function with the same signature and the
member function is declared to be virtual in the base class.

In the following example, Base::f(int) and Base::f(float) overload each
other, while Derived::g() overrides Base::g().

#include <iostream>
using namespace std;

class Base {
public:
virtual ~Base() throw();
virtual void f(int x) throw();
virtual void f(float x) throw();
virtual void g() throw();

};
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Base::~Base() throw()
{ }

void Base::f(int x) throw()
{ cout << "Base::f(int)\n"; }

void Base::f(float x) throw()
{ cout << "Base::f(float)\n"; }

void Base::g() throw()
{ cout << "Base::g()\n"; }

class Derived : public Base {
public:
virtual void g() throw();

};

void Derived::g() throw()
{ cout << "Derived::g()\n"; }

int main()
{
Derived d;
Base* bp = &d; // OK: Derived is kind-of Base
bp->f(42);
bp->f(3.14f);
bp->g();

}

The output of this program follows.

Base::f(int)
Base::f(float)
Derived::g()

29.2 What is the hiding rule?

A rule in C++ that tends to confuse new C++ developers.

The hiding rule says that an entity in an inner scope hides things with the
same name in an outer scope. And since a class is a scope, this means that a
member of a derived class hides a member of a base class that has the same
name as the derived class member. Confused? Don’t give up; this is really
important stuff.

There are two common situations when the hiding rule confuses people. First,
when a base class and a derived class declare member functions with different
signatures but with the same name, then the base class member function is
hidden. Second, when a base class declares a nonvirtual member function and
a derived class declares a member function with the same signature, then the
base class member function is hidden (technically the same thing happens with
virtual member functions, but in that case it hardly ever confuses people).
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In the following example, Base::f(float) and Base::g(float) are virtual
and therefore can be overridden by derived classes, but Base::h(float) is
nonvirtual and therefore should not be redefined in derived classes.

#include <iostream>
using namespace std;

class Base {
public:
virtual ~Base() throw();
virtual void f(float x) throw();
virtual void g(float x) throw();

void h(float x) throw();
};

Base::~Base() throw()
{ }

void Base::f(float x) throw()
{ cout << "Base::f(float)\n"; }

void Base::g(float x) throw()
{ cout << "Base::g(float)\n"; }

void Base::h(float x) throw()
{ cout << "Base::h(float)\n"; }

In the following code, member function Derived::f(float) is a normal over-
ride of virtual Base::f(float). However, Derived::g(int) hides (rather than
overrides or overloads) Base::g(float) and Derived::h(float) hides (rather
than overrides or overloads) Base::h(float).

class Derived : public Base {
public:
virtual void f(float x) throw(); // Good: Overrides Base::f(float)
virtual void g(int x) throw(); // Bad: Hides Base::g(float)

void h(float x) throw(); // Bad: Redefines a non-virtual function
};

void Derived::f(float x) throw()
{ cout << "Derived::f(float)\n"; }

void Derived::g(int x) throw()
{ cout << "Derived::g(int)\n"; }

void Derived::h(float x) throw()
{ cout << "Derived::h(float)\n"; }

Because Derived::f(float) is a normal override of Base::f(float), calling
f(3.14f) on a Derived object does the same thing independent of whether the
reference to the Derived object is of type Base& or type Derived&. Said simply,
the behavior depends on the type of the object, not on the type of the reference.
This is the normal (and desirable) effect of dynamic binding, and it is shown in
sampleOne().

void sampleOne(Base& b, Derived& d)
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{
b.f(3.14f); // Good: If the object is a Derived, calls Derived::f(float)
d.f(3.14f);

}

int main()
{
Derived d;
sampleOne(d, d);
return 0;

}

Unfortunately, Derived::g(int) neither overrides nor overloads Base::g(float)
but rather hides Base::g(float). Therefore the compiler calls g(int) if some-
one tries to call g(float) on a Derived& 1. This behavior is surprising to many
developers; it is shown in sampleTwo().

void sampleTwo(Base& b, Derived& d)
{
b.g(3.14f);
d.g(3.14f); // Bad: Converts 3.14 to 3 and calls Derived::g(int)

}

int main()
{
Derived d;
sampleTwo(d, d);
return 0;

}

And also unfortunately, Derived::h(float) is a redefinition of the nonvirtual
function Base::h(float). Since Base::h(float) is nonvirtual, Derived::h(float)
is not an override, and dynamic binding does not occur. Therefore, the compiler
calls Base::h(float) if someone tries to call h(float) on a Derived object
using a Base&. This behavior is surprising to many developers; it is shown in
sampleThree().

void sampleThree(Base& b, Derived& d)
{

b.h(3.14f); // Bad: Calls Base::h(float) - does not use dynamic binding
d.h(3.14f);

}

int main()
{

Derived d;
sampleThree(d, d);
return 0;

1Originally it is “Therefore the compiler calls g(float) if someone tries to call g(int) on
a Derived&.” I believe this is a typo.
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}

The root problem with sampleTwo() and sampleThree() is that the behavior
depends on the type of the reference rather than on the type of the object. For
example, in sampleThree() the member function that gets invoked is the one
associated with the reference’s type, not the one associated with the object’s
type. These behaviors surprise users, since users normally expect behavior to
depend on the type of the object rather than on the type of the reference or
pointer used to access that object.

The hiding rule may not seem intuitive, but it prevents worse errors, espe-
cially in the case of assignment operators. If, for example, the hiding rule were
removed, it would be legal to assign a Circle with a Square (the Shape part
of the Square would be copied into the Shape part of the Circle).

29.3 How should the hiding rule be handled?

Avoid triggering the hiding rule when possible, and use the following work-
arounds when the hiding rule can’t be avoided.

Avoid hiding inherited public: member functions whenever possible. When
it cannot be avoided, it is important not to surprise the class’s users. The
guiding principle is to avoid confusing users: when a Base* can be used to call a
member function on a Derived object, calling it via a Derived* shouldn’t alter
the observable behavior.

In the case of redefining a nonvirtual member functions, as in Base::h(float)
from the previous FAQ, the simplest way to avoid surprising users is to use the
virtual keyword when declaring the base class member function. In those
rare cases where the base class function cannot be virtual, ensure that the
observable behavior of the derived class function is identical to that of the base
class.

For example, an experienced C++ programmer might use a nonvirtual mem-
ber function to avoid the (small) overhead of a virtual function call, yet might
also redefine that member function in a derived class to make better use of
the derived class’s resources. To avoid surprising users, there must not be any
differences in the observable behavior of the two functions. Note: These rela-
tionships are somewhat subtle; if the code will be maintained by less experienced
programmers, a normal, virtual function is probably a better choice.

In the case where a base class and a derived class declare member func-
tions with the same name but different signatures, as in Base::g(float) and
Derived::g(int) in the previous FAQ, a using declaration (FAQ 29.4) should
be employed.
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The following shows how these guidelines can be applied to the example from
the previous FAQ.

#include <iostream>
using namespace std;

class Base {
public:
virtual ~Base() throw();
virtual void f(float x) throw();
virtual void g(float x) throw();
virtual void h(float x) throw();

};

Base::~Base() throw()
{ }

void Base::f(float x) throw()
{ cout << "Base::f(float)\n"; }

void Base::g(float x) throw()
{ cout << "Base::g(float)\n"; }

void Base::h(float x) throw()
{ cout << "Base::h(float)\n"; }

class Derived : public Base {
public:
virtual void f(float x) throw();
virtual void g(int x) throw(); // Normally this would hide g(float) (bad!)
using Base::g; // but this line un-hides g(float) (good!)

};

void Derived::f(float x) throw()
{ cout << "Derived::f(float)\n"; }

void Derived::g(int x) throw()
{ cout << "Derived::g(int)\n"; }

After applying these fixes, users are not confused because the behavior de-
pends on the type of the object rather than on the type of the pointer used to
access that object.

void sample(Base& b, Derived& d)
{
b.f(3.14f);
d.f(3.14f);

b.g(3.14f);
d.g(3.14f); // This is not hidden (good!)

b.h(3.14f);
d.h(3.14f);

}
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int main()
{
Derived d;
sample(d, d);

}

The output of this program demonstrates that the behavior depends on the
type of the object, not the type of the reference:

Derived::f(float)
Derived::f(float)
Derived::g(float)
Derived::g(float)
Derived::h(float)
Derived::h(float)

These guidelines apply only to public inheritance; hiding base class member
functions is fine for private or protected inheritance (see FAQ 37.1).

29.4 What should a derived class do when it re-
defines some but not all of a set of over-
loaded member functions inherited from the
base class?

The derived class should use the using syntax.

If the base class has an overloaded set of member functions and the derived
class overrides some but not all of that set, the redefined member functions
will hide the other overloads. The work-around is to use the using syntax.
The following example shows class Base with two overloaded member functions
called f.

#include <iostream>
using namespace std;

class Base {
public:
virtual ~Base() throw();
virtual void f(int x) throw();
virtual void f(float x) throw();

};

Base::~Base() throw()
{ }

void Base::f(int x) throw()
{ cout << "Base::f(int)\n"; }
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void Base::f(float x) throw()
{ cout << "Base::f(float)\n"; }

Now suppose the author of class Derived wants to override one of the two
f() member functions. In this case the derived class should also say using
Base::f; to avoid confusing users:

class Derived : public Base {
public:

virtual void f(int x) throw();
using Base::f; // This un-hides f(float) (good!)

};

void Derived::f(int x) throw()
{ cout << "Derived::f(int)\n"; }

Because of the using Base::f; line in the derived class, f(float) is not
hidden:

void sample(Base& b, Derived& d)
{
b.f(42);
d.f(42);

b.f(3.14f);
d.f(3.14f); // This is not hidden (good!)

}

int main()
{
Derived d;
sample(d, d);

}

The output of this program demonstrates that the behavior depends on the
type of the object, not the type of the reference:

Derived::f(int)
Derived::f(int)
Base::f(float)
Base::f(float)

This guideline applies only to public inheritance; hiding base class member
functions is fine for private or protected inheritance (see FAQ 37.1).

29.5 Can virtual functions be overloaded?

Yes, but it’s often easier to use nonvirtual overloads that call nonoverloaded
virtuals.
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As was discussed in FAQ 29.2, when virtual member functions are overloaded,
the hiding rule forces derived classes to do a bit more work than necessary.
In these situations, it is often easier if the overloads are nonvirtuals that call
virtuals that aren’t overloaded. These nonoverloaded virtuals are normally
protected:.

The following code shows how to apply this guideline to the situation in
the previous FAQ where Base::f(int) and Base::f(float) are overloaded
virtuals. These functions are now nonvirtuals that call nonoverloaded virtuals
f i(int) and f f(float). (Don’t redefine nonvirtual member functions; see
FAQ 29.2).

#include <iostream>
using namespace std;

class Base {
public:
virtual ~Base() throw();
void f(int x) throw();
void f(float x) throw();

protected:
virtual void f_i(int x) throw();
virtual void f_f(float x) throw();

};

inline void Base::f(int x) throw() // Overloaded non-virtuals
{ f_i(x); }

inline void Base::f(float x) throw()
{ f_f(x); }

void Base::f_i(int x) throw() // Non-overloaded virtuals
{ cout << "Base::f(int)\n"; }

void Base::f_f(float x) throw()
{ cout << "Base::f(float)\n"; }

Base::~Base() throw()
{ }

In class Derived, the behavior of f(int) is changed by overriding Base::f i(int);
redefining f(int) itself would be wrong, since a redefinition would hide Base::f(float).

class Derived : public Base {
public:

// Derived classes never redefine f(int)
protected:
virtual void f_i(int x) throw(); // Derived classes may override f_i(int)

};

void Derived::f_i(int x) throw()
{ cout << "Derived::f(int)\n"; }
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Now when member function f(int) is invoked on a Derived object, it ex-
pands inline as the code of Base::f(int), which calls protected member func-
tion f i(int), and since f i(int) is virtual, it resolves to the correct member
function using dynamic binding (see FAQ 2.24). The message here is that both
f(int) and f(float) work correctly on both a Derived& and on a Base&:

void sample(Base& b, Derived& d)
{
b.f(42);
d.f(42);

b.f(3.14f);
d.f(3.14f); // This is not hidden (good!)

}

int main()
{
Derived d;
sample(d, d);

}

The output of this program demonstrates that the behavior depends on the
type of the object, not the type of the reference:

Derived::f(int)
Derived::f(int)
Base::f(float)
Base::f(float)

This approach is more scalable than the approach presented in the earlier
FAQ. It is scalable in two ways, with respect to the code and with respect to
the people. With respect to the code, the root of the inheritance hierarchy has
a few extra lines of code, but none of the (potentially many) derived classes
need have any extra code to handle the hiding rule. This is a good trade-off
since an inheritance hierarchy often has many derived classes. With respect to
the people, the developer of the root class of the inheritance hierarchy needs
to understand the hiding rule, but all the writers of all the derived classes
can remain relatively ignorant of it — they need to know only that they are
to override the virtual member functions rather than the nonvirtual member
functions. This is a good trade-off because the developers who build the root
classes in the inheritance hierarchies are normally more sophisticated than the
developers who build the derived classes.

Note that this approach does not imply any performance overhead, since the
overloaded public: member functions are normally inline nonvirtuals.

As before, this guideline applies only to public inheritance; hiding base class
member functions is fine for private or protected inheritance (see FAQ 37.1).
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Chapter 30

The Big Three

30.1 What is the purpose of this chapter?

The purpose of this chapter is to show you how to eliminate a nasty category
of bugs from your software. The bugs discussed in this chapter are quite subtle
— the compiler normally does not give any warning or error messages — and
disastrous, often causing the application to crash or behave chaotically.

The specific details involve three infrastructure routines that the C++ com-
piler automatically defines when the developer leaves them undefined. A guide-
line is provided so readers can tell when those automatic definitions will cause
problems and when they won’t cause problems.

It is essential that every C++ programmer understand the material in this
chapter.

30.2 What are the Big Three?

Destructor, copy constructor, and assignment operator.

These infrastructure routines provide the death and copy semantics for objects
of the class. Here is some sample syntax:

class Fred {
public:
~Fred() throw(); // Destructor
Fred(const Fred& x) throw(); // Copy Constructor
Fred& operator= (const Fred& x) throw(); // Assignment Operator

};

Fred::~Fred() throw()
{ /*...*/ }

Fred::Fred(const Fred& x) throw()
{ /*...*/ }
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Fred& Fred::operator= (const Fred& x) throw()
{
// ...
return *this;

}

30.3 What happens when an object is destroyed
that doesn’t have an explicit destructor?

The compiler synthesizes a destructor for the object’s class.

For example, if an object of class Fred is destroyed and class Fred doesn’t
provide an explicit destructor, the compiler synthesizes a destructor that de-
stroys all the Fred object’s member objects and base class subobjects. This is
called memberwise destruction. Thus, if class Fred doesn’t have an explicit de-
structor and an object of class Fred contains an object of class Member that has
an explicit destructor, then the compiler’s synthesized Fred::~Fred() invokes
Member’s destructor.

The built-in types (int, float, void*, and so on) can be regarded as having
destructors that do nothing.

#include <iostream>
using namespace std;

class Member {
public:
~Member() throw();

};

Member::~Member() throw()
{ cout << "destructing a Member object\n"; }

class Fred {
public:
// Fred doesn’t have an explicit destructor

protected:
Member member_;

};

int main()
{
{
Fred x;
cout << "before destructing a Fred\n";

} // Compiler synthesized destructor Fred::~Fred() called here
cout << "after destructing a Fred\n";

}

305



The compiler’s synthesized Fred::~Fred() calls Member::~Member() auto-
matically, so the output is

before destructing a Fred
destructing a Member object
after destructing a Fred

30.4 What happens if an object is copied but
doesn’t have an explicit copy constructor?

The compiler synthesizes a copy constructor for the object’s class.

For example, if an object of class Fred is copied and class Fred doesn’t provide
an explicit copy constructor, the compiler synthesizes a copy constructor that
copy constructs all the Fred object’s member objects and base class subobjects.
This is called memberwise copy construction. Thus, if class Fred doesn’t have an
explicit copy constructor, and an object of class Fred contains an object of class
Member that has an explicit copy constructor, then the compiler’s synthesized
Fred::Fred(const Fred&) invokes Member’s copy constructor.

Built-in types (int, float, void*, and so on) can be viewed as having copy
constructors that do a bitwise copy.

#include <iostream>
using namespace std;

class Member {
public:
Member() throw();
Member(const Member&) throw();

};

Member::Member() throw()
{ cout << "constructing a Member\n"; }

Member::Member(const Member&) throw()
{ cout << "copying a Member\n"; }

class Fred {
public:
Fred() throw();
// Fred doesn’t have an explicit copy constructor

protected:
Member member_;

};

Fred::Fred() throw()
: member_()
{ }
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int main()
{
Fred a;
Fred b = a; // Compiler’s synthesized copy constructor

// Fred::Fred(const Fred&) called here
}

The compiler’s synthesized Fred::Fred(const Fred&) calls
Member::Member(const Member&) automatically, so the output is

constructing a Member
copying a Member

30.5 What happens when an object that doesn’t
have an explicit assignment operator is as-
signed?

The compiler synthesizes an assignment operator for the object’s class.

For example, if an object of class Fred is assigned and class Fred doesn’t pro-
vide an explicit assignment operator, the compiler synthesizes an assignment
operator that assigns all the Fred object’s member objects and base class sub-
objects. This is called memberwise assignment. Thus if class Fred doesn’t have
an explicit assignment operator and an object of class Fred contains an object
of class Member that has an explicit assignment operator, then the compiler’s
synthesized Fred::operator= (const Fred&) invokes Member’s assignment op-
erator.

Built-in types (int, float, void*, and so on) can be viewed as having as-
signment operators that do a bitwise copy.

#include <iostream>
using namespace std;

class Member {
public:
Member() throw();
Member& operator= (const Member&) throw();

};

Member::Member() throw()
{ cout << "constructing a Member\n"; }

Member& Member::operator= (const Member&) throw()
{ cout << "assigning a Member\n"; return *this; }

class Fred {
public:
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Fred() throw() : member_() { }
// Fred doesn’t have an explicit assignment operator

protected:
Member member_;

};

int main()
{
Fred a;
Fred b;
a = b; // Compiler synthesized assignment operator

// Fred::operator= (const Fred&) called here
}

The compiler’s synthesized Fred::operator= (const Fred&) calls
Member::operator= (const Member&) automatically, so the output is

constructing a Member
constructing a Member
assigning a Member

30.6 What is the Law of the Big Three?

If a class needs any of the Big Three, it needs them all.

This doesn’t mean that every class should have all three of the Big Three. On
the contrary, the Big Three are needed only in a relatively small percentage of
classes. That is one of the reasons this is such an insidious error. Programmers
see these infrastructure routines in only some of their classes, so they don’t
remember the critical Law of the Big Three.

This law first appeared in 1991 in the comp.lang.c++ FAQ, and it seems to be
rediscovered every six months or so. Violations almost always lead to incorrect
behavior and often lead to disasters.

In particular, violations of the Law of the Big Three often corrupt the heap.
This usually means that the program does not crash until much later in the
program’s execution (and simple test programs may not crash at all). By the
time the programmer goes in with a debugger, the root cause is hard to identify
and the heap has so many things wrong with it that it’s difficult to trace what’s
going wrong.

30.7 Which of the Big Three usually shows up
first?

An explicit destructor.
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Developers typically discover the need to do something special during a nor-
mal constructor, which frequently necessitates undoing the special action in the
destructor. In almost all cases, the class needs a copy constructor so that the
special thing will be done during copying, and the class also needs an assignment
operator so that the special thing will be done during assignment.

The destructor is the signal for applying the Law. Pretend that the keyboard’s
~ (tilde) key is painted bright red and is wired up to a siren.

In the following example, the constructor of class MyString allocates memory,
so its destructor deletes the memory. Typing the ~ of ~MyString() should
sound a siren for the Law of the Big Three.

#include <new>
#include <cstring>
using namespace std;

class MyString {
public:
MyString(const char* s) throw();

~MyString() throw();
MyString(const MyString& s) throw();
MyString& operator= (const MyString& s) throw();

protected:
unsigned len_; // ORDER DEPENDENCY; see FAQ 22.10
char* data_; // ORDER DEPENDENCY; see FAQ 22.10

};

MyString::MyString(const char* s) throw()
: len_(strlen(s))
, data_(new char[len_ + 1])
{ memcpy(data_, s, len_ + 1); }

MyString::~MyString() throw()
{ delete[] data_; }

int main()
{ MyString s = "xyzzy"; }

Classes that own allocated memory (hash tables, linked lists, and so forth)
generally need the Big Three (see FAQ 30.8).

30.8 What is remote ownership?

Remote ownership is the responsibility that comes with being the owner of
something allocated from the heap.
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When an object is the logical owner of something allocated from the heap
(known as the referent), the object is said to have remote ownership. That is,
the object owns the referent. When an object has remote ownership, it usually
means that the object is responsible for deleteing the referent.

Any time a pointer is added to an object’s member data, the class’s author
should immediately determine whether the object owns the referent (that is,
whether the object has remote ownership). If this determination is delayed,
the class’s implementation can become schizophrenic — some of the object’s
member functions assume that the object owns the referent, others assume that
someone else owns the referent. This is usually a mess and sometimes a disaster.

30.9 How is remote ownership special?

It requires a deep copy, not a shallow copy.

When an object has remote ownership, the object needs the Big Three (de-
structor, copy constructor, and assignment operator). These routines are re-
sponsible for destroying the referent, creating a copy of the referent, and assign-
ing the referent, respectively.

The copy semantics for remote ownership require the referent to be copied
(a.k.a. deep copy) rather than just the pointer (a.k.a. shallow copy). For
example, if class MyString has a pointer to an array of characters, copying the
MyString object should copy the array. It is not sufficient to simply copy the
pointer to the array, since that would result in two objects that both think they
are responsible for deleteing the same array.

When an object contains pointers for which it does not have remote ownership,
the copy semantics are usually straightforward: the copy operation merely copies
the pointer. For example, an iterator object might have a pointer to a node of
a linked list, but the node is owned by the list rather than by the iterator, so
copying an iterator merely needs to copy the pointer; the data in the node is
not copied to the new iterator.

When an object doesn’t contain pointers, the copy semantics are usually
straightforward: the corresponding copy operation is called on each member
object. This is what the compiler does automatically if the class doesn’t have
any copy operations (see FAQs 30.4, 30.5), which is why the Big Three are not
usually needed in these cases.

30.10 What if a class owns a referent and doesn’t
have all of the Big Three?

Trouble is brewing.
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The following EvilString class doesn’t have an explicit copy constructor
or assignment operator, so the compiler synthesizes a copy constructor and/or
assignment operator when it sees an EvilString being copy initialized and/or
assigned, respectively. Unfortunately the compiler-synthesized copy constructor
and assignment operators copy only the pointer (shallow copy) rather than the
referent (deep copy).

#include <new>
#include <cstring>
#include <stdexcept>
using namespace std;

class EvilString {
public:
EvilString(const char* s) throw(bad_alloc);

~EvilString() throw();
// Since this contains remote ownership, it needs
// an explicit copy constructor;
// But pretend the developer failed to provide
// an explicit copy constructor.
// Similar comments for the assignment operator

protected:
unsigned len_; // ORDER DEPENDENCY; see FAQ 22.10
char* data_; // ORDER DEPENDENCY; see FAQ 22.10

};

EvilString::EvilString(const char* s) throw(bad_alloc)
: len_(strlen(s))
, data_(new char[len_ + 1])
{ memcpy(data_, s, len_ + 1); }

EvilString::~EvilString() throw()
{ delete[] data_; }

If an EvilString is copied (passed by value, for example; see FAQ 20.7), then
the copy points to the same string data as the original. When the copy dies,
the data they are sharing is deleted, leaving the original EvilString object
with a dangling reference. Any use of the original object, including the implicit
destruction when the original dies, will probably corrupt the heap, which will
eventually crash the program.

void sample(EvilString b) throw(bad_alloc)
{
// Since EvilString lacks a proper copy constructor,
// changes to b’s string-data will also change a’s string

}

int main()
{
EvilString a = "xyzzy";
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sample(a);
// Any use of a might corrupt the heap

}

Note that the problem is not with pass-by-value. The problem is that the
copy constructor for class EvilString is broken. Similar comments can be
made regarding the assignment operator.

30.11 Are there any C++ classes that help man-
age remote ownership?

Yes, auto ptr.

The standard template class auto_ptr<T> is a partial solution to managing
remote ownership. auto_ptr<Fred> acts like a Fred*, except the referent (the
Fred object) is automatically deleted when the auto_ptr dies. auto_ptr<T>
is known as a managed pointer.

Managed pointers are useful whenever a referent is allocated by new and
when the owner of the pointer owns the referent. In other words, auto_ptr<T>
is useful for managing remote ownership.

The most important issue isn’t that auto_ptr<T> saves the one line of delete
code. The most important issue is that auto_ptr<T> handles exceptions prop-
erly: the referent is automagically deleted when an exception causes the auto_ptr<T>
object to be destructed. In the following example, class Noisy throws exceptions
randomly to simulate the fact that we can’t always predict when an exception
is going to be thrown (hopefully your classes don’t have this property).

Here is a function that randomly returns true and false with 50-50 proba-
bility:

#include <memory>
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

bool heads() //Coin-toss: true with 50-50 probability
{ return (rand() >> 4) % 2 ? true : false; }

Here is a class that prints messages and possibly throws exceptions in its
functions.

class Noisy {
public:
Noisy() throw();
~Noisy() throw();
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void g() throw(int);
friend void h(Noisy& n) throw(int);
Noisy& operator= (const Noisy&) throw();
Noisy (const Noisy&) throw();

};

Noisy::Noisy() throw()
{ cout << "Noisy::Noisy(); "; }

Noisy::~Noisy() throw()
{ cout << "Noisy::~Noisy(); "; }

void Noisy::g() throw(int)
{ cout << "Noisy::g(); "; if (heads()) throw 5; }

void h(Noisy& n) throw(int)
{ cout << "h(Noisy&); "; if (heads()) throw 7; }

Here is a function that wisely chooses to use the managed pointer auto_ptr<Noisy>.

void usingManagedPointers() throw()
{
cout << "using an auto_ptr<Noisy>: ";
auto_ptr<Noisy> p(new Noisy());
p->g();
h(*p);
cout << "didn’t throw\n";

} // The delete is automagic (no need to worry)

Here is the same function, but this time using a raw Noisy* pointer. Note
how much more complex this code is, even though it is doing the same thing. A
significant portion of this code exists solely to ensure that the referent is deleted
properly, whereas in the previous example the managed pointer enabled most
of this scaffolding to disappear.

void usingRawPointers() throw()
{
cout << "using a Noisy* pointer: ";
Noisy* p = new Noisy();

try {
p->g();
h(*p);

}
catch (...) {
delete p;
throw;

}

delete p; // here the delete is explicit
cout << "didn’t throw\n";

}

313



Here is main() that repeatedly calls the foregoing routines.

int main()
{
srand(time(NULL)); // Randomize the random number seed

for (int i = 0; i < 10; ++i) {
try {
usingRawPointers();
usingManagedPointers();

} catch (int i) {
cout << "caught " << i << ’\n’;

}
cout << ’\n’;

}
}

30.12 Does auto ptr enforce the Law of the Big
Three and solve the problems associated
with remote ownership?

No. auto_ptr<T> plugs leaks, but it doesn’t enforce the Law of the Big Three.

When a class uses a plain T* to implement remote ownership, forgetting any
of the Big Three causes the compiler to silently generate wrong code. The result
is often a disaster at runtime.

Unfortunately, replacing the T* with a managed pointer such as auto_ptr<T>
does not correct the problem. The root of the problem is that when an auto_ptr<T>
is copied, ownership of the referent is transferred to the copy and the original
object’s auto_ptr<T> becomes NULL. This is often undesirable. What is needed
instead is for the referent to be copied or for a compile-time error to be generated
that flags the problem.

The safest solution is to define and use a strict auto_ptr<T>. For example,
the following could go into file strict_auto_ptr.h and could be reused when-
ever anyone wanted a strict auto_ptr<T>. Note that the copy constructor and
assignment operator are private: and are undefined, thus making it impossible
to copy a strict_auto_ptr<T> object.

#include <memory>
using namespace std;

template<class T>
class strict_auto_ptr : public auto_ptr<T> {
public:
strict_auto_ptr(T* p=NULL) throw() : auto_ptr<T>(p) { }

private:
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strict_auto_ptr(const strict_auto_ptr&) throw();
void operator= (const strict_auto_ptr&) throw();

};

When strict_auto_ptr<T> is used, the compiler either synthesize the Big
Three correctly or causes specific, compile-time errors; it does not allow run-time
disasters.

The following example shows a class that implements remote ownership by
the managed pointer strict_auto_ptr<Noisy> rather than the plain pointer
Noisy*.

#include <iostream>
using namespace std;

class Noisy {
public:
Noisy() throw();

~Noisy() throw();
Noisy& operator= (const Noisy&) throw();
Noisy (const Noisy&) throw();

};

Noisy::Noisy() throw()
{ cout << "Noisy::Noisy()\n"; }

Noisy::~Noisy() throw()
{ cout << "Noisy::~Noisy()\n"; }

typedef strict_auto_ptr<Noisy> NoisyPtr;

class Fred {
public:
Fred() throw(bad_alloc);
//No destructor needed: The Noisy will automagically get
//deleted. The compiler won’t synthesize a copy ctor or
//assignment operator, since the strict_auto_ptr version of these
//are private.

protected:
NoisyPtr ptr_; // like Noisy* ptr_ but better

};

Fred::Fred() throw(bad_alloc)
: ptr_(new Noisy())
{ }

void sample()
{
Fred x; //OK: allocates a new Noisy

} //OK: x is destructed, so its Noisy gets deleted
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int main()
{ sample(); }

Because strict_auto_ptr<Noisy>’s destructor deletes the referent, Fred
doesn’t need an explicit destructor. The Fred::~Fred() synthesized by the
compiler is correct.

Because strict_auto_ptr<Noisy>’s copy constructor and assignment oper-
ator are private:, the compiler is prevented from synthesizing either the copy
constructor ro the assignment operator for class Fred. Copying or assigning
a Fred produces a specific, compile-time error message. Compare this to us-
ing a Noisy*, in which case the compiler silently synthesizes the wrong code,
producing disastrous results.

For example, when the GENERATE ERROR symbol is #defined in the following
function, the compiler gives an error message rather than silently doing the
wrong thing.

void disasterAverted(const Fred& x) throw()
{
#ifdef GENERATE_ERROR
Fred y = x; //gives a compile-time error message
y = x; //gives a compile-time error message

#endif
}

strict_auto_ptr<T> effectively automates the proper delete and prevents
the compiler from synthesizing improper copy operations. It plugs leaks and
enforces the Law of the Big Three.

30.13 Are there cases where one or two of the
Big Three may be needed but not all three?

Yes, but define them all anyway.

There are cases where one or two of the Big Three may be needed but not
all three. All three should usually be defined anyway so that people don’t have
to think so hard during code reviews and maintenance activities. Here are four
common times when this happens: virtual destructors, protected: assign-
ment operators, recoding creation or destruction, and unnecessary or illogical
copy operations.

Virtual destructors: A base class often has a virtual destructor to ensure
that the right destructor is called during delete basePointer (see FAQ 21.5).
If this explicit destructor exists solely to be made virtual (for example, if it
does what the synthesized destructor would have done, namely { }), the class
may not need an explicit copy constructor or assignment operator.
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Protected assignment operators: An ABC often has a protected: assignment
operator to prevent users from performing assignment using a reference to an
ABC (see FAQ 24.5). If this explicit assignment operator exists solely to be
made protected: (for example, if it does what the synthesized assignment
operator would have done, namely memberwise assignment), the class may not
need an explicit copy constructor or destructor.

Recoding creation or destruction: A class sometimes has an explicit destructor
and copy constructor solely to record the birth and death of its objects. For
example, the class might print a message to a log file or count the number of
existing objects. If the explicit destructor or copy constructor exists solely to
perform this information recording (for example, if these operations do what
the synthesized versions would have done), the class may not need an explicit
assignment operator, since assignment doesn’t change the number of instances
of a class.

Unnecessary or illogical copy operations: There are cases where a class simply
doesn’t need one or both copy operations. Sometimes the copy operations don’t
even make logical sense. For example, the semantics of class File may mean that
it is nonsensical to copy File objects; similarly for objects of class Semaphore.
In these cases, the unnecessary copy operations are normally declared in the
private: section of the class and are never defined. This prevents the compiler
from synthesizing these operations in the class’s public: section and causes
compile-time error messages whenever a user accidentally calls one of these
member functions. In this case, it is not strictly necessary to define the other
members of the Big Three just because one or both copy operations are declared
in the private: section of the class.

30.14 Are there any other circumstances that
might explicitly warrant the Big Three?

Yes, when the Big Three need to be non-inline.

When the compiler synthesizes the Big Three, it makes them inline. If
the application’s classes are exposed to customers (for example, if customers
#include the application’s header files rather than merely using an executable),
the application’s inline code is copied into their executables. If you want to
maintain binary compatibility between releases of your library, you must not
change any visible inline functions, including the versions of the Big Three
that are synthesized by the compiler. Therefore, explicit, non-inline versions
of the Big Three should be used.

30.15 Why does copying an object using memcpy()

cause a program crash?

Because bitwise copying is evil.
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A class’s copy operations (copy constructor and assignment operator) are
supposed to copy the logical state of an object. In some cases, the logical state
of an object can be copied using a bitwise copy (e.g., using memcpy()). However
a bitwise copy doesn’t make sense for a lot of objects; it may even put the copy
in an incoherent state.

If a class X has a nontrivial copy constructor or assignment operator, bitwise
copying an X object often creates wild pointers. One common case where bitwise
copying of an object creates wild pointers is when the object owns a referent
(that is, it has remote ownership). The wild pointers are a result of the bitwise
copy operation, not some failure on the part of the class designer.

For example, consider a class that has remote ownership, such as a string
class that allocates an array of char from the heap. If string object a is bitwise
copied into string b, then the two objects both point to the same allocated
array. One of these strings will die first, which will delete the allocated array
owned by both of them. BOOM!

#include <string>
using namespace std;

int main()
{
string a = "fred";
string b;

#if 1
// Good: let the object copy itself:
b = a;

#else
// Bad: manipulates the object’s bits:
memcpy(&b, &a, sizeof(string));

#endif
}

Note that a bitwise copy is safe if the object’s exact class is known and the
object is (and will always remain!) bitwise copyable. For example, class string
might use memcpy() to copy its string data because char is and will always
remain bitwise copyable (assuming that the string data is a simple array of
char).

30.16 Why do programs with variable-length ar-
gument lists crash?

Because variable-length argument lists use bitwise copy, which is dangerous
in many cases. There are times where variable-length argument list don’t cause
a problem (printf comes to mind). But it is wise to avoid using them unless
there is some compelling reason.
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Objects passed into ellipses (...) are passed via bitwise copy. The parameter
objects are bitwise copied onto the stack, but the va arg macro uses the copy
constructor to copy the pile of bits from the stack. The technical term for this
asymmetry is ouch.

#include <cstdarg>

class Fred {
public:
Fred() throw();
Fred(const Fred& x) throw();
Fred& operator= (const Fred& x) throw();

~Fred();
};

void doSomethingWith(Fred x) throw();

void f(int count, Fred first...) throw()
{
va_list ap;
va_start(ap, first);
doSomethingWith( first );
for (int i = 1; i < count; ++i) {
Fred x = va_arg(ap, Fred);
doSomethingWith( x );

}
}

int main()
{
Fred a, b, c;
f(3, a, b, c);

}

“Ladies and gentlemen, this is your pilot speaking; please fasten your seat
belts in preparation for the air turbulence ahead.”

main()’s three Fred objects are constructed via Fred::Fred(). The call to
f(int,Fred...) passes these Freds using bitwise copy. The bitwise copies may
not be properly initialized Fred objects and are not logical copies of a, b, and
c. Inside f(int,Fred...), the va arg macro uses a pointer cast (shudder) to
create a Fred*, but this Fred* doesn’t point to a valid Fred object because it
points to a bitwise copy of a Fred object. The va arg macro then dereferences
this (invalid) pointer and copies the pile of incoherent bits (via Fred’s copy
constructor) into the local variable, x.

If Fred has nontrivial copy semantics, the chances that the bitwise copy is
the same as a logical copy is remote at best.

Variable-length argument lists are evil.
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30.17 Why do programs that use realloc() to
reallocate an array of objects crash?

When realloc() needs to move the storage that is being reallocated, it uses
bitwise copy rather than invoking the appropriate constructor for the newly
allocated objects.

Use realloc() only for objects guaranteed to be bitwise copyable.
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Chapter 31

Using Objects to Prevent
Memory Leaks

31.1 When are memory leaks important?

When the application is important and its lifetime has some duration.

A memory leak occurs when a program allocates memory off the heap and
does not return the memory when it is no longer needed. As a result, the
system eventually runs out of heap memory and crashes or hangs up. In general,
memory leaks cannot be tolerated, particularly for long-running applications.
“Reboot every few hours” is not a practical solution to the problem, so it is
important to understand how leaks occur and what can be done to prevent
them. It is very, very difficult to cure these problems after that fact, but a
modicum of solid engineering applied in the early stages of development can
eliminate almost all the grief.

Note that there are cases when memory leaks can be ignored. Applications
that are extremely short-lived don’t need to worry about memory leaks. For
example, they might run for only a fraction of a second and allocates less memory
than the target machine has. When the application terminates, all the memory
that was allocated is automatically returned to the operating system, so the only
thing to worry about is whether destructors have other side effects. In cases
like this it might make sense to use new but simply never use delete. However,
remember: if someday some requirements require the leaks to be plugged, it is
very, very difficult to do after the application has been written.

31.2 What is the easiest way to avoid memory
leaks?

Place pointers inside objects and have the objects manage the pointers.

The pointer returned from new should always be stored in a member variable
of an object. That object’s destructor should delete the allocation.
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The beauty of this approach is that objects have comprehensive creation
and destruction semantics (including constructors and destructors), whereas
pointers have extremely rudimentary creation and destruction semantics. By
putting pointers in objects it is possible to guarantee that the destructor will
always be executed and the memory will be properly deallocated.

In the example that follows, whitespace-terminated words are read from the
standard input stream cin (see FAQ 2.16), and the unique words are printed
out in sorted order. For example, if the standard input stream contains the
words “on and on and on he went”, the output will contain the unique words
“and he on went”.

The preferred way to produce a sorted list of unique words is to use the
string class (see FAQ 2.16) and a container class (in this case, the standard
set<T> template; see FAQ 28.14):

#include <iostream>
#include <set>
#include <string> using
namespace std;

void theRightWay() throw()
{
typedef set<string> StringSet;
StringSet unique;
string word;
while (cin >> word)
unique.insert(word);

for (StringSet::iterator p = unique.begin();
p != unique.end(); ++p)

cout << *p << ’\n’;
}

int main()
{ theRightWay(); }

Note that there are no explicit pointers in this code, and there are no chances
for memory leaks. For example the string object contains a char*, but there
is no possibility of a leak since the string object is local and it has a proper de-
structor — it handles its own memory management. Similarly for the set<string>:
this object may contain many pointers and may use many memory allocations,
but since the object is local and since it has a proper destructor, it manages its
own memory without any possibility of memory leaks.

In contrast, the undesirable approach would be to use explicit pointers to
explicitly allocated memory. The following example is more or less equivalent
to the example shown above, but it is rife with opportunities for both wild
pointers and memory leaks. Making this code safe would be quite a bit more
difficult than the relatively simple solution shown above (the problems cited are
described after the code):
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#include <iostream>
#include <cstring>
using namespace std;

// a and b point to char*s
int compareCharPtr(const void* a, const void* b) throw()
{ return strcmp(*(char**)a, *(char**)b); }

void theWrongWay() throw()
{
const unsigned maxNumWords = 1000;
const unsigned maxWordLen = 100;
char word[maxWordLen];
unsigned uniqueSize = 0;
unsigned uniqueCapacity = 100;
char** unique = (char**) malloc(uniqueCapacity * sizeof(char*));
if (unique == NULL) // Problem #1
return;

while (cin >> word) { // Problem #2
unsigned i;
for (i = 0; i < uniqueSize; ++i)
if (strcmp(unique[i], word) == 0) // Problem #3
break;

if (i == uniqueSize) {
if (uniqueSize == uniqueCapacity) {
uniqueCapacity *= 2;
unique = (char**) realloc(unique, uniqueCapacity * sizeof(char*));
if (unique == NULL) // Problem #4
return;

}
unique[uniqueSize++] = strdup(word);

}
}
qsort(unique, uniqueSize, sizeof(unique[0]), compareCharPtr);
for (unsigned i = 0; i < uniqueSize; ++i)
cout << unique[i] << ’\n’;

for (unsigned j = 0; j < uniqueSize; ++j)
free(unique[j]);

free(unique);
}

int main()
{ theWrongWay(); }

Most programmers will notice these major problems with this code.

1. If it runs out of memory in the malloc() step, it should probably throw
an exception rather than silently returning; see FAQ 12.6.

2. If the length of a word exceeds maxWordLen, the program overwrites mem-
ory and probably crashes.
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3. If the file contains null bytes (’\0’), strcmp() and strdup() give the
wrong answers.

4. If it runs out of memory in the realloc() step, all the previously allocated
memory is lost — a leak. Plus the routine should probably throw an
exception rather than silently returning; see FAQ 12.6.

All these problems can be fixed, but fixing them makes the code even more
complex. Note that theRightWay() doesn’t have any of these problems and is
much simpler. It properly handles running out of memory, and it can handle
arbitrarily long words, arbitrarily many characters within long words (including
null bytes), and arbitrarily many words.

The more subtle problem with theWrongWay() is its use of explicit pointers.
If a maintenance programmer changes the code so that it exits before the last
for loop, such as throwing an exception, perhaps from another routine, this
code will leak memory. The code could protect against exceptions with a large
try block around the whole routine except the last for loop, but it would be
much harder to protect against an early return. Note that theRightWay()
doesn’t have this problem: it won’t leak when an exception is thrown or an
early return is executed.

But even if theWrongWay() is made safe, it will still be much slower than
theRightWay(), especially with large numbers of unique words. This is because
theWrongWay() uses a linear search (doubling the number of unique words typ-
ically quadruples the time); theRightWay() uses a much more efficient algo-
rithm.

31.3 What are the most important principles for
resource management?

Ownership, responsibility, and focus.

Ownership: Every allocated resource is owned by exactly one resource man-
ager object, which must be a local (auto) variable in some scope (or a member
object of some local).

Responsibility: The resource manager object is charged with the responsibility
of releasing the allocated resource. This is the only place the resource is released.

Focus: The resource manager object does nothing other than manage the
individual resource.

A leak is simply a new that lacks a corresponding delete. Either the delete
isn’t physically in the source code or it is in the source code but is bypassed due
to runtime control flow. Both situations are handled by the resource manage-
ment discipline since the destructor for a local object always runs when control
leaves the scope where the local object was created. In other words, the resource

324



management discipline relies on the guarantees provided by the language rather
than the good intentions of programmer self-discipline.

This resource management discipline can be applied to the management of all
kinds of resources (e.g., files, semaphores, memory, database connections, and
so on). “Memory” is used here only as a concrete example of a manageable
resource.

31.4 Should the object that manages a resource
also perform operations that may throw
exceptions?

Not usually.

In the following example, class Fred both manages a resource (an X allocation)
and performs some operations that may throw exceptions (it calls the function
mayThrow()). In other words, Fred violates the guideline. When Fred’s con-
structor throws an exception (as a result of calling mayThrow()), there is a
resource leak.

#include <new>
#include <iostream>
using namespace std;

class X { };

void mayThrow() throw(int)
{ throw 42; }

class Fred {
public:

Fred() throw(bad_alloc, int);
~Fred() throw();
Fred(const Fred& f) throw();
Fred& operator= (const Fred& f) throw();

private:
X* p_;

};

Fred::Fred() throw(bad_alloc, int)
: p_(new X()) { mayThrow(); }

Fred::~Fred() throw()
{ cout << "Not reached #1\n"; delete p_; }

int main()
{

try {
Fred f;
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cout << "Not reached #2\n";
}
catch (int e) {
cout << "Exception caught: " << e << "\n";

}
}

Because the guideline is violated, the X object leaks: the delete p instruc-
tion in Fred::~Fred() is never executed. Either Fred should focus on being
a resource manager — and nothing but a resource manager — or Fred should
delegate the resource management responsibility to some other class. In other
words, either get rid of the code that calls mayThrow() from Fred, or change
the X* to an auto_ptr<X>.

In those cases where it is not possible to abide by the discipline, a try block
can be put in the constructor initialization list. Use this only as a last resort.

31.5 Should an object manage two or more re-
sources?

Not usually.

An object that manages a resource should manage exactly one resource. Use
composition to combine multiple “pure” resource manager objects (for example,
multiple auto_ptr<T> objects, File objects, and so forth). This guideline is a
corollary of the guideline presented in the previous FAQ.

If an object manages two or more resources, the first resource may leak if the
second allocation throws an exception. In particular, when an exception occurs
during the execution of a constructor, the object’s destructor is not executed
so the destructor won’t release the resource that was successfully allocated. In
the following example, class Fred manages two resources; an X allocation and
a Y allocation. When Fred’s constructor throws an exception as a result of
allocating a Y, the X resource leaks.

#include <new>
#include <iostream>
using namespace std;

class X { };

class Y {
public:
Y() throw(int);

};

Y::Y() throw(int)
{ throw 42; }
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class Fred {
public:
Fred() throw(bad_alloc, int);

~Fred() throw();
protected:
X* x_;
Y* y_;

};

Fred::Fred() throw(bad_alloc, int)
: x_(new X())
, y_(new Y())
{ }

Fred::~Fred() throw()
{ cout << "Not reached #1\n"; delete y_; delete x_; }

int main()
{
try {
Fred f;
cout << "Not reached #2\n";

}
catch (int e) {
cout << "Exception caught: " << e << "\n";

}
}

Because the guideline is violated, the X object leaks: the delete x instruc-
tion is never executed. Either Fred should focus on being a manager of a
resource — not two or more resources — or Fred should delegate the resource
management responsibility to some other class. In other words, either get rid
of the Y resource from Fred or change the X* to an auto_ptr<X>.

In those cases where it is not possible to abide by the discipline, a try block
can be put in the constructor initialization list. Use this only as a last resort.

31.6 What if an object has a pointer to an al-
location and one of the object’s member
functions deletes the allocation?

That member function must immediately restore the integrity of the object
holding the pointer.

If some member function (other than the destructor) deletes memory allo-
cated from the heap, then the member function must either reassign the pointer
with a previously allocated (new) object or set a flag that tells the destructor to
skip the delete. Setting the pointer to NULL can be used as such a flag.
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For example, some assignment operators need to delete an old allocation
as well as allocate a new one. In such cases, the new allocation should be
performed before the old is deleted in case the allocation throws an exception.
The goal is for the assignment operator to be atomic: either it should succeed
completely (no exceptions, and all states successfully copied from the source
object), or it should fail (throw an exception) without changing the state of the
this object. It is not always possible to meet the goal of atomicity, but the
assignment operator must never leave the this object in an incoherent state.

A related guideline is to use a local auto ptr<T> to point to the new allo-
cation. This will ensure that the new allocation is deleted if an exception is
thrown by some subsequent operation in the member function. The ownership
of the allocated object can be transferred to the this object by assigning from
the local auto ptr into the auto ptr<T> in the this object.

31.7 How should a pointer variable be handled
after being passed to delete?

The pointer variable should immediately be put into a safe state.

After calling delete p, immediately set p = NULL or p = anotherAutoPtr
(unless the pointer p is just about to go out of scope). The goal is to prevent a
subsequent operation from following the pointer p (which now points at garbage)
or calling delete p a second time.

Note that setting p = new Fred() is not acceptable, since the Fred allocation
may throw an exception before p is changed to a safe state.

We recommend setting p = NULL immediately, in case an exception subverts
the normal flow of control.

31.8 What should be done with a pointer to an
object that is allocated and deallocated in
the same scope?

It should be placed in a managed pointer object that is local to the scope.

The goal is to make the code exception safe, that is, safe in the presence of
exceptions (see FAQ 9.3). As a pleasant side effect, it becomes unnecessary to
remember (and therefore, in a sense, impossible to forget) to make sure that
the temporary object is deleted. Using a managed pointer (for example, an
auto ptr<T>) meets these goals since the managed pointer’s destructor auto-
matically deletes the temporary object. Here’s an example.

#include <new>
#include <iostream>
#include <memory>
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using namespace std;

class Fred {
public:
~Fred() throw();

};

Fred::~Fred() throw()
{ cout << "Fred dtor\n"; }

void sample() throw(bad_alloc)
{
auto_ptr<Fred> ptr( new Fred() );

if (rand() % 2) {
cout << "randomly doing an ’early return’\n";
return;

}
cout << "randomly NOT doing an ’early return’\n";

// In either case, we do NOT say delete ptr,
// since ptr is a managed pointer

}

int main()
{ sample(); }

31.9 How easy is it to implement reference count-
ing with pointer semantics?

It is relatively easy, and the result is worthwhile.

If the application tends to pass around pointers to dynamically allocated
objects and possibly store some of the pointers in containers, it is quite possible
that there will be either memory leaks or dangling references. Often a simple
reference-counting scheme suffices in these circumstances.

Reference counting means that each object keeps track of how many pointers
are pointing at it, and when the object no longer has any pointers pointing at
it, the object deletes itself. With a little discipline, this means that the object
dies when it becomes unreachable, which is precisely what is desired. A very
simple implementation of this technique follows.

class FredPtr;

class Fred {
public:

Fred() throw()
: count_(0) /*...*/ { } // All ctors set count_ to 0 !

// ...
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private:
friend FredPtr; // A friend class; see FAQ 19.01
unsigned count_;
// count_ must be initialized to 0 by all constructors
// count_ is the number of FredPtr objects that point at
// the this object

};

class FredPtr {
public:
FredPtr(Fred* p) throw()
: p_(p) { if (p_) ++p_->count_; }

~FredPtr() throw()
{ if (p_ && --p_->count_ == 0) delete p_; }

FredPtr(const FredPtr& p) throw()
: p_(p.p_) { if (p_) ++p_->count_; }

FredPtr& operator= (const FredPtr& p) throw();
Fred* operator-> () throw() { return p_; }
Fred& operator* () throw() { return *p_; }
Fred* getRaw() throw() { return p_; }

private:
Fred* p_;

};

FredPtr& FredPtr::operator= (const FredPtr& p) throw()
{
// DO NOT CHANGE THE ORDER OF THESE STATEMENTS!
// (This order properly handles self-assignment; see FAQ 24.02)
if (p.p_) ++p.p_->count_;
if (p_ && --p_->count_ == 0) delete p_;
p_ = p.p_;
return *this;

}

This simple reference-counting mechanism provides users with a pointer-
oriented view of the Fred objects. In other words, users always allocate their
Fred objects via new and point to the Fred objects via FredPtr “smart point-
ers”. Users can make as many copies of their FredPtr pointers as they wish,
including storing some FredPtrs in containers, and the pointed-to Fred objects
are automatically deleted when the last such FredPtr object vanishes.

To hide the pointers from users so that users see objects rather than pointers
to objects, use reference counting with copy-on-write semantics (see FAQ 31.10).

Note that the constraint that all Fred objects be allocated via new can be en-
forced using the named constructor idiom (see FAQ 16.8). In this case, it means
making all Fred constructors private: and defining each named construc-
tor as a public: static create() member function. The public: static
create() member function would allocate a new Fred object and would return
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the resulting pointer as a FredPtr (not a Fred*). Users would then use FredPtr
p = Fred::create() rather than FredPtr p = new Fred().

31.10 Is reference counting with copy-on-write
semantics hard to implement?

It’s a bit involved, but it’s manageable.

Copy-on-write semantics allows users to think they’re copying Fred objects,
but in reality the underlying implementation doesn’t actually do any copying
unless and until some user actually tries to modify the copied Fred object.
This approach provides users with reference semantics; the previous FAQ used
reference counting to provide users with pointer semantics.

Nested class Fred::Data houses all the data that would normally go into a
Fred object. Fred::Data also has an extra data member, count , to manage
the reference counting. Class Fred ends up being a smart reference: internally
it points to the Fred::Data, but externally it acts as if it has the Fred::Data
data within itself.

#include <new>
#include <cassert>
#include <stdexcept>
using namespace std;

class Fred {
public:
Fred() throw(); // Default constructor
Fred(int i, int j) throw(); // Normal constructor
Fred(const Fred& f) throw();
Fred& operator= (const Fred& f) throw();

~Fred() throw();
void sampleInspectorMethod() const throw(); // Does not change this object
void sampleMutatorMethod() throw(bad_alloc); // Changes this object
// ...

private:

class Data {
public:
Data() throw();
Data(int i, int j) throw();
Data(const Data& d) throw();

// Since only Fred can access Fred::Data,
// the Fred::Data members can be public:.
// If that feels uncomfortable, the members can be made
// private: and class Fred can be made a friend class.
// (See FAQ 19.02)
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// ...

unsigned count_;
// count_ is the number of Fred objects that point at this
// count_ must be initialized to 1 by all constructors
// (starts at 1 because of the Fred object that created this)

};

Data* data_;
};

Fred::Data::Data() throw() : count_(1) /*...*/ { }
Fred::Data::Data(int i, int j) throw() : count_(1) /*...*/ { }
Fred::Data::Data(const Data& d) throw() : count_(1) /*...*/ { }

Fred::Fred() throw() : data_(new Data()) { }
Fred::Fred(int i, int j) throw() : data_(new Data(i, j)) { }
Fred::Fred(const Fred& f) throw() : data_(f.data_) { ++data_->count_; }

Fred& Fred::operator= (const Fred& f) throw()
{
// DO NOT CHANGE THE ORDER OF THESE STATEMENTS!
// (This order properly handles self-assignment; see FAQ 24.02)
++f.data_->count_;
if (--data_->count_ == 0) delete data_;
data_ = f.data_;
return *this;

}

Fred::~Fred() throw()
{ if (--data_->count_ == 0) delete data_; }

void Fred::sampleInspectorMethod() const throw()
{
// This member function promises ("const") not to change anything in *data_
// Other than that, any data access would simply use "data_->..."

}

void Fred::sampleMutatorMethod() throw(bad_alloc)
{
// This member function might need to change things in *data_
// Thus it first checks if this is the only pointer to *data_
if (data_->count_ > 1) {
Data* d = new Data(*data_); // Invoke Fred::Data’s copy ctor
-- data_->count_;
data_ = d;

}
assert(data_->count_ == 1);

// Now the member function proceeds to access "data_->..." as normal
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}

If it is fairly common to call Fred’s default constructor, those new calls can
be avoided by sharing a common Fred::Data object for all Freds that are
constructed via Fred::Fred(). To avoid static initialization order problems
(see FAQ 2.10), this shared Fred::Data object is created “on first use” inside
a function. Here are the changes that need to be made (note that the shared
Fred::Data object’s destructor is never invoked; if that is a problem, either
hope that there are no static initialization order problems, drop back to the
approach described above, or use the nifty counter idiom (see FAQ 16.17)).

class Fred {
public:
// ...

private:
// ...
static Data* defaultData() throw();

};

Fred::Fred() throw()
: data_(defaultData())
{ ++ data_->count_; }

Fred::Data* Fred::defaultData() throw(bad_alloc)
{
static Data* p = NULL;
if (p == NULL) {
p = new Data();
++ p->count_; // Make sure it never goes to zero

}
return p;

}

The point of all this is that users can freely copy Fred objects, but the actual
data isn’t copied unless and until a copy is actually needed. This can help
improve performance in some cases.

To provide reference counting for a hierarchy of classes, see FAQ 31.11.

31.11 How can reference counting be implemented
with copy-on-write semantics for a hierar-
chy of classes?

Through an extension of the technique for a single class.

The previous FAQ presented a reference-counting scheme that provided users
with reference semantics but did so for a single class rather than for a hierarchy
of classes. This FAQ extends the technique to allow for a hierarchy of classes.
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The basic difference is that Fred::Data is now the root of a hierarchy of classes,
which probably means that it has some virtual functions. Note that class Fred
itself still does not have any virtual functions.

The virtual constructor idiom (FAQ 21.7), is used to make copies of the
Fred::Data objects. To select which derived class to create, the sample code
uses the named constructor idiom (FAQ 16.8), but other techniques are possible
(a switch statement in the constructor, for example). The sample code assumes
two derived classes, Der1 and Der2. Member functions in the derived classes
are unaware of the reference counting.

#include <cassert>
#include <string>
using namespace std;

class Fred {
public:
static Fred create1(string s, int i); // Named constructors (see FAQ 16.08)
static Fred create2(float x, float y);
Fred(const Fred& f);
Fred& operator= (const Fred& f);
~Fred();
void sampleInspectorMethod() const; // Does not change this object
void sampleMutatorMethod(); // Changes this object

private:

class Data {
public:
Data() : count_(1) { }
Data(const Data& d) : count_(1) { } // Don’t copy count_!
Data& operator= (const Data&) { return *this; } // Don’t copy count_!
virtual ~Data() { assert(count_ == 0); } // Virtual destructor
virtual Data* clone() const = 0; // Virtual constructor
virtual void sampleInspectorMethod() const = 0; // See FAQ 21.11
virtual void sampleMutatorMethod() = 0;

private:
unsigned count_; // count_ doesn’t need to be protected
friend Fred;

};

class Der1 : public Data {
public:
Der1(string s, int i);
virtual void sampleInspectorMethod() const;
virtual void sampleMutatorMethod();
virtual Data* clone() const;
// ...

};
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class Der2 : public Data {
public:
Der2(float x, float y);
virtual void sampleInspectorMethod() const;
virtual void sampleMutatorMethod();
virtual Data* clone() const;
// ...

};

Fred(Data* data);
// Creates a Fred smart reference that owns *data
// It is private: to force users to use a createXXX() member function
// Requirement: data must not be NULL

Data* data_; // Invariant: data_ is never NULL
friend Der1;
friend Der2;

};

Fred::Fred(Data* data)
: data_(data) { assert(data != NULL); }

Fred::Fred(const Fred& f)
: data_(f.data_) { ++ data_->count_; }

Fred Fred::create1(string s, int i)
{ return Fred(new Der1(s, i)); }

Fred Fred::create2(float x, float y)
{ return Fred(new Der2(x, y)); }

Fred::Data* Fred::Der1::clone() const { return new Der1(*this); }
Fred::Data* Fred::Der2::clone() const { return new Der2(*this); }

Fred& Fred::operator= (const Fred& f)
{
// DO NOT CHANGE THE ORDER OF THESE STATEMENTS!
// (This order properly handles self-assignment; See FAQ 24.02)
++ f.data_->count_;
if (--data_->count_ == 0) delete data_;
data_ = f.data_;
return *this;

}

Fred::~Fred()
{ if (--data_->count_ == 0) delete data_; }

void Fred::sampleInspectorMethod() const
{
// This member function promises ("const") not to change anything in *data_
// Therefore we simply "pass the member function through" to *data_:
data_->sampleInspectorMethod();
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}

void Fred::sampleMutatorMethod()
{
// This member function might need to change things in *data_
// Thus it first checks if this is the only pointer to *data_
if (data_->count_ > 1) {
Data* d = data_->clone(); // Virtual constructor idiom (see FAQ 21.07)
-- data_->count_;
data_ = d;

}
assert(data_->count_ == 1);

// Now we "pass the member function through" to *data_:
data_->sampleMutatorMethod();

}

Naturally the constructors and sampleXXX member functions for Fred::Der1
and Fred::Der2 should be implemented in whatever way is appropriate. The
point is that users can copy Fred objects (pass them by value, assign them,
and so on) even though they really represent a hierarchy of objects, yet the
underlying data isn’t actually copied unless and until a copy object is changed —
that is, unless and until the copy is necessary to maintain the desired observable
semantics. This can improve performance in some situations.

336



Chapter 32

Wild Pointers and Other
Devilish Errors

32.1 What is a wild pointer?

A wild pointer is a pointer that refers to garbage.

There are three ways to get a wild pointer.

1. An uninitialized pointer that contains garbage bits

2. A pointer that gets inadvertently scribbled on (for example, by another
wild pointer; this is the domino effect)

3. A pointer that refers to something that is no longer there (a dangling
reference)

In C, the classic example of a dangling reference (3) occurs when a function
returns a pointer to a local variable or when someone uses a pointer that has
already been passed to free. Both situations can occur in C++, too.

Wild pointers are bad news no matter how they are created. Bad enough
that we devote this entire chapter to the subject.

32.2 What happens to a program that has even
one wild pointer?

A wild pointer is to software what a car bomb is to a busy street: both cause
indiscriminate pain and suffering.

After a program spawns its first wild pointer, an awesome chain reaction be-
gins. The first wild pointer scribbles on a random memory location, which
probably corrupts the object at that location, creating other wild pointers.
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Eventually—almost mercifully—one of these wild pointers attempts to scrib-
ble on something protected by the operation system or the hardware, and the
program crashes.

By the time that happens, finding the root cause of the error with a debugger
is nearly hopeless; what was once a cohesive system of objects is now a pile of
rubble. The system has literally blown itself to bits.

Wild pointers create unstable systems. Arbitrarily small changes, such as in-
serting an extra semicolon, running the program on a different day of the week,
or changing the way you smile as you press the Enter key can cause arbitrarily
large changes in how the system behaves (or misbehaves). Sometimes the pro-
gram deletes user files, sometimes it just gives the wrong answer, sometimes it
actually works!

Wild pointers are a problem worth avoiding.

32.3 What does the compiler mean by the warn-
ing “Returning a reference to a local ob-
ject”?

It means “Pay attention to me or you’ll regret it!”

A local (auto) object is an object local to a routine (and it is usually allocated
on the stack). Never return a reference or a pointer to a local (auto) object. As
soon as the function returns, the local object is destructed, and the reference
or pointer refers to garbage. A program working with garbage eventually gets
very, very sick.

Note that returning a copy of a local object (returning “by value”) is fine.

32.4 How should pointers across block bound-
aries be controlled?

Avoid storing the address of a local object created in an inner scope in a
pointer in an outer scope. Here’s an example.

class Fred {
public:
void method() throw();

};

void doSomething(Fred& x) throw();

void f()
{
Fred* p;

338



{
Fred a;
p = &a; // Suspicious...

}
doSomething(*p); // Bang!
p->method(); // Bang!

}

When control flow leaves the inner block, a will be destroyed and p will
be pointing at garbage. Because control can leave the inner scope a number
of different ways (including an uncaught exception), setting the outer scope’s
pointer to point to an inner scope’s object can lead to subtle errors and should
be avoided on principle.

If the address of an inner scope’s object has to be stored in an outer scope’s
pointer, then the outer scope’s pointer should be changed to NULL (or some
other safe value) before leaving the inner scope. Generally speaking, you should
guarantee that the pointer is set to NULL by creating a pointer-like class whose
destructor sets the pointer to NULL, then replace the Fred* local variable with
a local object of that class.

Note that the problem addressed by this FAQ can occur only with pointers,
not with references. This is because a reference is permanently bound to its
referent at the moment it is initialized. This is yet another reason to prefer
references to pointers (see FAQ 11.9).

32.5 Is the reference-versus-pointer issue influ-
enced by whether or not the object is allo-
cated from the heap?

No, there is very little relationship between these issues.

Occasionally, the claim is made that if an object is allocated via new then it
should be passed via pointer; otherwise it should be passed by reference. This
is not correct. There are two separate questions, when to delete the object and
how to pass it.

First consider the issue of deleting the object. If an object is allocated from
the heap (e.g., p = new Fred();), then some routine has to be responsible for
deleting it (e.g., delete p;), and the routine must have a pointer (e.g., p) to
it. There are three common situations.

1. The routine responsible for deleting the object is the same routine that
created it, in which case a local auto_ptr is the easy solution: e.g.,
auto_ptr<Fred> p(new Fred());

2. The routine responsible for deleting the object is the destructor of the
same object that created the object. In this case put an auto_ptr in the
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this object and define a copy constructor and assignment operator that
allocate a copy of the object from the heap (see FAQ 30.12).

3. There is no clear responsibility for the delete, but the newed object should
be deleted when there are no pointers to it. In this case, use reference
counting and avoid passing raw pointers to the object (see FAQ 31.9).

Now consider how the object should be passed. Assume that the routine
f() takes a Fred object. Which is better, f(Fred* p) or f(Fred& r)? The
key criterion is this: Does f() want to handle the case when it gets passed
a nonobject (that is, the NULL pointer)? If it does, then the pointer form is
indicated because it can use NULL to indicate the nonobject case. If f() always
needs an actual Fred object, then the best way to signal this is to use a reference,
which guarantees that it can’t be passed a NULL since a reference can’t legally
be NULL.

Notice that the issues of deletion and passing are almost completely indepen-
dent. Obviously, if reference counting is used to handle the deletion problem,
then pointer-like objects are typical. But otherwise the questions aren’t related.
References can be used even if the object was allocated off the heap, and point-
ers can be used even if the object was not allocated from the heap, since it
is always possible to have a pointer to a local or global object (so long as the
object outlives the pointer to it).

32.6 When should C-style pointer casts be used?

Rarely, probably only when interfacing with other languages. Any casting
that must be done should use the C++ facilities for type-safe casting.

C-style pointer class are the goto of OO programming. A goto complicates
the control flow, making it difficult to statically reason about the flow of con-
trol. To determine the code’s behavior, the dynamic flow of control has to be
simulated. A pointer cast complicates the type flow, making it difficult to stati-
cally reason about the type of an object. To determine the code’s behavior, the
dynamic flow of types must be simulated. Use a C-style pointer cast as often as
you would use a goto.

C-style pointer casts are also error prone. The basic problem is that the
compiler meekly accepts C-style pointer casts without using runtime checks to
see if they are correct. This can create wild pointers. Shudder.

Developers with a background in untyped (a.k.a. dynamically typed) lan-
guages tend to produce designs whose implementations employ an excessive
number of pointer casts. These old habits must be terminated without preju-
dice. The lowest levels of memory management are among the few places where
pointer casts are necessary.

Reference casts are just like pointer casts and are equally dangerous.
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32.7 Is it safe to bind a reference variable to a
temporary object?

Yes, as long as that reference isn’t copied into another reference or pointer.

In the following example, an unnamed temporary string object is created
at line 1. A (const) reference (main()’s x) is bound to this temporary. The
language guarantees that the unnamed temporary will live until the reference x
dies, which in this case is at the end of main(). Therefore, line 2 is safe: the
compiler isn’t allowed to destruct the unnamed temporary string object until
line 3.

#include <string>
#include <iostream>
using namespace std;

string createTemp()
{ return "fred"; }

int main()
{

const string& x = createTemp(); // Line 1: Reference bound to temporary
cout << "x = " << x << "\n"; // Line 2: This is safe

} // Line 3: Temporary destructed here

There is a caveat—don’t copy reference x into a pointer variable that’s out
of the scope in which the temporary was created. For a subtle example of this,
see the next FAQ.

32.8 Should a parameter passed by const refer-
ence be returned by const reference?

No; it might create a dangling reference, which could destroy the world.

Returning an object by reference is not dangerous in and of itself, provided
that the lifetime of the referent exceeds the lifetime of the returned reference.
This cannot be guaranteed when a const reference parameter is returned by
const reference, because the original argument might have been an unnamed
temporary.

In the following example, an unnamed temporary string object is created at
line 1. Parameter x from function unsafe() is bound to this temporary, but
that is not an explicit, local reference in the scope of main(), so the temporary’s
lifetime is governed by the usual rules—the temporary dies at the ; of line 1.
Unfortunately, function unsafe() returns the reference x, which means main()’s
y ends up referring to the temporary, even though the temporary is now dead.
This means that line 2 is unsafe: it uses y, which refers to an object that has
already been destructed—a dangling reference.
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#include <string>
#include <iostream>
using namespace std;

string createTemp()
{ return "fred"; }

const string& unsafe(const string& x)
{ return x; }

int main()
{
const string& y = unsafe( createTemp() ); // line 1
cout << "y = " << y << "\n"; // line 2: BOOM!

}

Note that if a function accepts a parameter by non-const reference (for exam-
ple, f(string& s)), returning a copy of this reference parameter is safe because
a temporary cannot be passed by non-const reference.

32.9 Should template functions for things like
min(x,y) or abs(x) return a const reference?

No!

When the following example is compiled and symbol UNSAFE is defined, min(x,y)
avoids an extra copy operation by returning a const reference parameter by
const reference. As discussed in the previous FAQ, this can create a dangling
reference, which can destroy the world.

#ifdef UNSAFE
template<class T> inline const T& min(const T& x, const T& y)
{ return x < y ? x : y; }

#else
template<class T> inline T min(const T& x, const T& y)
{ return x < y ? x : y; }

#endif

Returning a const reference to a const reference parameter is normally done
as an optimization to avoid an extra copy operation. If you’re willing to sacrifice
correctness, you can make your software very fast!

32.10 When is zero not necessarily zero?

When dealing with pointers.
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When the token 0 appears in the source code at a place where a pointer should
be, the compiler interprets the token 0 as the NULL pointer. However, the bit
pattern for the NULL pointer is not guaranteed to be all zeros. More specifically,
setting a pointer to NULL may set some of the bits of that pointer to 1.

Depending on the hardware, the operating system, or the compiler, a pointer
whose bits are all zeros may not be the same as the NULL pointer. For example,
using memset() to set all bits of a pointer to zero may not make that pointer
equal to NULL.

In the following program, all conforming C++ compilers produce code that
prints 0 is NULL, then NULL is NULL, but some may produce code that prints
memsetPtr is not NULL.

#include <iostream>
#include <string>
using namespace std;

void checkForNull(const string& nameOfPointer, char* p)
{
cout << nameOfPointer;
if (p == NULL)
cout << " is NULL\n";

else
cout << " is not NULL\n";

}

int main()
{
checkForNull("0", 0); // OK: NULL pointer
checkForNull("NULL", NULL); // OK: NULL pointer

char* memsetPtr;
memset(&memsetPtr, ’\0’, sizeof(memsetPtr)); // BAD: Undefined pointer!
checkForNull("memsetPtr", memsetPtr);

}

Another common way to generate a pointer whose bits are all zero that is
equally dangerous is with unions. For example, the following is wrong on two
levels. First, it accesses the char* member of the union even though it was the
unsigned long member that was set most recently. Second, it assumes that a
pointer whose bits are all zero is the same as a NULL pointer—the output may
be unionPtr is not NULL on some machines.

union Fred {
unsigned long n;
char* p;

};

void badForm()
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{
Fred x;
x.n = 0; // OK: Set the unsigned long member to 0
char* unionPtr = x.p; // BAD: The char* member isn’t defined!
checkForNull("unionPtr", unionPtr);

}
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Chapter 33

High-Performance Software

33.1 Is bad performance a result of bad design
or bad coding?

All too often, bad performance is due to bad design.

When bad performance is due to bad coding practices, the correction is rela-
tively inexpensive. However, when OO has been used improperly, the design is
usually broken and performance problems are not easily repaired.

Improper inheritance is a common cause. When inheritance is used improp-
erly, the design often becomes brittle and performance-related changes are pro-
hibitively expensive. For example, some designs use inheritance as the means
to put objects into a container. To put objects in a List, for example, they
inherit from a particular base class, often called ListElement, ListItem, or
Listable. The apparent motivation is to share the next pointer among all the
derived classes, but the cost is enormous. In particular, the List class loses type
safety (not all things that are listable should be linked into the same list), and
most important, user code becomes tacitly aware of the technique used to imple-
ment the list. This implementation dependency can inhibit performance tuning.
These costs are manageable on a small (“toy”) project, but in a larger, more
sophisticated application or system, the costs of improper inheritance become
unbearable.

A better solution for the container problem is to use templates for type safety
and design a proper abstraction that hides the “listness” from users. If ab-
stractions are properly designed, the answer to “Would it disturb user code if I
changed this particular data structure from a linked list to an array?” is “No.”
This means that the abstraction allows late life-cycle performance tuning, since
it allows changing data structures or algorithms on an individual container-by-
container basis. Code sharing among template classes can be accomplished by
inheriting from a nontemplate base class.
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33.2 What are some techniques for improving
performance?

The first step is knowing where the bottleneck is and then trying some of the
following techniques. For example, if the bottleneck is CPU cycles, the applica-
tion is said to be CPU bound; if the bottleneck is the network, the application is
said to be network bound. Applications can also be database bound, I/O bound,
memory space bound (a.k.a. thrashing), and so on. The important insight is
that the techniques that work in one situation will either be a waste of time or
perhaps even make performance worse in another situation. Measure, measure,
measure. Then make your changes.

One technique that sometimes helps is reducing the number of expensive
operations by using more CPU cycles. If the application is I/O bound, database
bound, or network bound, making the application run fast means minimizing
these expensive operations even if that might increase the number of CPU cycles
consumed. For example, implementing a caching scheme increases the number
of CPU cycles consumed, but it can reduce the number of expensive database
operations required.

Another technique that can sometimes make an application run faster is mak-
ing it more flexible. A flexible system can often be twisted to work around
unnecessary requests that hit the database or network. This is counterintuitive:
most developers equate increased flexibility with greater processing overhead.
Nonetheless, flexibility can help make things faster in many (but not all) situa-
tions.

If the application is network bound or database bound, it may help to increase
the granularity of objects that are transmitted through the wire and/or to a
database and to decrease the granularity of in-memory-only objects.

If the application is thrashing (that is, using most of the compiler’s available
memory), the goal is to reduce the size of the working set (that is, the number of
pages that need to be in memory to execute the application’s typical operation).
There are two normal cases: either the pages that need to be in memory are
mostly code or they are mostly data. In the case where most pages of memory
are code pages, paradoxically making more functions inline can sometimes
help. This is because the goal is to reduce the working set, not to reduce the
size of the executable. If the application has improved locality, the working
set can sometimes go down even though the application’s executable size goes
up. This is counterintuitive: most developers assume that applications that are
thrashing need to be made smaller. Measure, measure, measure.

Another technique that can sometimes reduce thrashing is reorganizing the
physical placement of member functions within source files. For example, a
profiling tool can determine which member functions are called often and which
are called rarely; then the commonly used member functions can be moved into
a single source file. Even though this makes it harder to find all the member
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functions of a class, it has the effect of bringing all the commonly used code into
the same group of memory pages, thus reducing the size of the working set.

In the case where most pages of memory are data, caches should be avoided,
deeply nested function calls should be avoided, freestore should be limited, and
care should be taken to avoid fragmenting memory. And of course memory leaks
should be plugged (see FAQ 31.1).

If the bottleneck is the machine’s CPU (that is, the application is CPU
bound), start with limiting unnecessary use of freestore and using initializa-
tion lists in constructors (see FAQ 22.1). Most of the remaining FAQs in this
chapter deal with CPU-bound applications, but some also help database-bound,
I/O-bound, network-bound, and memory-bound applications as well.

In any event, the process cannot even begin until everyone agrees on the
problem. The tuning effort should be focused on areas that deliver the most
bang per hour invested.

33.3 What is an advantage of using pointers and
references?

Flexibility, with a likely cost in CPU cycles.

Almost all flexibility in software comes with an extra layer of indirection (ar-
rays, dynamic data structures, recursion, and so on). Not surprisingly, dynamic
binding also depends on an extra layer of indirection. So using pointers and ref-
erences, as opposed to using local and member objects directly, offers additional
flexibility in the form of polymorphism and dynamic binding (see FAQ 5.4).

Here is a small hierarchy with a base class and a derived class.

#include <new>
#include <iostream>
#include <memory>
using namespace std;

class Base {
public:

virtual ~Base() throw();
virtual void f() throw() = 0;

};

typedef auto_ptr<Base> BasePtr;

Base::~Base() throw()
{ }

class Derived : public Base {
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public:
virtual void f() throw();

};

void Derived::f() throw()
{ cout << "Derived::f()\n"; }

Here is a class whose objects have-a pair of Derived objects. One of these
has-a relationships uses a pointer to an object allocated from the heap (remote
ownership; see FAQ 30.8); the other uses a direct member object.

class Fred {
public:
Fred() throw(bad_alloc);
~Fred() throw();
Fred& operator= (const Fred& a) throw();
Fred(const Fred& a) throw();
void method() throw();
void blahBlah() throw(bad_alloc);

private:
BasePtr x_; // Has-a via remote-ownership (see FAQ 30.08)
Derived y_; // Has-a via direct object containment

};

Fred::Fred() throw(bad_alloc)
: x_(new Derived())
, y_()
{ }

void Fred::method() throw()
{
x_->f(); // May or may not invoke Derived::f() depending on

// the exact class of *x_
y_.f(); // Cannot be changed at run-time; always calls

// Derived::f()
}

Note that the behavior of Fred::method() depends on which type of object
is pointed to by member x_. Even though the constructor initializes x_ to point
to a Derived object, other member functions may change this pointer so that
it points to an object of a different derived class, thus changing the behavior of
Fred::method() as the following example shows. First, here is a second derived
class.

class Derived2 : public Base {
public:
virtual void f() throw();

};

void Derived2::f() throw()
{ cout << "Derived2::f()\n"; }
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Here is a member function of class Fred that changes pointer x_ so that it
points to a Derived2 object rather than a Derived object.

void Fred::blahBlah() throw(bad_alloc)
{
BasePtr x2( new Derived2() );
x_ = x2; // Safe: Automagically deletes the object formerly

// pointed to by x_
} // Safe: x2 will be NULL, so this doesn’t delete

// the new object

int main()
{
Fred a;
a.method(); // a.x_ will point to a Derived
a.blahBlah(); // Changes a.x_
a.method(); // a.x_ will point to a Derived2

}

This shows the flexibility advantages of using pointers and freestore. If the
application is database bound or network bound or I/O bound, this sort of
flexibility can be used to improve performance in some cases (see FAQ 33.2).
However if the application is CPU bound and the Fred object happens to be a
bottleneck, read the next FAQ.

33.4 What is a disadvantage of lots of references
and pointers?

In some cases, they may degrade the application’s performance if it is CPU
bound.

In the previous FAQ, member y_ is a Derived object rather than a pointer
to an object. In addition to reducing flexibility, embedding an object inside
another object like this makes it more expensive to copy a Fred object (the
state of the Derived object must be copied, rather than just a pointer to the
object). However objects are usually accessed more often than they are copied,
so reducing the number of layers of indirection can make the application perform
better.

One way that embedding an object inside another (as in y_ in the previous
FAQ) can improve performance over using a pointer (as in x_ in the previous
FAQ) is by inlining virtual function calls. Virtual function calls can be inlined
only when the compiler can statically bind to the function, that is, when it knows
the object’s exact class. If a function doesn’t do very much (a good candidate
for inlining), then inline expansion of the function can improve performance
significantly. As an extreme example, a simple fetch function (which might
occur in a member function that gets a data member’s value) might do only 3
CPU cycles worth of work, yet including the overhead of the virtual function
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call might cost a total of 30 cycles. In this case, it would take 27 + 3 cycles
to do 3 cycles worth of work. If this were on a critical path and the operation
could be inlined, reducing the overhead of this operation by a factor of 10 could
be significant.

In the example that follows, the call x.sample() in main() can be statically
bound to Fred::sample(), because the exact class of local object x is known to
be Fred. Furthermore, since that member function is defined inline, the call
can be inlined. Similarly the call d_.f() in Fred::sample() is known statically
to invoke Derived::f(), this time because member d_ is known to be exactly
a Derived; since Derived::f() is also inline, the call can be inlined. Thus
the entire call graph starting at main()’s x.sample() collapses into nothing:
the only code that will be executed is the code that happens to be within
Derived::f(). However the call to b_->f() in sample2() cannot be inlined
even though b_ apparently points to a Derived, since the compiler has to assume
that some other member function might change b_ so that it points to some other
derived class (see FAQ 33.3).

#include <memory>
using namespace std;

class Base {
public:
virtual ~Base() throw();
virtual void f() throw() = 0;

}; typedef auto_ptr<Base> BasePtr;

Base::~Base() throw()
{ }

class Derived : public Base {
public:
virtual void f() throw();

};

inline void Derived::f() throw() // This is inline even though it’s virtual
{
// If this is short, the inlining can make a significant difference

}

class Fred {
public:
Fred() throw();
virtual void sample() throw();
virtual void sample2() throw();

protected:
Derived d_;
BasePtr b_;

};
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Fred::Fred() throw()
: d_()
, b_(new Derived())
{ }

inline void Fred::sample() throw()
{ d_.f(); } // The call to d_.f() can be inlined

inline void Fred::sample2() throw()
{ b_->f(); } // The call to b_->f() cannot be inlined

int main()
{
Fred x;
x.sample();
x.sample2();

}

Not all compilers are guaranteed to perform these optimizations, but many
do in practice.

33.5 How else can member objects improve per-
formance over pointers?

By reducing the number of freestore allocations and the fragmentation of
memory.

In a CPU-bound application, freestore operations are generally very slow
primitives: the more objects that are allocated from the freestore, the worse the
performance. By moving the member object physically inside the outer object,
as shown in d_ in FAQ 33.4, there are fewer freestore operations.

In addition, memory can become fragmented when the freestore is used ex-
cessively. For example, an entire page of memory may need to be brought into
RAM just because a small piece is being used, even though 90% of the page is
not being used. If this happens frequently, it can lead to thrashing, which can
significantly degrade performance. By moving the member object physically
inside the outer object, as shown in FAQ 33.4 the memory is less fragmented.

In some extreme performance-sensitive applications, cache misses can be a
significant problem. In these cases, data structures must be carefully laid out
to minimize the number of cache lines that need to be brought into the CPU,
which again means minimizing fragmentation.

33.6 Which is better, ++i or i++?

++i is better unless the old value of i is needed.
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The expression i++ usually returns a copy of the old state of i. This requires
that an unnecessary copy be created, as well as an unnecessary destruction of
that copy. For built-in types (for example, int), the optimizer can eliminate
the extra copies, but for user-defined (class) types, the compiler retains the
extra constructor and destructor.

If the old value of i is needed, i++ may be appropriate; but if it’s going to be
discarded, ++i makes more sense. Here’s an example.

#include <iostream>
using namespace std;

class Number {
public:
Number() throw();
~Number() throw();
Number(const Number& n) throw();
Number& operator= (const Number& n) throw();
Number& operator++ () throw();
Number operator++ (int) throw();

};

Number::Number() throw()
{ }

Number::~Number() throw()
{ cout << "dtor "; }

Number::Number(const Number& n) throw()
{ cout << "copy "; }

Number& Number::operator= (const Number& n) throw()
{ cout << "assign "; return *this; }

Number& Number::operator++ () throw()
{ cout << "increment "; return *this; }

Number Number::operator++ (int) throw()
{
Number old = *this;
++(*this);
return old;

}

int main()
{
Number n;
cout << "++n: "; ++n; cout << ’\n’;
cout << "n++: "; n++; cout << ’\n’;

}

The output of this program follows.

++n: increment
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n++: copy increment copy dtor dtor
dtor

The postfix increment creates two copies of the Number—the local object
inside Number::operator++(int)—and the return value of the same (a smarter
compiler would notice that the returned object is always the local variable old,
thus avoiding one of the two temporary copies). The final output line is the
destruction of main()’s n.

Note that the postfix increment operator, Number::operator++(int), can
be made to return void rather than the Number’s former state. This puts the
performance of n++ on a par with ++n but forfeits the ability to use n++ in an
expression.

33.7 What is the performance difference between
Fred x(5); and Fred y = 5; and Fred z =

Fred(5);?

In practice, none. Therefore, use the one that looks most intuitive. This
looks-most-intuitive notion depends on the situation—there is no one-size-fits-
all guideline as to which is best.

Each of the three declarations initializes an object of type Fred using the
single-parameter constructor that takes an int (that is, Fred::Fred(int)).
Even though the last two definitions use the equal sign, none of them use Fred’s
assignment operator. In practice, none of them creates extra temporaries either.

#include <iostream>
using namespace std;

class Fred {
public:
Fred(int) throw();
Fred(const Fred&) throw();
void operator= (const Fred&) throw();

};

Fred::Fred(int) throw()
{ cout << "Fred ctor "; }

Fred::Fred(const Fred&) throw()
{ cout << "Fred copy "; }

void Fred::operator= (const Fred&) throw()
{ cout << "Fred assign "; }

int main()
{
cout << "1: "; Fred x(5); cout << ’\n’;
cout << "2: "; Fred y = 5; cout << ’\n’;
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cout << "3: "; Fred z = Fred(5); cout << ’\n’;
}

For most commercial-grade C++ compilers, the copy constructor is not called
and the output of the program is as follows.

1: Fred ctor
2: Fred ctor
3: Fred ctor

Because they cause the same code to be generated, use the one that looks
right. If class Fred is actually Fraction and 5 is the value of the numerator,
the clearest is the second or third. If Fred is actually Array and 5 is the length
of the Array, the clearest is the first or the third.

Note that if the user cannot access the copy constructor (for example, if the
copy constructor is private:), only the first example is legal. Assuming that
the compiler makes the appropriate optimization (a fairly safe assumption), the
copy constructor isn’t actually called; the user needs access to it as if it were
called.

33.8 What kinds of applications should consider
using final classes and final member func-
tions?

Performance-sensitive applications that are CPU bound.

Final classes and final member functions can squeeze a bit of extra CPU
performance out of flexible applications. They are useful only in applications
that are CPU bound (see FAQ 33.2) and even there, only on the critical path
through those applications.

33.9 What is a final class?

A final class (also known as a leaf class) is a class that permanently forbids
derived classes.

A class should be declared final only if the designers have decided to per-
manently forbid any future classes from deriving from the final class. A class
should not be declared final merely because it doesn’t happen to have any de-
rived classes in the current application. An example follows.

class Shape {
//...

};

/*final*/ class Circle : public Shape {
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//...
};

C++ doesn’t support a keyword for “final”, so a comment is typically used.
This means that the finality of a class is enforced by code reviews rather than
by the compiler. However, it is not hard to get the compiler to enforce the
class’s finality: simply make the constructors private: and provide public:
static create() member functions (the named constructor idiom; see FAQ
16.8). This will prevent derived classes from existing since the derived class
wouldn’t be able to call the (private:) constructor of the final class.

A final class should not have any protected: data member—all its data
members should be private:. Similarly, a final class should not declare any
new virtual functions (though it often overrides inherited virtual functions).

Caution should be used before declaring a class to be final. Nonetheless, doing
so is sometimes useful, as demonstrated in FAQ 33.12.

33.10 What is a final member function?

A final member function (also known as a leaf member function) is a member
function that derived classes are permanently forbidden from overriding.

A member function should be declared final only if the designers have decided
to forbid any future classes from overriding the member function. A member
function should not be declared final merely because it doesn’t happen to be
overridden in the current application. An example follows.

class Shape {
public:
virtual void draw() const throw() = 0;
virtual ~Shape() throw();

};

Shape::~Shape()
{ }

class Circle : public Shape {
public:
/*final*/ void draw() const throw();

};

Non-virtual member functions are implicitly final since a non-virtual mem-
ber function should generally not be redefined in a derived class (see FAQ 29.2).
Similarly, all member functions of a final class are implicitly final member func-
tions because a final class isn’t allowed to have derived classes (see FAQ 33.9).

As with classes, the finality of member functions is enforced by code reviews
rather than by the compiler.
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A final member function should not be marked with the virtual keyword
even if it happens to be an override of a virtual function. If the final member
function is not an override of a virtual from a base class, the easiest way to
make it final is to not use the virtual keyword.

Caution should be used before declaring a member function to be final.
Nonetheless, doing so is sometimes useful, as demonstrated in FAQ 33.12.

33.11 How can final classes and final member
functions improve performance?

By eliminating the overhead associated with dynamic binding.

Final member functions can be called using full qualification (“::”). This al-
lows the compiler to employ static binding, thereby reducing or even eliminating
the cost of dynamic binding. If care is taken, this can allow virtual functions to
be inlined, thus effectively eliminating the CPU overhead associated with the
added flexibility brought by virtual functions. An example follows.

class Shape {
public:
virtual void draw() const throw() = 0;
virtual ~Shape() throw();

};

Shape::~Shape() throw()
{ }

class Circle : public Shape {
public:
/*final*/ void draw() const throw();

};

inline void Circle::draw() const throw()
// Note the inline even though it is virtual

{
// ...

}

void sample(Circle& c) throw()
{
c.Circle::draw();

}

The full qualification (that is, the Circle:: part of c.Circle::draw()) is
safe because final member functions are never overridden in derived classes.
Function sample(Circle&) would also be safe if class Circle were final, since
all members of a final class, including Circle::draw(), are implicitly final.
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Note that it is (hopefully) somewhat uncommon to have lots of functions that
take derived class references, such as sample(Circle&) in the example (see FAQ
33.14).

33.12 When should a nonfinal virtual function
be invoked with a fully qualified name?

Almost never. The one situation where full qualification is appropriate and
useful is where a derived class needs to invoke a member function from a base
class. In this case the derived class uses full qualification (“::”) to make sure the
base class member is invoked, particularly in cases when the member function
has been overridden in a derived class.

However, normal user code should avoid full qualification. That is, when x is
a Fred& and f() is a virtual member function of class Fred, normal user code
should use x.f() rather than x.Fred::f(). This is because full qualification
subverts dynamic binding. If the actual class of the referent is something derived
from Fred, the wrong member function may be invoked. An example follows.

class Shape {
public:
virtual void draw() throw() = 0;
virtual void hide() throw() = 0;
virtual ~Shape() throw();

};

Shape::~Shape() throw()
{ }

class Circle : public Shape {
public:
/*final*/ void draw() throw();
virtual void hide() throw();

};

void Circle::draw() throw()
{ }

void Circle::hide() throw()
{ }

void sample(Circle& c) throw()
{
c.Circle::draw(); // GOOD: Circle::draw() is a final
c.Circle::hide(); // EVIL: Subverts dynamic binding
c.hide(); // GOOD: Always calls the right hide() implementation

}

In sample(Circle& c), if c actually refers to a derived class of Circle that
overrides the hide() member function, the call to c.Circle::hide() invokes
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the wrong member function.

class FancyCircle : public Circle {
public:
virtual void hide() throw();

};

void FancyCircle::hide() throw()
{ }

int main()
{
FancyCircle x;
sample(x);

}

33.13 Should full qualification be used when call-
ing another member function of the same
class?

Only if the called member function is a final member function.

If D::f() calls this->g(), full qualification (for example, this->D::g())
should be used only if D::g() is a final member function or D is a final class.

class B {
public:
virtual void f() throw() = 0;
virtual void g() throw() = 0;
virtual void h() throw() = 0;
virtual ~B();

};

B::~B()
{ }

class D : public B {
public:
virtual void f() throw();
virtual void g() throw();
/*final*/ void h() throw();

};

void D::f() throw()
{
g(); // GOOD: Nonfinal member function called without full

// qualification
D::h(); // GOOD: Final member function called with full

// qualification

358



D::g(); // EVIL: Do not call nonfinal member function with full
// qualification!

}

void D::g()
{ }

void D::h()
{ }

Although it seems as if D::f() should be able to use full qualification when
calling D::g(), such a thing is dangerous and invokes the wrong function in
some cases. For example, if the this object were actually of a further derived
class that has an override of g(), the wrong function would be invoked:

class D2 : public D {
public:
virtual void g() throw();

};

void D2::g()
{ }

int main()
{
D2 x;
x.f();

}

Note that this is simply a specialization of the guideline presented in FAQ
33.12.

33.14 Do final classes and final member func-
tions cause a lot of code duplication?

Some, but in practice the cost is insignificant if the application is designed
according to the guidelines presented in this FAQ.

First, here is a description of the problem we’ve trying to solve. It seems
inevitable that someone someday somewhere may come up with a reason to
inherit from a final class and/or override a final member function. When this
becomes desirable, the workaround will probably involve some code duplication.
From the example in FAQ 33.12, if someone someday somewhere found it useful
to override the Circle::draw() member function, they would instead have to
copy the Circle class’s code and create a modified draw() member function.

This code duplication has a nonzero cost. Indeed in small projects the volume
of code within the derived classes is a significant portion of the whole system,
which means that the cost can be noticeable on a small enough project. And for
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those unfortunate souls who believe that inheritance is for reuse (it’s not; see
FAQ 8.12), disallowing inheritance is equivalent to saying, “Don’t reuse this.”

However, on a large project that is designed according to the principles in
this book, the cost of this sort of code duplication is normally insignificant,
especially if final classes and member functions are used judiciously (see FAQs
33.9, 33.10). This is one of the many ways in which large projects differ from
small projects. In particular, in a large project the most important goal is the
stability of the design, not the reusability of the code; and within the code
the most important asset is the code that uses base class references, not the
code in the derived classes. On small projects, reuse is more important than
stability, and the code within the derived classes is a large portion of the total,
but that mentality is not scalable. Applying a small project mentality to a large
project is a recipe for project failure. When working on a large project, do not
extrapolate lessons learned on small projects (see FAQ 39.8).

A key design goal of most OO applications, especially large OO applications,
is to allow new derived classes to be added without affecting existing code
(remember: stability, not reuse per se). Part of this goal is achieved by building
the bulk of the software so that it is ignorant of the derived classes. What this
normally boils down to is making most parameters to be references/pointers to
the abstract base classes rather than references/pointers to the concrete derived
classes. Continuing the example from FAQ 33.9 the application as a whole
should contain very few (ideally no) functions with parameters of type Circle&
or Circle*; a much large number of functions should take parameters of type
Shape& or Shape*.

The next step in a good OO design is minimize the amount of complex decision
logic within the functions (see FAQ 27.3). Part of this goal can be achieved
by including important functionality of the derived classes in the base class’s
interface. This is a balancing act—adding too many member functions to the
base class makes it difficult for some derived classes, but adding too few requires
the users of the base class to use dynamic typing. Nonetheless, the flexibility
and value of the system rest on the ability of the designer to find the best
possible balance.

The result of applying these rules is both stability and reuse. But the reuse is
what the derived classes can give, not what they can get. The reuse is the reuse
of all the code that uses the abstract base class references and pointers, which
(hopefully) is the bulk of the system. In other words, the derived classes don’t
inherit so that they can have what the base class has; they inherit so that they
can be what the base class is. Inheritance is not about what the derived class
can get; it is about providing a stable and consistent set of semantics to users of
base class references and pointers. Inheritance is not for reuse (see FAQ 8.12).
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33.15 Why do some developers dislike final mem-
ber functions and final classes?

Because they don’t see the big picture and/or because they don’t follow the
design guidelines presented in FAQ 33.14.

Suppose class Circle inherits from abstract base class Shape, and suppose
Circle is declared to be final (see FAQ 33.9 for the code). If the system was
designed using the principles from FAQ 33.14, then there are very few Circle&
used in the application as a whole. Therefore, there is no inherent pressure for
new classes to inherit from Circle; they can just as easily inherit from Shape.

Even if a new derived class could have benefited from inheriting some code
from Circle, the code bulk of class Circle would be very small compared to
the rest of the system, particularly on large systems, so any cost savings would
be insignificant. The larger the system, the less significance any individual class
has.

The moral is to focus on the big picture.

33.16 Can a programming language — rather
than just the compiler — affect the per-
formance of software?

Yes.

Sometimes it is assumed that software performance is limited only by the
compiler, not by the programming language. However, this is generally not
the case. The efficiency of the executable is, at least in part, due to the lan-
guage as well as the compiler. For example, compilers for dynamically typed
OO languages cannot statically resolve member function invocations, because
every member function is virtual and every object is passed by pointer. There-
fore, every member function dispatch needs to go through the dynamic-binding
mechanism, which generally costs a function call. Thus, a member function with
10 statements in many OO languages almost necessarily costs at least 10 func-
tion calls. The efficiency of the dynamic-binding mechanism can be improved,
but it rarely can be improved enough to inline-expand these calls (a technique
called customization can alleviate some of these issues in dynamically typed OO
programming languages).

Languages such as C++ require the compiler to work harder, since not all
member functions are necessarily virtual, and even if they are all virtual, not
all objects are allocated form the heap. In addition, statically bound member
functions can be expanded inline (see FAQ 13.1).
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Chapter 34

COM and ActiveX

34.1 Who should read this chapter?

Developers who are wondering about COM and ActiveX and how to take
advantage of them.

The purpose of this chapter is to provide C++ developers with an introduction
to COM and ActiveX. Long-time Unix developers will want to read it to get
an overview of COM and ActiveX and the role they play in building C++
applications for Windows. Windows developers who have not taken the COM
plunge will want to read this chapter to see how they can exploit COM and
ActiveX to build reusable components that are easy to share in the Windows
environment.

34.2 What is the Component Object Model?

The Component Object Model (COM) is the Windows standard that defines
— at the most fundamental level — what components are, how they are iden-
tified, how they are located, how they are loaded, how they are accessed, and
how they communicate. COM is the mode widely used component model in the
world.

In this context, components are reusable chunks of software with well-defined
interfaces and encapsulated implementations, are defined in a language-independent
manner, and are distributed in binary form.

To better understand COM, it is crucial to bear in mind that it is not an
object-oriented language but rather a standard for defining components (how-
ever, the components are often referred to as objects). C++ is a programming
language with a compiler. COM is a set of programming conventions. Therefore,
many of the things that the C++ compiler does automatically COM requires
the programmer to do manually. For example, the C++ compiler/linker can
guarantee that all class names are unique. COM, on the other hand, relies on a
mechanism that generates unique class names (called Class Identifiers; see FAQ
34.8) independent of any compile time or link time checks.
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COM is language independent in that it does not prescribe any particular
programming language for either developing or using COM classes. COM pro-
vides location transparency in that it allows callers to create and access COM
objects without regard for where the objects are running (whether they are in
the same process or in other processes or even on remote machines).

COM has survived and is thriving due to the growing interest in component
technology. COM is important because it is the core technology on which all
other ActiveX and OLE technologies are built. And understanding COM is the
key to understanding and effectively exploiting all the other ActiveX and OLE
technologies.

34.3 What are ActiveX and OLE?

In the beginning, OLE stood for Object Linking and Embedding. OLE2 was
an umbrella term that covered a family of Microsoft technologies for building
software components and linking applications:

• Component Object Model (COM), Structured Storage

• Uniform Data Transfer, Drag and Drop

• Error Reporting and Exception Handling

• OLE Automation

• OLE Compound Documents

• OLE Custom Controls (OCX)

At the time OLE was popular, the future of the desktop computer was GUIs
and compound documents. You might even remember that OLE and OpenDoc
(from IBM and Apple) were jousting to see who would rule the compound
document kingdom.

Well, since that time, the Internet and the World Wide Web have replaced
compound documents as the future of desktop computing, and ActiveX (which
is web-centric) has replaced OLE (which is compound-document-centric) as the
marketing buzzword du jour. OLE still exists, but these days its meaning is
restricted to compound document technology.

ActiveX is a loosely defined umbrella term Microsoft uses to refer to a number
of initiatives and technologies related to (but not limited to) the Web/Internet
and Microsoft’s component strategy. The important thing to remember is that
ActiveX is a marketing term whose meaning can (and does) shift as it suits the
suits in Redmond.

The aspects of ActiveX discussed in this book are those that are related to
Microsoft’s component strategy. This chapter does not try to explain and jus-
tify the numerous ambiguities surrounding ActiveX — call your local Microsoft
representatives and ask them for an explanation.
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34.4 What does the name Component Object
Model mean?

Microsoft’s component architecture.

Component: Refers to the fact that COM defines reusable chunks of software
in a language-independent manner according to a binary object model.

Objects: Refers to the fact that the software components being defined resem-
ble objects in the sense that they have a well-defined interface that encapsulates
the implementation and allows multiple instances to be created and used.

Models: Refers to the fact that COM is primarily a specification (rather than
an implementation) of how to build and use component objects.

COM provides a way of defining components in a way that is more or less
language independent, location independent, operating system independent, and
hardware independent.

By the way, there is an equally valid and less grandiose way of looking at
COM. COM can be viewed simply as a packaging technology that consists of
a set of conventions and supporting libraries that allow chunks of software to
locate one another and interact in an object-oriented manner. It is sometimes
worthwhile to remember this, since it helps to explain why COM is the way it
is.

34.5 What is a “binary object model”?

Component architecture defined at the machine level.

COM is called a binary object model because the COM specification defines
how objects are laid out in memory (hence binary). This permits any program-
ming language or any development tool to create a COM object as long as it
is capable of laying out the memory in a manner that conforms with the COM
specification and calling the appropriate COM routines.

Compare this to an object-oriented language, like C++, which defines classes
and objects using a language object model. Specially, C++ defines what con-
stitutes a legal class definition in terms of the syntax and semantics of a pro-
gramming language and then leaves it up to the compiler to translate the source
code into an executable program.

In reality, COM is not Windows-specific; there are COM implementations for
other operating systems (in particular, Software AG has ported COM/DCOM
to Sun Solaris, 64-bit Digital Unix, and IBM’s OS 390), but COM was designed
with Windows as its first and foremost priority.
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34.6 What are the key features of COM?

Language transparency, location transparency, program to the interface rather
than to the implementation, unique naming of classes and interfaces, meta data,
and a system registry.

Language transparency: COM defines object interfaces in a manner that is
independent of any particular programming language. This means that a caller
can use a COM object without knowing or caring what programming language it
is implemented in. Conversely, the COM class can be implemented in a variety
of programming languages without concern for what programming language will
be used by callers.

Location transparency: COM provides the infrastructure so that callers can
create and access COM objects no matter whether the COM object is running
in the caller’s process as an in-process object or running in another process on
the same computer or running remotely on another computer.

Interface definition: A COM interface is a set of related methods that have a
well-defined contract but no implementation (see FAQ 34.9). The signatures for
the methods of a COM interface can be defined using a programming language
(such as C++ and C) or the Microsoft Interface Definition Language (MIDL),
which is based on the Distributed Computing Environment Interface Definition
Language (DCE IDL) specification of the Open Software Foundation.

Unique Naming of Classes and Interfaces: COM classes and interfaces have
unique “names” called globally unique identifiers (GUIDs; see FAQ 34.7). Unique
names are required so that the names of components being developed by differ-
ent groups in different organizations and in different parts of the world do not
accidentally clash.

Meta data: COM provides support for meta data (that is, information about
interfaces and classes) in the form of type libraries (see FAQ 34.29). Type
libraries contain machine-readable definitions of COM interfaces and/or COM
classes and can be accessed programmatically at runtime.

System Registry: COM stores static information about classes, interfaces,
and type libraries in a registry so that it can be looked up at runtime. The
information in the registry can be accessed prior to any objects being created.
In fact, the registry contains the information necessary for loading COM servers
(see FAQ 34.12), locating class objects, and creating COM objects. The registry
is a hierarchy of key/value pairs and contains information such as the name of
the file containing a COM class and the name of the file that contains a type
library that defines a particular COM interface.

34.7 What are GUIDs?

Unique names that are about as user friendly as a bar code.
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Globally Unique Identifiers (GUIDs) are 128-bit, globally unique identifiers
(in this context, “globally” literally means globally).

GUIDs are based on the universally unique identifiers developed and used by
OSF for DCE. COM uses GUIDs for several purposes but the two most impor-
tant are Class Identifiers and Interface Identifiers. Class Identifiers (CLSIDs)
are used to give COM classes unique class names. Similarly, Interface Identifiers
(IIDs) are used to give unique names to COM interfaces.

Since GUIDs identify COM classes and COM interfaces, they are part of the
definition of class or interface and must be available to the calling program. This
is usually done by distributing the GUIDs in header files and/or Type Libraries.

Although GUIDs are 128-bit numbers, they are usually referred to using
mnemonics (i.e., symbolic names). Hey, look, there are a couple of GUIDs
going by right now.

#include "wtypes.h"

// {FC3B3F61-BCEC-11D1-91FE-E1CBED988F66}
DEFINE_GUID(IID_IStack,

0xFC3B3F61, 0xBCEC, 0x11D1, 0x91, 0xFE,
0xE1, 0xCB, 0xED, 0x98, 0x8F, 0x66);

// {FC3B3F62-BCEC-11D1-91FE-E1CBED988F66}
DEFINE_GUID(CLSID_CoStack,

0xFC3B3F62, 0xBCEC, 0x11D1, 0x91, 0xFE,
0xE1, 0xCB, 0xED, 0x98, 0x8F, 0x66);

This defines two GUIDs using the COM macro DEFINE_GUID. The macro has
several parameters — the first parameter defines the mnemonic for the GUID
and the remaining parameters define the 128-bit number (the numbers can be
generated using the COM utility program guidgen.exe).

The first GUID defines an interface identifier called IID_IStack for the COM
interface IStack. The second GUID defines a class identifier called CLSID_CoStack
for the COM class CoStack. After these definitions, the GUIDs can be referred
to using IID_IStack and CLSID_CoStack without having to write out the 128-
bit number.

COM uses class identifiers in the same way C++ uses class names. For
example, when a caller wishes to create a COM object, it specifies the CLSID
for the COM class and COM uses this CLSID to locate and create the correct
type of COM object.

Besides class identifiers and interface identifiers, COM defines several other
types of GUIDs including Type Library Identifiers (LIBIDs) and Category Iden-
tifiers (CATIDs).
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34.8 Why does COM need GUIDs (and CLSIDs
and IIDs)?

To uniquely identify software components.

In C++, classes have names and the name of a class must be unique in the
context of a linked program (otherwise the compiler or the linker will detect the
duplicate names and report an error). Namespaces have been added to C++ to
reduce the chances of name conflicts, but they don’t eliminate the possibility of
name conflicts. If there are name conflicts, you have to come up with some way
to make all the class names unique before you can get your program to compile
and link.

The situation is slightly more complex with COM. With COM, you have
thousands of developers working around the world and defining thousands of
components that are delivered to users as binary components. Imagine if COM
used nice short text names (like C++ does) for class names and interface names.
How many COM classes and COM interfaces, worldwide, do you think would
be called String? List? Date? So, the chances of name clashes are high.

Furthermore, COM classes are delivered to you as binary components, so you
can’t modify them to resolve name conflicts. After all, what are you going to
do? Edit the binary? That seems a little extreme. Or maybe you could call the
vendor and have them change the name of the class and ship you a new version?
That’s impractical.

So the solution is to have names that are 128 bits long (giving a namespace
of 2128 unique names) and to employ a method that makes sure that everyone
generates different names. One of these methods is to have programmers use
the utility program guidgen.exe to generate GUIDs. This program generates
GUIDs based on unique information built into the network card of the computer.
Another method is to call the COM routine CoCreateGuid to generate new
GUIDs (there are some other methods we won’t discuss here, but you get the
general idea).

Of course these methods can be compromised, but in practice, the likelihood
of two developers creating duplicate GUIDs is so small that no one worries about
it.

34.9 What is an interface?

Pure specification without any implementation.

A COM interface is a set of related methods that have a well-defined contract
but have no implementation. A COM class implements one or more interfaces,
and all the services a COM class exports are defined by the interfaces it im-
plements. Callers access the services of a COM object by calling the methods
defined by its interfaces. COM interfaces serve to decouple the caller’s view
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of the services provided by a COM class from how the COM class implements
those interfaces.

In C++ terms, an interface is an abstract class that defines a set of public,
pure virtual functions and contains no data members. By convention, the names
of COM interfaces begin with a capital I (for interface). The following interface
is called IUnknown and it defines three methods — QueryInterface, AddRef,
and Release (for more information on IUnknown, see FAQ 34.10).

class IUnknown {
public:
virtual HRESULT QueryInterface(REFIID riid, void** ppv) = 0;
virtual unsigned long AddRef() = 0;
virtual unsigned long Release() = 0;

};

COM interfaces and COM classes are distinct concepts, and COM interfaces
are specified independently of any particular COM class and independently of
any particular implementation of the interface. In this way, COM interfaces
resemble Java interfaces. Unfortunately, C++ provides only one construct, the
class, for representing classes and interfaces, and therefore a certain amount of
programmer discipline is required when using C++ to achieve the same effect.

Once defined, a COM interface and its construct can never change. Thus,
every implementation of the interface must satisfy the same contract no matter
what programming language is used, no matter what operating system is used,
no matter what data structures are used, and no matter what performance
optimizations are performed. In this way, objects and their callers can work
together even when they are implemented by different people using different
tools and working in different organizations and who don’t know or communicate
with each other. In other words, COM interfaces are substitutable.

Notice that an interface cannot define concrete data members (whereas C++
permits data members to be declared in the class body). However, an interface
can define get/set member functions, thus indicating that there is some abstract
state that can be manipulated through the interface. The COM class that
implements the interface is responsible for defining the concrete data members.

A key element of the COM standard is the binary specification of COM in-
terfaces. A COM interface is an array of function pointers similar to the virtual
function table generated by most C++ compilers. With COM interfaces, unlike
C++ virtual function tables, the location of the interface pointer is not linked
to the location of the object’s data. COM makes the location of the COM ob-
ject’s data invisible to the caller in the interests of decoupling and guaranteeing
language and location transparency. This separation of the interface from the
concrete data promotes location transparency because it means that a COM
interface can be accessed by a caller (through a proxy) even when the actual
COM object (and the object’s data) is located in another process.
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Microsoft has defined a set of COM interfaces (usually referred to as the
standard interfaces) that cover a wide range of services including object creation,
memory allocation, structured storage, and compound documents, and more are
being added all the time. You can define your own interfaces, too; these are
referred to as custom interfaces.

34.10 What is the IUnknown interface?

The IUnknown interface is the interface from which all other interfaces are
derived. Here is the C++ definition of the IUnknown interface.

class IUnknown {
public:
virtual HRESULT QueryInterface(REFIID riid, void** ppv) = 0;
virtual unsigned long AddRef() = 0;
virtual unsigned long Release() = 0;

};

The IUnknown interface defines the following three methods.

1. QueryInterface: Allows the caller to dynamically discover whether a
particular object supports a particular interface. The caller passes the
IID of the interface it is looking for to QueryInterface (via riid, which
is a reference to an IID), and if the COM object implements the specified
interface, QueryInterface returns a pointer to it (via ppv, which is a
pointer to a pointer to a void); otherwise it returns NULL.

2. AddRef: Increments the reference count of a COM object, and the object
uses this reference count to know when it can remove itself from memory.

3. Release: Decrements the reference count of a COM object and causes the
object to destroy itself when the reference count is reduced to zero.

The pervasive nature of this interface has a profound impact on COM.

First, a COM object that has multiple interfaces may have multiple imple-
mentations of the IUnknown interface. This is because each interface is derived
from IUnknown and therefore might have its own implementation of IUnknown.

Second, all calls to QueryInterface for a single COM object must behave in
the same manner at all times. For example, if at one point QueryInterface
returns non-NULL when asked whether this COM object supports the IStack
interface, then it must always return a valid interface pointer and cannot re-
turn NULL. As another example, suppose a caller has a pointer to one interface
of a COM object and uses that interface pointer to call QueryInterface to
ask if that object supports IStack. Then, all the other implementations of
QueryInterface provided by all the other interfaces of the COM object must
respond in the same manner (it would be illegal for some implementations of
QueryInterface to return an interface pointer and for other implementations
to return NULL.
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Third, in a very loose sense, QueryInterface is similar to the RTTI mecha-
nism of C++. It is the mechanism by which a caller gains access to the other
services defined by an object.

Fourth, AddRef and Release point to the fact that the lifetimes of COM ob-
jects are controlled through reference counting. Thus, AddRef must be called
whenever an interface pointer for a COM object is created or copied, and
Release must be called whenever an interface pointer is destroyed (by the way,
AddRef is called implicitly by CoCreateInstance() and QueryInterface()).

Fifth, the IID for IUnknown, is called IID_IUnknown, and it is defined in the
COM header files since it is a standard interface defined by Microsoft.

34.11 How many ways are there to specify COM
interfaces?

For better or worse there are several ways to define a COM interface.

Suppose we want to define the interface IStack, which provides facilities for
pushing and popping integers. One technique is to define the COM interface as
a C++ abstract base class.

#include "wtypes.h"

// {FC3B3F61-BCEC-11D1-91FE-E1CBED988F66}
DEFINE_GUID(IID_IStack,
0xFC3B3F61, 0xBCEC, 0x11D1, 0x91, 0xFE,
0xE1, 0xCB, 0xED, 0x98, 0x8F, 0x66);

class IStack : public IUnknown {
public:
virtual HRESULT Push(long value) = 0;
virtual HRESULT Pop(long* value) = 0;
virtual HRESULT Empty(long* flag) = 0;

};

This technique would be the most familiar to C++ programmers. Notice how
IStack is derived from IUnknown (all COM interfaces must be derived either
directly or indirectly from IUnknown). The problem with this definition is that
it is language specific and can’t be used by callers written in other languages.
Also you’d have to provide code for marshaling the parameters if the caller using
IStack and the COM object implementing IStack were running in different
processes.

Another technique is to define the interface using a set of COM-defined
macros. This technique defines the interface in a manner that hides the differ-
ences between programming languages (e.g., C and C++) and operating systems
(e.g., Windows and Macintosh).
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#include "wtypes.h"

// {FC3B3F61-BCEC-11D1-91FE-E1CBED988F66}
DEFINE_GUID(IID_IStack,
0xFC3B3F61, 0xBCEC, 0x11D1, 0x91, 0xFE,
0xE1, 0xCB, 0xED, 0x98, 0x8F, 0x66);

DECLARE_INTERFACE_(IStack, IUnknown)
{
// *** IStack methods *** //
STDMETHOD(Push) (THIS_ long value) PURE;
STDMETHOD(Pop) (THIS_ long* value) PURE;
STDMETHOD(Empty) (THIS_ long* flag) PURE;

};

The tags such as DECLARE_INTERFACE_, STDMETHOD, THIS_, and PURE are
COM macros that expand differently based on the operating system and pro-
gramming language. This is a better approach than the pure C++ approach
because it allows the same interface definition to be used in multiple environ-
ments without changes. But you’d still have to provide code for marshaling
the parameters if the caller using IStack and the COM object implementing
IStack were running in different processes.

A third technique is to define the interface using the Microsoft Interface Def-
inition Language (MIDL). MIDL allows interfaces to be defined in a language-
independent manner. MIDL is based on DCE’s IDL syntax and includes exten-
sions to support COM programming. MIDL is used for defining COM interfaces,
defining what interfaces a COM class implements (see FAQ 34.12), defining dis-
patch interfaces (see FAQ 34.25), and generating type libraries (see FAQ 34.29).
Here is the MIDL definition of the IStack interface.

[ object,
uuid(FC3B3F61-BCEC-11D1-91FE-E1CBED988F66)

]
interface IStack : IUnknown
{

import "unknwn.idl";
HRESULT Push([in] long value);
HRESULT Pop([out, retval] long* pVal);
HRESULT Empty([out, retval] boolean* pVal);

};

MIDL has some major advantages.

• MIDL is language indepent.

• MIDL clearly separates interface from implementation.

• MIDL provides Microsoft-specific features that are not found in other
IDLs.
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• The MIDL compiler can automatically generate proxies and stubs (see
FAQ 34.15 for more information regarding proxies and stubs) capable
of marshaling parameters across process boundaries. More specifically,
for a caller running in one process to talk to a COM object in another
process, the COM communication layer needs to understand the exact
size and nature of the data involved in the interprocess communication.
COM provides built-in support for marshaling standard interfaces (such as
IUnknown). However, no such built-in support exists for custom interfaces
(such as IStack). By defining a COM interface using MIDL and compiling
it with the MIDL compiler, you get source code for a proxy/stub DLL
as a by-product. The communication layer uses this proxy/stub pair to
marshal parameters between objects and their callers.

MIDL also has some limitations, including the fact that it is relatively com-
plex, all out parameters must be pointers (which is an issue only for program-
mers and programming languages who are pointer challenged), function name
overloading is not supported, and the return type for methods in object inter-
faces must be an HRESULT (although methods can return any number of results
by defining one or more parameters as out parameters or in/out parameters).

Define interfaces using MIDL when possible: it is the most general and the
easiest to work with.

34.12 What are COM classes and COM objects?

The concrete implementation of one or more COM interfaces.

A COM class is a body of code that implements all the functions of at least
one COM interface. Every COM class has a unique CLSID and callers use the
unique CLSID when they want to create objects that are instances of the COM
class.

In the following example, the COM class CoStack implements the IUnknown
interface and the IStack interface. The following code fragment declares the
external interface including the CLSID for CoStack, the IStack interface, and
the IID for the IStack interface.

#include "wtypes.h"

extern HRESULT STACK_E_UNDERFLOW;

/* {FC3B3F61-BCEC-11D1-91FE-E1CBED988F66} */
DEFINE_GUID(IID_IStack,
0xFC3B3F61, 0xBCEC, 0x11D1, 0x91, 0xFE,
0xE1, 0xCB, 0xED, 0x98, 0x8F, 0x66);

DECLARE_INTERFACE_(IStack, IUnknown) {
// *** IStack methods *** //
STDMETHOD(Push) (THIS_ long value) PURE;
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STDMETHOD(Pop) (THIS_ long* value) PURE;
STDMETHOD(Empty) (THIS_ long* flag) PURE;

};

// {FC3B3F62-BCEC-11D1-91FE-E1CBED988F66}
DEFINE_GUID(CLSID_CoStack,
0xFC3B3F62, 0xBCEC, 0x11D1, 0x91, 0xFE,
0xE1, 0xCB, 0xED, 0x98, 0x8F, 0x66);

Class CoStack declares all the methods of the IUnknown interface (by the
way, ULONG is a typedef for unsigned long) and the IStack interface. It also
declares two private data members — refCnt_ is used to implement reference
counting for the object and data_ is the data structure used to hold the elements
of the stack.

#include <stack>
using namespace std;

class CoStack : public IStack {
public:

// *** IUnknown methods *** //
STDMETHOD(QueryInterface) (REFIID riid, void** ppv);
STDMETHOD_(ULONG,AddRef) ();
STDMETHOD_(ULONG,Release) ();

// *** IStack methods *** //
STDMETHOD(Push) (long value);
STDMETHOD(Pop) (long* value);
STDMETHOD(Empty)(long* flag);

CoStack();
private:

ULONG refCnt_;
stack<long> data_;

};

CoStack::CoStack()
: refCnt_(0)
, data_()
{ }

Note that class CoStack has a constructor even though the COM specification
does not define constructors for COM classes. In this case, the implementation
is taking advantage of a C++ feature. In particular, the C++ constructor
initializes the data structures of the C++ object, which happens to initialize
the data structures of the COM object at the same time. The lesson here is
that class CoStack is a mix of COM features and C++ features, and sometimes
it is hard to tell them apart.
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The COM class implements the three methods of the IUnknown interface.
QueryInterface tests to see if the caller is requesting one of the two interfaces
that this class implements. If the caller is requesting a legitimate interface for
this class, QueryInterface returns a pointer to that interface; otherwise, it
returns NULL. Notice that QueryInterface copies an interface pointer so that
it calls AddRef. AddRef increments the reference count for this object. Release
decrements the reference count and destroys the object if the reference count is
zero.

STDMETHODIMP CoStack::QueryInterface(REFIID riid, void** ppv)
{
if (riid == IID_IUnknown)

*ppv = this;
else if (riid == IID_IStack)

*ppv = this;
else {

*ppv = NULL;
return E_NOINTERFACE;

}
AddRef();
return S_OK;

}

STDMETHODIMP_(ULONG) CoStack::AddRef()
{ return ++refCnt_; }

STDMETHODIMP_(ULONG) CoStack::Release()
{
ULONG result = --refCnt_;
if (result == 0)

delete this;
return result;

}

The COM class also implements the methods of the IStack interface. These
all look pretty normal except for the fact that the return values for the methods
are status codes (S_OK if the call succeeds, STACK_E_UNDERFLOW if an underflow
condition is detected).

STDMETHODIMP CoStack::Push(long value)
{
data_.push(value);
return S_OK;

}

STDMETHODIMP CoStack::Pop(long* value)
{
if (data_.empty())

return STACK_E_UNDERFLOW;
*value = data_.top();
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data_.pop();
return S_OK;

}

STDMETHODIMP CoStack::Empty(long* flag)
{
*flag = data_.empty() ? 1 : 0;
return S_OK;

}

Every COM class has a class object that acts as the meta class for the COM
class. The most important function that the class object plays is that it provides
the class factory for its COM class by implementing the IClassFactory interface
(or the IClassFactory2 interface). Here is the class object for class CoStack
(some details have been left out of the example code).

class CoStackClassObject : public IClassFactory {
public:
STDMETHOD(QueryInterface) (REFIID riid, void** ppv);
STDMETHOD_(ULONG,AddRef) ();
STDMETHOD_(ULONG,Release) ();
STDMETHOD(CreateInstance) (IUnknown* outer, REFIID riid,

void** ppv);
STDMETHOD(LockServer) (BOOL b);

};

STDMETHODIMP CoStackClassObject::QueryInterface(REFIID riid,
void** ppv)

{
if (riid == IID_IUnknown || riid == IID_IClassFactory)

*ppv = this;
else {

*ppv = NULL;
return E_NOINTERFACE;

}
AddRef();
return S_OK;

}

STDMETHODIMP_(ULONG) CoStackClassObject::AddRef() { /*...*/ }

STDMETHODIMP_(ULONG) CoStackClassObject::Release() { /*...*/ }

STDMETHODIMP CoStackClassObject::CreateInstance
IUnknown* outer, REFIID riid, void** ppv)

{
*ppv = NULL;
if (outer != NULL)

return CLASS_E_NOAGGREGATION;
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CoStack* p = new CoStack;
if (p == NULL)

return E_OUTOFMEMORY;
p->AddRef();
HRESULT hr = p->QueryInterface(riid, ppv);
p->Release();
return hr;

}

STDMETHODIMP CoStackClassObject::LockServer(BOOL b) { /*...*/ }

The class object is registered in the system registry (see FAQ 34.6) and is used
during object creation. Callers create COM objects by calling the API function
CoGetClassObject, obtaining a pointer to the class object’s IClassFactory
interface, and calling CreateInstance (callers may also call CoCreateInstance,
which is a helper function that performs this series of actions).

Every COM class and its class object live within a COM server (on Windows
this means either a DLL or an EXE), which contains the executable code that
implements the class and the class object. When the COM server is a DLL,
COM locates and loads the DLL when the caller creates the first object of any
class that lives within the server. When the COM server is an EXE, COM
locates and runs the EXE when the caller creates the first object of any class
that lives within the server.

Most COM classes implement more than one interface. Typically this is done
in C++ using nested classes or multiple inheritance. For details, refer to a book
dedicated to COM.

34.13 How hard is it for callers to create and
use a COM object?

Not that hard. To create and use a COM object, a caller needs to

• Include the external interface of the COM class. In this case the caller
declares the IID for the IStack interface, the CLSID for CoStack, and
the IStack interface. Usually all these declarations are provided by the
writer of the COM class in an include file.

• Create the object (line 1). The program calls CoCreateInstance passing
it the class identifier for the COM class that is being created (CLSID_CoStack
in this case), the interface identifier for IUnknown (IID_IUnknown), and a
pointer to an interface pointer (&unknownPtr in this case), which CoCreateInstance
uses to return a pointer to the IUnknown interface for the newly created
object.

• Query the object for one or more of its interfaces (line 2). The program
calls QueryInterface passing it the interface identifier for the interface
it wants access to (IID_IStack in this case) and a pointer to an interface
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pointer (&stackPtr in this case), which QueryInterface uses to return a
pointer to the requested interface for the object (the interface pointer is
NULL if the object does not support the requested interface).

• Use the services provided by the interface (lines 3 and 4). The program
calls the Push and Pop methods of the IStack interface using the interface
pointer returned by QueryInterface.

• Release the object (lines 5 and 6). The program holds two interface point-
ers for the Stack object (stackPtr andunknownPtr in this case), and
therefore it calls Release once for each interface pointer it holds.

#include "wtypes.h"
#include <initguid.h>

// {FC3B3F61-BCEC-11D1-91FE-E1CBED988F66}
DEFINE_GUID(IID_IStack,
0xFC3B3F61, 0xBCEC, 0x11D1, 0x91, 0xFE,
0xE1, 0xCB, 0xED, 0x98, 0x8F, 0x66);

// {FC3B3F62-BCEC-11D1-91FE-E1CBED988F66}
DEFINE_GUID(CLSID_CoStack,
0xFC3B3F62, 0xBCEC, 0x11D1, 0x91, 0xFE,
0xE1, 0xCB, 0xED, 0x98, 0x8F, 0x66);

class IStack : public IUnknown {
public:
STDMETHOD(Push) (long value);
STDMETHOD(Pop) (long* value);
STDMETHOD(Empty)(long* flag);

};

void useStack()
{
IUnknown* unknownPtr = NULL;
HRESULT hr = CoCreateInstance(CLSID_CoStack, // Line 1

NULL, CLSCTX_ALL, IID_IUnknown, (void**)&unknownPtr);

if (SUCCEEDED(hr)) {
IStack* stackPtr = NULL;
hr = unknownPtr->QueryInterface(IID_IStack, // Line 2

(void**)&stackPtr);

if (SUCCEEDED(hr)) {
hr = stackPtr->Push(10); // Line 3
long val;
hr = stackPtr->Pop(&val); // Line 4
stackPtr->Release(); // Line 5

}
unknownPtr->Release(); // Line 6

}
}
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The caller must take a couple of steps to initialize COM and signal when it
is finished using COM:

• Initialize COM (line 7). The program loads the COM libraries by calling
CoInitialize.

• Uninitialize COM (line 8). The program unloads the COM libraries by
calling CoUninitialize.

int main()
{
HRESULT hr = CoInitialize(NULL); // Line 7
if (SUCCEEDED(hr)) {

useStack();
}
CoUninitialize(); // Line 8
return 0;

}

Of course, there are a zillion details that we don’t have space to go into here.

34.14 How does COM provide language trans-
parency?

The COM binary object model.

COM is language independent due to its binary specification of how COM
classes and interfaces are laid out in memory. For example, the binary definition
of an interface is a pointer to a table of function pointers.

Thus, even though the examples use C++ to define the IUnknown and IStack
interfaces, the key step is for the C++ compiler to turn the C++ class definitions
into a pointer to a table of function pointers (or a virtual function table).

This binary definition of classes and interfaces makes it possible for any lan-
guage that can create the correct memory structures to define COM classes
and interfaces. For example, the C language can define a COM interface using
structs and pointers to functions; many other languages use similar features.
Languages that cannot build these constructs cannot be used for defining COM
classes.

This binary specification also means that a COM class can be used by any
programming languages that call functions using a function pointer. Clearly,
C++ and C are capable of this trick.

All this makes C++ a natural programming language for defining and using
COM classes since C++ compilers are capable of automatically constructing
the virtual function tables (so that the programmer does not have to lay them
out by hand) and calling functions through virtual function tables.
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Of course, other programming languages and development environments can
automate the definition of COM classes in the same way. For instance, Visual
Basic can be used for creating COM classes since the Visual Basic development
environment can interpret the Visual Basic code and emit the correct interface
declarations, class declarations, MIDL code, and so on.

34.15 How does COM provide location trans-
parency?

Proxies and stubs.

COM provides location transparency because a caller can use a COM object
without knowing or caring where the object is running. The object could be
running in the same process or in another process running on the same machine
or in another process running on another machine (this is where Distributed
COM comes into play; see FAQ 34.39).

COM facilitates location transparency by defining an architecture that uses
proxies and stubs for linking callers to COM objects in a location-transparent
manner and marshaling parameters between callers and objects. A proxy is
an object that runs in the caller’s address space and serves as a surrogate for
the actual object. The proxy has an interface that is identical to the interface
of the actual object. Stubs are objects that run in the server process where a
COM object is running and handle all member function calls coming from other
processes.

During execution, when a caller creates a COM object in another process,
the COM runtime system also creates a proxy for the just created object in the
caller’s address space and a stub object in the server process. The caller is then
given an interface pointer to the corresponding interface on the proxy object.
When the caller calls a member function using this interface pointer, the proxy
object transmits the parameters to the stub object, which makes the actual call
on the corresponding interface of the actual COM object. Similarly, any results
are returned from the COM object to the stub object, which transmits them to
the proxy object, which returns them to the calling program.

Marshaling refers to the transmission of parameters from the caller to the ob-
ject and the transmission of return values back again along with conversion of
the parameters and return values, as necessary. There are two types of marshal-
ing. Standard marshaling is provided by COM, and it is provided, by default, for
all standard interfaces. Custom marshaling is defined by programmers for situ-
ations that standard marshaling does not cover (e.g., marshal a data type that
the standard marshaller doesn’t understand) and for performing optimizations
that standard marshaling does not support.

This architecture defines the roles and responsibilities of the proxies and stubs
and defines how they are created and destroyed and how parameters are mar-
shaled between the caller and the COM object. Proxies and stubs can also come
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into play when the caller and the object are running on separate threads in the
same process. Except for highly specialized situations, proxies and stubs are
invisible to programmers and can be ignored.

34.16 What types of errors occur due to refer-
ence counting?

Reference counting is a powerful mechanism, but it can lead to errors that
are extremely hard to detect.

First, a caller might call AddRef too often or forget to call Release. In this
case, there is a memory leak since the COM object never knows when to destroy
itself.

Second, a caller might call Release too often. In this case, the reference count
of the COM object is reduced to zero prematurely, and the COM object destroys
itself leaving a dangling pointer since other callers have interface pointers to the
COM object.

Reference counting is made more complicated by performance optimizations.
For example, sometimes it is not necessary to call AddRef and Release for a
temporary interface pointer if it is going to be created and destroyed within
the lifetime of another interface pointer. This sort of optimization creates a
dependency between the two interface pointers, and in the future it can become
the source of a reference counting error if some invariant associated with the
dependency changes.

None of this should be a surprise to C++ programmers. After all, C++
programmers have to deal with the same conditions in C++ programs if the
calls to new and delete are not properly coordinated. Forgetting to call delete
results in memory leaks and calling delete prematurely results in dangling
pointers.

However, the situation in COM is more insidious since COM components
can be running in different processes than the ones their callers are running
in. For example, a memory leak caused by a caller running in one process may
result in a server process continuing to run when it should have shut down, thus
consuming operating system resources as well as memory resources. Or worse,
a bug in one caller can release a server process prematurely, causing it to shut
down while it is still being used by other callers.

Note that Distributed COM (see FAQ 34.39, 34.40) has a security option that
performs callbacks to the client to authenticate distributed referent count calls,
ensuring that objects are not released maliciously.
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34.17 What mechanism does COM define for er-
ror handling?

COM sends us right back to the Dark Ages, since COM functions return
error codes for doing error handling. Or, stated in a positive way, COM defines
a mechanism for handling errors that is language and location transparent and
is consistent with its binary standard.

The return value of most COM methods (AddRef and Release are two ex-
ceptions) is an HRESULT (a “handle to a result object”). An HRESULT is a 32-bit
value that is divided into three fields. The first field (1 bit) can be tested to
determine whether or not a function succeeded. The second field (15 bits) indi-
cates what subsystem returned the error code. The third field (16 bits) is the
return code. The biggest drawback of using this mechanism is that it requires
the caller to explicitly test the value of the HRESULT after each COM method
call.

Just because COM uses HRESULT does not prevent programmers from us-
ing C++ exception handling in the C++ code within the implementation of a
method of a COM class, provided the exceptions are caught and handled by the
COM method. In any event, C++ exceptions cannot be used for transmitting
the error to the caller or to another COM object.

34.18 How are interfaces versioned?

This is one of the more straightforward elements of COM — YOU CAN’T.

Interface versioning refers to the COM conventions for changing and modify-
ing interfaces. COM’s rule for versioning interfaces is simple: interfaces cannot
be versioned; a modified interface is a new interface with a new and unique IID.

In this context, modifying an interface includes any change to the interface’s
specification, including adding or removing methods, adding or removing pa-
rameters, or changing the contract for a method (even if none of its parameters
change). At the same time, the rule does not prevent multiple implementations
for the same interface, as long as all the implementations satisfy the interface’s
contract.

The reasoning behind the rule regarding versioning interfaces is to maintain
backward compatibility and guarantee that there are no conflicts between exist-
ing interfaces and new interfaces. The rule makes a lot of sense since it allows
callers to program to a well-defined interface knowing that the interface will
never change.

The fact that COM interfaces can’t be versioned is really no different from
the current situation with C++ class libraries, except that it is presented in a
slightly different way. Suppose a system defines a COM interface called IDate
for handling date-related information. Later the interface is modified, producing
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IDate2. Also suppose that there is a C++ class library that has a Date class and
people write programs using the Date class. Now the vendor of the class library
releases a new and improved C++ class library (version 2) with a Date class
with a modified interface. Under these circumstances, what are the trade-offs
between the C++ approach and the COM approach?

First, suppose the new version of Date simply adds methods so that it is
completely substitutable with the earlier version. In the case of COM, existing
callers continue to use IDate and new callers can choose between IDate and
IDate2. In the case of the C++ class library, existing callers and new callers
simply use version 2 of class Date. Easy.

Second, suppose the new version of Date is not completely backward compat-
ible with the older version. In the case of COM, existing callers continue to use
IDate and new callers can choose between IDate and IDate2. We might also
decide to review some of the existing caller code and revise it to use IDate2.
The choices are almost the same for the caller code using the C++ class li-
brary. Existing callers continue to use class Date Version One and new callers
can choose between class Date Version One and class Date Version Two. We
might also decide to review some of the existing caller code and revise it to use
class Date Version Two (instead of class Date Version One).

In some ways, the COM approach is better. If one subsystem of a program
uses the COM interface IDate and another subsystem of a program uses the
COM interface IDate2, no incompatibilities occur when the subsystems are
linked together. In contrast, if the two subsystems use different and incompat-
ible versions of the C++ class Date, linking the two subsystems probably will
create some conflicts. Typically this sort of problem forces the users of the C++
class library to choose between the two incompatible versions of the Date class
which may require one of the subsystems to be updated.

In the case of COM the two interfaces are distinguished using 128-bit IIDs,
and in the case of C++ the two interfaces need to be distinguished by their
names. In the end, both approaches amount to pretty much the same thing,
and each has its champions.

34.19 Is COM object oriented?

Yes, COM delivers all the major benefits of object technology (although some
purists disagree).

Each COM class has a unique class identifier and implements one or more
interfaces. An interface is a group of functions that provide a set of related
services. A COM object is an instance of a COM class. A COM class can be
used to create many separate COM objects. These definitions are similar to
C++ where classes have unique identifiers and objects are instances of classes.
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Most developers using COM could not care less about whether or not COM is
“truly” object oriented. As far as they are concerned, it gives them the benefits
of object orientation and that is all that counts:

• You can define classes.

• You can use the classes to create objects.

• The classes have well-defined interfaces and the implementations of the
classes are fully encapsulated.

• Interfaces can be defined using inheritance and interface pointers are poly-
morphic.

34.20 What is the biggest problem with COM?

Complete confusion for beginners.

Programmers can expect to experience a COM haze when they first work with
COM. This comes from having to mentally juggle all the different issues:

• COM is relatively large and has its own way of doing things, and often its
approach is unlike other systems (including C++ and CORBA).

• COM terminology is Humpty-Dumpty terminology (if you remember, Humpty-
Dumpty said, “When I use a word it means just what I choose it to mean
— neither more nor less”). Thus, COM uses many of the same terms as
C++ and other object technologies but uses them in its own way. This
can lead to misunderstandings.

• Most COM examples are written in C++, and this makes it hard to figure
out where COM stops and where C++ begins. Programmers often find
themselves wondering which of the five C++ classes in a COM example
represent COM interfaces, which ones represent COM classes, and which
ones are internal classes that are used only within the implementation of
the COM classes.

• Different C++ class libraries use different approaches for declaring and
implementing COM classes and offer different trade-offs. Some class li-
braries (like MFC, the Microsoft Foundation Class library) use numerous
macros for defining COM classes, whereas other libraries (like ATL, the
ActiveX Template Library) use C++ templates.

• There are numerous ways of declaring and implementing COM classes, and
it is sometimes hard to figure out how they fit together. Examples in books
don’t always make it clear whether they are describing a new and distinct
feature of COM or are simply describing another way of implementing a
feature described earlier.
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34.21 What are the major differences between
COM and C++?

COM is a component standard while C++ is an object-oriented language,
and even though they have much in common, they really do have different roles
in life.

As a programming language, C++ defines classes and objects, defines a com-
plete syntax and semantics, and has a compiler that translates source text into
executable code. In addition, C++ has a relatively small runtime system and
restricts its view of the world to the objects in a single process.

As a component standard, COM defines classes and objects, has a minimal
syntax and a minimal compiler(the MIDL compiler) for defining interfaces, de-
fines an architecture for creating, locating, and accessing objects running in
different processes, defines interfaces for marshaling parameters when calls are
made to a different process(see FAQ 34.15 for more information regarding mar-
shaling), and defines several threading models.

Therefore COM and C++ are completely different in their scope, but fortu-
nately, they are compatible technologies: COM is well suited to defining com-
ponents and interfaces, and C++ provides a rich language for implementing
components and classes.

C++ FEATURE COM FEATURE
A C++ class name is an identifier. A COM class name is a CLSID or

a 128-bit number.
C++ classes are not required to
support a common interface.

COM classes are required to sup-
port the IUnknown interface.

C++ classes have constructors that
are automatically called when ob-
jects are created.

COM classes do not have construc-
tors (although the language used
for implementing a COM class may
provide a mechanism for executing
an initialization routine when in-
stances of the class are created).

C++ classes have destructors that
are automatically called when ob-
jects are destroyed.

COM classes do not have destruc-
tors (although the language used
for implementing a COM class may
provide a mechanism for execut-
ing a finalization routine when in-
stances of the class are destroyed).

A C++ class can declare pure vir-
tual functions, virtual functions,
nonvirtual functions, overloaded
functions, static functions, data
members, and friends.

A COM interface declares pure vir-
tual functions only.

continued
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C++ FEATURE COM FEATURE
A C++ class presents an inter-
face, although the interface does
not have a distinct and explicit
name or identifier.

A COM interface has an explicit
identifier (IID).

A C++ class normally has one vir-
tual function table that contains
pointers to all the virtual functions
defined by the object.

A COM class can be implemented
using a separate virtual function ta-
ble for each interface.

C++ callers can safely navi-
gate to other interfaces using
dynamic cast.

COM callers can safely navi-
gate to other interfaces using
QueryInterface.

C++ callers can use new to cre-
ate objects; this mechanism ends
up calling the class’s constructor.
C++ callers can also create objects
in a local scope.

COM callers typically use
CoCreateInstance to create
objects; this mechanism ends
up calling the IClassFactory
interface, which must be imple-
mented for every COM class. COM
callers can also directly call the
CreateInstance method of the
IClassFactory interface.

C++ callers use delete to destroy
objects created using new; objects
in a local scope are destroyed auto-
matically.

COM callers do not destroy COM
objects directly; instead they call
Release() when they no longer
need an interface pointer, and the
COM object destroys itself.

When a caller creates a C++ object
using new, the caller gets a pointer
to the object.

When a caller creates a COM ob-
ject, the caller gets a pointer to one
of the object’s interfaces; however,
it never gets a pointer to the object
— no such pointer exists.

Error handling is normally accom-
plished using throw and catch; Re-
turn codes are supported but are
undesirable.

Error handling is required to use re-
turn code.

C++ supports both reference se-
mantics and value semantics.

COM supports reference semantics
only.

C++ does not define a meta data
facility.

Type libraries contain meta data.

C++ defines features such as tem-
plates, overloaded functions, oper-
ator overloading, default parame-
ters, namespaces, try/catch excep-
tion handling, const declarations,
references, private inheritance, pro-
tected inheritance, etc.

These features are not part of COM
but they can be used by C++ pro-
grams that implement COM inter-
faces and COM classes.

continued
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C++ FEATURE COM FEATURE
C++ supports interface inheri-
tance.

COM supports interface inheri-
tance.

C++ supports multiple inheri-
tance.

COM supports only single inher-
itance (although there are sev-
eral techniques for building COM
classes that implement multiple in-
terfaces).

C++ supports implementation in-
heritance.

COM does not support implemen-
tation inheritance; however, COM
does not prevent an implementa-
tion of a COM class (using C++,
for example) from using implemen-
tation inheritance.

C++ does not use a system reg-
istry.

COM uses a system registry for
storing static information about
classes, interfaces, and type li-
braries.

C++ classes and namespaces re-
duce name clashes.

COM GUIDs eliminate name
clashes.

C++ does not define any mecha-
nisms for creating objects in other
processes.

COM defines an architecture for
creating out-of-process objects
(both on the local machine and on
remote machines).

C++ does not define any mech-
anisms to support communication
between objects running in differ-
ent processes.

COM defines an architecture for
invoking methods on out-of-process
objects, marshaling parameters
from the caller to the object, and
marshaling return values from the
object to the caller.

C++ does not define a threading
model.

COM defines several threading
models for governing how COM ob-
jects execute.

34.22 What should a class be defined as a COM
class?

Here are some guidelines.

1. The development organization needs to buy into the idea of adopting
a component-oriented architecture based on COM; otherwise, it can be
pretty lonely if you’re the only wolf in the pack trying to use COM. The
development organization must also buy into the idea of using one of the
32-bit Windows operating systems (probably Windows NT) as a develop-
ment and deployment platform.

2. Start by developing a system or application architecture and make your
decisions regarding where and when to use COM based on the architec-
ture. Don’t worry about deciding where to use COM on a class-by-class
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basis. Instead, look for the larger components of your system and think
about the interfaces to these components. Try out subsystems as a first
approximation.

For example, it might not make sense to define an Account class, whereas
it might make sense to define an Account server. The Account server might
run as an out-of-process COM server that can be shared by multiple callers
and exposes a rich set of domain objects including account objects, cus-
tomer objects, sales objects, invoice objects, and so on (where all of these
objects are COM objects).

3. Sticking with the software architecture theme, use COM when the goal is
to improve reliability by running the classes/objects in a separate process
or on a separate machine. For example, running the caller and the COM
objects in the same process allows a bug in one to bring down the other.
Using COM to run the objects/services in separate processes helps to
protect the objects from the callers and the callers from the objects — if
one of them crashes it does not necessarily bring down the other.

4. Use COM when language transparency is important. Use COM when
the callers and the objects might be written in different programming
languages.

5. Use COM when location transparency is important or when the objects
need to be shared by callers running in separate processes. Use COM when
it is important to be able to rehost the classes/objects in an in-process
server, in a local server, or in a remote server without affecting the callers.

6. Define the interfaces for your components from the caller’s perspective
rather than from the perspective of the developer. Limit the number of
COM classes to classes that are visible from outside the component. For
example, if the component includes account objects, customer objects,
sales objects, and invoice objects, the component might internally utilize
many other C++ classes for accessing a database and caching data, but
there may be no reason to expose these internal C++ classes as COM
classes.

7. Be aware of performance issues and the fact the COM is sensitive to
whether or not the caller and the object are running in the same process
and whether or not the caller and the object are using the same threading
model. For example, calling a method of a COM object that is running
in process and is using a compatible threading model takes about the
same amount of time as calling a virtual function of a C++ object (tens
of millions of calls per second). For caller and servers using different
threading models, the time cost is greater (tens of thousands of calls per
second).

8. Be aware of packaging issues. Multiple COM classes are packaged into a
COM server, and the server is loaded/activated when the first COM object
is created using the server. Since loading/activating a COM server can
be time-consuming, make sure that all related COM classes are packaged
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together in the same server. That means that after the first COM object
is created using the server, the time needed to create other objects will be
less because the server is already loaded/activated. Putting related COM
classes into separate servers can hurt performance.

9. If the COM object are expected to be running in an out-of-process server,
then define the interfaces to accommodate it. For example, provide meth-
ods that get/set multiple properties in one call to minimize the number
of round-trip method calls that must cross process boundaries.

34.23 What is Automation?

Automation is a set of facilities that sits on top of COM and that can be
used by programming tools that cannot use the lower-level COM interfaces and
facilities (such as high-level scripting tools).

The goals for Automation and COM are almost identical: define components
with well-defined interfaces in a location-transparent and language-independent
manner. The main difference between Automation and COM is that Automa-
tion is targeted at enabling callers that are high-level scripting tools to manip-
ulate objects, whereas COM is targeted at lower-level languages such as C++
and C.

Automation was originally developed to allow Visual Basic to bind to COM
components through a special interface. The name “Automation” is something
of an anachronism since Automation has grown beyond its original goals of
simply allowing scripting languages to automate common tasks. Automation is
becoming more important with the growing use of scripting languages in Web
browsers, server side scripting, and office suites.

34.24 What are dispatch interfaces?

The interfaces exposed by Automation objects. In particular, Automation
objects expose dispatch interfaces rather than vtable interfaces.

There are two different kinds of COM interfaces. First, there are vtable inter-
faces, which work well for callers written in C++ (and, ironically, Visual Basic).
Vtable interfaces are normal (nondispatch) COM interfaces, and they get their
name from the fact that their binary layout is the same as the binary layout of
the virtual function table (vtable) produced by most C++ compilers.

Second, there are dispatch interfaces. Dispatch interfaces get their name from
the fact that they are implemented using the COM interface IDispatch.

Dispatch interfaces make it much easier for tools such as Visual Basic and
PowerBuilder to be adapted to use and support dispatch interfaces compared
to using and supporting vtable interfces for COM objects. Today, higher-level
scripting languages such as Visual Basic for Applications and VBScript rely
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on dispatch interfaces, while Visual Basic supports both vtable interfaces and
dispatch interfaces.

A dispatch interface allows callers to query an object at runtime for a list
of its Automation methods and parameters and then invoke these methods.
This facility is vital for allowing callers to invoke methods on objects when the
methods were not known when the caller was compiled.

COM objects that expose dispatch interfaces are referred to as Automation
objects or Automation servers. Callers that use Automation objects are referred
to as Automation controllers. Automation objects are COM objects in every
sense. They have a CLSID and a class factory, they implement IUnknown, their
lifetime is controlled by reference counting, they can be implemented as in-
process servers (in DLLs) or as out-of-process servers (in EXEs). It is important
to realize that Automation is a protocol built on top of COM; in many ways,
Automation is reminiscent of CORBA’s Dynamic Invocation Interface (DII).

34.25 When should a class expose a Dispatch
interface?

When its callers say so.

The most obvious reason for implementing dispatch interfaces is that certain
tools (such as VBScript, JScript, and older versions of Visual Basic) can interact
with COM objects only through dispatch interfaces. Furthermore, ActiveX
Controls (see FAQ 34.33) are required to expose their properties and methods
through dispatch interfaces.

Dispatch interfaces define both dispatch methods and dispatch properties.
Because COM interfaces can define only COM methods and dispatch interfaces
are implemented using the IDispatch interface, dispatch properties are “vir-
tual properties”: they are manipulated indirectly by calling the methods of the
IDispatch interface (see FAQ 34.27). Note that the programming language
used by the caller may make it appear as if the property is being manipulated
directly, but underneath it is still using COM methods. This illustrates, once
again, that dispatch interfaces are at a higher level of abstraction than vtable
interfaces and that Automation is a protocol that is implemented in terms of
COM.

Dispatch interfaces can be declared using IDL. Here is the Microsoft IDL
definition of the IStack dispatch interface.

[ uuid(FC3B3F51-BCED-11D1-91FE-E1CBED988F66) ]
library StackLib
{

importlib("stdole32.tlb");
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[ uuid(FC3B3F31-BCEC-11D1-91FE-E1CBED988F66) ]
dispinterface IStack
{

properties:
[id(1), propget] boolean Empty;

methods:
[id(2)] void Push(long value);
[id(3)] long Pop();

};
};

The dispinterface statement is used to create type information for a dis-
patch interface. For this reason, dispatch interfaces must be declared inside
library declarations. Dispatch interfaces, like all other COM interfaces, must
have an IID, and it is declared using the [uuid] attribute.

Dispatch interfaces are derived from IDispatch (the dispinterface state-
ment implicitly derives the interface from IDispatch). The declarations for
the IDispatch interface are loaded from the Automation type library using the
statement importlib("stdole32.tlb");.

The dispinterface statement has two sections: one for declaring proper-
ties and one for declaring methods. Each property must have an Automation-
compatible type (see FAQ 34.32). The types of the parameters and return value
for each method must also be Automation-compatible. Every method and prop-
erty has a DISPID, which is assigned using the [id] attribute.

You may have noticed that the syntax for the dispinterface statement is
unlike other IDL statements. This is because the dispinterface statement was
originally part of an earlier tool called the Object Definition Language (ODL),
which has been merged into Microsoft IDL.

Dispatch interfaces use Type Library Marshaling (see FAQ 34.29) using the
built-in Automation Marshaller; therefore the MIDL compiler does not need to
generate proxy/stub code.

The best way for COM classes to expose dispatch interfaces is as dual inter-
faces. As discussed in FAQ 34.31, this allows a COM class to have its cake and
eat it, too.

34.26 How does Automation work?

The IDispatch interface is what makes Automation work.
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The IDispatch interface is a regular COM interface and is declared as follows.

interface IDispatch : public IUnknown {
public:
virtual HRESULT GetTypeInfo(....) = 0;

virtual HRESULT GetTypeInfoCount(....) = 0;

virtual HRESULT GetIDsOfNames(....) = 0;

virtual HRESULT Invoke(
/* [in] */ DISPID dispIdMember,
/* [in] */ REFIID riid,
/* [in] */ LCID lcid,
/* [in] */ WORD wFlags,
/* [out][in] */ DISPPARAMS *pDispParams,
/* [out] */ VARIANT *pVarResult,
/* [out] */ EXCEPINFO *pExcepInfo,
/* [out] */ UINT *puArgErr) = 0;

};

When a caller wants to call a dispatch method defined by an Automation
server, it first calls the server’s implementation of IDispatch::GetIDsOfNames,
supplying it with the string name of the dispatch method it wants to call.
The result returned by GetIDsOfNames is the Dispatch Identifier (DISPID) for
that dispatch method. The caller then calls the dispatch method by calling
IDispatch::Invoke, supplying it with the DISPID for the dispatch method, the
type of each parameter, and the values of each parameter. The implementation
of IDispatch::Invoke performs a table lookup using the DISPID and executes
the dispatch method.

When a caller wants to access a dispatch property, it first calls the server’s
implementation of IDispatch::GetIDsOfNames, supplying it with the string
name of the dispatch property it wants to access. The result returned by
GetIDsOfNames is the DISPID for that dispatch property. The caller then calls
IDispatch::Invoke and supplies it with a flag indicating whether it wants to
get the value of the dispatch property or set a new value for the dispatch prop-
erty. The implementation of IDispatch::Invoke performs a table lookup using
the DISPID and accesses the corresponding the dispatch property.

Once a caller obtains a DISPID for a particular dispatch method (or property),
it can cache it and use it repeatedly for calling the same method (or accessing
the same property) without having to bother calling GetIDsOfNames again for
that dispatch method (or dispatch property).

The good news is that most callers never call Invoke directly (the calls to
Invoke are usually hidden behind a layer of abstraction). In the case of envi-
ronments like Visual Basic, the Visual Basic syntax hides all the interactions
with IDispatch. In the case of programming languages like C++, the devel-
opment environment should automatically generate “automation proxy classes”
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that hide all the interactions with IDispatch. If your development environment
cannot automatically generate automation proxy classes, you can always build
them yourself.

34.27 How does Invoke accomplish all of this?

IDispatch::Invoke declares a very general interface that has a large number
of formal arguments that allow the caller to specify a wide range of parameters —
including the DISPID for the operation, the type of operation (method call versus
property get versus property put), the return value, exception information, and
so on. The Automation object’s implementation of IDispatch::Invoke must
unpackage these parameters, call the method or access the property, and handle
any errors that occur. When the property or method returns, the Automation
object passes its return value back to the caller through another parameter of
IDispatch::Invoke.

Invoke is similar to printf: callers pass a bunch of information, and the
implementation of IDispatch::Invoke (like printf) ends up interpreting the
incoming parameters to decide what to do. This makes IDispatch::Invoke
capable of doing almost anything.

After IDispatch::Invoke interprets the parameters passed to it, it calls a
method defined by the server — in this way IDispatch::Invoke does nothing.
All IDispatch::Invoke does is look up the right routine, and that routine
performs the useful work.

Notice that dispatch interfaces reverse the usual notions associated with COM
interfaces. COM interfaces tend to have a small set of well-defined methods
that are semantically related to one another. Dispatch interfaces tend to group
together a large number of methods that are not necessarily related and funnel
them through the IDispatch interface.

34.28 What is a type library?

A type library is a compiled version of an IDL file that can be accessed
programmatically.

COM provides a facility called type libraries that allows programs to dy-
namically access interface definitions and query for information on interfaces,
components, methods, and parameters. Most Automation components create
type libraries. A type library has a unique identifier (that is, a GUID) called a
LIBID.

Type libraries can be generated by the Microsoft IDL compiler. After creating
the type library, it can be included in the application as a resource or it can be
a stand-alone file (in which case, the file name of the type library needs to be
registered in the system registry so that the type library can be located when
necessary).
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COM defines interfaces for creating type information (ICreateTypeInfo,
ICreateTypeInfo2), accessing type information (ITypeInfo, ITypeInfo2), cre-
ating type libraries (ICreateTypeLib, ICreateTypeLib2), and accessing type
libraries (ITypeLib, ITypeLib2).

A caller can ask a COM object at runtime if it supports the ITypeInfo
interface. Through this interface, the caller can interrogate the object to find
out what methods and properties it provides. This facility is useful for scripting
languages.

34.29 What are the benefits of using type li-
braries?

Discover type information for a COM class without having to load the class.

A type library is the Automation standard for describing the objects, prop-
erties, and methods exposed by an Automation object. Type libraries provide
important benefits.

• Type checking can be performed at compile time. This helps developers
of Automation callers to write fast, correct code to access objects.

• Type browsers can scan the type library, allowing others to see the char-
acteristics of the classes.

• Browsers and compilers can use the type information to display and access
the classes.

• Automation callers that cannot use vtable interfaces can read and cache
DISPIDs at compiler time, improving runtime performance.

• Visual Basic applications can take advantage of early binding by creating
objects with specific interface types, rather than the generic Object type.

• Implementation of IDispatch::Invoke for the interface is faster and eas-
ier.

• Access to out-of-process servers is improved because Automation uses in-
formation from the type library to package the parameters that are passed
to an object in another process.

Another benefit of type libraries is type library marshaling. Type library
marshaling allows a custom interface to use the built-in Automation marshaller
for the IDispatch interface, thus avoiding the need to build a proxy/stub DLL
for the custom interface and then having to register it on each machine — the
Automation marshaller is automatically available on Windows machines. To
use this option, you need only register a type library for the interface on the
client machines and restrict the interface to using the Automation-compatible
data types (see FAQ 34.32).
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34.30 How do type libraries improve performance?

The Automation controller can avoid calling GetIDsOfNames at runtime.

An Automation controller can bind to a dispatch interface in one of two
ways. One way is for the Automation controller to get the DISPIDs by calling
IDispatch::GetIDsOfNames function. This is called late binding because the
controller binds to the property or method at runtime. Late binding works when
nothing is known about the dispatch interface at compile time.

The other way is for the Automation controller to use ID binding. When
using ID binding, the Automation controller extracts type information about
the Automation object from its type library and maps the names of dispatch
methods and properties to DISPIDs. More specifically, the DISPID of each prop-
erty or method is fixed and is part of the object’s type description. If the object
is described in a type library, an Automation controller can read the DISPIDs
from the type library and does not have to call GetIDsOfNames at runtime.

34.31 What are dual interfaces?

A great way to have your cake and eat it, too.

A dual interface is an interface that combines a dispatch interface and a direct
vtable interface.

One advantage of dual interface is that they left the caller choose the binding
mechanism it wants to use. Scripting languages can use the dispatch interface
while C++ callers can use the direct vtable interface. This means that objects
that export dual interfaces are more useful since they can be used by a wider
range of callers. IDispatch offers support for late binding, whereas vtable
binding offers much higher performance because the method is called directly
instead of going through IDispatch::Invoke.

IDL supports the definition of dual interfaces. This is done by deriving the
interface from IDispatch and attaching the [dual] attribute to the interface
statement (notice that the dispinterface statement is not used). Here is the
IDL declaration of IStack suitable for a dual interface.

[ uuid(FC3B3F51-BCED-11D1-91FE-E1CBED988F66) ]
library StackLib
{

importlib("stdole32.tlb");
[ object, dual,

uuid(FC3B3F51-BCEC-11D1-91FE-E1CBED988F66)
]
interface IStack : IDispatch
{

[id(1)] HRESULT push([in] long value);
[id(2)] HRESULT pop([out, retval] long* value);
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[id(3)] HRESULT empty([out, retval] long* pVal);
};

};

Since dual interfaces are COM interfaces, they must abide by the rules for
COM interfaces.

• A dual interface must have an IID, and it is declared using the [uuid]
attribute.

• The return type for a method is HRESULT, and all other results need to be
returned through the parameter list (see pop and empty).

Since dual interfaces are dispatch interfaces, they must abide by the rules for
dispatch interfaces.

• The declarations for the IDispatch interface are loaded from the Automa-
tion type library using the statement importlib("stdole32.tlb");.

• Each method has a DISPID, which is assigned using the [id] attribute.

• The types of the parameters for each method must be Automation-compatible
data types.

• Dual interfaces are able to use type library marshaling (see FAQ 34.29)
so that the interface can be accessed across process boundaries or across
machine boundaries automatically (this is not automatically true for all
custom-defined vtable interfaces). This is done using the type library for
the interface in conjunction with a generic universal proxy/stub imple-
mentation.

A dual interface inherits from IDispatch and also implicitly inherits from
IUnknown (since IDispatch inherits from IUnknown). At a binary level, the
first three entries in the vtable are the members of IUnknown, the next four
entries are the members of IDispatch, and the subsequent entries are pointers
to the custom methods of the dual interface. Thus Automation controllers can
access the IDispatch interface (including GetIDsOfNames and Invoke) since the
entries for the dispatch interface are at the same locations in the vtable whether
or not this is a dual interface. Other callers who are aware of dual interfaces can
bind directly to the custom methods in the COM interface. Information about
the physical layout of the vtable is obtained from a type library or a header file.

Direct vtable binding can be two to five times faster than Automation binding
for in-process calls.

34.32 What limitations are there on dual inter-
faces?

The primary limitation of dual interfaces is that arguments and return types
are restricted to the Automation-compatible data types:
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• boolean

• unsigned char

• short, int, long

• float, double

• currency, Date

• text strings

• status codes

• pointers to COM interfaces

• pointers to dispatch interfaces

• arrays of these types

• reference to these types

These data types are defined by COM; they are not C++ data types, although
there is a mapping from these data types to C++ data types. The reason that
dual interfaces are restricted to these data types is that these are the data
types that can be passed to IDispatch::Invoke, and every custom method of
a dual interface has a corresponding automation method that is invoked using
IDispatch::Invoke.

34.33 What are OLE custom controls and Ac-
tiveX controls?

The word “control” has evolved in the same way the term OLE has evolved.
About the only thing that can be said for sure is that a control is a software
component. Early controls tended to be used as a GUI widgets in Visual Basic
programs, but now there are many non-GUI controls and they are used in non-
Visual Basic programs. Controls are in-process objects and must execute in
some kind of control container (see FAQ 34.35), a program specially designed
for hosting controls and working with controls.

In the beginning there were Visual Basic Controls (VBXs). VBXs are a
mechanism for packaging non-Visual Basic code (usually C routines) and calling
them from 16-bit versions of Visual Basic. As such, VBXs are DLLs written
in a prescribed manner so that they can be easily incorporated into and called
from Visual Basic programs.

And VBXs begat OLE Custom Controls (or OCXs). OCXs have a number
of advantages over VBXs.

• OCXs are based on COM, which means that they take advantage of all of
the COM facilities for defining interfaces, developing components, creating
components, and accessing components.
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• OCXs are 32-bit custom controls (VBXs were 16-bit). Therefore OCXs
are better suited to 32-bit applications and 32-bit Windows operating
systems.

• OCXs can be written in any language that can be used for writing COM
components (VBXs were almost always written in C).

• OCXs can be used from any program that is a custom control container
(VBXs were pretty much limited to being used from Visual Basic).

• The OCX architecture defines a large number of mandatory interfaces
that an OCX must support, and these interfaces provide a great deal of
integration between the OCX and the control container.

And OCXs begat ActiveX Controls. ActiveX controls are a slimmed-down
version of OCXs that are better suited to Web-based applications. The ActiveX
architecture defines a minimal set of interfaces for an ActiveX control and, in
fact, ActiveX controls are required to implement only one interface: IUnknown.
All other interfaces are optional. More specifically,

• An ActiveX Control must have a CLSID (required for all COM objects).

• An ActiveX Control must support the IUnknown interface (required for all
COM objects).

• An ActiveX Control must have a class object that implements IClassFactory
(required for all COM objects).

• An ActiveX Control must expose its properties, methods, and events via
dispatch interfaces or dual interfaces. In other words, ActiveX Control
are Automation objects.

• If a control has any persistent state, it must, as a minimum, implement ei-
ther IPersistStream or IPersistStreamInit. The latter is used when a
control wants to know when it is created new as opposed to being reloaded
from an existing persistent state.

• An ActiveX Control must be a self-registering, in-process component that
implements the routines DllRegisterServer and DllUnregisterServer.

• An ActiveX Control must use the component categories API to register
itself as a control, and it must register the component categories it requires
a control container to support and any categories the control implements.

34.34 Why do ActiveX controls differ from OLE
custom controls?

Mostly to support the World Wide Web.
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First, some background. OCXs are COM components that must implement
many well-defined COM interfaces. This has both good and bad consequences.
It is good because it means that OLE control containers (see FAQ 34.35) can
rely on every OCX implementing a core set of interfaces, allowing the Control
Container and the OCX to interact seamlessly and provide richer interactions
with the user. It is bad because it makes OCXs into fairly heavyweight objects
and it makes writing OCXs fairly complicated (but tools are evolving to ease
this problem).

The OCX architecture makes several assumptions. First, it assumes that
when an OCX is loaded, its state information is available on a local file system.
Second, the OCX architecture provides for only synchronous loading of OCX
state information. For desktop components this is irrelevant since it is assumed
that the control container and the OCX are loaded onto the same machines.

Then the Web exploded and everything changed. It is no longer safe to assume
that the control container and the control reside on the same machine. Instead,
the control may reside on another machine and the control container may have
to dynamically download the control across the Web/Internet.

For these reasons (and many more), the ActiveX control architecture replaced
the OCX architecture. As mentioned already, ActiveX controls dispense with
most of the baggage associated with OCXs. This permits smaller executables
so that ActiveX control can be downloaded over the Web/Internet faster.

While the ActiveX architecture makes ActiveX controls more Web/Internet
friendly, it has side effects. For example, now control containers have to be
“smarter” since they have to “negotiate” with every ActiveX control to deter-
mine its capabilities. This, in turn, sometimes results in less integration between
the control and its container than was previously possible using the OCX archi-
tecture.

The ActiveX architecture also supports situations where the control’s state
information is stored on a distant machine across the Web/Internet. In par-
ticular, the ActiveX architecture defines interfaces for asynchronously loading
a control’s state information and asynchronous notification of the container re-
garding the progress of loading this information.

34.35 What is a control container?

An ActiveX control container is an application or component capable of host-
ing (or containing) an ActiveX control. Control containers must implement
a mandatory set of COM interfaces for hosting and interacting with ActiveX
controls. Control containers may also implement a number of optional COM in-
terfaces, depending on the functionality they provide and the level of integration
they wish to provide.
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Control containers cannot rely on an ActiveX control supporting any specific
interfaces other than IUnknown. Determining what interfaces an ActiveX con-
trol supports is part of the negotiation process that occurs between a control
container and a control.

Control containers must degrade gracefully when an ActiveX control does
not support a particular interface, even if this means it cannot perform its
designated job. At a minimum, “degrade gracefully” means that the control
container continues to operate and does not fail. As you can see, the ActiveX
architecture assigns many responsibilities to the control container.

Some containers provide container-specific private interfaces for additional
functionality or improved performance. Controls that rely on container-specific
interfaces should also work without the container-specific interfaces so that the
control can function in different containers.

34.36 What are component categories?

Component categories are a COM mechanism that allows a control to register
the types of services it provides. Although the following discussion is phrased
in terms of controls and control containers, it applies to any COM component
and any COM caller.

Component categories are particularly valuable for control containers since it
allows them to determine the capabilities of a control without having to create
the control and enter into a lengthy discovery process involving querying the
components for the interfaces it supports.

Every component category has a unique category identifier or CATID (which is
a GUID) and a list of interfaces a control must implement before it can belong
to that component category. Any control that implements all the interfaces
defined for a particular component category is then able to register itself as
belonging to and supporting the component category.

This permits control containers to look up the component categories for a
particular control in the system registry and immediately determine whether or
not it provides the services the control container requires so that the control
container can adapt its behavior as necessary.

34.37 What are events?

Asynchronous actions that are fired by ActiveX controls and handled by con-
trol containers.

ActiveX Controls (and OCXs) define “event” in addition to properties and
methods. Events are asynchronous actions that are fired by the ActiveX control
and are handled by the control container. An event is like a method in that it has
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a name, parameters, and a return value, and is implemented using Automation.
Events are different from methods in that methods are defined by the control
and implemented by the control, whereas events are defined by the control and
implemented by the control container.

Some events are GUI events: if the user clicks on a button that is an ActiveX
control, the button could fire an event notifying its control container. Other
events are database events: if an ActiveX control is bound to a record in a
database and the record is updated by another program, the control could fire an
event notifying its control container and the container might query the database
and update its display. Many other asynchronous actions can be implemented
as events including timer events and network events.

Events are asynchronous. In this context, asynchronous means that the con-
trol can fire the event at any time and the firing of the event is not initiated
by (or stimulated by) the control container. Asynchronous does not mean non-
blocking, as it might in the context of asynchronous message queueing.

34.38 What is DCOM?

Distributed COM — the distributed version of COM.

Distributed COM extends COM to support communication between callers
and components that are located on different computers. DCOM does not really
change much about how callers create and interact with COM objects, and
therefore, DCOM lets callers remain unaware of where a COM object is running.
The one noticeable difference is, of course, that network latency means that
accessing a remote object is slower than accessing a local object. DCOM does
introduce some differences, especially in the areas of security and the registry.

DCOM uses reference counting and pinging (pinging is a technique whereby
one computer or one program sends ping messages to another computer or
another program to determine whether or not it is running and to verify that
there is a valid connection between the two) to handle garbage collection of
objects and the servers in which the objects are running. As always, callers
call AddRef when they obtain pointers to interfaces and call Release when
they no longer need the pointer to the interface. When the reference count on
an object hits zero, it can be garbage collected and its resources can be freed.
Since reference-counting schemes are vulnerable to machine crashes and network
problems, DCOM also uses a mechanism that sends pings on a computer-by-
computer basis to detect nonexistent callers and dangling references so that
unneeded objects can be garbage collected.

Although DCOM extends COM across machine boundaries it does not try
to solve every possible distributed programming problem. Some of these other
problems are handled by Microsoft Transaction Server and Microsoft Message
Queueing.
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Software AG has ported DCOM to Sun Solaris, 64-bit Digital Unix, and IBM’s
OS 390.

34.39 How stable is DCOM’s infrastructure?

DCOM is based on the Distributed Computing Environment (DCE) Remote
Procedure Call (RPC) mechanism, thus inheriting a stable and proven cross-
platform communication protocol. DCE RPC has been in use for a number of
years and has proven its worth.

Although DCE RPC is complex, it brings a wealth of capabilities to DCOM.
DCOM uses DCE-compatible RPCs for marshaling data and operates over a
variety of protocols including TCP/IP, IPX, UDP, and NetBIOS (see FAQ 34.15
for more information regarding marshaling). Although DCOM uses DCE as its
RPC mechanism by default, much of DCOM can be overridden and customized.
For instance, a DCOM system might handle data marshaling on its own or it
might decide not to use DCE at all and provide its own RPC mechanism.

DCOM includes a distributed security mechanism providing authentication
and data encryption. DCOM includes provision for using naming services for
locating class and objects on other machines, including Domain Name System
(DNS) and Active Directory with NT 5.0 (Windows 2000).

34.40 What is COM+?

It is the second generation of COM.

The purpose of COM+ is to make it easier to write COM-based compo-
nents and applications using any COM+-compliant language. COM+ attempts
to make the development of COM components more like developing language-
specific components. The tools you use and the COM+ runtime take care of
turning those classes into COM+ components and applications. For example, a
C++ development environment that is COM+ compliant can produce a COM+
class from a C++ class, and a Visual Basic development environment that is
COM+ compliant can produce a COM+ class from a Visual Basic class. COM+
is language neutral and doesn’t care what syntax is used to implement a com-
ponent — that’s up to the tools you use.

When using a COM+-compliant tool there is no need to explicitly write a
class factory — the COM+ runtime provides one. Nor is it necessary to create
a type library — COM+-aware languages and tools use the COM+ runtime
to generate meta data that fully describe the COM+ class. In COM+, there
is no need to specify the CLSID and other GUIDs explicitly — COM+ tools
generate them and may use GUIDs internally, but programmers generally use
class names in the source code.
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A COM+ class, unlike a COM class, defines data members, properties, meth-
ods, and events. Data members and properties collectively describe an object’s
state. Methods are the actions that may be performed on an object. Events are
notifications that something interesting has happened. COM+, unlike COM,
defines a common set of data types no matter what language is used. Your tool
may need to provide some sort of mapping between its native type definitions
and those used by COM+. In addition, COM+ classes are completely described
by meta data, and COM+ can use this information to coerce values you supply
into the types it expects.

COM+ methods allow overloading of method names within a COM+ class.
Methods in COM+ can be decorated with modifiers such as static and virtual.
Static methods are class methods rather than instance methods. Virtual meth-
ods are object methods that can be overridden in derived classes. COM+ also
recognizes two special types of methods: constructors and destructors.

COM+ lets programmers use two types of inheritance, interface inheritance
and implementation inheritance. COM+ retains the notion of interfaces, and
interfaces are still the recommended way to define the public behavior of COM+
classes. In implementation inheritance, a COM+ class inherits both interface
and implementation from another COM+ class. COM+ supports single im-
plementation inheritance and does not permit multiple inheritance of COM+
classes.

COM+ understands exceptions. COM+ allows the types of exceptions that
may be thrown by a method to be specified. Whenever boundaries between
COM+ and non-COM+ execution environments are encountered, exceptions
are translated to and from COM IErrorInfo, Win32 Structured Exception
Handling, or C++ exceptions as needed.

Another key concept for COM+ is interception. Whenever the compiler sees
a method being called or a property being accessed, it generates a call to the
COM+ object services rather than generating a direct call to the class code.
This lets COM+ intercept and manage all method invocations and property
accesses between callers and components. This can be used by external services.
For example, a performance-monitoring service could log the number of calls to
each method and the time required to process the calls. A security service could
determine whether the caller was authorized to call a particular function.

From the caller’s perspective, COM+ objects are created using the same
mechanism used to allocate native objects. For example, a C++ program uses
syntax such as new Fred(). Furthermore, the object reference is managed by
COM+. When the program is finished with the reference, it just sets the pointer
to NULL and COM+ takes care of cleaning up the object. This means that COM-
style reference counting is not needed — COM+ takes care of it.

It is important to note that all COM+ objects are COM objects. Furthermore,
Microsoft will add some new features and keywords to its C++ specifically for
writing COM+ classes and supporting the services described here.
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Chapter 35

Transitioning to CORBA

35.1 What is CORBA?

CORBA stands for Common Object Request Broker Architecture. It is a stan-
dardized way for objects to communicate with one another even if the objects
exist on different computers and/or if they are written in different programming
languages.

CORBA is a specification rather than an implementation — the various
CORBA vendors have created software that complies with (or tries to comply
with) the CORBA specification. There are numerous CORBA implementations
on the market and CORBA is readily available on most platforms.

35.2 What is an ORB?

ORB stands for Object Request Broker. The ORB is the plumbing that enables
member functions to be called on objects that may be remote and/or may be
written in different programming languages.

A key feature of the ORB is transparency. The caller of a member func-
tion does not need to know whether the object is local or remote (location
transparency), the programming language used to implement the object (im-
plementation transparency), or the type of computer that the object is running
on (hardware transparency). The overall effect is to provide seamless commu-
nication among objects that may be distributed on a heterogeneous network of
computers.

35.3 What is IDL?

IDL stands for Interface Definition Language. It allows developers to define
the interfaces for distributed services along with a common set of data types
for interacting with the distributed services. Syntactically, IDL looks a lot
like C++, but unlike C++, IDL is a specification language rather than an
implementation language (see FAQ 35.10).
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35.4 What is COS?

COS stands for Common Object Services. COS is also known as CORBA
Services. These services are common components that handle things like cre-
ating objects, controlling access to objects, keeping track of relocated objects,
managing objects and their relationships, and so on.

Typical CORBA Services include Naming, Event Management, Lifecycle Man-
agement, Transaction Management, Persistence, and Security. CORBA Services
provide infrastructure utilities that improve application consistency and pro-
grammer productivity.

35.5 What is OMA?

OMA stands for Object Management Architecture. It’s the big picture archi-
tecture that includes the CORBA (the ORB itself), CORBA Services (COS),
and CORBA Facilities. It ties all the pieces together.

35.6 What is OMG?

OMG stands for Object Management Group. OMG is an international con-
sortium with nearly 1000 members, including software vendors, software devel-
opers, and users. OMG is the organization that develops and standardizes the
OMA.

This chapter will be deliberately loose in distinguishing between CORBA,
OMA, and IDL. Technically, IDL is a proper subset of CORBA, which is a
proper subset of OMA, but it is easier to speak of some IDL issues as CORBA
questions than it is to use precise wording that could confuse a newcomer to the
subject.

35.7 What is the purpose of this chapter?

The purpose of this chapter is to help developers and development organiza-
tions avoid some of the common pitfalls that can occur when they first encounter
distributed objects and CORBA. It is not intended to be a tutorial that pro-
vides all the details of using CORBA. Rather, this chapter skims a few of the
important issues without getting into technical detail.

Entire books are devoted to using CORBA, and readers interested in the
details of, for example, static versus dynamic member function invocation or the
proper use of the _var and _ptr suffixes should consult them. Another good
way to get general information on CORBA is to visit the Web site of the Object
Management Group (OMG) by pointing the browser at http://www.omg.org/.
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35.8 What is the most important message of
this chapter?

CORBA is nontrivial and requires serious effort, even for experienced C++
programmers.

Because CORBA’s Interface Definition Language (IDL) looks so similar to
C++, many programmers assume that CORBA doesn’t have a steep learning
curve. This is far from the truth, and most of this chapter is dedicated to
showing why there are and have to be major differences between C++ and
CORBA. Most of these differences are inherent in any approach to distributed
objects.

Also, it’s important to understand where CORBA fits into the grand scheme
of things. It offers critical middleware and useful components for developing
major systems, but the technical differences between the various CORBA im-
plementations or between CORBA and COM are usually less important than
business considerations.

35.9 What are the important concepts behind
CORBA?

The key concepts are

1. Platform and language independence

2. Location transparency

3. An OO approach that includes interface inheritance within IDL

4. Interoperability between ORBs

5. A consensus-based industry standards process

CORBA uses the proxy design pattern to achieve platform and language inde-
pendence. A proxy is a stand-in, or surrogate, for a “real” object and provides
a client-side reference for accessing a server object that could be located any-
where. By decoupling the software architecture from the runtime environment,
the software becomes more flexible and decisions such as which objects reside
where can be controlled by a network administrator armed with time sensitive
information that was not available to the software architects when they were
designing the software.

IDL is a language for defining the interfaces for distributed objects, where
the interfaces are similar to C++ abstract base classes with only pure virtual
member functions. The IDL compiler converts the interface specification into
the target language, which can be C, C++, Java, and so on. CORBA IDL sup-
ports interface inheritance, but since it is not an implementation programming

405



language, it does not support inheritance of implementation (however imple-
mentation inheritance is normally used when implementing an IDL interface in
an OO programming language such as C++).

ORBs from different vendors can communicate seamlessly because of the In-
ternet Inter-ORB Protocol (IIOP), which runs over TCP/IP. The specification
also supports DCE as the communication layer, but most CORBA users choose
TCP/IP.

35.10 Isn’t OMG IDL pretty much the same as
C++?

No.

IDL does have a C++-like syntax, and it includes these familiar features:

1. Basic data types such as short, long, float, char and others

2. Modules, which are roughly equivalent to namespaces

3. Exceptions (but see FAQ 35.13)

4. Strings, arrays, enumerations, typedefs, and so on

Despite these surface similarities, OMG IDL is not a programming language
and it should not be compared as such with C++. OMG IDL is a platform-
neutral specification language. OMG IDL can handle only interface issues —
parameter types, return types, member function names. It cannot handle im-
plementation issues such as member data, local variables, implementation code,
and so on.

Furthermore, it is important to note that CORBA data types do not nec-
essarily correspond to the similarly named C++ type long. For example, a
long in IDL may or may not be equivalent to the C++ type long. A long
in IDL corresponds to the C++ type CORBA::Long. For these reasons, C++
programmers who are implementing CORBA classes should be careful to use
the CORBA data types rather than the C++ data types when necessary.

As another paradigm shift, C++ programmers who are new to CORBA
tend to think of the CORBA data types (such as CORBA::Long) as aberra-
tions that should be avoided. In reality the opposite is true: in a sense the
CORBA data types are more portable than the C++ data types. For example,
sizeof(CORBA::Long) is guaranteed to be 4 bytes on all hardware platforms,
whereas sizeof(long) might not be exactly 4 bytes.
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In addition, CORBA is responsible for transmitting data values between var-
ious machines as necessary and dealing with any data transformation issues.
For example, different machines use different byte orderings for different data
types (little-endian vs. big-endian), and different programming languages may
represent data types differently than C/C++ does. CORBA manages all this
transparently — if the communicating objects are on different machines it uses
a process called marshaling to convert the source machine’s binary data to the
IIOP (the standard usually allows others) representation, and a reverse pro-
cess called demarshaling to convert the IIOP representation at the destination
machine back into the appropriate binary data format. One performance trick
used by some ORBs is recognizing situations where these processes can be safely
eliminated (such as when everything is on the same hardware and the network-
ing can be avoided). Other performance tricks, such as receiver-makes-right
semantics, avoid unnecessary message translations between machines using the
same byte order and are part of the specification.

Finally, C++ programmers need to be aware that IDL does not support
overloading, overriding, or pointers. So even though IDL looks a lot like C++,
there are significant differences.

35.11 Is the life cycle of a CORBA object the
same as the life cycle of a C++ object?

No, and this requires some mental adjustments.

C++ programmers are accustomed to objects that are known to exist because
they were instantiated or known to be gone because they went out of scope or
were programmatically destroyed. Reference counting (see FAQ 31.9) confuses
the argument a little, but the point remains that the programmer feels that the
object life cycle is under control.

But in the CORBA world, objects, particularly server objects, have much
more of a life of their own. They may be brought to life once and never die
because there is no scope to exit, or they may have a brief existence and commit
suicide. It is also important to distinguish between a CORBA object and a
servant for a CORBA object. A servant is a C++ object that provides the
body of and implementation for one or more CORBA objects, and many C++
programmers stumble over this distinction. A CORBA object may have one
or more servants, and a servant may represent (the proper technical term is
incarnate several CORBA objects during its lifetime. These are separate but
related entities.

Emotionally, the experience for most developers is similar to the one they
went through when they made the shift from procedural programming to OO.
For example, programmers coming to OO (say, programming in C++) from
procedural programming (say, programming in C) usually feel that they have
“lost control”. The top-down command-and-control approach was part of their
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old programming paradigm, and an adjustment is needed. Eventually this un-
comfortable feeling disappears. The shift from a traditional monolithic program
to a distributed program is similar.

35.12 Is the C++ code that interacts with the
CORBA implementation portable to a dif-
ferent CORBA vendor?

No, but the situation has improved because of the Portable Object Adapter.

Unfortunately, the C++ code that interacts with a particular CORBA ven-
dor’s ORB is not 100% portable to other CORBA vendors. In the early days, it
could be said that there was no such things as a CORBA programmer, there was
only an Orbix programmer or a VisiBroker programmer. Many of the differences
between CORBA implementations could be traced to the imprecise specifica-
tion of the Basic Object Adapter (BOA). In mid-1997, the OMG adopted a
replacement for the BOA called the Portable Object Adapter (POA). The POA
specification is voluminous as well as precise, and it introduces some unifying
concepts for the CORBA paradigm. The reader is cautioned that many excellent
CORBA books were written prior to POA and that BOA has been deprecated.

The net result of the POA is that conforming vendors do not have the same
latitude as before and programs are much more portable than in earlier days.

35.13 How do CORBA exceptions compare to
C++ exceptions?

The same but different.

At first glance, it appears that C++ exceptions and CORBA/IDL exceptions
are pretty much the same. For example the semantics of instantiating, throw-
ing, and catching exceptions are the same as with C++. But there are also
differences, some minor and some major.

As a minor difference, C++ implementations of CORBA member functions
need to include CORBA::SystemException in the exception specification (either
that or not have an exception specification; see FAQ 9.4). Another minor dif-
ference is that each CORBA exception must be mapped to a C++ class that
inherits from the abstract base class CORBA::UserException.

A major difference is that normal C++ exceptions have both state and be-
havior but CORBA/IDL exceptions cannot have behavior. This is because ex-
ceptions may get transmitted to different computers (e.g., when the browser and
the catcher are on different computers), and it’s easier for the implementation
to copy pure data objects that to copy objects that have behavior.
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IDL does not support inheritance in exception declarations, which can get
quite nasty when C++ exceptions are mapped to CORBA exceptions and then
thrown around the ORB. Finally, memory management is tough enough with
C++ exceptions, but the issues become substantially more complex in a dis-
tributed environment.

So don’t be lulled into a false sense of security because the words sound the
same. Exceptions in CORBA require a great deal of knowledge and experience
that the beginner does not have and does not gain easily, no matter how familiar
they are with C++ exceptions.

35.14 Which CORBA implementation is best?
Is CORBA better than COM?

The fact that these questions are being asked implies that they do not have
a clear answer.

If there were one approach to distributed objects that was clearly superior in
all respects, then the market would have gravitated to that solution and people
wouldn’t be asking, “Which is better?” But that hasn’t happened, and here
is probably a time and place for each alternative to shine. Many articles have
been written about the technical differences between CORBA and COM, and
each CORBA implementation has its voluble critics and fans. And there are
intelligent technical people on both sides of these arguments.

So the only proper answer to the question is to take an open-minded approach
to ORB selection, as opposed to the one-size-fits-all mentality favored by bigots.
Also, it is important to recognize that, in many places, the technical differences
can be relatively small and that nontechnical issues such as pricing, vendor
support, or training may dominate the decision process.
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Chapter 36

C Language Considerations

36.1 What are the main issues when mixing C
and C++ code in the same application?

The main issues are

• The C++ compiler must be used to compile main(). This allows the C++
compiler to deal with static initialization and other magical things that
main() has to do.

• The C++ compiler must be used to direct the linking process. This allows
the C++ compilers to deal with templates and also to link in the C++
libraries.

• The C++ and C compilers probably need to come from the same vendor
and have compatible versions. This allows them to use compatible calling
conventions in the binary code they generate, as well as compatible naming
strategies.

• The interface between two languages should be kept reasonably small. For
example, it is unwise to enable all C++ routines in the entire application
to be callable from C, although the reverse is possible: it is not that hard
to make C routines callable by C++.

• Read the rest of this chapter for more details.

36.2 How can C++ code call C code?

The C++ compiler must know that the function has C linkage.

If the C code that is being called is part of the standard C library, such as
printf(), simply #include the correct C header file and call the function.

If the C code that is being called is not part of the standard C library, the
C++ compiler needs to know that the function is a C function. To do this,
include an extern "C" block in the C++ code, and declare the C function
inside the block:
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extern "C" {
void myCfunction(int x, int y);
void yourCfunction(float z);

}

An entire C header file can be included within an extern "C" block:

extern "C" {
#include "my-C-header.h"
#include "your-C-header.h"

}

If a C header file needs to be included in a lot of C++ locations, the extern "C"
part can be moved into the header file, provided only the C++ compiler sees it.
The simplest way to do this is to create a new C++ header file that includes
the C header file. For example, if “Fred.h” is a C header file, “Fred.hpp” can
be created as a C++ header file:

// Fred.hpp
extern "C" {
#include "Fred.h" // Include the C header file

}

The other approach is to modify the C header file directly, which obviously
can only be done if the team has control over the C header file. The extern "C"
part is wrapped in an #ifdef to make sure these lines are seen only by C++
compilers, not by C compilers. The idea is simple: insert the following lines
near the top of the C header file.

#ifdef __cplusplus
extern "C" {

#endif

Then insert the following near the bottom of the C header file.

#ifdef __cplusplus
}

#endif

This works because the C++ compiler automatically #defines the prepro-
cessor symbol __cplusplus.

36.3 How can C code call C++ code?

The C++ compiler must be told to compile the C++ function using C-
compatible calling conventions (also known as C linkage). This is done using
the same extern "C" construct as detailed in the previous FAQ, only this time
the extern "C" goes around the declaration of the C++ function rather than
the declaration of the C function. The C++ function is then defined just like
any other C++ function:
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// This is C++ code
extern "C" {
void sample(int i, char c, float x) throw();

}

void sample(int i, char c, float x) throw()
{

// The C++ code that defines the function goes here
}

The extern "C" declaration causes the C++ compiler to use C calling con-
ventions and name mangling. For example, the C++ compiler might precede
the name with a single underscore rather than the usual C++ name-mangling
scheme.

The C code then declares the function using the usual C prototype:

/* This is C code */
void sample(int i, char c, float x);

void myCfunction()
{
// ...
sample(42, ’a’, 3.14);
// ...

}

There can be overloaded C++ functions with the same name as the function
that was exported to the C code, but only one of these overloads can be declared
as extern "C". Also, the C code cannot access more than one of these since C
doesn’t support name overloading. Member functions cannot be exported to C
code using the extern "C" syntax.

36.4 Why is the linker giving errors for C func-
tions called from C+ functions and vice
versa?

main() should be compiled with the C++ compiler, and the C++ compiler
should direct the linking process.

The C++ compiler should be used to compiler main() because it normally
embeds C++-specific operations inside the compiled code (for example, to deal
with static initialization; see FAQ 2.10). The C++ compiler should direct the
linking process since it needs to deal with things such as C++ libraries, static
initialization, and templates.
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36.5 How can an object of a C++ class be passed
to or from a C function?

With a layer of glue code.

The example that follows is a bilingual header file, readable by both a straight
C compiler and a C++ compiler. Bilingual header files often use the preproces-
sor symbol __cplusplus, which is automatically #defined by C++ compilers
but left undefined by C compilers.

/****** Bilingual C/C++ header file: Fred.h ******/
#ifdef __cplusplus

class Fred {
public:
Fred() throw();
void wilma(int i) throw();

protected:
int i_;

};
inline Fred::Fred() throw() : i_(0) { }
inline void Fred::wilma(int i) throw() { i_ = i; }

#else
struct Fred {
int i_;

};
typedef struct Fred Fred;

#endif

#ifdef __cplusplus
extern "C" {

#endif

extern void cppCallingC(Fred* p);
extern void cCallingCpp(Fred* p, int param);

#ifdef __cplusplus
}

#endif

The function cCallingCpp() might be defined in a C++ file, such as c++-code.cpp.

// This is C++ code
#include "Fred.h"

void cCallingCpp(Fred* p, int param) throw()
{ p->wilma(param); }

The function cppCallingC() might be defined in a C file, such as c-code.c.

/* This is C code */
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#include "Fred.h"

void cppCallingC(Fred* p)
{ cCallingCpp(p, 3); }

A Fred might be passed to the C code by main() (recall that main() must
be compiled by the C++ compiler).

// This is C++ code
#include "Fred.h"

int main() {
Fred x;
cppCallingC(&x);

}

Note that C code should not cast pointers that refer to C++ objects because
doing so can introduce errors, especially in cases where the pointer is returned
to C++. For example, most compilers adjust the pointer during certain pointer
casts involving multiple and/or virtual inheritance; the C compiler doesn’t know
how to do these adjustments.

The example assumes that the C compiler supports ANSI-C function pro-
totypes. Use #ifdef __STDC__ for those rare legacy situations that require
selecting code that supports only the outdated K&R C style.

36.6 Can a C function directly access data in an
object of a C++ class?

Sometimes.

First read the previous FAQ on passing C++ objects to and from C functions.
A C++ object’s data can be safely accessed from a C function if all of the
following are true.

• The C++ class has no virtual base classes anywhere in the inheritance
graph.

• The C++ class has no virtual functions (including inherited virtual func-
tions).

• The C++ class has all its data in the same access level section (private:,
protected:, or public:).

• The C++ class has no fully contained member objects that have either
virtual functions or virtual base classes.
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If the C++ class or its member object have any base classes, accessing the
data will be technically nonportable, because the language does not mandate
a specific class layout in the presence of inheritance. However, at least with
nonvirtual inheritance, all C++ compilers do it the same way — the base class
subobject appears first (in left-to-right order in the event of multiple inheri-
tance), and member objects follow.

If the class has any virtual base classes, it is more complicated and even less
portable.

By far the safer and easier way is to use an access function from C. This
costs a function call to access the datum (that is, these calls from C cannot be
inlined), but unless the application is CPU bound (see FAQ 33.2), it is probably
best to make the application safe and portable.

36.7 Can C++ I/O (<iostream>) be mixed with
C I/O (<stdio.h)?

Yes, but be careful.

<iostream> and <stdio.h> can be used in the same program. The easiest
way to mix them is to make sure that no single file is manipulated using both
<iostream> routines and <stdio.h> routines.

If any given file needs to be manipulated by both <iostream> routines and
<stdio.h> routines, special considerations must be taken into account. Make
sure that ios::sync_stdio(false) has not been called. If it has then call
ios::sync_with_stdio() as shown.

#include <iostream>
#include <cstdio>
using namespace std;

int main() {
ios::sync_with_stdio(); // No I/O should occur before this line
// ...

}

Note that this synchronization can degrade I/O performance, so it should
be used only if <iostream> routines and <stdio.h> routines are manipulating
the same file. For example, synchronization is needed if the program reads
from both cin and stdin, or if it writes to both cout and stdout. But if
<iostream> routines and <stdio.h> routines are not manipulating the same
file, synchronization is unnecessary and should not be used.
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36.8 Which is safer: <iostream> or <stdio.h>?

<iostream> is safer than <stdio.h> due to improved type safety and less
redundancy.

The <stdio.h> functions scanf() and printf() are interpreters of a tiny
language, made up mainly of “%” fields (format specifiers). These functions
select the correct I/O primitive at runtime by assuming that the format specifier
and the actual argument are compatible; if they aren’t compatible, garbage is
printed or the program crashes. Thus, the programmer is required to provide
duplicate information in the format specifier and the actual argument.

The <iostream> routines are different. Users provide only the object to be
read or written; the compiler selects the correct I/O primitive at compile time
via the rules of function overloading. Therefore, <iostream> is type safe since
the selected primitive is always compatible with the actual argument.

36.9 Which is more extensible: <iostream> or
<stdio.h>?

<iostream> is more extensible than <stdio.h> since <iostream> allows I/O
with user-defined types as well as built-in types.

The <stdio.h> functions scanf() and printf() work with a predefined set
of types. In contrast, <iostream> allows new, user-defined data types to be
written and read using the same syntax used for built-in types (that is, using <<
and >>). This extensibility is analogous to adding new “%” fields to the switch
statement that is used within the implementation of scanf() and printf().

C++ allows user-defined types (class types) to look and act like built-in
types.

36.10 Which is more flexible: <iostream> or <stdio.h>?

<iostream> is more flexible than <stdio.h> since <iostream> separates the
code that formats an object from the code that performs I/O of the charac-
ter stream produced or consumed by formatting. This separation allows re-
placement of the underlying I/O mechanisms without the need to rewrite the
formatting code.

For example, <iostream> uses real classes, hence users can create derived
classes. User-defined types can thus look and act like streams but don’t neces-
sarily have to use the same underlying I/O mechanisms. The formatting code
written for both user-defined and built-in types works correctly with these new
classes.
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36.11 Why does it seem that C++ program-
ming feels farther away from the machine
than C?

Because it is.

Because C++ is an object-oriented programming language, it is designed
to allow the creation and manipulation of objects from the problem domain.
Thus, C++ allows programmers to operate at a higher level of abstraction:
there is effectively a greater distance between the software and the machine.
This higher level of abstraction allows programmers to develop software in the
language of the problem domain rather than in the language of the computer.
It is considered a feature, not a bug.

36.12 Why does C++ do more things behind
your back than C does?

Because the goal of programming in C++ is different than the goal of pro-
gramming in C.

One of C’s great strength is that it has no hidden mechanism. What you see
is what you get. You can read a C program and see every clock cycle.

This is not the case in C++. As an OO programming language, C++ has
different goals than C. For instance, C++ calls constructors and destructors to
initialize objects. Overloaded operators are another case in point — they provide
a level of abstraction and economy of expression that lowers maintenance costs
without destroying runtime performance. Longtime C programmers are often
ambivalent about these features, but they soon realize their benefits.

Naturally, bad code can be written in any language. C++ doesn’t guarantee
any particular level of quality, reusability, abstraction, or any other measure of
goodness.

C++ enables reasonable developers to write superior software. It doesn’t
make it impossible for bad programmers to write bad programs.
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Chapter 37

Private and Protected
Inheritance

37.1 What are private inheritance and protected
inheritance?

Has-a, not is-a. From the user’s perspective, private and protected inheritance
are semantically similar to composition, but they are very different from normal
public inheritance. Thus private and protected inheritance are a lot more like
“has-a” than “is-a” (more precisely, than “is-substitutable-for”). Here are the
ways they are like “has-a”.

Like normal composition, private and protected inheritance cause an inner
object to be contained inside the outer object. With normal composition, this
inner object is called a member object. The syntax for doing this with private
inheritance is different than the syntax for normal composition, but the idea
is the same. With private and protected inheritance, the inner object is called
the base class subobject. The important thing to note is that the outer object
contains the inner object in both cases.

Like normal composition, private and protected inheritance prevent normal
users from directly accessing the inner object. With normal composition, this is
normally done by declaring the member object in the private: or protected:
part of the outer object. The syntax for doing this with private inheritance is
different than the syntax for normal composition, but the idea is the same. With
private and protected inheritance, this encapsulation is done automagically:
normal users are not allowed to convert a derived pointer to its private and
protected base class pointer (this is different than the normal is-a conversion of
public inheritance; see FAQ 2.24).

Like normal composition, private and protected inheritance allow the outer
object to select specific features of the inner object that users can access, and
users are prevented from accessing any other features than the ones explicitly
allowed by the outer object. With normal composition, the outer object grants
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normal users access to specific features of the inner object by call-through mem-
ber functions. A call-through member function is often a one-line function that
simply calls the corresponding member function on the inner object. The syntax
for doing this with private inheritance is different than that for normal compo-
sition, but the idea is the same. With private and protected inheritance, there
are two options: either the derived class defines a call-through member function
that calls the corresponding member function of the private or protected base
class subobject, or the using syntax can be used to make a base class member
function public: (see FAQ 37.6).

37.2 What is the difference between private in-
heritance and protected inheritance?

In private inheritance, the relationship with the base class is a private de-
cision; only members and friends of the privately derived class can exploit the
relationship with the private base class. In the protected inheritance, the rela-
tionship with the base class is a protected decision, so members and friends of
the protected derived class and members and friends of classes derived from the
protected derived class can exploit the protected inheritance relationship, but
normal users cannot.

Protected inheritance is less restrictive than private inheritance and therefore
introduces more coupling between the derived class and the base class. With
protected inheritance, if the relationship between the protected base class and
the derived class is changed (or if the protected operations of the protected base
class change), the effects may reach beyond the protected derived class and its
friends to classes derived from the protected derived class, classes derived from
those derived classes, and so on.

This is a for-better-for-worse situation; derived classes have more coupling,
but they also have the ability to exploit the relationship between the derived
class and the base class.

37.3 What is the syntax and semantics for pri-
vate and protected inheritance?

The following example shows a simple has-a relationship between a car object
and its engine object; it uses normal composition, where the Engine member
object appears in the private: section of the Car class.

class Engine {
public:
void publ() throw();

protected:
void prot() throw();

};

class CarA {

419



public:
// ...

private:
Engine e_;

};

Obviously composition does not create an is-a relationship: a CarA is not
a kind-of an Engine. In particular, users cannot legally convert a CarA* to
an Engine*. Also note that a CarA object contains exactly one Engine object
(though it could be made to contain more than one).

Private inheritance accomplishes essentially the same thing. In the follow-
ing example, CarB is said to privately inherit from Engine (if the symbols
: private Engine are changed to : protected Engine, CarB is said to pro-

tectedly inherit from Engine).

class CarB : private Engine {
public:
// ...

};

Just as with normal composition, there is no is-a relationship: a CarB is not a
kind-of Engine. In particular, normal (nonfriend) users cannot legally convert
a CarB* to an Engine*. Also like normal composition, a CarB object contains
exactly one Engine object (however, unlike normal composition, private and
protected inheritance does not allow a second Engine subobject to appear as a
second private and/or protected base class).

The main difference between composition and private/protected inheritance is
access to the protected members of Engine. With private/protected inheritance,
members and friends of CarB can access the protected: members of Engine (in
this case, they can access both Engine::publ() and Engine::prot()). How-
ever, with normal composition, members and friends of CarA can only access
Engine::publ(); they are forbidden to access Engine::prot(). The usual
reason people use private/protected inheritance is for this additional access au-
thority; but note that the extra authority carries with it extra responsibility.

Another difference between composition and private/protected inheritance is
the ability to convert a CarB* to an Engine*. With private/protected inheri-
tance, members and friends of CarB can convert a CarB* to an Engine*. With
normal composition this is not possible: no one can legally convert a a CarA*
to an Engine*.

There are several caveats when using private/protected inheritance. Simple
composition (has-a) is needed if it is necessary to contain several member objects
of the same class; private or protected inheritance can introduce unnecessary
multiple inheritance.
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37.4 When should normal has-a be used, rather
than private or protected inheritance?

Use normal has-a when you can; use private or protected inheritance when
you have to.

Normal composition (has-a) is preferred because it leads to fewer dependen-
cies between classes. Private and protected inheritance are more expensive to
maintain because they increase the number of classes that have access to the
protected parts of other classes — they increase coupling.

Private or protected inheritance is often used when the goal is has-a but
the interface of the contained class is insufficient. In this case, an alternative
to private or protected inheritance is improving the public interface of the base
class so that simple composition can be used. If you cannot change the interface
of the base class (for example, because the source code is not available), you can
create one derived class (often using public inheritance) that has an improved
interface. This derived class with its improved interface is then used via simple
composition (has-a).

37.5 What are the access rules for public, pro-
tected, and private inheritance?

In the following example, class B has a public: member, a protected:
member, and a private: member.

class B {
public:
void publ() throw();

protected:
void prot() throw();

private:
void priv() throw();

};

Class PrivD privately inherits from B, class ProtD protectedly inherits from
B, and PublD publicly inherits from B.

class PrivD : private B { };
class ProtD : protected B { };
class PublD : public B { };

With private inheritance, the public and protected parts of B become private
in PrivD. This means that PrivD can access these member functions, but user
code and classes derived from PrivD cannot access them.
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With protected inheritance, the public and protected parts of B become pro-
tected in ProtD. This means that members and friends of ProtD can access these
member functions, as can classes derived from ProtD, but user code cannot ac-
cess them.

With public inheritance, the public parts of B become public on PublD, and
the protected parts of B remain protected in PublD.

In all three cases, the private parts of B are inaccessible to the derived classes
(PrivD, ProtD, and PublD) as well as to user code.

37.6 In a private or protected derived class, how
can a member function that was public in
the base class be made public in the de-
rived class?

The name (not the entire signature) of the member function should be de-
clared in the public interface of the derived class preceded by the keyword using.
For example, to make the member function B::f(int, char, float) public
in PrivD, say this:

class B {
public:
int f(int, char, float) throw();

protected:
int g(double, char) throw();

};

class PrivD : private B {
public:
using B::f; // Note: omit the parameter declarations

};

The syntax for doing this with protected inheritance is identical.

There are two limitations to this technique: overloaded names can’t be distin-
guished, and a base member cannot be made public if it was protected in the base
class (that is, this technique cannot be used to make Base::g(double, char)
public in the derived class). When necessary, both these limitations can be
avoided by defining a call-through member function in the privately/protectedly
derived class, as shown in the following example.

lass PrivD2 : private B {
public:
int g(double d, char c) throw();

};
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inline int PrivD2::g(double d, char c) throw()
{ return B::g(d,c); }

37.7 Should a pointer be cast from a private or
protected derived class to its base class?

No.

Within a member function or friend function of a private or protected derived
class, the relationship to the base class is known and the upward pointer or
reference conversion takes place automatically without a cast.

In normal user code, the relationship to a private or protected base class
is inaccessible and the conversion is illegal. Users should not perform a cast
because private or protected inheritance is a nonpublic decision of the derived
class. The cast will subtly break at some future date if/when the private or
protected derived class chooses to change or remove the private/protected in-
heritance relationship.

The conclusion is that only a class and its friends have the right to convert
a pointer to the class’s nonpublic base class. The member functions and friend
functions of the privately/protectedly derived class don’t need a cast because
the relationship with the base class is directly accessible to them.

Here’s an even simpler conclusion — don’t use pointer casts unless there is
an overriding reason to do so!
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Chapter 38

Pointers to Member
Functions

38.1 What is the type of a pointer to a nonstatic
member function?

The most important thing to understand is that the type is different from
that of a pointer to a C-style (non-member) function. Simply understanding
that they are completely different and have incompatible types will prevent the
most common and dangerous errors with pointers to member functions.

A pointer to the nonstatic member function with signature void Fred::f(int)
has type void (Fred::*)(int). In particular, the type of the pointer to a
nonstatic member function includes the class of the member function because
nonstatic member functions have an implicit parameter that points to the object
(the this pointer).

Here’s an example.

#include <iostream>
using namespace std;

class Fred {
public:
void f(int i) throw();
void g(int i) throw();
void h(int i) throw();

};

void Fred::f(int i) throw()
{ cout << "Fred::f(int); i=" << i << ’\n’; }

void Fred::g(int i) throw()
{ cout << "Fred::g(int); i=" << i << ’\n’; }

void Fred::h(int i) throw()
{ cout << "Fred::h(int); i=" << i << ’\n’; }
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typedef void(Fred::*FredMemberPtr)(int);

Note the use of typedef. Because of the rather obscure syntax of pointers to
nonstatic member functions, it is highly recommended that a typedef be used
to represent the pointer type.

In the following example, a pointer p is created to point to Fred::g. This
pointer is then used to call the member function.

void sample(Fred& x, FredMemberPtr p) throw()
{ (x.*p)(42); } // If p is &Fred::g, this is the same as x.g(42)

int main()
{
FredMemberPtr p = &Fred::g;
Fred x;
sample(x, p);

}

The output of this program is as follows.

Fred::g(int); i=42

A pointer to a nonstatic member function of class Fred has a totally different
type from a pointer to a function. For example, the pointer type void(Fred::*)(int)
is totally different from the pointer type void(*)(int). Do not use a cast to
try to convert between the two types. You have been warned.

A pointer to a static member function of class Fred has the same type as a
pointer to a C-like function. In other words, a C-like function or static mem-
ber function can be converted to the same pointer to function type, such as
void(*)(int). But a pointer to nonstatic member function cannot be con-
verted to a normal pointer to a function type.

38.2 Can pointers to nonstatic member func-
tions be passed to signal handlers, X event
call-back handlers, and so on, that expect
C-like function pointers?

A pointer to a nonstatic member function cannot be passed into a routine that
is expecting a pointer to a C-like function, since a nonstatic member function
is meaningless without there being an object to which the nonstatic member
function can be applied.
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To simulate this behavior, pass a pointer to a C-like function, and have that
function obtain the object pointer through some other technique (such as storing
it in a global). The C-like function would then call the desired nonstatic member
function. For example, suppose x.f(int) were to be called on interrupt, where
f(int) is a nonstatic member function of the class of object x. The following
would accomplish the call (note that a static member function has the same
type as a C-like function).

#include <iostream>
#include <signal.h>
using namespace std;

class Fred {
public:
void f(int n) throw();
static void staticMethod(int n) throw();
static void registerHandlerObject(Fred* p) throw();

private:
static Fred* signalHandlerObject_; //the handler object

};

void Fred::f(int n)
{ cout << "Fred::f()\n"; }

void Fred::registerHandlerObject(Fred* p)
{ signalHandlerObject_ = p; }

void Fred::staticMethod(int n)
{
Fred* p = Fred::signalHandlerObject_;
p->f(n);

}
Fred* Fred::signalHandlerObject_ = NULL;

int main()
{
//signal(SIGINT, Fred::f); // ERROR: Cannot do this
Fred x;
Fred::registerHandlerObject(&x);
signal(SIGINT, Fred::staticMethod); // Good

}

38.3 What is one of the most common errors
when using pointers to member functions?

Trying to pass the address of a nonstatic member function into a function that
is expecting a pointer to function, and sometimes the inverse of this scenario.

Nonstatic member functions have an implicit parameter that points to the
object — the pointer called this inside the member function. Nonstatic member
functions can be thought of as having a different calling convention from that of
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normal C functions, so the types of their pointers are different and incompatible
— pointer to nonstatic member function versus pointer to function.

C++ introduces a new type of pointer, called a pointer to nonstatic member,
which can be invoked only by providing an object. Do not attempt to cast a
pointer that points to a nonstatic member function into a pointer to function
or vice versa; the result is undefined and probably disastrous. For example,
a pointer to nonstatic member function probably doesn’t contain the machine
address of the appropriate function. As noted in the last example, if a regular C
function pointer is needed, use either a static member function or a nonmember
function.

38.4 How is an array of pointers to nonstatic
member functions declared?

Use a typedef.

Consider the following class example.

#include <iostream>
using namespace std;

class Fred {
public:
void f(int i);
void g(int i);
void h(int i);

};

void Fred::f(int i)
{ cout << "Fred::f(int); i=" << i << ’\n’; }

void Fred::g(int i)
{ cout << "Fred::g(int); i=" << i << ’\n’; }

void Fred::h(int i)
{ cout << "Fred::h(int); i=" << i << ’\n’; }

typedef void (Fred::*FredMemberPtr) (int);

Since FredMemberPtr is a typedef, it can be used like most other data types.
In particular, an array of FredMemberPtr can be created using the following
syntax.

FredMemberPtr array[3] = { &Fred::f, &Fred::g, &Fred::h };

To call one of the nonstatic member functions, supply a Fred object, and use
the .* operator.

int main()
{
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Fred x;
for (int i = 0; i < 3; ++i) {
FredMemberPtr p = array[i];
(x.*p)(42 + i);

}
}

The output of this program is as follows.

Fred::f(int); i=42
Fred::g(int); i=43
Fred::h(int); i=44
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Chapter 39

The Transition to OO and
C++

39.1 Who should read this chapter?

People who are learning OO and C++, but also experienced developers who
have to get others through the paradigm shift.

This chapter is partially written for people who are learning OO and C++,
but it is also aimed at those who already have the technical knowledge, but
are trying to guide others through the cycle. It is based on our experience
training and mentoring thousands of developers in different environments. Our
insights are as much psychological as they are technical, because the goal is to
set realistic expectations and then help as many people as possible succeed.

39.2 What are the key messages of this chapter?

The key messages are

1. Know the stages of development, and set appropriate goals.

2. Books are necessary but not sufficient.

3. Courses might help but are not sufficient.

4. Experience on significant projects led by competent mentors is very im-
portant.

5. Small projects build the wrong skills and attitudes for success on large
projects.

6. C expertise can hurt more than it helps.
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39.3 How many stages of technical expertise are
there in the transition?

There are at least four different stages of technical expertise.

1. The first objective is to be able to play a useful role on a project, with
technical assistance from others. Sometimes referred to as “grunt pro-
gramming” or “blue-collar programming”, there is a need for solid citizens
who can take work direction and do most simple tasks on their own.

2. The next step corresponds to the “senior developer” role, and the main
difference from level 1 is the ability to work without detailed technical
direction on all but the most difficult problems. People at this level have
usually worked on at least three significant C++ projects and have made
a fair number of mistakes. Most developers attain this level of competence
eventually.

3. At the next level, the developer is thought of as the “resident guru” or
technical expert in one or more aspects of C++ development. These are
the people who come up with the bright ideas and technical leadership for
their organization, and are usually spread across several projects. Their
salaries can be quite high, and they usually have no interest in manage-
ment career paths. The good ones have a large amount of scar tissue and
arrow wounds in their back. Very few programmers have the intelligence
and dedication necessary to reach this level of expertise.

4. At the final level, the person is the “industry thought leader”, and very few
organizations can afford one of these exotic specialists. These are the true
experts who are well known in their peer group. It is unrealistic for most
developers to aim for this level of expertise, and those who achieve it spend
almost every waking hour maintaining their craft. People of this caliber
are usually brought in as consultants rather than as full-time employees.

39.4 Why bother defining levels of expertise?

Because it is important to set realistic targets for the transition plan.

In the early years of OO and C++, many organizations decided that they
needed to develop expertise quickly, and many poor souls were “chosen” to
become resident experts. They were given a book to read, subjected to an
intensive two- or three-week training course and a few months of experience
with a trivial project. These battlefield promotions did not work very well, and
the organizations have suffered from having created anointed “experts” out of
people who are actually at level 1 in their development. These organizations
have a hard time developing legitimate skills at any level because their “top”
people are clueless.

So the first task is to get the trainee to level 1 and to recognize that not
everyone will make even this transition. The hard part is recognizing that
everyone, no matter how experienced or talented, has to start off at the bottom
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rung. OO is radically different from functional decomposition and requires a
“paradigm shift” that can be quite difficult for strong-willed people. C++,
if used properly, is quite different than traditional C, even though it can be
used as “a better C” (this latter approach does not deliver the promises of
OO, however). Finally, object modeling is quite different than data modeling.
People who were strong in the older technologies have significant emotional and
intellectual hurdles to leap, and they should not be expected to immediately
reach their previous level of expertise in the new technologies.

In our opinion, organizations should focus on getting people to level 1 through
training, reading, and mentoring. With experience and additional mentoring,
many of the level 1 people can eventually attain level 2. Anything beyond that
is beyond the scope of this book and probably depends more on talent and
attitude than on organizational process.

39.5 Can OO/C++ be learned from a book?

A good book can teach syntax and semantics, and a great book can open
your eyes, but that isn’t good enough.

We think the book you are reading is a good book, maybe even better than
that. But a book can’t reinforce its messages like practice does, and a book
can’t answer questions like a good mentor can. It has been our experience that
incremental technology, such as going from FORTRAN to C, can be picked up
by good people from reading a book and experimenting a bit. But a paradigm
shift, such as transitioning to OO and C++, doesn’t lend itself to this traditional
approach.

So, learn by reading, but become proficient by doing, particularly under the
tutelage of a pro. A book alone cannot get you even to level 1.

39.6 Can OO/C++ be learned from a course?

No. Courses are like books, helpful only if the objective is very limited.

We have found that courses are a great way to learn specific skills, such as how
to use a tool. But they can’t convey the depth of knowledge that is needed for
learning something as deep as OO and C++ in a reasonable time frame. Most
of the instructors aren’t up to the task technically (they are educators, not
developers, and lack the experience and scar tissue that is needed). Even if the
instructors are great (we think we’ve been pretty good instructors ourselves) and
the material is wonderful (but when was the last time a great developer knew
how to develop great pedagogical material?), the key is still to do something
real.
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One of our classroom experiences was predictable: we preached the gospel
about OO design and the students nodded their heads approvingly. But when
we gave them their first miniproject, they did things the way they always had.
It takes time and repeated effort to break old habit patterns.

In our opinion, it is possible to get a talented person to level 1 with a combi-
nation of good courses and good books, but it takes both ingredients.

39.7 What is the key to learning OO/C++?

Serve an apprenticeship on a real project with a top professional.

A good mentor has level 3 or level 4 technical skills, good one-on-one commu-
nications skills, and a practical orientation backed by sound judgment. Men-
toring is difficult because it requires patiently responding to off-beat questions
while still getting work accomplished. The apprentice has the opportunity to
ask questions in a real-world environment, and learning when “rules” should
be broken in the name of practicality. Another part of the learning process is
listening to “war stories” and tales of failure that cannot be discussed formally.

Real projects are important because classroom exercises and books fit the
subject matter into neat theoretical compartments. A live projects is essential to
see how theory and practice coincide and overlap and to develop the background
for making practical trade-offs.

Good mentors are worth whatever they charge, but watch out for the bad
ones. Avoid technology bigots who know the answers before they’ve heard the
question: a good example would be people who automatically hate anything
from Microsoft (or, equally bad, automatically love anything from Microsoft).
Also, there are many people who talk a good game but have never finished
anything of significance. In particular, there are people who will put their
version of OO theory and “purity” ahead of project success. Look for practical
mentors who have built something and lived with the consequences of their
actions. Avoid people who have been on lots of projects but never saw anything
through to completion.

39.8 Are small projects a good way to get your
feet wet?

No. Small projects can set you up to drown later on.

Small projects, whose intellectual content can be understood by one intelligent
person, build exactly the wrong skills and attitudes for success on large projects.
In terms of thousands of lines of code (KLOC), anything under 20KLOC is
clearly small, and anything over 100KLOC is not small. The experience of the
industry has been that small projects succeed most often when there are a few
highly intelligent people involved who use a minimum of process and are willing
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to rip things apart and start over when a design flaw is discovered. A small
program can be desk-checked by senior people to discover many of the errors,
and static type checking and const correctness on a small project can be more
grief than they are worth. Bad inheritance can be fixed in many ways, including
changing all the code that relied on the base class to reflect the new derived
class. Breaking interfaces is not the end of the world because there aren’t that
many interconnections to start with. Finally, source code control systems and
formalized build procedures can slow down progress.

On the other hand, big projects require more people, which implies that the
average skill level will be lower because there are only so many geniuses to
start with, and they usually don’t get along with each other that well, anyway.
Since the volume of code is too large for any one person to comprehend, it is
imperative that processes be used to formalize and communicate the work effort
and that the project be decomposed into manageable chunks. Big programs need
automated help to catch programming errors, and this is where the payback for
static type checking and const correctness can be significant. There is usually
so much code based on the promises of base classes that there is no alternative
to following proper inheritance for all the derived classes; the cost of changing
everything that relied on the base class promises could be prohibitive. Breaking
an interface is a major undertaking, because there are so many possible ripple
effects. Source code control systems and formalized build processes are necessary
to avoid the confusion that arises otherwise.

So the issue is not just the big projects are different. The approaches and
attitudes to small and large projects are so diametrically opposed that success
with small projects breeds habits that do not scale and can lead to failure of
large projects.

39.9 Does being a good C programmer help when
learning OO/C++?

No. A good C programmer is almost always a horrible OO/C++ programmer.

One of the early ideas behind C++ is that it could be used as a “better
C” without using its OO or modern software engineering features. We don’t
think this is a desirable approach in most instances, and this book is written
for organizations which want “good” OO software using C++, not just C++
programs that compile and execute correctly. With that perspective, this is the
new reality for C programmers:

• The use of arrays is evil. C++ now uses container classes.

• The use of pointers is evil. References are “in”. When pointers are used,
reference counting is “in”.

• The beloved type casts of all sorts are bad.
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• Using code to find code is evil (that is, using type information and if and
switch statements and downcasts to locate the right routine to call). In
C++ we use virtual functions and dynamic binding.

• Good old-fashioned char* delimited by ’\0’ is evil. In C++ we have
strings from the class library.

• Familiar functions such as memory() and strlen() either have nasty be-
havior or are obsolete.

So, what’s left from C that’s “good” C++? Curly braces and semicolons, and
that’s about it. Not only C programmers have to throw away quite a bit of old
technique, they also have to pick up a few new ideas:

• Templates

• Exceptions

• Mutable

• Inheritance and hiding rules

• Operator overloading

• Virtual functions, abstract base classes

• Special characteristics of STL or the class library of your choice

• Constructors and destructors, new[] and delete[]

• Declare at first use, where no one can find it

• And on and on and on

Okay, we’ll admit that we’ve had our tongue planted firmly in our cheek while
writing this FAQ. It isn’t quite that gloomy, and hundreds of thousands of C
programmers have learned to program successfully in C++. But, our message
is that the transition isn’t automatic or easy, and C programmers better be
prepared for a major intellectual challenge if they want to become good C++
programmers.

39.10 What skills help when learning OO/C++?

Being able to see the big picture and solid software engineering skills.

Invariably the most successful OO/C++ developers (those that reach levels
3 and 4) share a set of core beliefs.

• They love designing interfaces, they use programming by contract tech-
niques, and they see the value of decoupling as an architectural goal.

• They understand why interface reuse is more valuable than code reuse.
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• They are committed to building high-quality software systems in a team-
oriented environment rather than just making sure their small piece com-
piles and runs.

• They are willing to try new techniques, rather than rejecting new ideas
because they’ve never used them before.

• They understand the costs of using code to find code and they avoid it
religiously.

• They realize that requirements are always changing and they work hard
at designing interfaces that are flexible and extensible.

• They know what they know and they know what they don’t know, and
they are willing to seek out good advice in an effort to find better solutions.

• They would rather understand how and why something works than be
satisfied with simply getting something to compile and run.

• They put the good of the many (the client code) ahead of the good of the
few (the system code), and they understand that “breaking client code”
is very expensive.

• The understand the cost and benefits and risks of alternative approaches
and factor them into their decision-making process.

• They design changeability into the fabric of the system architecture and
design, rather than thinking of “change” as an afterthought or mainte-
nance activity.

• They do not believe that one size fits all.

• They listen before they speak — they do not have an answer before they
hear the question.

• They want to understand why the software is being built — the underlying
business case — in addition to simply knowing what the requirements are.

• They consistently put business considerations ahead of technology consid-
erations.

Developers with these skills will thrive when using C++ no matter what their
background was — C programmer, Smalltalk programmer, Cobol programmer,
former CEO, or itinerant sheepherder.
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