
C++11
From Wikipedia, the free encyclopedia

C++11, also formerly known as C++0x (pronounced "see plus plus oh ex"),[1] is the
name of the most recent iteration of the C++ programming language, replacing
C++03, approved by the ISO as of 12 August 2011.[2] The name is derived from the
tradition of naming language versions by the date of the specification's publication.

C++11 includes several additions to the core language and extends the C++ standard
library, incorporating most of the C++ Technical Report 1 (TR1) libraries — with the
exception of the library of mathematical special functions.[3] C++11 was published as
"ISO/IEC 14882:2011"[4] in September 2011 and is available for a fee. The most recent
working draft available is (N3242 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2011/n3242.pdf)) dated 28 February 2011.

Contents

1 Candidate changes for the impending standard update
2 Extensions to the C++ core language
3 Core language runtime performance enhancements

3.1 Rvalue references and move constructors
3.2 Generalized constant expressions
3.3 Modification to the definition of plain old data

4 Core language build time performance enhancements
4.1 Extern template

5 Core language usability enhancements
5.1 Initializer lists
5.2 Uniform initialization
5.3 Type inference
5.4 Range-based for-loop
5.5 Lambda functions and expressions
5.6 Alternative function syntax
5.7 Object construction improvement
5.8 Explicit overrides and final
5.9 Null pointer constant
5.10 Strongly typed enumerations
5.11 Right angle bracket
5.12 Explicit conversion operators
5.13 Template aliases
5.14 Unrestricted unions
5.15 Identifiers with special meaning

6 Core language functionality improvements
6.1 Variadic templates
6.2 New string literals
6.3 User-defined literals

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

1 of 42 10/20/2011 07:32 PM

6.4 Multitasking memory model
6.5 Thread-local storage
6.6 Explicitly defaulted and deleted special member functions
6.7 Type long long int
6.8 Static assertions
6.9 Allow sizeof to work on members of classes without an explicit
object
6.10 Allow garbage collected implementations

7 C++ standard library changes
7.1 Upgrades to standard library components
7.2 Threading facilities
7.3 Tuple types
7.4 Hash tables
7.5 Regular expressions
7.6 General-purpose smart pointers
7.7 Extensible random number facility
7.8 Wrapper reference
7.9 Polymorphic wrappers for function objects
7.10 Type traits for metaprogramming
7.11 Uniform method for computing the return type of function
objects

8 Features planned but removed or not included
9 Features to be removed or deprecated
10 See also
11 References
12 Further reading

12.1 C++ Standards Committee papers
12.2 Articles

13 External links

Candidate changes for the impending standard
update

The modifications for C++ involve both the core language and the standard library.

In the development of every utility of the new standard, the committee has applied
some directives:

Maintain stability and compatibility with C++98 and possibly with C;
Prefer introduction of new features through the standard library, rather than
extending the core language;
Prefer changes that can evolve programming technique;
Improve C++ to facilitate systems and library design, rather than to introduce
new features only useful to specific applications;
Increase type safety by providing safer alternatives to current, unsafe
techniques;
Increase performance and the ability to work directly with hardware;

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

2 of 42 10/20/2011 07:32 PM

Provide proper solutions for real world problems;
Implement “zero-overhead” principle (additional support required by some
utilities must be used only if the utility is used);
Make C++ easy to teach and to learn without removing any utility needed by
expert programmers.

Attention to beginners is considered important, because they will always compose the
majority of computer programmers, and because many beginners would not intend to
extend their knowledge of C++, limiting themselves to operate in the aspects of the
language in which they are specialized.[1] Additionally, considering the vastness of C++
and its usage (including areas of application and programming styles), even the most
experienced programmers can become beginners in a new programming paradigm.

Extensions to the C++ core language

One function of the C++ committee is the development of the language core. Areas of
the core language that were significantly improved include multithreading support,
generic programming support, uniform initialization, and performance enhancements.

For the purposes of this article, core language features and changes are grouped into 4
general sections: run-time performance enhancements, build-time performance
enhancements, usability enhancements, and new functionality. Some features could fall
into multiple groups, but they are only mentioned in the group which primarily
represents that feature.

Core language runtime performance enhancements

These language features primarily exist to provide some kind of performance benefit,
either of memory or of computational speed.

Rvalue references and move constructors

In C++03 (and before), temporaries (termed "rvalues", as they often lie on the right
side of an assignment) were intended to never be modifiable - just as in C (and were
considered to be indistinguishable from const T& types) - though in some cases
temporaries could have been modified, and it was even considered to be a useful
loophole (for the former, see Sutter, Alexandrescu "C++ coding standards" #15).
C++11 adds a new non-const reference type called an rvalue reference, identified by
T&&. This refers to temporaries that are permitted to be modified after they are
initialized, for the purpose of allowing “move semantics”.

A chronic performance problem with C++03 is the costly and unnecessary deep copies
that can happen implicitly when objects are passed by value. To illustrate the issue,
consider that a std::vector<T> is, internally, a wrapper around a C-style array with a size.
If a std::vector<T> temporary is created or returned from a function, it can only be stored
by creating a new std::vector<T> and copying all of the rvalue's data into it. Then the
temporary and all its memory is destroyed. (For simplicity, this discussion neglects the
Return value optimization).

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

3 of 42 10/20/2011 07:32 PM

In C++11, a “move constructor” of std::vector<T> that takes an rvalue reference to a
std::vector<T> can simply copy the pointer to the internal C-style array out of the rvalue
into the new std::vector<T>, then set the pointer inside the rvalue to null. Because the
temporary's pointer is allowed to be cleared, its memory is not deleted when it goes out
of scope, therefore a deep copy is not required. Moreover, this is a safe and invisible
operation because the temporary will never again be used.

Rvalue references can provide performance benefits to existing code without needing to
make any changes outside the standard library. The type of the returned value of a
function returning a std::vector<T> temporary does not need to be changed explicitly to
std::vector<T> && to invoke the move constructor, as temporaries are considered rvalues
automatically. (However, if std::vector<T> is a C++03 version without a move constructor,
then the copy constructor will be invoked with a const std::vector<T>& as normal,
incurring a significant memory allocation.)

For safety reasons, some restrictions are imposed. A named variable will never be
considered to be an rvalue even if it's declared as such; in order to get an rvalue, the
function template std::move<T>() should be used. Rvalue references can also only be
modified under certain circumstances, being intended to be used primarily with move
constructors.

Due to the nature of the wording of rvalue references, and to some modification to the
wording for lvalue references (regular references), rvalue references allow developers
to provide perfect function forwarding. When combined with variadic templates, this
ability allows for function templates that can perfectly forward arguments to another
function that takes those particular arguments. This is most useful for forwarding
constructor parameters, to create factory functions that will automatically call the
correct constructor for those particular arguments.

Generalized constant expressions

C++ has always had the concept of constant expressions. These are expressions such
as 3+4 that will always yield the same results, at compile time and at run time. Constant
expressions are optimization opportunities for compilers, and compilers frequently
execute them at compile time and hardcode the results in the program. Also, there are
a number of places where the C++ specification requires the use of constant
expressions. Defining an array requires a constant expression, and enumerator values
must be constant expressions.

However, constant expressions have always ended whenever a function call or object
constructor was encountered. So a piece of code as simple as this is illegal:

int get_five() {return 5;}

int some_value[get_five() + 7]; //create an array of 12 integers. Illegal C++

This is not legal C++, because get_five() + 7 is not a constant expression. The compiler
has no way of knowing if get_five() actually is constant at runtime. In theory, this

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

4 of 42 10/20/2011 07:32 PM

function could affect a global variable, call other non-runtime constant functions, etc.

C++11 introduced the keyword constexpr, which allows the user to guarantee that a
function or object constructor is a compile-time constant. The above example can be
rewritten as follows:

constexpr int get_five() {return 5;}

int some_value[get_five() + 7]; //create an array of 12 integers. Legal C++11

This allows the compiler to understand, and verify, that get_five is a compile-time
constant.

The use of constexpr on a function imposes very strict limitations on what that function
can do. First, the function must have a non-void return type. Second, the function
contents must be of the form: return expr. Third, expr must be a constant expression, after
argument substitution. This constant expression may only call other functions defined
as constexpr, or it may use other constant expression data variables. Lastly, a function
with this label cannot be called until it is defined in this translation unit.

Variables can also be defined as constant expression values:

constexpr double acceleration_due_to_gravity = 9.8;
constexpr double moon_gravity = acceleration_due_to_gravity / 6.0;

Constant expression data variables are implicitly const. They can only store the results
of constant expressions or constant expression constructors.

In order to construct constant expression data values from user-defined types,
constructors can also be declared with constexpr. A constant expression constructor must
be defined before its use in the translation unit, as with constant expression functions.
It must have an empty function body. It must initialize its members with constant
expressions. The destructors for such types should be trivial.

Copying constexpr constructed types should also be defined as a constexpr, in order to
allow them to be returned by value from a constexpr function. Any member function of
a class, such as copy constructors, operator overloads, etc., can be declared as constexpr,
so long as they fit the definition for function constant expressions. This allows the
compiler to copy classes at compile time, perform operations on them, etc.

A constant expression function or constructor can be called with non-constexpr
parameters. Just as a constexpr integer literal can be assigned to a non-constexpr
variable, so too can a constexpr function be called with non-constexpr parameters, and
the results stored in non-constexpr variables. The keyword only allows for the
possibility of compile-time constancy when all members of an expression are constexpr.

Modification to the definition of plain old data

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

5 of 42 10/20/2011 07:32 PM

In C++03, a class or struct must follow a number of rules in order for it to be
considered a plain old data (POD) type. Types that fit this definition produce object
layouts that are compatible with C. However, the definition in C++03 is unnecessarily
strict and there are good reasons for allowing more types to fit the POD definition.

C++11 relaxed several of the POD rules.

A class/struct is considered a POD if it is trivial, standard-layout, and if all of its
non-static members are PODs.

A trivial class or struct is defined as one that:

Has a trivial default constructor. This may use the default constructor syntax
(SomeConstructor() = default;).

1.

Has trivial copy and move constructors, which may use the default syntax.2.
Has trivial copy and move assignment operators, which may use the default syntax.3.
Has a trivial destructor, which must not be virtual.4.

A class or struct is standard-layout, by definition, provided:

It has no virtual functions1.
It has no virtual base classes2.
It has no base classes of the same type as the first defined non-static data member3.
All its non-static data members have the same access control (public, private,
protected)

4.

All its non-static data members, including any in its base classes, are in the same
one class in the hierarchy

5.

The above rules also apply to all the base classes and to all non-static data
members in the hierarchy

6.

Core language build time performance
enhancements

Extern template

In C++03, the compiler must instantiate a template whenever a fully specified template
is encountered in a translation unit. If the template is instantiated with the same types
in many translation units, this can dramatically increase compile times. There is no way
to prevent this in C++03, so C++11 introduced extern template declarations,
analogous to extern data declarations.

C++03 has this syntax to oblige the compiler to instantiate a template:

template class std::vector<MyClass>;

C++11 now provides this syntax:

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

6 of 42 10/20/2011 07:32 PM

extern template class std::vector<MyClass>;

which tells the compiler not to instantiate the template in this translation unit.

Core language usability enhancements

These features exist for the primary purpose of making the language easier to use.
These can improve type safety, minimize code repetition, make erroneous code less
likely, etc.

Initializer lists

C++03 inherited the initializer-list feature from C. A struct or array is given a list of
arguments in curly brackets, in the order of the members' definitions in the struct.
These initializer-lists are recursive, so an array of structs or struct containing other
structs can use them.

struct Object
{
 float first;
 int second;
};

Object scalar = {0.43f, 10}; //One Object, with first=0.43f and second=10
Object anArray[] = {{13.4f, 3}, {43.28f, 29}, {5.934f, 17}}; //An array of three Objects

This is very useful for static lists or just for initializing a struct to a particular value.
C++ also provides constructors to initialize an object, but they are often not as
convenient as the initializer list. However C++03 only allows initializer-lists on structs
and classes that conform to the Plain Old Data (POD) definition; C++11 extends
initializer-lists, so they can be used for all classes including standard containers like
std::vector.

C++11 binds the concept to a template, called std::initializer_list. This allows
constructors and other functions to take initializer-lists as parameters. For example:

class SequenceClass {
public:
 SequenceClass(std::initializer_list<int> list);
};

This allows SequenceClass to be constructed from a sequence of integers, as such:

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

7 of 42 10/20/2011 07:32 PM

SequenceClass some_var = {1, 4, 5, 6};

This constructor is a special kind of constructor, called an initializer-list-constructor.
Classes with such a constructor are treated specially during uniform initialization (see
below)

The class std::initializer_list<> is a first-class C++11 standard library type. However,
they can only be initially constructed statically by the C++11 compiler through the use
of the {} syntax. The list can be copied once constructed, though this is only a copy-by-
reference. An initializer list is constant; its members cannot be changed once the
initializer list is created, nor can the data in those members be changed.

Because initializer_list is a real type, it can be used in other places besides class
constructors. Regular functions can take typed initializer lists as arguments. For
example:

void function_name(std::initializer_list<float> list);

function_name({1.0f, -3.45f, -0.4f});

Standard containers can also be initialized in the following ways:

std::vector<std::string> v = { "xyzzy", "plugh", "abracadabra" };
std::vector<std::string> v{ "xyzzy", "plugh", "abracadabra" };

Uniform initialization

C++03 has a number of problems with initializing types. There are several ways to
initialize types, and they do not all produce the same results when interchanged. The
traditional constructor syntax, for example, can look like a function declaration, and
steps must be taken to ensure that the compiler's most vexing parse rule will not
mistake it for such. Only aggregates and POD types can be initialized with aggregate
initializers (using SomeType var = {/*stuff*/};).

C++11 provides a syntax that allows for fully uniform type initialization that works on
any object. It expands on the initializer list syntax:

struct BasicStruct {
 int x;
 double y;
};

struct AltStruct {
 AltStruct(int x, double y) : x_{x}, y_{y} {}

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

8 of 42 10/20/2011 07:32 PM

private:
int x_;

 double y_;
};

BasicStruct var1{5, 3.2};
AltStruct var2{2, 4.3};

The initialization of var1 behaves exactly as though it were aggregate-initialization. That
is, each data member of an object, in turn, will be copy-initialized with the
corresponding value from the initializer-list. Implicit type conversion will be used where
necessary. If no conversion exists, or only a narrowing conversion exists, the program is
ill-formed. The initialization of var2 invokes the constructor.

One is also able to do the following:

struct IdString {
 std::string name;
 int identifier;
};

IdString get_string()
{
 return {"SomeName", 4}; //Note the lack of explicit type.
}

Uniform initialization does not replace constructor syntax. There are still times when
constructor syntax is required. If a class has an initializer list constructor
(TypeName(initializer_list<SomeType>);), then it takes priority over other forms of
construction, provided that the initializer list conforms to the sequence constructor's
type. The C++11 version of std::vector has an initializer list constructor for its template
type. This means that the following code:

std::vector<int> the_vec{4};

will call the initializer list constructor, not the constructor of std::vector that takes a
single size parameter and creates the vector with that size. To access the latter
constructor, the user will need to use the standard constructor syntax directly.

Type inference

In C++03 (and C), the type of a variable must be explicitly specified in order to use it.
However, with the advent of template types and template metaprogramming
techniques, the type of something, particularly the well-defined return value of a

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

9 of 42 10/20/2011 07:32 PM

function, may not be easily expressed. Therefore, storing intermediates in variables is
difficult, possibly requiring knowledge of the internals of a particular metaprogramming
library.

C++11 allows this to be mitigated in two ways. First, the definition of a variable with an
explicit initialization can use the auto keyword. This creates a variable of the specific
type of the initializer:

auto some_strange_callable_type = boost::bind(&some_function, _2, _1, some_object
auto other_variable = 5;

The type of some_strange_callable_type is simply whatever the particular template function
override of boost::bind returns for those particular arguments. This type is easily
determined procedurally by the compiler as part of its semantic analysis duties, but is
not easy for the user to determine upon inspection.

The type of other_variable is also well-defined, but it is easier for the user to determine. It
is an int, which is the same type as the integer literal.

Additionally, the keyword decltype can be used to determine the type of an expression at
compile-time. For example:

int some_int;
decltype(some_int) other_integer_variable = 5;

This is more useful in conjunction with auto, since the type of an auto variable is known
only to the compiler. However, decltype can also be very useful for expressions in code
that makes heavy use of operator overloading and specialized types.

auto is also useful for reducing the verbosity of the code. For instance, instead of writing

for (std::vector<int>::const_iterator itr = myvec.begin(); itr != myvec.

the programmer can use the shorter

for (auto itr = myvec.cbegin(); itr != myvec.cend(); ++itr)

This difference grows as the programmer begins to nest containers, though in such
cases typedefs are a good way to decrease the amount of code.

The type denoted by decltype can be different from the type deduced by auto.

#include <vector>

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

10 of 42 10/20/2011 07:32 PM

int main()
{

const std::vector<int> v(1);
 auto a = v[0]; // a has type int
 decltype(v[0]) b = 1; // b has type const int&, the return type of
 // std::vector<int>::operator[](size_type) const
 auto c = 0; // c has type int

auto d = c; // d has type int
 decltype(c) e; // e has type int, the type of the entity named by c
 decltype((c)) f = c; // f has type int&, because (c) is an lvalue
 decltype(0) g; // g has type int, because 0 is an rvalue
}

Range-based for-loop

In C++03, iterating over the elements of a list requires a lot of code. Other languages
like C# and Java have shortcuts that allow one to write a simple “foreach” statement
that automatically walks the list from start to finish.

C++11 added a similar feature. The statement for allows for easy iteration over a list of
elements:

int my_array[5] = {1, 2, 3, 4, 5};
for (int &x : my_array) {
 x *= 2;
}

This form of for, called the “range-based for”, will iterate over each element in the list.
It will work for C-style arrays, initializer lists, and any type that has a begin() and end()
function defined for it that returns iterators. All of the standard library containers that
have begin/end pairs will work with the range-based for statement.

Lambda functions and expressions

Main article: Anonymous function#C++

C++11 provides the ability to create anonymous functions, called lambda functions.
These are defined as follows:

[](int x, int y) { return x + y; }

The return type is implicit; it returns the type of the return expression (decltype(x+y)).
The return type of a lambda can be omitted so long as all return expressions return the
same type.

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

11 of 42 10/20/2011 07:32 PM

Alternative function syntax

Standard C function declaration syntax was perfectly adequate for the feature set of the
C language. As C++ evolved from C, it kept the basic syntax and extended it where
necessary. However, as C++ became more complicated, it exposed a number of
limitations, particularly with regard to template function declarations. The following,
for example, is not allowed in C++03:

template<class Lhs, class Rhs>
 Ret adding_func(const Lhs &lhs, const Rhs &rhs) {return lhs + rhs;} //Ret must be the

The type Ret is whatever the addition of types Lhs and Rhs will produce. Even with the
aforementioned C++11 functionality of decltype, this is not possible:

template<class Lhs, class Rhs>
 decltype(lhs+rhs) adding_func(const Lhs &lhs, const Rhs &rhs) {return lhs

This is not legal C++ because lhs and rhs have not yet been defined; they will not be
valid identifiers until after the parser has parsed the rest of the function prototype.

To work around this, C++11 introduced a new function declaration syntax, with a
trailing-return-type:

template<class Lhs, class Rhs>
 auto adding_func(const Lhs &lhs, const Rhs &rhs) -> decltype(lhs+rhs)

This syntax can be used for more mundane function declarations and definitions:

struct SomeStruct {
 auto func_name(int x, int y) -> int;
};

auto SomeStruct::func_name(int x, int y) -> int {
 return x + y;
}

The use of the keyword “auto” in this case means something different from its use in
automatic type deduction.

Object construction improvement

In C++03, constructors of a class are not allowed to call other constructors of that
class; each constructor must construct all of its class members itself or call a common

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

12 of 42 10/20/2011 07:32 PM

member function, like these,

class SomeType {
int number;

public:
 SomeType(int new_number) : number(new_number) {}
 SomeType() : number(42) {}
};

class SomeType {
 int number;

private:
void Construct(int new_number) { number = new_number; }

public:
 SomeType(int new_number) { Construct(new_number); }
 SomeType() { Construct(42); }
};

Constructors for base classes cannot be directly exposed to derived classes; each
derived class must implement constructors even if a base class constructor would be
appropriate. Non-constant data members of classes cannot be initialized at the site of
the declaration of those members. They can only be initialized in a constructor.

C++11 provides solutions to all of these problems.

C++11 allows constructors to call other peer constructors (known as delegation). This
allows constructors to utilize another constructor's behavior with a minimum of added
code. Examples of other languages similar to C++ that provide delegation are Java, C#,
and D.

This syntax is as follows:

class SomeType {
 int number;

public:
 SomeType(int new_number) : number(new_number) {}
 SomeType() : SomeType(42) {}
};

Notice that, in this case, the same effect could have been achieved by making
new_number a defaulting parameter. The new syntax, however, allows the default value
(42) to be expressed in the implementation rather than the interface — a benefit to
maintainers of library code since default values for function parameters are “baked in”

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

13 of 42 10/20/2011 07:32 PM

to call sites, whereas constructor delegation allows the value to be changed without
recompilation of the code using the library.

This comes with a caveat: C++03 considers an object to be constructed when its
constructor finishes executing, but C++11 considers an object constructed once any
constructor finishes execution. Since multiple constructors will be allowed to execute,
this will mean that each delegate constructor will be executing on a fully constructed
object of its own type. Derived class constructors will execute after all delegation in
their base classes is complete.

For base-class constructors, C++11 allows a class to specify that base class
constructors will be inherited. This means that the C++11 compiler will generate code
to perform the inheritance, the forwarding of the derived class to the base class. Note
that this is an all-or-nothing feature; either all of that base class's constructors are
forwarded or none of them are. Also, note that there are restrictions for multiple
inheritance, such that class constructors cannot be inherited from two classes that use
constructors with the same signature. Nor can a constructor in the derived class exist
that matches a signature in the inherited base class.

The syntax is as follows:

class BaseClass {
public:
 BaseClass(int value);
};

class DerivedClass : public BaseClass {
public:
 using BaseClass::BaseClass;
};

For member initialization, C++11 allows the following syntax:

class SomeClass {
public:
 SomeClass() {}
 explicit SomeClass(int new_value) : value(new_value) {}

private:
 int value = 5;
};

Any constructor of the class will initialize value with 5, if the constructor does not
override the initialization with its own. So the above empty constructor will initialize
value as the class definition states, but the constructor that takes an int will initialize it
to the given parameter.

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

14 of 42 10/20/2011 07:32 PM

It can also use constructor or uniform initialization, instead of the equality initialization
shown above.

Explicit overrides and final

In C++03, it is possible to accidentally create a new virtual function, when one
intended to override a base class function. For example:

struct Base {
 virtual void some_func(float);
};

struct Derived : Base {
 virtual void some_func(int);
};

The Derived::some_func is intended to replace the base class version. But because it has a
different interface, it creates a second virtual function. This is a common problem,
particularly when a user goes to modify the base class.

C++11 provides syntax to solve this problem.

struct Base {
 virtual void some_func(float);
};

struct Derived : Base {
 virtual void some_func(int) override; // ill-formed because it doesn't override a ba
};

The override special identifier means that the compiler will check the base class(es) to
see if there is a virtual function with this exact signature. And if there is not, the
compiler will error out.

C++11 also adds the ability to prevent inheriting from classes or simply preventing
overriding methods in derived classes. This is done with the special identifier final. For
example:

struct Base1 final { };

struct Derived1 : Base1 { }; // ill-formed because the class Base1 has been marked final

struct Base2 {
 virtual void f() final;
};

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

15 of 42 10/20/2011 07:32 PM

struct Derived2 : Base2 {
 void f(); // ill-formed because the virtual function Base2::f has been marked final
};

In this example, the virtual void f() final; statement declares a new virtual function, but
it also prevents derived classes from overriding it. It also has the effect of preventing
derived classes from using that particular function name and parameter combination.

Note that neither override nor final are language keywords. They are technically
identifiers; they only gain special meaning when used in those specific contexts. In any
other location, they can be valid identifiers.

Null pointer constant

For the purposes of this section and this section alone, every occurrence of “0” is meant
as “a constant expression which evaluates to 0, which is of type int”. In reality, the
constant expression can be of any integral type.

Since the dawn of C in 1972, the constant 0 has had the double role of constant integer
and null pointer constant. The ambiguity inherent in the double meaning of 0 was dealt
with in C by the use of the preprocessor macro NULL, which commonly expands to either
((void*)0) or 0. C++ didn't adopt the same behavior, only allowing 0 as a null pointer
constant. This interacts poorly with function overloading:

void foo(char *);
void foo(int);

If NULL is defined as 0 (which is usually the case in C++), the statement foo(NULL); will call
foo(int), which is almost certainly not what the programmer intended, and not what a
superficial reading of the code suggests.

C++11 corrects this by introducing a new keyword to serve as a distinguished null
pointer constant: nullptr. It is of type nullptr_t, which is implicitly convertible and
comparable to any pointer type or pointer-to-member type. It is not implicitly
convertible or comparable to integral types, except for bool. While the original proposal
specified that an rvalue of type nullptr should not be convertible to bool, the core
language working group decided that such a conversion would be desirable, for
consistency with regular pointer types. The proposed wording changes were
unanimously voted into the Working Paper in June 2008.[2]

For backwards compatibility reasons, 0 remains a valid null pointer constant.

char *pc = nullptr; // OK
int *pi = nullptr; // OK
bool b = nullptr; // OK. b is false.
int i = nullptr; // error

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

16 of 42 10/20/2011 07:32 PM

foo(nullptr); // calls foo(char *), not foo(int);

Strongly typed enumerations

In C++03, enumerations are not type-safe. They are effectively integers, even when the
enumeration types are distinct. This allows the comparison between two enum values of
different enumeration types. The only safety that C++03 provides is that an integer or a
value of one enum type does not convert implicitly to another enum type. Additionally,
the underlying integral type is implementation-defined; code that depends on the size of
the enumeration is therefore non-portable. Lastly, enumeration values are scoped to the
enclosing scope. Thus, it is not possible for two separate enumerations to have
matching member names.

C++11 will allow a special classification of enumeration that has none of these issues.
This is expressed using the enum class (enum struct is also accepted as a synonym)
declaration:

enum class Enumeration {
 Val1,
 Val2,
 Val3 = 100,
 Val4 /* = 101 */
};

This enumeration is type-safe. Enum class values are not implicitly converted to
integers; therefore, they cannot be compared to integers either (the expression
Enumeration::Val4 == 101 gives a compiler error).

The underlying type of enum classes is never implementation-defined. The default, as in
the above case, is int, but a different type can be explicitly specified as follows:

enum class Enum2 : unsigned int {Val1, Val2};

The scoping of the enumeration is also defined as the enumeration name's scope. Using
the enumerator names requires explicitly scoping. Val1 is undefined, but Enum2::Val1 is
defined.

Additionally, C++11 will allow standard enumerations to provide explicit scoping as
well as the definition of the underlying type:

enum Enum3 : unsigned long {Val1 = 1, Val2};

The enumerator names are defined in the enumeration's scope (Enum3::Val1), but for

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

17 of 42 10/20/2011 07:32 PM

backwards compatibility, enumerator names are also placed in the enclosing scope.

Declaring enums is also possible in C++11. Previously, enum types could not be
declared because the size of the enumeration depends on the definition of its members.
As long as the size of the enumeration is specified either implicitly or explicitly, it can
be declared:

enum Enum1; //Illegal in C++ and C++11; the underlying type cannot be
enum Enum2 : unsigned int; //Legal in C++11, the underlying type is explicitly specif
enum class Enum3; //Legal in C++11, the underlying type is int
enum class Enum4 : unsigned int; //Legal C++11.
enum Enum2 : unsigned short; //Illegal in C++11, because Enum2 was previously declared

Right angle bracket

C++03's parser defines “>>” as the right shift operator in all cases. However, with
nested template declarations, there is a tendency for the programmer to neglect to
place a space between the two right angle brackets, thus causing a compiler syntax
error.

C++11 will improve the specification of the parser so that multiple right angle brackets
will be interpreted as closing the template argument list where it is reasonable. This
can be overridden by using parentheses:

template<bool Test> class SomeType;
std::vector<SomeType<1>2>> x1; // Interpreted as a std::vector of SomeType<true> 2>,
// which is not legal syntax. 1 is true.
std::vector<SomeType<(1>2)>> x1; // Interpreted as std::vector of SomeType<false>,
// which is legal C++11 syntax. (1>2) is false.

Explicit conversion operators

C++03 added the explicit keyword as a modifier on constructors to prevent single-
argument constructors from being used as implicit type conversion operators. However,
this does nothing for actual conversion operators. For example, a smart pointer class
may have an operator bool() to allow it to act more like a primitive pointer: if it includes
this conversion, it can be tested with if(smart_ptr_variable) (which would be true if the
pointer was non-null and false otherwise). However, this allows other, unintended
conversions as well. Because C++ bool is defined as an arithmetic type, it can be
implicitly converted to integral or even floating-point types, which allows for
mathematical operations that are not intended by the user.

In C++11, the explicit keyword can now be applied to conversion operators. As with
constructors, it prevents the use of those conversion functions in implicit conversions.
However, language contexts that specifically require a boolean value (the conditions of
if-statements and loops, as well as operands to the logical operators) count as explicit

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

18 of 42 10/20/2011 07:32 PM

conversions and can thus use a bool conversion operator.

Template aliases

In C++03, it is only possible to define a typedef as a synonym for another type,
including a synonym for a template specialization with all actual template arguments
specified. It is not possible to create a typedef template. For example:

template <typename First, typename Second, int third>
class SomeType;

template <typename Second>
typedef SomeType<OtherType, Second, 5> TypedefName; //Illegal in C++

This will not compile.

C++11 will add this ability with the following syntax:

template <typename First, typename Second, int third>
class SomeType;

template <typename Second>
using TypedefName = SomeType<OtherType, Second, 5>;

The using syntax can be also used as type aliasing in C++11:

typedef void (*Type)(double); // Old style
using OtherType = void (*)(double); // New introduced syntax

Unrestricted unions

In C++03 there are restrictions on what types of objects can be members of a union. For
example, unions cannot contain any objects that define a non-trivial constructor. C++11
will lift some of these restrictions.[3]

This is a simple example of a union permitted in C++:

//for placement new
#include <new>

struct Point {
 Point() {}
 Point(int x, int y): x_(x), y_(y) {}
 int x_, y_;

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

19 of 42 10/20/2011 07:32 PM

};
union U {

int z;
 double w;
 Point p; // Illegal in C++; point has a non-trivial constructor. However, this is
 U() { new(&p) Point(); } // No nontrivial member functions are implicitly defined
 // if required they are instead deleted to force a manual
};

The changes will not break any existing code since they only relax current rules.

Identifiers with special meaning

The identifiers override and final have a special meaning when used in a certain context,
but can otherwise be used as normal identifiers.

Core language functionality improvements

These features allow the language to do things that were previously impossible,
exceedingly verbose, or required non-portable libraries.

Variadic templates

Main article: variadic templates

In C++11, templates can take variable numbers of template parameters. This also
allows the definition of type-safe variadic functions.

New string literals

C++03 offers two kinds of string literals. The first kind, contained within double quotes,
produces a null-terminated array of type const char. The second kind, defined as L"",
produces a null-terminated array of type const wchar_t, where wchar_t is a wide-character.
Neither literal type offers support for string literals with UTF-8, UTF-16, or any other
kind of Unicode encodings.

For the purpose of enhancing support for Unicode in C++ compilers, the definition of
the type char has been modified to be both at least the size necessary to store an
eight-bit coding of UTF-8 and large enough to contain any member of the compiler's
basic execution character set. It was previously defined as only the latter.

There are three Unicode encodings that C++11 will support: UTF-8, UTF-16, and
UTF-32. In addition to the previously noted changes to the definition of char, C++11 will
add two new character types: char16_t and char32_t. These are designed to store UTF-16
and UTF-32 respectively.

The following shows how to create string literals for each of these encodings:

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

20 of 42 10/20/2011 07:32 PM

u8"I'm a UTF-8 string."
u"This is a UTF-16 string."
U"This is a UTF-32 string."

The type of the first string is the usual const char[]. The type of the second string is const
char16_t[]. The type of the third string is const char32_t[].

When building Unicode string literals, it is often useful to insert Unicode codepoints
directly into the string. To do this, C++11 will allow the following syntax:

u8"This is a Unicode Character: \u2018."
u"This is a bigger Unicode Character: \u2018."
U"This is a Unicode Character: \u2018."

The number after the \u is a hexadecimal number; it does not need the usual 0x prefix.
The identifier \u represents a 16-bit Unicode codepoint; to enter a 32-bit codepoint, use
\U and a 32-bit hexadecimal number. Only valid Unicode codepoints can be entered. For
example, codepoints on the range U+D800—U+DFFF are forbidden, as they are reserved for
surrogate pairs in UTF-16 encodings.

It is also sometimes useful to avoid escaping strings manually, particularly for using
literals of XML files, scripting languages, or regular expressions. C++11 will provide a
raw string literal:

R"(The String Data \ Stuff ")"
R"delimiter(The String Data \ Stuff ")delimiter"

In the first case, everything between the "(and the)" is part of the string. The " and \
characters do not need to be escaped. In the second case, the "delimiter(starts the
string, and it only ends when)delimiter" is reached. The string delimiter can be any string
up to 16 characters in length. This string cannot contain spaces, control characters, '(',
')', or the '\' character. The use of this delimiter string allows the user to have ")"
characters within raw string literals. For example, R"delimiter((a-z))delimiter" is

equivalent to "(a-z)".[4]

Raw string literals can be combined with the wide literal or any of the Unicode literal
prefixes:

u8R"XXX(I'm a "raw UTF-8" string.)XXX"
uR"*(This is a "raw UTF-16" string.)*"
UR"(This is a "raw UTF-32" string.)"

User-defined literals

C++03 provides a number of literals. The characters “12.5” are a literal that is resolved

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

21 of 42 10/20/2011 07:32 PM

by the compiler as a type double with the value of 12.5. However, the addition of the
suffix “f”, as in “12.5f”, creates a value of type float that contains the value 12.5. The
suffix modifiers for literals are fixed by the C++ specification, and C++ code cannot
create new literal modifiers.

C++11 will also include the ability for the user to define new kinds of literal modifiers
that will construct objects based on the string of characters that the literal modifies.

Literals transformation is redefined into two distinct phases: raw and cooked. A raw
literal is a sequence of characters of some specific type, while the cooked literal is of a
separate type. The C++ literal 1234, as a raw literal, is this sequence of characters '1',
'2', '3', '4'. As a cooked literal, it is the integer 1234. The C++ literal 0xA in raw form is
'0', 'x', 'A', while in cooked form it is the integer 10.

Literals can be extended in both raw and cooked forms, with the exception of string
literals, which can only be processed in cooked form. This exception is due to the fact
that strings have prefixes that affect the specific meaning and type of the characters in
question.

All user-defined literals are suffixes; defining prefix literals is not possible.

User-defined literals processing the raw form of the literal are defined as follows:

OutputType operator "" _suffix(const char *literal_string);

OutputType some_variable = 1234_suffix;

The second statement executes the code defined by the user-defined literal function.
This function is passed "1234" as a C-style string, so it has a null terminator.

An alternative mechanism for processing integer and floating point raw literals is
through a variadic template:

template<char...> OutputType operator "" _suffix();

OutputType some_variable = 1234_suffix;
OutputType another_variable = 2.17_suffix;

This instantiates the literal processing function as operator "" _suffix<'1', '2', '3', '4'>().
In this form, there is no terminating null character to the string. The main purpose to
doing this is to use C++11's constexpr keyword and the compiler to allow the literal to be
transformed entirely at compile time, assuming OutputType is a constexpr-constructable
and copyable type, and the literal processing function is a constexpr function.

For numeric literals, the type of the cooked literal is either unsigned long long for integral
literals or long double for floating point literals. (Note: There is no need for signed
integral types because a sign-prefixed literal is parsed as expression containing the sign

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

22 of 42 10/20/2011 07:32 PM

as unary prefix operator and the unsigned number.) There is no alternative template
form:

OutputType operator "" _suffix(unsigned long long);
OutputType operator "" _suffix(long double);

OutputType some_variable = 1234_suffix; // uses the first function
OutputType another_variable = 3.1416_suffix; // uses the second function

For string literals, the following are used, in accordance with the previously mentioned
new string prefixes:

OutputType operator "" _suffix(const char * string_values, size_t num_chars
OutputType operator "" _suffix(const wchar_t * string_values, size_t num_chars
OutputType operator "" _suffix(const char16_t * string_values, size_t num_chars
OutputType operator "" _suffix(const char32_t * string_values, size_t num_chars

OutputType some_variable = "1234"_suffix; //Calls the const char * version
OutputType some_variable = u8"1234"_suffix; //Calls the const char * version
OutputType some_variable = L"1234"_suffix; //Calls the const wchar_t * version
OutputType some_variable = u"1234"_suffix; //Calls the const char16_t * version
OutputType some_variable = U"1234"_suffix; //Calls the const char32_t * version

There is no alternative template form. Character literals are defined similarly.

Multitasking memory model

See also: Memory model (computing)

The C++ standard committee plans to standardize support for multithreaded
programming.

There are two parts involved: defining a memory model which will allow multiple
threads to co-exist in a program, and defining support for interaction between threads.
The second part will be provided via library facilities. (See this article's section on
threading facilities.)

The memory model defines when multiple threads may access the same memory
location, and specifies when updates by one thread become visible to other threads.

Thread-local storage

In a multi-threaded environment, it is common for every thread to have some unique
variables. This already happens for the local variables of a function, but it does not
happen for global and static variables.

A new thread-local storage duration (in addition to the existing static, dynamic and

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

23 of 42 10/20/2011 07:32 PM

automatic) has been proposed for the next standard. Thread local storage will be
indicated by the storage specifier thread_local.

Any object which could have static storage duration (i.e., lifetime spanning the entire
execution of the program) may be given thread-local duration instead. The intent is that
like any other static-duration variable, a thread-local object can be initialized using a
constructor and destroyed using a destructor.

Explicitly defaulted and deleted special member functions

In C++03, the compiler provides, for classes that do not provide for themselves, a
default constructor, a copy constructor, a copy assignment operator (operator=), and a
destructor. The programmer can override these defaults by defining custom versions.
C++ also defines several global operators (such as operator= and operator new) that work
on all classes, which the programmer can override.

However, there is very little control over the creation of these defaults. Making a class
inherently non-copyable, for example, requires declaring a private copy constructor and
copy assignment operator and not defining them. Attempting to use these functions is a
violation of the one definition rule. While a diagnostic message is not required,[5] this
typically results in a linker error.[citation needed]

In the case of the default constructor, the compiler will not generate a default
constructor if a class is defined with any constructors. This is useful in many cases, but
it is also useful to be able to have both specialized constructors and the compiler-
generated default.

C++11 will allow the explicit defaulting and deleting of these special member
functions. For example, the following type explicitly declares that it is using the default
constructor:

struct SomeType {
 SomeType() = default; //The default constructor is explicitly stated.
 SomeType(OtherType value);
};

Alternatively, certain features can be explicitly disabled. For example, the following type
is non-copyable:

struct NonCopyable {
 NonCopyable & operator=(const NonCopyable&) = delete;
 NonCopyable(const NonCopyable&) = delete;
 NonCopyable() = default;
};

The = delete specifier can be used to prohibit calling any function, which can be used to

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

24 of 42 10/20/2011 07:32 PM

disallow calling a member function with particular parameters. For example:

struct NoInt {
void f(double i);

 void f(int) = delete;
};

An attempt to call f() with an int will be rejected by the compiler, instead of performing
a silent conversion to double. This can be generalized to disallow calling the function
with any type other than double as follows:

struct OnlyDouble {
 void f(double d);
 template<class T> void f(T) = delete;
};

Type long long int

In C++03, the largest integral type is long int. It is guaranteed to have at least as many
usable bits as int. This resulted in long int having size of 64 bits on some popular
implementations and 32 bits on others. C++11 adds a new integral type long long int to
address this issue. It is guaranteed to be at least as large as a long int, and have no less
than 64 bits. The type was originally introduced by C99 to the standard C, and most
C++ compilers support it as an extension already.[6][7]

Static assertions

C++03 provides two methods to test assertions: the macro assert and the preprocessor
directive #error. However, neither is appropriate for use in templates: the macro tests
the assertion at execution-time, while the preprocessor directive tests the assertion
during preprocessing, which happens before instantiation of templates. Neither is
appropriate for testing properties that are dependent on template parameters.

The new utility introduces a new way to test assertions at compile-time, using the new
keyword static_assert. The declaration assumes the following form:

static_assert (constant-expression, error-message);

Here are some examples of how static_assert can be used:

static_assert ((GREEKPI > 3.14) && (GREEKPI < 3.15), "GREEKPI is inaccurate!"

template<class T>

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

25 of 42 10/20/2011 07:32 PM

struct Check {
 static_assert (sizeof(int) <= sizeof(T), "T is not big enough!");
};

When the constant expression is false the compiler produces an error message. The first
example represents an alternative to the preprocessor directive #error, in contrast in the
second example the assertion is checked at every instantiation of the template class
Check.

Static assertions are useful outside of templates as well. For instance, a particular
implementation of an algorithm might depend on the size of a long long being larger than
an int, something the standard does not guarantee. Such an assumption is valid on most
systems and compilers, but not all.

Allow sizeof to work on members of classes without an explicit object

In C++03, the sizeof operator can be used on types and objects. But it cannot be used to
do the following:

struct SomeType { OtherType member; };

sizeof(SomeType::member); //Does not work with C++03. Okay with C++11

This should return the size of OtherType. C++03 does not allow this, so it is a compile
error. C++11 will allow it.

Allow garbage collected implementations

It is implementation-defined whether unreachable dynamically allocated objects are
automatically reclaimed.

C++ standard library changes

A number of new features will be introduced in the C++11 standard library. Many of
these can be implemented under the current standard, but some rely (to a greater or
lesser extent) on new C++11 core features.

A large part of the new libraries is defined in the document C++ Standards
Committee's Library Technical Report (called TR1), which was published in 2005.
Various full and partial implementations of TR1 are currently available using the
namespace std::tr1. For C++11 they will be moved to namespace std. However, as TR1
features are brought into the C++11 standard library, they are upgraded where
appropriate with C++11 language features that were not available in the initial TR1
version. Also, they may be enhanced with features that were possible under C++03, but
were not part of the original TR1 specification.

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

26 of 42 10/20/2011 07:32 PM

The committee intends to create a second technical report (called TR2) after the
standardization of C++11 is complete. Library proposals which are not ready in time
for C++11 will be put into TR2 or further technical reports.

The following proposals are under way for C++11.

Upgrades to standard library components

C++11 offers a number of new language features that the currently existing standard
library components can benefit from. For example, most standard library containers can
benefit from Rvalue reference based move constructor support, both for quickly moving
heavy containers around and for moving the contents of those containers to new
memory locations. The standard library components will be upgraded with new C++11
language features where appropriate. These include, but are not necessarily limited to:

Rvalue references and the associated move support
Support for the UTF-16 encoding unit, and UTF-32 encoding unit Unicode
character types
Variadic templates (coupled with Rvalue references to allow for perfect
forwarding)
Compile-time constant expressions
Decltype
Explicit conversion operators
Default/Deleted functions

Additionally, much time has passed since C++ was standardized. A great deal of code
using the standard library has been written; this has revealed portions of the standard
libraries that could use some improvement. Among the many areas of improvement
being considered are standard library allocators. A new scope-based model of allocators
will be included in the C++11 to supplement the current model.

Threading facilities

While the C++11 language will provide a memory model that supports threading, the
primary support for actually using threading will come with the C++11 standard
library.

A thread class (std::thread) will be provided which will take a function object — and an
optional series of arguments to pass to it — to run in the new thread. It will be possible
to cause a thread to halt until another executing thread completes, providing thread
joining support through the std::thread::join() member function. Access will also be
provided, where feasible, to the underlying native thread object(s) for platform specific
operations by the std::thread::native_handle() member function.

For synchronization between threads, appropriate mutexes (std::mutex,
std::recursive_mutex, etc.) and condition variables (std::condition_variable and
std::condition_variable_any) will be added to the library. This will be accessible through
RAII locks (std::lock_guard and std::unique_lock) and locking algorithms for easy use.

For high-performance, low-level work, it is sometimes necessary to communicate

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

27 of 42 10/20/2011 07:32 PM

between threads without the overhead of mutexes. This is achieved using atomic
operations on memory locations. These can optionally specify the minimum memory
visibility constraints required for an operation. Explicit memory barriers may also be
used for this purpose.

The C++11 thread library will also include futures and promises for passing
asynchronous results between threads, and std::packaged_task for wrapping up a function
call that can generate such an asynchronous result. The futures proposal was criticized
because it lacks a way to combine futures and check for the completion of one promise
inside a set of promises.[8]

Further high-level threading facilities such as thread pools have been remanded to a
future C++ technical report. They will not be a part of C++11, but their eventual
implementation is expected to be built entirely on top of the thread library features.

The new std::async facility provides a convenient method of running tasks and tying
them to a std::future. The user can choose whether the task is to be run asynchronously
on a separate thread or synchronously on a thread that waits for the value. By default
the implementation can choose, which provides an easy way to take advantage of
hardware concurrency without oversubscription, and provides some of the advantages
of a thread pool for simple usages.

Tuple types

Tuples are collections composed of heterogeneous objects of pre-arranged dimensions.
A tuple can be considered a generalization of a struct's member variables.

The C++11 version of the TR1 tuple type will benefit from C++11 features like variadic
templates. The TR1 version required an implementation-defined maximum number of
contained types, and required substantial macro trickery to implement reasonably. By
contrast, the implementation of the C++11 version requires no explicit implementation-
defined maximum number of types. Though compilers will almost certainly have an
internal maximum recursion depth for template instantiation (which is normal), the
C++11 version of tuples will not expose this value to the user.

Using variadic templates, the declaration of the tuple class looks as follows:

template <class ...Types> class tuple;

An example of definition and use of the tuple type:

typedef std::tuple <int, double, long &, const char *> test_tuple;
long lengthy = 12;
test_tuple proof (18, 6.5, lengthy, "Ciao!");

lengthy = std::get<0>(proof); // Assign to 'lengthy' the value 18.
std::get<3>(proof) = " Beautiful!"; // Modify the tuple’s fourth element.

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

28 of 42 10/20/2011 07:32 PM

It’s possible to create the tuple proof without defining its contents, but only if the tuple
elements' types possess default constructors. Moreover, it’s possible to assign a tuple to
another tuple: if the two tuples’ types are the same, it is necessary that each element
type possesses a copy constructor; otherwise, it is necessary that each element type of
the right-side tuple is convertible to that of the corresponding element type of the
left-side tuple or that the corresponding element type of the left-side tuple has a
suitable constructor.

typedef std::tuple <int , double, string > tuple_1 t1;
typedef std::tuple <char, short , const char * > tuple_2 t2 ('X', 2, "Hola!"
t1 = t2 ; // Ok, first two elements can be converted,
 // the third one can be constructed from a 'const char *'.

Relational operators are available (among tuples with the same number of elements),
and two expressions are available to check a tuple’s characteristics (only during
compilation):

std::tuple_size<T>::value returns the elements’ number of the tuple T,
std::tuple_element<I, T>::type returns the type of the object number I of the tuple
T.

Hash tables

Including hash tables (unordered associative containers) in the C++ standard library is
one of the most recurring requests. It was not adopted in the current standard due to
time constraints only. Although this solution is less efficient than a balanced tree in the
worst case (in the presence of many collisions), it performs better in many real
applications.

Collisions will be managed only through linear chaining because the committee doesn’t
consider opportune to standardize solutions of open addressing that introduce quite a
lot of intrinsic problems (above all when erasure of elements is admitted). To avoid
name clashes with non-standard libraries that developed their own hash table
implementations, the prefix “unordered” will be used instead of “hash”.

The new utility will have four types of hash tables, differentiated by whether or not they
accept elements with the same key (unique keys or equivalent keys), and whether they
map each key to an associated value.

Type of hash table Associated values Equivalent keys

std::unordered_set No No

std::unordered_multiset No Yes

std::unordered_map Yes No

std::unordered_multimap Yes Yes

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

29 of 42 10/20/2011 07:32 PM

New classes fulfill all the requirements of a container class, and have all the methods
necessary to access elements: insert, erase, begin, end.

This new utility doesn’t need any C++ language core extensions (though the
implementation will take advantage of various C++11 language features), only a small
extension of the header <functional> and the introduction of headers <unordered_set> and
<unordered_map>. No other changes to any existing standard classes are needed, and it
doesn’t depend on any other extensions of the standard library.

Regular expressions

Many more or less standardized libraries were created to manage regular expressions.
Since the use of these algorithms is very common, the standard library will include
them using all potentialities of an object oriented language.

The new library, defined in the new header <regex>, is made of a couple of new classes:

regular expressions are represented by instance of the template class std::regex;
occurrences are represented by instance of the template class std::match_results.

The function std::regex_search is used for searching, while for ‘search and replace’ the
function std::regex_replace is used which returns a new string. The algorithms
std::regex_search and std::regex_replace take a regular expression and a string and write
the occurrences found in the struct std::match_results.

Here is an example on the use of std::match_results:

const char *reg_esp = "[,.\\t\\n;:]"; // List of separator characters.

// this can be done using raw string literals:
// const char *reg_esp = R"([,.\t\n;:])";

std::regex rgx(reg_esp); // 'regex' is an instance of the template class
 // 'basic_regex' with argument of type 'char'.
std::cmatch match; // 'cmatch' is an instance of the template class
 // 'match_results' with argument of type 'const char *'.
const char *target = "Unseen University - Ankh-Morpork";

// Identifies all words of 'target' separated by characters of 'reg_esp'.
if(std::regex_search(target, match, rgx)) {
 // If words separated by specified characters are present.

 const size_t n = match.size();
 for(size_t a = 0; a < n; a++) {
 std::string str(match[a].first, match[a].second);
 std::cout << str << "\n";
 }
}

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

30 of 42 10/20/2011 07:32 PM

Note the use of double backslashes, because C++ uses backslash as an escape
character. The C++11 raw string feature could be used to avoid the problem.

The library <regex> requires neither alteration of any existing header (though it will use
them where appropriate) nor an extension of the core language.

General-purpose smart pointers

Main article: C++ Smart Pointers

C++11 provides std::unique_ptr, as well as improvements to std::shared_ptr and
std::weak_ptr from TR1. std::auto_ptr is deprecated.

Extensible random number facility

The C standard library provides the ability to generate pseudorandom numbers through
the function rand. However, the algorithm is delegated entirely to the library vendor.
C++ inherited this functionality with no changes, but C++11 will provide a new
method for generating pseudorandom numbers.

C++11's random number functionality is split into two parts: a generator engine that
contains the random number generator's state and produces the pseudorandom
numbers; and a distribution, which determines the range and mathematical distribution
of the outcome. These two are combined to form a random number generator object.

Unlike the C standard rand, the C++11 mechanism will come with three generator
engine algorithms, each with its own strengths and weaknesses:

Class template Integral/floating-point Quality Speed Size of state

linear_congruential Integral Medium Medium 1

subtract_with_carry Both Medium Fast 25

mersenne_twister Integral Good Fast 624

C++11 will also provide a number of standard distributions: uniform_int_distribution,
bernoulli_distribution, geometric_distribution, poisson_distribution, binomial_distribution,
uniform_real_distribution, exponential_distribution, normal_distribution, and gamma_distribution.

The generator and distributions are combined as in the following example:

#include <random>
#include <functional>

std::uniform_int_distribution<int> distribution(0, 99);
std::mt19937 engine; // Mersenne twister MT19937
auto generator = std::bind(distribution, engine);
int random = generator(); // Generate a uniform integral variate between 0 and 99.

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

31 of 42 10/20/2011 07:32 PM

int random2 = distribution(engine); // Generate another sample directly using the distri

Wrapper reference

A wrapper reference is obtained from an instance of the template class reference_wrapper.
Wrapper references are similar to normal references (‘&’) of the C++ language. To
obtain a wrapper reference from any object the function template ref is used (for a
constant reference cref is used).

Wrapper references are useful above all for function templates, where references to
parameters rather than copies are needed:

// This function will obtain a reference to the parameter 'r' and increment it.
void f (int &r) { r++; }

// Template function.
template<class F, class P> void g (F f, P t) { f(t); }

int main()
{
 int i = 0 ;
 g (f, i) ; // 'g<void (int &r), int>' is instantiated
 // then 'i' will not be modified.
 std::cout << i << std::endl; // Output -> 0

 g (f, std::ref(i)); // 'g<void(int &r),reference_wrapper<int>>' is instantiated
 // then 'i' will be modified.
 std::cout << i << std::endl; // Output -> 1
}

This new utility will be added to the existing <utility> header and doesn’t need further
extensions of the C++ language.

Polymorphic wrappers for function objects

Polymorphic wrappers for function objects are similar to function pointers in semantics
and syntax, but are less tightly bound and can indiscriminately refer to anything which
can be called (function pointers, member function pointers, or functors) whose
arguments are compatible with those of the wrapper.

Through the example it is possible to understand its characteristics:

std::function<int (int, int)> func; // Wrapper creation using
 // template class 'function'.
std::plus<int> add; // 'plus' is declared as 'template<class T> T plus(T, T) ;'
 // then 'add' is type 'int add(int x, int y)'.

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

32 of 42 10/20/2011 07:32 PM

func = &add; // OK - Parameters and return types are the same.

int a = func (1, 2); // NOTE: if the wrapper 'func' does not refer to any function,
 // the exception 'std::bad_function_call' is thrown.

std::function<bool (short, short)> func2 ;
if(!func2) { // True because 'func2' has not yet been assigned a function.

 bool adjacent(long x, long y);
 func2 = &adjacent ; // OK - Parameters and return types are convertible.

 struct Test {
bool operator()(short x, short y);

 };
 Test car;
 func = std::ref(car); // 'std::ref' is a template function that returns the wrapper
 // of member function 'operator()' of struct 'car'.
}
func = func2; // OK - Parameters and return types are convertible.

The template class function will be defined inside the header <functional>, and doesn't
require any changes to the C++ language.

Type traits for metaprogramming

Metaprogramming consists of creating a program that creates or modifies another
program (or itself). This can happen during compilation or during execution. The C++
Standards Committee has decided to introduce a library that allows metaprogramming
during compilation through templates.

Here is an example of a meta-program, using the current C++03 standard: a recursion
of template instances for calculating integer exponents:

template<int B, int N>
struct Pow {
 // recursive call and recombination.
 enum{ value = B*Pow<B, N-1>::value };
};

template< int B >
struct Pow<B, 0> {
 // ''N == 0'' condition of termination.
 enum{ value = 1 };
};
int quartic_of_three = Pow<3, 4>::value;

Many algorithms can operate on different types of data; C++'s templates support

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

33 of 42 10/20/2011 07:32 PM

generic programming and make code more compact and useful. Nevertheless it is
common for algorithms to need information on the data types being used. This
information can be extracted during instantiation of a template class using type traits.

Type traits can identify the category of an object and all the characteristics of a class
(or of a struct). They are defined in the new header <type_traits>.

In the next example there is the template function ‘elaborate’ that, depending on the
given data types, will instantiate one of the two proposed algorithms (algorithm.do_it).

// First way of operating.
template< bool B > struct Algorithm {
 template<class T1, class T2> static int do_it (T1 &, T2 &) { /*...*/
};

// Second way of operating.
template<> struct Algorithm<true> {
 template<class T1, class T2> static int do_it (T1, T2) { /*...*/ }
};

// Instantiating 'elaborate' will automatically instantiate the correct way to opera
template<class T1, class T2>
int elaborate (T1 A, T2 B)
{
 // Use the second way only if 'T1' is an integer and if 'T2' is
 // in floating point, otherwise use the first way.
 return Algorithm<std::is_integral<T1>::value && std::is_floating_point
}

Through type traits, defined in header <type_transform>, it’s also possible to create type
transformation operations (static_cast and const_cast are insufficient inside a template).

This type of programming produces elegant and concise code; however the weak point
of these techniques is the debugging: uncomfortable during compilation and very
difficult during program execution.

Uniform method for computing the return type of function objects

Determining the return type of a template function object at compile-time is not
intuitive, particularly if the return value depends on the parameters of the function. As
an example:

struct Clear {
 int operator()(int); // The parameter type is
 double operator()(double); // equal to the return type.
};

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

34 of 42 10/20/2011 07:32 PM

template <class Obj>
class Calculus {
public:
 template<class Arg> Arg operator()(Arg& a) const
 {
 return member(a);
 }
private:
 Obj member;
};

Instantiating the class template Calculus<Clear>, the function object of calculus will have
always the same return type as the function object of Clear. However, given class Confused
below:

struct Confused {
 double operator()(int); // The parameter type is NOT
 int operator()(double); // equal to the return type.
};

Attempting to instantiate Calculus<Confused> will cause the return type of Calculus to not be
the same as that of class Confused. The compiler may generate warnings about the
conversion from int to double and vice-versa.

TR1 introduces, and C++11 adopts, the template class std::result_of that allows one to
determine and use the return type of a function object for every declaration. The object
CalculusVer2 uses the std::result_of object to derive the return type of the function object:

template< class Obj >
class CalculusVer2 {
public:
 template<class Arg>
 typename std::result_of<Obj(Arg)>::type operator()(Arg& a) const
 {
 return member(a);
 }
private:
 Obj member;
};

In this way in instances of function object of CalculusVer2<Confused> there are no
conversions, warnings, or errors.

The only change from the TR1 version of std::result_of is that the TR1 version allowed
an implementation to fail to be able to determine the result type of a function call. Due

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

35 of 42 10/20/2011 07:32 PM

to changes to C++ for supporting decltype, the C++11 version of std::result_of no longer
needs these special cases; implementations are required to compute a type in all cases.

Features planned but removed or not included

Heading for a separate TR:

Modules (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2316.pdf)
Decimal Types
Math Special Functions

Postponed:

Concepts
More complete or required garbage collection support
Reflection
Macro Scopes

Features to be removed or deprecated

The term sequence point, which is being replaced by specifying that either one
operation is sequenced before another, or that two operations are
unsequenced.[9]

export[10]

dynamic exception specifications[10]. Compile time specification of
non-exception throwing functions is available with the noexcept keyword
(useful for optimization)
std::auto_ptr Superseded by std::unique_ptr.
Function object base classes (std::unary_function, std::binary_function), adapters to
pointers to functions and adapters to pointers to members, binder classes.

See also

C++ Technical Report 1
C99, latest standard for the C programming language
C1X, the planned new C standard

References

^ http://video.google.com/videoplay?docid=5262479012306588324#1.
^ "We have an international standard: C++0x is unanimously approved"
(http://herbsutter.com/2011/08/12/we-have-an-international-standard-c0x-is-unanimously-
approved/) . http://herbsutter.com/2011/08/12/we-have-an-international-standard-c0x-is-
unanimously-approved/. Retrieved 12 August 2011.

2.

^ "Bjarne Stroustrup: A C++0x overview" (http://www.research.ibm.com/arl/seminar
/media/stroustrup.pdf) . http://www.research.ibm.com/arl/seminar/media/stroustrup.pdf.
Retrieved 30 June 2011.

3.

^ "ISO/IEC 14882:2011" (http://www.iso.org/iso/iso_catalogue/catalogue_tc4.

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

36 of 42 10/20/2011 07:32 PM

/catalogue_detail.htm?csnumber=50372) . ISO. 2 September 2011. http://www.iso.org
/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372. Retrieved 3
September 2011.
^ ISO/IEC (2003). ISO/IEC 14882:2003(E): Programming Languages - C++ §3.2 One
definition rule [basic.def.odr] para. 3

5.

^ http://gcc.gnu.org/onlinedocs/gcc/Long-Long.html6.
^ http://msdn.microsoft.com/en-us/library/s3f49ktz(VS.80).aspx7.
^ Milewski, Bartosz (3 March 2009). "Broken promises–C++0x futures"
(http://bartoszmilewski.wordpress.com/2009/03/03/broken-promises-c0x-futures/) .
http://bartoszmilewski.wordpress.com/2009/03/03/broken-promises-c0x-futures/. Retrieved
24 January 2010.

8.

^ Caves, Jonathan (4 June 2007). "Update on the C++-0x Language Standard"
(http://blogs.msdn.com/b/vcblog/archive/2007/06/04/update-on-the-c-0x-language-
standard.aspx) . http://blogs.msdn.com/b/vcblog/archive/2007/06/04/update-on-the-
c-0x-language-standard.aspx. Retrieved 25 May 2010.

9.

^ a b Sutter, Herb (3 March 2010). "Trip Report: March 2010 ISO C++ Standards
Meeting" (http://herbsutter.com/2010/03/13/trip-report-march-2010-iso-c-standards-
meeting/) . http://herbsutter.com/2010/03/13/trip-report-march-2010-iso-c-standards-
meeting/. Retrieved 24 March 2010.

10.

Further reading

C++ Standards Committee papers

^ Doc No. 1401 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2002/n1401.pdf) : Jan Kristoffersen (21 October 2002) Atomic operations with
multi-threaded environments
^ Doc No. 1402 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2002/n1402.html) : Doug Gregor (22 October 2002) A Proposal to add a
Polymorphic Function Object Wrapper to the Standard Library
^ Doc No. 1403 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2002/n1403.pdf) : Doug Gregor (8 November 2002) Proposal for adding tuple
types into the standard library
^ Doc No. 1424 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1424.htm) : John Maddock (3 March 2003) A Proposal to add Type
Traits to the Standard Library
^ Doc No. 1429 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1429.htm) : John Maddock (3 March 2003) A Proposal to add Regular
Expression to the Standard Library
^ Doc No. 1449 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1449.pdf) : B. Stroustrup, G. Dos Reis, Mat Marcus, Walter E. Brown,
Herb Sutter (7 April 2003) Proposal to add template aliases to C++
^ Doc No. 1450 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1450.html) : P. Dimov, B. Dawes, G. Colvin (27 March 2003) A Proposal
to Add General Purpose Smart Pointers to the Library Technical Report
(Revision 1)
^ Doc No. 1452 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1452.html) : Jens Maurer (10 April 2003) A Proposal to Add an
Extensible Random Number Facility to the Standard Library (Revision 2)
^ Doc No. 1453 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1453.html) : D. Gregor, P. Dimov (9 April 2003) A proposal to add a

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

37 of 42 10/20/2011 07:32 PM

reference wrapper to the standard library (revision 1)
^ Doc No. 1454 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1454.html) : Douglas Gregor, P. Dimov (9 April 2003) A uniform method
for computing function object return types (revision 1)
^ Doc No. 1456 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1456.html) : Matthew Austern (9 April 2003) A Proposal to Add Hash
Tables to the Standard Library (revision 4)
^ Doc No. 1471 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2003/n1471.pdf) : Daveed Vandevoorde (18 April 2003) Reflective
Metaprogramming in C++
^ Doc No. 1676 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2004/n1676.htm) : Bronek Kozicki (9 September 2004) Non-member
overloaded copy assignment operator
^ Doc No. 1704 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2004/n1704.pdf) : Douglas Gregor, Jaakko Järvi, Gary Powell (10 September
2004) Variadic Templates: Exploring the Design Space
^ Doc No. 1705 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2004/n1705.pdf) : J. Järvi, B. Stroustrup, D. Gregor, J. Siek, G. Dos Reis (12
September 2004) Decltype (and auto)
^ Doc No. 1717 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2004/n1717.pdf) : Francis Glassborow, Lois Goldthwaite (5 November 2004)
explicit class and default definitions
^ Doc No. 1719 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2004/n1719.pdf) : Herb Sutter, David E. Miller (21 October 2004) Strongly
Typed Enums (revision 1)
^ Doc No. 1720 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2004/n1720.html) : R. Klarer, J. Maddock, B. Dawes, H. Hinnant (20 October
2004) Proposal to Add Static Assertions to the Core Language (Revision 3)
^ Doc No. 1757 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1757.html) : Daveed Vandevoorde (14 January 2005) Right Angle
Brackets (Revision 2)
^ Doc No. 1811 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1811.pdf) : J. Stephen Adamczyk (29 April 2005) Adding the long long
type to C++ (Revision 3)
^ Doc No. 1815 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1815.html) : Lawrence Crowl (2 May 2005) ISO C++ Strategic Plan for
Multithreading
^ Doc No. 1827 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1827.htm) : Chris Uzdavinis, Alisdair Meredith (29 August 2005) An
Explicit Override Syntax for C++
^ Doc No. 1834 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1834.html) : Detlef Vollmann (24 June 2005) A Pleading for Reasonable
Parallel Processing Support in C++
^ Doc No. 1836 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1836.pdf) : ISO/IEC DTR 19768 (24 June 2005) Draft Technical Report
on C++ Library Extensions
^ Doc No. 1886 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1886.pdf) : Gabriel Dos Reis, Bjarne Stroustrup (20 October 2005)
Specifying C++ concepts
^ Doc No. 1891 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1891.pdf) : Walter E. Brown (18 October 2005) Progress toward Opaque

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

38 of 42 10/20/2011 07:32 PM

Typedefs for C++0X
^ Doc No. 1898 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1898.pdf) : Michel Michaud, Michael Wong (6 October 2004)
Forwarding and inherited constructors
^ Doc No. 1919 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2005/n1919.pdf) : Bjarne Stroustrup, Gabriel Dos Reis (11 December 2005)
Initializer lists
^ Doc No. 1968 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2006/n1968.pdf) : V Samko; J Willcock, J Järvi, D Gregor, A Lumsdaine (26
February 2006) Lambda expressions and closures for C++
^ Doc No. 1986 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2006/n1986.pdf) : Herb Sutter, Francis Glassborow (6 April 2006) Delegating
Constructors (revision 3)
^ Doc No. 2016 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2006/n2016.html) : Hans Boehm, Nick Maclaren (21 April 2002) Should
volatile Acquire Atomicity and Thread Visibility Semantics?
^ Doc No. 2142 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2142.html) : ISO/IEC DTR 19768 (12 January 2007) State of C++
Evolution (between Portland and Oxford 2007 Meetings)
^ Doc No. 2228 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2228.html) : ISO/IEC DTR 19768 (3 May 2007) State of C++ Evolution
(Oxford 2007 Meetings)
^ Doc No. 2258 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2258.pdf) : G. Dos Reis and B. Stroustrup Templates Aliases
^ Doc No. 2280 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2280.html) : Lawrence Crowl (2 May 2007) Thread-Local Storage
^ Doc No. 2291 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2291.html) : ISO/IEC DTR 19768 (25 June 2007) State of C++ Evolution
(Toronto 2007 Meetings)
^ Doc No. 2336 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2336.html) : ISO/IEC DTR 19768 (29 July 2007) State of C++ Evolution
(Toronto 2007 Meetings)
^ Doc No. 2389 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2389.html) : ISO/IEC DTR 19768 (7 August 2007) State of C++
Evolution (pre-Kona 2007 Meetings)
^ Doc No. 2431 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2431.pdf) : SC22/WG21/N2431 = J16/07-0301 (2 October 2007), A name
for the null pointer: nullptr
^ Doc No. 2432 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2432.html) : ISO/IEC DTR 19768 (23 October 2007) State of C++
Evolution (post-Kona 2007 Meeting)
^ Doc No. 2437 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2437.pdf) : Lois Goldthwaite (5 October 2007) Explicit Conversion
Operators
^ Doc No. 2461 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2007/n2461.pdf) : ISO/IEC DTR 19768 (22 October 2007) Working Draft,
Standard for programming Language C++
^ Doc No. 2507 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2008/n2507.html) : ISO/IEC DTR 19768 (4 February 2008) State of C++
Evolution (pre-Bellevue 2008 Meeting)
^ Doc No. 2544 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

39 of 42 10/20/2011 07:32 PM

/2008/n2544.pdf) : Alan Talbot, Lois Goldthwaite, Lawrence Crowl, Jens Maurer
(29 February 2008) Unrestricted unions
^ Doc No. 2565 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2008/n2565.html) : ISO/IEC DTR 19768 (7 March 2008) State of C++
Evolution (post-Bellevue 2008 Meeting)
^ Doc No. 2597 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2008/n2597.html) : ISO/IEC DTR 19768 (29 April 2008) State of C++ Evolution
(pre-Antipolis 2008 Meeting)
^ Doc No. 2606 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2008/n2606.pdf) : ISO/IEC DTR 19768 (19 May 2008) Working Draft, Standard
for Programming Language C++
^ Doc No. 2697 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2008/n2697.html) : ISO/IEC DTR 19768 (15 June 2008) Minutes of WG21
Meeting 8–15 June 2008
^ Doc No. 2798 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2008/n2798.pdf) : ISO/IEC DTR 19768 (4 October 2008) Working Draft,
Standard for Programming Language C++
^ Doc No. 2857 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2009/n2857.pdf) : ISO/IEC DTR 19768 (23 March 2009) Working Draft,
Standard for Programming Language C++
^ Doc No. 2869 (http://www.open-std.org/JTC1/SC22/WG21/docs/papers
/2009/n2869.html) : ISO/IEC DTR 19768 (28 April 2009) State of C++ Evolution
(post-San Francisco 2008 Meeting)
^ Doc No. 3000 (http://www.open-std.org/JTC1/SC22/WG21/docs/papers
/2009/n3000.pdf) : ISO/ISC DTR 19769 (9 November 2009) Working Draft,
Standard for Programming Language C++
^ Doc No. 3014 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2009/n3014.pdf) : Stephen D. Clamage (4 November 2009) AGENDA, PL22.16
Meeting No. 53, WG21 Meeting No. 48, 8–13 March 2010, Pittsburgh, PA
^ Doc No. 3082 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2010/n3082.pdf) : Herb Sutter (13 March 2010) C++0x Meeting Schedule
^ Doc No. 3092 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2010/n3092.pdf) : ISO/ISC DTR 19769 (26 March 2010) Working Draft,
Standard for Programming Language C++
^ Doc No. 3126 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2010/n3126.pdf) : ISO/ISC DTR 19769 (21 August 2010) Working Draft,
Standard for Programming Language C++
^ Doc No. 3225 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2010/n3225.pdf) : ISO/ISC DTR 19769 (27 November 2010) Working Draft,
Standard for Programming Language C++
^ Doc No. 3242 (http://www.open-std.org/jtc1/sc22/wg21/docs/papers
/2011/n3242.pdf) : ISO/ISC DTR 19769 (28 February 2011) Working Draft,
Standard for Programming Language C++
^ Doc No. 3291: ISO/ISC DTR 19769 (5 April 2011) Working Draft, Standard for
Programming Language C++
^ Doc No. 3290: ISO/ISC DTR 19769 (5 April 2011) FDIS, Standard for
Programming Language C++

Articles

^ Bjarne Stroustrup (2 January 2006). "A Brief Look at C++0x"

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

40 of 42 10/20/2011 07:32 PM

(http://www.artima.com/cppsource/cpp0x.html) . The C++ Source.
http://www.artima.com/cppsource/cpp0x.html. Retrieved 23 March 2009.
^ Bjarne Stroustrup (1 May 2005). "The Design of C++0x: Reinforcing C++’s
proven strengths, while moving into the future" (http://www.research.att.com
/~bs/rules.pdf) . C/C++ Users Journal. http://www.research.att.com
/~bs/rules.pdf. Retrieved 23 March 2009.
^ Raffaele Rialdi (16 September 2005). "Il futuro di C++ raccontato da Herb
Sutter" (http://blogs.ugidotnet.org/raffaele/archive/2005/09/16/26570.aspx) .
Web Log di Raffaele Rialdi. http://blogs.ugidotnet.org/raffaele/archive/2005/09
/16/26570.aspx. Retrieved 23 March 2009.
^ Danny Kalev (21 July 2006). "The Explicit Conversion Operators Proposal"
(http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=297) .
InformIT. http://www.informit.com/guides/content.aspx?g=cplusplus&
seqNum=297. Retrieved 23 March 2009.
^ Danny Kalev (11 July 2008). "Lambda Expressions and Closures"
(http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=254) .
InformIT. http://www.informit.com/guides/content.aspx?g=cplusplus&
seqNum=254. Retrieved 23 March 2009.
^ Pete Becker (11 April 2006). "Regular Expressions" (http://www.ddj.com
/cpp/185300414) . Dr. Dobb's Portal. http://www.ddj.com/cpp/185300414.
Retrieved 23 March 2009.
^ Danny Kalev (10 March 2006). "The Type Traits Library"
(http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=276) .
InformIT. http://www.informit.com/guides/content.aspx?g=cplusplus&
seqNum=276. Retrieved 23 March 2009.
^ Pete Becker (1 May 2005). "C++ Function Objects in TR: Getting from TR1
back to the Standard Library" (http://www.ddj.com/cpp/184401949) . Dr. Dobb's
Portal. http://www.ddj.com/cpp/184401949. Retrieved 23 March 2009.
^ Howard E. Hinnant, Bjarne Stroustrup, and Bronek Kozicki (10 March 2008).
"A Brief Introduction to Rvalue References" (http://www.artima.com/cppsource
/rvalue.html) . The C++ Source. http://www.artima.com/cppsource/rvalue.html.
Retrieved 23 March 2009.
^ "C++0x: The Dawning of a New Standard" (http://www.devx.com
/SpecialReports/Door/38865) . DevX. 18 August 2008. http://www.devx.com
/SpecialReports/Door/38865. Retrieved 23 March 2009.
^ "Static code analysis and the new language standard C++0x"
(http://software.intel.com/en-us/articles/static-code-analysis-and-the-
new-language-standard-c0x/) . Intel Software Network. 15 April 2010.
http://software.intel.com/en-us/articles/static-code-analysis-and-the-
new-language-standard-c0x/.
^ Bjarne Stroustrup (August 2009). "No 'Concepts' in C++0x" (http://accu.org
/index.php/journals/1576) . accu.org. http://accu.org/index.php/journals/1576.
Retrieved 29 June 2010.
^ "Explicating the new C++ standard (C++0x), and its implementation in
VC10" (http://www.codeproject.com/KB/cpp/cpp10.aspx) . CodeProject.com. 8
April 2010. http://www.codeproject.com/KB/cpp/cpp10.aspx. Retrieved 13
February 2011.

External links

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

41 of 42 10/20/2011 07:32 PM

The C++ Standards Committee (http://www.open-std.org/jtc1/sc22/wg21/)
Bjarne Stroustrup's homepage (http://www.research.att.com/~bs/)
Boost C++ Libraries (http://www.boost.org/)
C++0X: The New Face of Standard C++ (http://www.informit.com/guides
/content.aspx?g=cplusplus&seqNum=216)
Herb Sutter's blog coverage of C++0x (http://herbsutter.wordpress.com/)
Anthony Williams' blog coverage of C++0x
(http://www.justsoftwaresolutions.co.uk/cplusplus/)
A talk on C++0x given by Bjarne Stroustrup at the University of Waterloo
(http://www.csclub.uwaterloo.ca/media/C++0x%20-%20An%20Overview.html)
The State of the Language: An Interview with Bjarne Stroustrup (15 August
2008) (http://www.devx.com/SpecialReports/Article/38813/0/page/1)
Wiki page to help keep track of C++ 0x core language features and their
availability in compilers (http://wiki.apache.org/stdcxx/C++0xCompilerSupport)
Online C++11 standard library reference (http://en.cppreference.com)

Retrieved from "http://en.wikipedia.org/w/index.php?title=C%2B%2B11&
oldid=455441474"
Categories: C++ Computer standards Articles with example C++ code

This page was last modified on 13 October 2011 at 22:00.
Text is available under the Creative Commons Attribution-ShareAlike License;
additional terms may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a
non-profit organization.

C++11 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/C++11

42 of 42 10/20/2011 07:32 PM

