
8. Errors and Exceptions

Until now error messages haven’t been more than mentioned, but if you have tried out

the examples you have probably seen some. There are (at least) two distinguishable

kinds of errors: syntax errors and exceptions.

8.1. Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of

complaint you get while you are still learning Python:

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest

point in the line where the error was detected. The error is caused by (or at least

detected at) the token preceding the arrow: in the example, the error is detected at the

function print(), since a colon (':') is missing before it. File name and line number

are printed so you know where to look in case the input came from a script.

8.2. Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an

attempt is made to execute it. Errors detected during execution are called exceptions

and are not unconditionally fatal: you will soon learn how to handle them in Python

programs. Most exceptions are not handled by programs, however, and result in error

messages as shown here:

>>> while True print('Hello world')
 File "<stdin>", line 1

while True print('Hello world')
^

SyntaxError: invalid syntax

>>>

>>> 10 * (1/0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> 4 + spam*3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined

>>>

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

1 of 10 1/20/20, 8:14 AM

The last line of the error message indicates what happened. Exceptions come in

different types, and the type is printed as part of the message: the types in the example

are ZeroDivisionError, NameError and TypeError. The string printed as the

exception type is the name of the built-in exception that occurred. This is true for all

built-in exceptions, but need not be true for user-defined exceptions (although it is a

useful convention). Standard exception names are built-in identifiers (not reserved

keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception

happened, in the form of a stack traceback. In general it contains a stack traceback

listing source lines; however, it will not display lines read from standard input.

Built-in Exceptions lists the built-in exceptions and their meanings.

8.3. Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following

example, which asks the user for input until a valid integer has been entered, but allows

the user to interrupt the program (using Control-C or whatever the operating system

supports); note that a user-generated interruption is signalled by raising the

KeyboardInterrupt exception.

The try statement works as follows.

First, the try clause (the statement(s) between the try and except keywords) is

executed.

If no exception occurs, the except clause is skipped and execution of the try

>>> '2' + 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

>>> while True:
... try:
... x = int(input("Please enter a number: "))
... break
... except ValueError:
... print("Oops! That was no valid number. Try again...")
...

>>>

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

2 of 10 1/20/20, 8:14 AM

statement is finished.

If an exception occurs during execution of the try clause, the rest of the clause is

skipped. Then if its type matches the exception named after the except keyword,

the except clause is executed, and then execution continues after the try
statement.

If an exception occurs which does not match the exception named in the except

clause, it is passed on to outer try statements; if no handler is found, it is an

unhandled exception and execution stops with a message as shown above.

A try statement may have more than one except clause, to specify handlers for

different exceptions. At most one handler will be executed. Handlers only handle

exceptions that occur in the corresponding try clause, not in other handlers of the same

try statement. An except clause may name multiple exceptions as a parenthesized

tuple, for example:

A class in an except clause is compatible with an exception if it is the same class or a

base class thereof (but not the other way around — an except clause listing a derived

class is not compatible with a base class). For example, the following code will print B,

C, D in that order:

Note that if the except clauses were reversed (with except B first), it would have

... except (RuntimeError, TypeError, NameError):

... pass

class B(Exception):
pass

class C(B):
pass

class D(C):
pass

for cls in [B, C, D]:
try:

raise cls()
except D:

print("D")
except C:

print("C")
except B:

print("B")

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

3 of 10 1/20/20, 8:14 AM

printed B, B, B — the first matching except clause is triggered.

The last except clause may omit the exception name(s), to serve as a wildcard. Use this

with extreme caution, since it is easy to mask a real programming error in this way! It

can also be used to print an error message and then re-raise the exception (allowing a

caller to handle the exception as well):

The try … except statement has an optional else clause, which, when present, must

follow all except clauses. It is useful for code that must be executed if the try clause

does not raise an exception. For example:

The use of the else clause is better than adding additional code to the try clause

because it avoids accidentally catching an exception that wasn’t raised by the code

being protected by the try … except statement.

When an exception occurs, it may have an associated value, also known as the

exception’s argument. The presence and type of the argument depend on the exception

type.

The except clause may specify a variable after the exception name. The variable is

bound to an exception instance with the arguments stored in instance.args. For

import sys

try:
f = open('myfile.txt')
s = f.readline()
i = int(s.strip())

except OSError as err:
print("OS error: {0}".format(err))

except ValueError:
print("Could not convert data to an integer.")

except:
print("Unexpected error:", sys.exc_info()[0])
raise

for arg in sys.argv[1:]:
try:

f = open(arg, 'r')
except OSError:

print('cannot open', arg)
else:

print(arg, 'has', len(f.readlines()), 'lines')
f.close()

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

4 of 10 1/20/20, 8:14 AM

convenience, the exception instance defines __str__() so the arguments can be

printed directly without having to reference .args. One may also instantiate an

exception first before raising it and add any attributes to it as desired.

If an exception has arguments, they are printed as the last part (‘detail’) of the message

for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try

clause, but also if they occur inside functions that are called (even indirectly) in the try

clause. For example:

8.4. Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur.

For example:

>>> try:
... raise Exception('spam', 'eggs')
... except Exception as inst:
... print(type(inst)) # the exception instance
... print(inst.args) # arguments stored in .args
... print(inst) # __str__ allows args to be printed directly,
... # but may be overridden in exception subclasses
... x, y = inst.args # unpack args
... print('x =', x)
... print('y =', y)
...
<class 'Exception'>
('spam', 'eggs')
('spam', 'eggs')
x = spam
y = eggs

>>>

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError as err:
... print('Handling run-time error:', err)
...
Handling run-time error: division by zero

>>>

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

5 of 10 1/20/20, 8:14 AM

The sole argument to raise indicates the exception to be raised. This must be either

an exception instance or an exception class (a class that derives from Exception). If

an exception class is passed, it will be implicitly instantiated by calling its constructor

with no arguments:

If you need to determine whether an exception was raised but don’t intend to handle it,

a simpler form of the raise statement allows you to re-raise the exception:

8.5. User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see

Classes for more about Python classes). Exceptions should typically be derived from

the Exception class, either directly or indirectly.

Exception classes can be defined which do anything any other class can do, but are

usually kept simple, often only offering a number of attributes that allow information

about the error to be extracted by handlers for the exception. When creating a module

that can raise several distinct errors, a common practice is to create a base class for

exceptions defined by that module, and subclass that to create specific exception

classes for different error conditions:

>>> raise NameError('HiThere')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: HiThere

>>>

raise ValueError # shorthand for 'raise ValueError()'

>>> try:
... raise NameError('HiThere')
... except NameError:
... print('An exception flew by!')
... raise
...
An exception flew by!
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
NameError: HiThere

>>>

class Error(Exception):
"""Base class for exceptions in this module."""

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

6 of 10 1/20/20, 8:14 AM

Most exceptions are defined with names that end in “Error”, similar to the naming of the

standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in

functions they define. More information on classes is presented in chapter Classes.

8.6. Defining Clean-up Actions

The try statement has another optional clause which is intended to define clean-up

actions that must be executed under all circumstances. For example:

pass

class InputError(Error):
"""Exception raised for errors in the input.

 Attributes:
 expression -- input expression in which the error occurred
 message -- explanation of the error
 """

def __init__(self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that's not

 allowed.

 Attributes:
 previous -- state at beginning of transition
 next -- attempted new state
 message -- explanation of why the specific transition is not allowed
 """

def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

>>> try:
... raise KeyboardInterrupt
... finally:
... print('Goodbye, world!')

>>>

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

7 of 10 1/20/20, 8:14 AM

If a finally clause is present, the finally clause will execute as the last task before

the try statement completes. The finally clause runs whether or not the try
statement produces an exception. The following points discuss more complex cases

when an exception occurs:

If an exception occurs during execution of the try clause, the exception may be

handled by an except clause. If the exception is not handled by an except
clause, the exception is re-raised after the finally clause has been executed.

An exception could occur during execution of an except or else clause. Again,

the exception is re-raised after the finally clause has been executed.

If the try statement reaches a break, continue or return statement, the

finally clause will execute just prior to the break, continue or return
statement’s execution.

If a finally clause includes a return statement, the finally clause’s

return statement will execute before, and instead of, the return statement in a

try clause.

For example:

A more complicated example:

...
Goodbye, world!
KeyboardInterrupt
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>

>>> def bool_return():
... try:
... return True
... finally:
... return False
...
>>> bool_return()
False

>>>

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print("division by zero!")
... else:
... print("result is", result)

>>>

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

8 of 10 1/20/20, 8:14 AM

As you can see, the finally clause is executed in any event. The TypeError raised

by dividing two strings is not handled by the except clause and therefore re-raised

after the finally clause has been executed.

In real world applications, the finally clause is useful for releasing external resources

(such as files or network connections), regardless of whether the use of the resource

was successful.

8.7. Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no

longer needed, regardless of whether or not the operation using the object succeeded

or failed. Look at the following example, which tries to open a file and print its contents

to the screen.

The problem with this code is that it leaves the file open for an indeterminate amount of

time after this part of the code has finished executing. This is not an issue in simple

scripts, but can be a problem for larger applications. The with statement allows objects

like files to be used in a way that ensures they are always cleaned up promptly and

correctly.

... finally:

... print("executing finally clause")

...
>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: 'str' and 'str'

for line in open("myfile.txt"):
print(line, end="")

with open("myfile.txt") as f:
for line in f:

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

9 of 10 1/20/20, 8:14 AM

After the statement is executed, the file f is always closed, even if a problem was

encountered while processing the lines. Objects which, like files, provide predefined

clean-up actions will indicate this in their documentation.

print(line, end="")

8. Errors and Exceptions — Python 3.8.1 docume... https://docs.python.org/3/tutorial/errors.html

10 of 10 1/20/20, 8:14 AM

