
Basic if statement (ternary operator) info

Many programming languages have a ternary operator, which define a conditional expression.

The most common usage is to make a terse simple conditional assignment statement. In other

words, it offers one-line code to evaluate the first expression if the condition is true, otherwise

it evaluates the second expression.

Programming languages derived from C usually have following syntax:

The Python BDFL (creator of Python, Guido van Rossum) rejected it as non-Pythonic, since it

is hard to understand for people not used to C. Moreover, the colon already has many uses in

Python. So, when PEP 308 was approved, Python finally received its own shortcut conditional

expression:

It first evaluates the condition; if it returns True, expression1 will be evaluated to give the

result, otherwise expression2. Evaluation is lazy, so only one expression will be executed.

Let's take a look at this example:

Ternary operators can be changed:

Which is the same as:

One line if statement in Python (ternary conditional operator)

1 <condition> ? <expression1> : <expression2>

1 <expression1> if <condition> else <expression2>

1
2
3
4

>>> age = 15
>>> # Conditions are evaluated from left to right
>>> print('kid' if age < 18 else 'adult')
kid

1
2
3

>>> age = 15
>>> print('kid' if age < 13 else 'teenager' if age < 18 else 'adult')
teenager

One line if statement in Python (ternary condition... https://www.pythoncentral.io/one-line-if-statement...

1 of 3 1/20/20, 8:04 AM

Conditions are evaluated from left to right, which is easy to double-check with something like

the pprint module:

Alternatives to the ternary operator

For Python versions lower then 2.5, programmers developed several tricks that somehow

emulate behavior of ternary conditional operator. They are generally discouraged, but it's good

to know how they work:

The problem of such an approach is that both expressions will be evaluated no matter what

the condition is. As a workaround, lambdas can help:

Another approach using and/or statements:

1
2
3
4

if age < 18:
 if age < 12:
 print('kid')
 else:

1
2
3
4
5
6
7

>>> from pprint import pprint
>>> age = 25
>>> pprint('expression_1') if pprint('condition_1') else \
... pprint('expression_2') if pprint('condition_2') else pprint('expression_3')
'condition_1'
'condition_2'
'expression_3'

1
2
3
4
5
6
7
8
9
10

>>> age = 15
>>> # Selecting an item from a tuple
>>> print(('adult', 'kid')[age < 20])
kid
>>> # Which is the equivalent of...
>>> print(('adult', 'kid')[True])
kid
>>> # Or more explicit by using dict
>>> print({True: 'kid', False: 'adult'}[age < 20])
kid

1
2
3

>>> age = 15
>>> print((lambda: 'kid', 'lambda: adult')[age > 20]())
kid

1
2
3
4
5
6
7
8

>>> age = 15
>>> (age < 20) and 'kid' or 'adult'
'kid'
>>> # Nice, but would not work if the expression is 'falsy'
>>> # i.e. None, False, 0, [] etc
>>> # One possible workaround is putting expressions in lists
>>> print(((age < 20) and ['kid'] or ['adult'])[0])
kid

One line if statement in Python (ternary condition... https://www.pythoncentral.io/one-line-if-statement...

2 of 3 1/20/20, 8:04 AM

Yes, most of the workarounds look ugly. Nevertheless, there are situations when it's better to

use and or or logic than the ternary operator. For example, when your condition is the same

as one of expressions, you probably want to avoid evaluating it twice:

Use Python magic carefully!

For more about using if statements on one line (ternary conditional operators), checkout PEP

(Python Enhancement Proposal) 308.

1
2
3
4
5
6
7
8
9
10
11
12

>>> def get_name():
... print('loading...')
... return 'Anton'
...
>>> print(('Hello, ' + (get_name() if get_name() else 'Anonymous')))
loading...
loading...
Hello, Anton
>>> # Cleaner and faster with 'or'
>>> print('Hello, ' + (get_name() or 'Anonymous'))
loading...
Hello, Anton

One line if statement in Python (ternary condition... https://www.pythoncentral.io/one-line-if-statement...

3 of 3 1/20/20, 8:04 AM

