

 Contents

By Lisa Tagliaferri
Become an author

Introduction

In function definitions parameters are named entities that specify an argument that a given

How To Use *args and **kwargs in Python 3
Updated November 20, 2017 377.4k PYTHON DEVELOPMENT

How To Code in Python 3 How To Use *args and **kwargs in…

×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Enter your email address Sign Up
SCROLL TO TOP

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

1 of 15 1/20/20, 8:27 AM

interacting with the code. We can pass a variable number of arguments to a function by using

*args and **kwargs in our code.

Understanding *args
In Python, the single-asterisk form of *args can be used as a parameter to send a non-keyworded

variable-length argument list to functions. It is worth noting that the asterisk (*) is the important

element here, as the word args is the established conventional idiom, though it is not enforced by

the language.

Let’s look at a typical function that uses two arguments:

def multiply(x, y):

print (x * y)

In the code above, we built the function with x and y as arguments, and then when we call the

function, we need to use numbers to correspond with x and y . In this case, we will pass the

integer 5 in for x and the integer 4 in for y :

def multiply(x, y):

print (x * y)

multiply(5, 4)

Now, we can run the above code:

$ python lets_multiply.py

We’ll receive the following output, showing that the integers 5 and 4 were multiplied as per the

multiply(x,y) function:

lets_multiply.py

lets_multiply.py

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

2 of 15 1/20/20, 8:27 AM

What if, later on, we decide that we would like to multiply three numbers rather than just two? If we

try to add an additional number to the function, as shown below, we’ll receive an error.

def multiply(x, y):

print (x * y)

multiply(5, 4, 3)

Output

TypeError: multiply() takes 2 positional arguments but 3 were given

So, if you suspect that you may need to use more arguments later on, you can make use of *args

as your parameter instead.

We can essentially create the same function and code that we showed in the first example, by

removing x and y as function parameters, and instead replacing them with *args :

def multiply(*args):

 z = 1

for num in args:

 z *= num

 print(z)

multiply(4, 5)

multiply(10, 9)

multiply(2, 3, 4)

multiply(3, 5, 10, 6)

When we run this code, we’ll receive the product for each of these function calls:

Output

20

lets_multiply.py

lets_multiply.py

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

3 of 15 1/20/20, 8:27 AM

Because we used *args to send a variable-length argument list to our function, we were able to

pass in as many arguments as we wished into the function calls.

With *args you can create more flexible code that accepts a varied amount of non-keyworded

arguments within your function.

Understanding **kwargs
The double asterisk form of **kwargs is used to pass a keyworded, variable-length argument

dictionary to a function. Again, the two asterisks (**) are the important element here, as the word

kwargs is conventionally used, though not enforced by the language.

Like *args , **kwargs can take however many arguments you would like to supply to it. However,

**kwargs differs from *args in that you will need to assign keywords.

First, let’s simply print out the **kwargs arguments that we pass to a function. We’ll create a short

function to do this:

def print_kwargs(**kwargs):

 print(kwargs)

Next, we’ll call the function with some keyworded arguments passed into the function:

def print_kwargs(**kwargs):

 print(kwargs)

print_kwargs(kwargs_1="Shark", kwargs_2=4.5, kwargs_3=True)

Let’s run the program above and look at the output:

print_kwargs.py

print_kwargs.py

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

4 of 15 1/20/20, 8:27 AM

{'kwargs_3': True, 'kwargs_2': 4.5, 'kwargs_1': 'Shark'}

Depending on the version of Python 3 you are currently using, the dictionary data type may be

unordered. In Python 3.6 and above, you’ll receive the key-value pairs in order, but in earlier

versions, the pairs will be output in a random order.

What is important to note is that a dictionary called kwargs is created and we can work with it just

like we can work with other dictionaries.

Let’s create another short program to show how we can make use of **kwargs . Here we’ll create a

function to greet a dictionary of names. First, we’ll start with a dictionary of two names:

def print_values(**kwargs):

for key, value in kwargs.items():

 print("The value of {} is {}".format(key, value))

print_values(my_name="Sammy", your_name="Casey")

We can now run the program and look at the output:

$ python print_values.py

Output

The value of your_name is Casey

The value of my_name is Sammy

Again, because dictionaries may be unordered, your output may be with the name Casey first or

with the name Sammy first.

Let’s now pass additional arguments to the function to show that **kwargs will accept however

many arguments you would like to include:

print_values.py

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

5 of 15 1/20/20, 8:27 AM

print_values(

 name_1="Alex",

 name_2="Gray",

 name_3="Harper",

 name_4="Phoenix",

 name_5="Remy",

 name_6="Val"

)

When we run the program at this point, we’ll receive the following output, which may again be

unordered:

Output

The value of name_2 is Gray

The value of name_6 is Val

The value of name_4 is Phoenix

The value of name_5 is Remy

The value of name_3 is Harper

The value of name_1 is Alex

Using **kwargs provides us with flexibility to use keyword arguments in our program. When we

use **kwargs as a parameter, we don’t need to know how many arguments we would eventually

like to pass to a function.

Ordering Arguments
When ordering arguments within a function or function call, arguments need to occur in a

particular order:

Formal positional arguments1.

*args2.

Keyword arguments3.

**kwargs4.

 and **kwargs ,

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

6 of 15 1/20/20, 8:27 AM

def example(arg_1, arg_2, *args, **kwargs):

...

And, when working with positional parameters along with named keyword parameters in addition

to *args and **kwargs , your function would look like this:

def example2(arg_1, arg_2, *args, kw_1="shark", kw_2="blobfish", **kwargs):

...

It is important to keep the order of arguments in mind when creating functions so that you do not

receive a syntax error in your Python code.

Using *args and **kwargs in Function Calls
We can also use *args and **kwargs to pass arguments into functions.

First, let’s look at an example with *args .

def some_args(arg_1, arg_2, arg_3):

 print("arg_1:", arg_1)

 print("arg_2:", arg_2)

 print("arg_3:", arg_3)

args = ("Sammy", "Casey", "Alex")

some_args(*args)

In the function above, there are three parameters defined as arg_1 , arg_ , and arg_3 . The

function will print out each of these arguments. We then create a variable that is set to an iterable

(in this case, a tuple), and can pass that variable into the function with the asterisk syntax.

When we run the program with the python some_args.py command, we’ll receive the following

output:

some_args.py

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

7 of 15 1/20/20, 8:27 AM

arg_3: Alex

We can also modify the program above to an iterable list data type with a different variable name.

Let’s also combine the *args syntax with a named parameter:

def some_args(arg_1, arg_2, arg_3):

 print("arg_1:", arg_1)

 print("arg_2:", arg_2)

 print("arg_3:", arg_3)

my_list = [2, 3]

some_args(1, *my_list)

If we run the program above, it will produce the following output:

Output

arg_1: 1

arg_2: 2

arg_3: 3

Similarly, the keyworded **kwargs arguments can be used to call a function. We will set up a

variable equal to a dictionary with 3 key-value pairs (we’ll use kwargs here, but it can be called

whatever you want), and pass it to a function with 3 arguments:

def some_kwargs(kwarg_1, kwarg_2, kwarg_3):

 print("kwarg_1:", kwarg_1)

 print("kwarg_2:", kwarg_2)

 print("kwarg_3:", kwarg_3)

kwargs = {"kwarg_1": "Val", "kwarg_2": "Harper", "kwarg_3": "Remy"}

some_kwargs(**kwargs)

Let’s run the program above with the python some_kwargs.py command:

some_args.py

some_kwargs.py

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

8 of 15 1/20/20, 8:27 AM

By Lisa Tagliaferri

Was this helpful? Yes No

Report an issue

kwarg_1: Val

kwarg_2: Harper

kwarg_3: Remy

When calling a function, you can use *args and **kwargs to pass arguments.

Conclusion
We can use the special syntax of *args and **kwargs within a function definition in order to pass

a variable number of arguments to the function.

Creating functions that accept *args and **kwargs are best used in situations where you expect

that the number of inputs within the argument list will remain relatively small. The use of *args

and **kwargs is primarily to provide readability and convenience, but should be done with care.

Next in series: How To Construct Classes and Define Objects in Python 3

9

Tutorial Series

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

9 of 15 1/20/20, 8:27 AM

simplicity and versatility, in terms of extensibility and supported paradigms.

Next in series: How To Construct Classes and Define Objects in Python 3

Related

MEETUP KIT

Getting Started with
Containers and
Kubernetes: A
DigitalOcean Workshop
Kit

This workshop kit is

designed to equip a…

TUTORIAL

How To Display Data
from the DigitalOcean
API with Django

Django is a web framework

written in Python. Django

has been used in website…

TUTORIAL

How To Use Node.js
Modules with npm and
package.json

The Node.js Package

Manager (npm) is the

default and most popular…

TUTORIAL

How To Add Sidekiq and
Redis to a Ruby on Rails
Application

When developing a Ruby

on Rails application, you

may find that you have…

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

10 of 15 1/20/20, 8:27 AM

 Ask a question Search for more help

9 Comments

Leave a comment...

Sign In to Comment

4 Brilliant refresher.

Report

daviddexter May 9, 2017

1 Thank you for your tutorial. Simple to understand and comprehensive.

Report

pegom0896 August 14, 2017

0 As of 3.6 dicts stay in order. :)

Report

gucciferXCIV November 20, 2017

0 ifferences among Python 3 versions.

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

11 of 15 1/20/20, 8:27 AM

This work is licensed under a Creative
Commons Attribution-NonCommercial-

ShareAlike 4.0 International License.

0 I appreciated this overview. Thank you.

What is important to note is that a dictionary called **kwargs is created

The dictionary is actually just called kwargs , isn’t it?

Report

kwiliarty May 16, 2018

0 Thanks for pointing that out, I have updated the tutorial to reflect the change.

Report

ltagliaferri MOD May 17, 2018

0 Thanks , helped me alot

Report

tariqywsf July 27, 2019

0 Thanks

Report

alans October 29, 2019

0 Thank you so much. All Digitalocean tutorials are very clear and easy to understand.

Report

hioymaci November 14, 2019

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

12 of 15 1/20/20, 8:27 AM

BECOME A CONTRIBUTOR

You get paid; we donate to tech
nonprofits.

CONNECT WITH OTHER DEVELOPERS

Find a DigitalOcean Meetup
near you.

GET OUR BIWEEKLY NEWSLETTER

Sign up for Infrastructure as a
Newsletter.

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

13 of 15 1/20/20, 8:27 AM

DigitalOcean Products Droplets Managed Databases Managed Kubernetes Spaces Object Storage
Marketplace

Welcome to the developer cloud

DigitalOcean makes it simple to launch in the
cloud and scale up as you grow – whether you’re
running one virtual machine or ten thousand.

Learn More

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

14 of 15 1/20/20, 8:27 AM

© 2020 DigitalOcean, LLC. All rights reserved.

Company

About

Leadership

Blog

Careers

Partners

Referral Program

Press

Legal & Security

Products

Products Overview

Pricing

Droplets

Kubernetes

Managed Databases

Spaces

Marketplace

Load Balancers

Block Storage

Tools & Integrations

API

Documentation

Release Notes

Community

Tutorials

Q&A

Tools and Integrations

Tags

Product Ideas

Meetups

Write for DOnations

Droplets for Demos

Hatch Startup Program

Shop Swag

Research Program

Currents Research

Open Source

Contact

Support

Sales

Report Abuse

System Status

How To Code in Python 3 How To Use *args and **kwargs in…

SCROLL TO TOP×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Use *args and **kwargs in Python 3 | Digi... https://www.digitalocean.com/community/tutorial...

15 of 15 1/20/20, 8:27 AM

