
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

OpenMP* on Knights Landing
John Pennycook, Intel Corporation
May 2018, ALCF Performance Workshop

Acknowledgements:
Alex Duran, Jason Sewall, Carlos Rosales-Fernandez

http://www.intel.com/sites/corporate/tradmarx.htm

© 2018 Intel Corporation

Agenda

2

 Think Parallel & SIMD

 Threading

‒ Affinity

‒ Nested Threading

‒ Scheduling & Explicit Worksharing

 Vectorization

© 2018 Intel Corporation© 2018 Intel Corporation

Think Parallel & SIMD

3

© 2018 Intel Corporation

Birds-Eye View of OpenMP*

 OpenMP Directives

‒ Indicate parallelism opportunities.

‒ Compilers not supporting OpenMP are
free to ignore directives.

#pragma omp parallel shared(A, B, C)

{

int tid = omp_get_thread_num();

printf(“Hello from thread %d\n”, tid);

#pragma omp for simd

for (int i = 0; i < size; i++) {

C[i] = A[i] + B[i]

}

}

4

Fork

Join

Serial / Scalar

Execution

Parallel / SIMD

Execution

Serial / Scalar

Execution

© 2018 Intel Corporation

Amdahl’s Law

5

𝑆 𝑁 =
1

1 − 𝑃 +
𝑃
𝑁

where:

 𝑆 𝑁 = speedup on N processors

 𝑃 = fraction of code that can be parallelised

 𝑁 = number of processors

The speedup of “strong scaling” applications is governed by Amdahl’s Law.

As 𝑁 → ∞, 𝑆 𝑁 →
1

(1−𝑃)
.

© 2018 Intel Corporation

Impact of Amdahl’s Law

6

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

S
p

e
e

d
u

p

Number of Processors†

P = 1

P = 0.9

P = 0.8

P = 0.7

P = 0.6

P = 0.5

† Amdahl’s Law applies to Cores and SIMD, too!

© 2018 Intel Corporation

Think Parallel & SIMD!

7

 Key takeaways from Amdahl’s Law:

‒ Maximize 𝑃 to maximize efficiency and performance at scale

‒ Threads/SIMD “bolted on” to serial/scalar applications will not scale.

 Adding pragmas and crossing fingers rarely solves the problem.

‒ Consider how hardware should be used before worrying about the implementation.

‒ Think of pragmas as a short-hand for telling the compiler what to do.

 Revisit algorithms and throw out assumptions.

‒ A parallel implementation of a “slower” algorithm may be faster!

© 2018 Intel Corporation© 2018 Intel Corporation

Threading with OpenMP*

8

© 2018 Intel Corporation

Standard OpenMP* Affinity Controls

9

 OpenMP has two standard environment variables for affinity:

‒ OMP_PLACES={place}[,{place}…]*
Similar to KMP_HW_SUBSET; defines virtual cores to be used by OpenMP.
Places can be a list of hardware threads or standard short-hands (threads, cores, sockets).

‒ OMP_PROC_BIND=[spread | close]
Similar to KMP_AFFINITY; defines binding of threads to places.

 Decoder Ring:

‒ KMP_AFFINITY proclist ≈ OMP_PLACES with list of hardware threads

‒ KMP_AFFINITY scatter ≈ spread; compact ≈ close

‒ KMP_HW_SUBSET ≈ OMP_PLACES with standard places

© 2018 Intel Corporation

OpenMP* Affinity on Theta

10

 For pure OpenMP* based codes the most effective way to set affinity is to
disable affinity in aprun and then use OpenMP settings to bind threads.

 Disabling affinity with aprun is simple:

$ aprun -n 1 -N 1 -cc none ./exe

 Now threads can be pinned to specific hardware resources using the
OMP_PLACES and OMP_PROC_BIND environment variables.

 Rich set of options with lots of flexibility and configuration granularity, but a
few simple setups cover the vast majority of production cases.

© 2018 Intel Corporation

Affinity Examples

11

 KMP_HW_SUBSET=64c,1t KMP_AFFINITY=compact,granularity=core
Launch 64 threads, one per physical core.

 KMP_HW_SUBSET=64c,4t KMP_AFFINITY=compact,granularity=core
Launch 256 threads, four per physical core.

 OMP_NUM_THREADS=64 OMP_PLACES=“cores(64)” OMP_PROC_BIND=spread
Launch 64 threads, one per physical core.

 OMP_NUM_THREADS=256 OMP_PLACES={0,68,136,204}:64 OMP_PROC_BIND=close
Launch 256 threads, four per physical core.

© 2018 Intel Corporation

Hybrid MPI + OpenMP* Affinity on Theta

12

 When using hybrid applications aprun must be configured to create pinning
ranges for each MPI task, and then OpenMP variables may be set to control
thread pinning within each rank processor range.

 Example: 4 MPI ranks,16 threads per rank, 8 nodes

export OMP_NUM_THREADS=16
export OMP_PLACES=cores
export OMP_PROC_BIND=spread
aprun -n 32 -N 4 -cc depth -d 64 -j 4 ./exe

© 2018 Intel Corporation

How to Plot OpenMP* Scaling Results

13

 Why does how we plot scaling results matter?

‒ Clarity of presentation

‒ May confuse/bias interpretation

 y-axis is clearly performance (or speed-up) but what about x-axis?

‒ Threads?

‒ Cores?

‒ Something else?

© 2018 Intel Corporation

How to Plot OpenMP* Scaling Results

14

1

2

4

8

16

32

64

128

256

1 4 16 64 256

S
p

e
e

d
-u

p
 (

x)

Threads

The Wrong Way

Ideal (?) Speed-up

https://software.intel.com/en-us/blogs/2016/12/02/how-to-plot-openmp-scaling-results

Conflates threads/cores and obscures affinity.

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64

S
p

e
e

d
-u

p
 (

x)

Cores

A Better Way

Speed-up (1t) Speed-up (2t) Speed-up (4t)

Separates scaling from hyperthread gains.

© 2018 Intel Corporation

Nested Threading and Locality

 Recall that KNL cores are grouped into
tiles, with two cores sharing an L2.

 Effective capacity depends on locality:

– 2 cores sharing no data => 2 x 512 KB

– 2 cores sharing all data => 1 x 1 MB

 Ensuring good locality (e.g. through
blocking or nested parallelism) is likely
to improve performance.

#pragma omp parallel for num_threads(ntiles)
for (int i = 0; i < N; ++i)
{

#pragma omp parallel for num_threads(8)
for (int j = 0; j < M; ++j)
{

…
}

}

15

Core Core

2 VPU 2
VPU

1
M

B
 L

2
H

U
B

© 2018 Intel Corporation

Nested Threading – Considerations

16

 Nested threading has historically been slow due to fork-join overheads.

‒ Ensure that there is sufficient work per thread to amortize this.

‒ Performance will differ across OpenMP* runtimes.

 OpenMP environment variables:

‒ OMP_NESTED=true

‒ OMP_NUM_THREADS=64,4

 Intel environment variables:

‒ KMP_HOT_TEAMS=1

‒ KMP_HOT_TEAMS_MAX_LEVEL=2

Enable nested threading and
set the number of threads at
each level of nesting.

Permit teams of threads to stay
“alive” once created; accelerates
fork-join of nested threads.

© 2018 Intel Corporation

Nested Threading – Performance Impact

 Impact of nested threading depends
on ability of threads to share data.

 Multiple implementations possible:

‒ Nested OpenMP* parallel regions

‒ OpenMP “teams” construct

‒ Explicit (manual) nested threading

 Expect to spend some time fine-
tuning nesting behavior.

17

From “Cosmic Microwave Background Analysis: Nested Parallelism in Practice”, in
“High Performance Parallel Pearls: Volume 2”. Used with permission.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
information go to http://www.intel.com/performance. See System Configuration(s) slide at back of deck.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and
"Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

http://www.intel.com/performance

© 2018 Intel Corporation

OpenMP* Schedules

18

static Round-robin distribution of chunks.

dynamic Threads request chunks from a queue dynamically.

guided Like dynamic, but decreasing chunk size amortizes overheads of acquiring new chunks.

schedule([modifier[, modifier] :]kind[, chunk_size])

Other modifiers/kinds are available. See: http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

monotonic Chunks assigned to a thread are executed in increasing order of iterations.

nonmonotonic Chunks may be assigned to a thread in any order.

simd All threads except the first and last are assigned a number of iterations divisible by
the SIMD length.

Kinds:

Modifiers:

© 2018 Intel Corporation

OpenMP* Schedules – Examples

19

 schedule(monotonic:dynamic, 8)
Threads work on 8 iterations at a time. To ensure monotonicity, threads likely
take work from a single, shared queue.

 schedule(nonmonotonic:dynamic, 16)
Threads work on 16 iterations at a time. Since monotonicity is not required,
runtime is free to use a work-stealing scheduler.

 schedule(simd:static)
Threads work on ≈(niterations / nthreads) iterations each, with exact work
assignment adjusted to permit efficient use of simd instructions.

© 2018 Intel Corporation

Explicit Worksharing in OpenMP*

 Naively adding OpenMP pragmas to existing
loops may restrict performance, since runtime
cannot exploit domain knowledge.

 OpenMP provides mechanisms for explicit
worksharing (similar to pthreads/MPI):

‒ omp_get_max_threads():
The maximum number of threads a parallel region
can use.

‒ omp_get_num_threads():
The number of threads in the enclosing parallel
region. Will be 1 if called from a serial region!

‒ omp_get_thread_num():
The thread id (tid) of the calling thread.

Examples:

int ntiles = omp_get_max_threads();

#pragma omp parallel for
for (int i = 0; i < ntiles; ++i)
{

for (int i = 0; i < Ni; ++i)
{

for (int j = 0; j < Nj; ++j)
{

// work for this tile
}

}
}

#pragma omp parallel
{

int tid = omp_get_thread_num();
foo(tiles[tid]);

}

20

© 2018 Intel Corporation

Explicit Worksharing in OpenMP* – N-Body

21

Implicit Worksharing:

#pragma omp parallel for
for (int i = 0; i < natoms; ++i)
{
for (int j = 0; j < nneigh[i]; ++j)
{

int jj = neighbors[i][j];
float f = compute_force(i, jj);
force[i] += f;
#pragma omp atomic
force[jj] -= f;

}
}

Explicit Worksharing:

#pragma omp parallel for
for (int t = 0; t < ntiles; ++t)
{
for (int i = 0; i < natoms[t]; ++i)
{

for (int j = 0; j < nneigh[t][i]; ++j)
{

int jj = neighbors[t][i][j];
float f = compute_force(i, jj);
force[t][i] += f;
force[t][jj] -= f;

}
}

}

Domain decomposition guarantees no write-conflicts.
Already favored at the MPI level; why throw away the insight for OpenMP?

© 2018 Intel Corporation

Explicit Worksharing in OpenMP* – Stencils

22

Implicit Worksharing:

#pragma omp parallel for
for (int i = 0; i < N+1; ++i)
{
flux[i] = foo(cell[i-1], cell[i]);

}

#pragma omp parallel for
for (int i = 0; i < N; ++i)
{
cell[i] = bar(flux[i], flux[i+1]);

}

Explicit Worksharing:

#pragma omp parallel for
for (int t = 0; t < ntiles; ++t)
{
float flux[2];
flux[0] = foo(cell[-1], cell[0]);
for (int i = 0; i < N; ++i)
{

flux[1] = foo(cell[i], cell[i+1]);
cell[i] = bar(flux[0], flux[1]);
flux[0] = flux[1];

}
}

Domain decomposition permits loop fusion / stencil chaining.
Reduces memory footprint and bandwidth requirements.

© 2018 Intel Corporation

Explicit Worksharing in OpenMP* – Stencils

23

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

4.50E+08

Kernels Tiles Tiles

+ Intrinsics

C
e

ll
s

p
e

r
S

e
co

n
d

Implementation

Hydro2D Performance for 1024 x 1024 Grid

1 x KNL (DDR)

1 x KNL (MCDRAM)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
information go to http://www.intel.com/performance. See System Configuration(s) slide at back of deck.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and
"Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

3.4x

1.9x

http://www.intel.com/performance

© 2018 Intel Corporation

Explicit Worksharing in OpenMP* – Manual Nesting

24

Implicit Worksharing:

#pragma omp parallel for num_threads(64)
for (int i = 0; i < N; ++i)
{
#pragma omp parallel for num_threads(4)
for (int j = 0; j < M; ++j)
{

// work
}

}

Explicit Worksharing:

#pragma omp parallel num_threads(256)
{
int tid = omp_get_thread_num();
int cid = tid / 4;
int lid = tid % 4;
int il = (N/64)*cid;
int iu = il + (N/64);
int jl = (M/4)*lid;
int ju = jl + (M/64);
for (int i = il; i < iu; ++i)
{

for (int j = jl; j < ju; ++j)
{

// work
}

}
}

Removes fork-join overhead of inner parallel loop.
Can employ a specialized barrier for threads on same core (see Parallel Pearls 2).

© 2018 Intel Corporation© 2018 Intel Corporation

Vectorization with OpenMP*

25

© 2018 Intel Corporation

Explicit Vectorization – OpenMP* SIMD Loops

26

safelen (length) Maximum distance between two iterations
executed concurrently by a SIMD instruction.

linear (list[:linear-step]) List items are private and have a linear
relationship with respect to the iteration space.

aligned (list[:alignment]) List items are aligned to a platform-dependent
value (or the value of the optional parameter).

See: OpenMP 4.0 Specification http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

private (list), lastprivate (list), reduction (reduction-identifier:list) and collapse (n)
are also supported, with functionality matching that of omp for.

#pragma omp simd / !$omp simd => for/do loop is a SIMD loop.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

© 2018 Intel Corporation

Explicit Vectorization – OpenMP* SIMD Loops

27

Forced Vectorization

#pragma omp simd
for (int i = 0; i < N; ++i)
{
output[i] = foo();
printf(“output[i] = %d\n”, output[i]);

}

Outer-Loop Vectorization

#pragma omp simd
for (int i = 0; i < N; ++i)
{
while (condition dependent on i)
{

// work
}

}

Semi-Automatic Vectorization

#pragma omp parallel num_threads(64)
for (int i = 0; i < N; i += VLEN)
{
float tmp[VLEN];
#pragma omp simd simdlen(VLEN)
for (int v = 0; v < VLEN; ++v)
{

// work
}

}

© 2018 Intel Corporation

Explicit Vectorization – OpenMP* SIMD Functions

28

simdlen (length) Maximum number of concurrent arguments to
the function (i.e. maximum SIMD width).

uniform (argument-list) List items have the same value for all SIMD lanes,
and can therefore be broadcast.

inbranch
notinbranch

Function always called inside a conditional.
Function never called inside a conditional.

See: OpenMP 4.0 Specification http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

linear (argument-list[:linear-step]) and aligned (argument-list[:alignment])
are also supported, with functionality matching that of omp simd.

#pragma omp declare simd / !$omp declare simd => function called from a SIMD loop.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

© 2018 Intel Corporation

Explicit Vectorization – OpenMP* SIMD Functions

 Possible to declare multiple SIMD implementations
(i.e. vector variants) of a single function.

 Compiler selects the best match based on contextual
information at the call site.

 Optimization report (-qopt-report=5) includes
function matching report:

remark #15489: --- begin vector function matching report ---
remark #15490: Function call:

add(float *, float *, float *, int) with
simdlen=16, actual parameter types:
(uniform,uniform,uniform,linear:1)

remark #15492: A suitable vector variant was found (out of 6)
with zmm, simdlen=16, unmasked,
formal parameter types:
(uniform,uniform,uniform,linear:1)

remark #15493: --- end vector function matching report ---

 Compiler may emulate a SIMD function by calling
another function with smaller simdlen multiple times.

#pragma omp declare simd simdlen(16)
#pragma omp declare simd simdlen(16)
uniform(left, right, out)
#pragma omp declare simd simdlen(16)
uniform(left, right, out) linear(i:1)
void add(float* left, float* right,

float* out, int i)
{

out[i] = left[i] + right[i];
}

void foo(float* a, float* b, float* c,
int N)

{
#pragma omp simd
for (int i = 0; i < N; ++i)
{

add(a, b, c, i);
}

}

29

© 2018 Intel Corporation© 2018 Intel Corporation

Summary

30

© 2018 Intel Corporation

Summary

31

 OpenMP* is a great tool for adding thread/SIMD parallelism to an application.

 Adding pragmas to existing code is the bare minimum you can do

‒ ….and may not be successful if the parallelism is “bolted on” or too limited in scope

 High performance OpenMP codes pay attention to:

‒ Hardware resources (affinity, nesting, tasking, memory bandwidth)

‒ Runtime overheads (scheduling, explicit worksharing, tasks)

‒ Parallel algorithm design (explicit worksharing, tasks)

© 2018 Intel Corporation

Legal Disclaimers

32

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. § For more information go to www.intel.com/benchmarks.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.

§ Configurations:
Slide 18 - Measured by University of Cambridge on 2 x Intel® Xeon® processor E5-4650L, 8 cores, 2.6 GHz, Intel® Xeon Phi™ coprocessor 5110P, 60 cores, 1.053 GHz, Intel®
Composer XE 2015, Source: “Cosmic Microwave Background Analysis: Nested Parallelism in Practice”, in High Performance Parallelism Pearls: Volume 2: Multicore and Many-core
Programming Approaches
Slide 24 - Measured by Intel on Intel® Xeon Phi™ coprocessor 5110P, 60 cores, 1.053 GHz, Intel® Composer XE 2016, Source: Intel

Intel, the Intel logo, Look Inside, Xeon, Xeon Phi, are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

http://www.intel.com/benchmarks
http://www.intel.com/

© 2018 Intel Corporation

KMP_HW_SUBSET Environment Variable

34

 Previously called KMP_PLACE_THREADS (now deprecated).

 Restricts the resources available to the OpenMP runtime without applying
any particular thread affinity.

<placement> := <level> [<level_list>]
<level_list> := <separator><level>[<level_list>]
<separator> := ‘,’|’x’
<level> := <positive_integer><level_code>
<level_code> :=
<thread>|<core>|<cache>|<numa>|<socket>
<thread> := ‘t’|’T’|’thread’
<core> := ‘c’|’C’|’core’
<cache> := ‘l1’|’L1’|’cache1’|’l2’|…
<numa> := ‘n’|’N’|’numa’
<socket> := ‘s’|’S’|’socket’

Require hwloc topology
KMP_TOPOLOGY_METHOD=hwloc

© 2018 Intel Corporation

KMP_AFFINITY Environment Variable

35

 Controls how OpenMP threads are mapped and pinned to hardware threads.

‒ compact:
All virtual cores are assigned threads before moving to the next physical core.

‒ scatter:
Physical cores are assigned threads round-robin before virtual cores.

‒ explicit,proclist=[…]:
Threads are mapped to cores in the specified proclist.

‒ granularity=[fine | thread | core]:
Threads are pinned to virtual cores (fine | thread) or physical cores (core).

‒ verbose
Print the thread-to-core mapping at the start of the run.

 Manual mapping/pinning is very complex; in 99% of cases I’d recommend:
KMP_AFFINITY=compact,granularity=fine + appropriate KMP_HW_SUBSET.

https://software.intel.com/en-us/node/522691

