
00001101
00001010
00001101
00001010
01001100
01101111
01110010
01100101
01101101
00100000
01101000
01110001
01110011
01110101

 The Message Passage Interface:
 A Standard for Distributed Memory Systems

MPI-3 Shared Memory Programming

Estimating Memory Consumption

Intel® MPI Library Conditional Reproducibility
Issue

21
2015

CONTENTS

The Parallel Universe is a free quarterly magazine. Click here to sign up for future
issue alerts and to share the magazine with friends. Share with a friendSign up for future issues

FE
AT

U
RE

Intel® MPI Library Conditional Reproducibility 17
The Intel® MPI Library uses algorithms that guarantee deterministic reductions for
different collective MPI operations. The authors demonstrate the impact of such
algorithms using a simple example moving from a repeatable to a conditionally
reproducible outcome, without the need to modify the application’s source code.

An Introduction to MPI-3 Shared Memory Programming:
An All-MPI Alternative to MPI/OpenMP* Programming
Worth Considering 4
The MPI-3 standard introduces another approach to hybrid parallel programming:
the new MPI Shared Memory (SHM) model, which enables incremental changes to
existing MPI codes in order to accelerate communication between processes on
shared-memory nodes.

Intel® MPI Memory Consumption 27
Memory consumption analysis is a complex task. This article discusses the estimated
memory consumption for the Intel® MPI Library and helps users fine-tune library
settings for a reduced memory footprint.

Letter from the Editor
Happy Birthday, MPI 3
By James Reinders

llllllllllllllllllllllllllllllllllll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

LETTER FROM THE EDITOR
James Reinders, Director of Parallel Programming Evangelism at Intel Corporation, coeditor
of an exciting new book High Performance Programming Pearls. His other book credits include
Multithreading for Visual Effects (2014), Intel® Xeon Phi™ Coprocessor High Performance Programming
(2013), Structured Parallel Programming (2012), Intel® Threading Building Blocks: Outfitting C++ for
Multicore Processor Parallelism (2007), and VTune™ Performance Analyzer Essentials (2005).

Happy Birthday, MPI
We recently passed the birthday of the Message Passage Interface (MPI) standard, which like many
achievements in the world of computing, was borne out of the gathering of great minds. On April 29,
1992, dozens of programmers and computer industry specialists from 40 organizations in government,
academia, and the private sector gathered in Williamsburg, Virginia, at the Workshop on Standards for
Message Passing in a Distributed Memory Environment. There they discussed and developed the genesis
of what is today the widely used MPI standard for writing message-passing programs.

MPI offers parallel programmers many advantages, including practicality, portability, efficiency, and
ease of use. The latest MPI standard, MPI-3, increases flexibility as discussed in this issue’s feature article,
“An Introduction to MPI-3 Shared Memory Programming.” The authors share how to transform common
MPI send/receive patterns using Shared Memory Programming, with resulting performance advantages.

But improvements often come with trade-offs. The other articles in this issue offer ways to keep the
MPI standard working in tandem with all other aspects of parallel programming. For example,
floating-point operations in numerical codes may introduce differences that can increase with each
iteration. “Intel® MPI Library Conditional Reproducibility” uses a simple example to demonstrate Intel
MPI Library’s collective operations that can be used for reproducible results when certain required and
reasonable conditions are met.

High performance computing applications tend to use most of the available memory on a node, and
estimating the memory consumption of MPI libraries can be difficult. “Intel MPI Memory Consumption”
takes a closer look at estimating the memory consumption of the Intel MPI Library and how users can
fine-tune their settings to reduce their memory footprint.

The MPI standard has long offered a great foundation to build upon. In addition to the high value of coding
to a standard you can depend on for your application, a benefit of having a widely accepted standard
is the innovation that can occur through additions to the standard and tools support. In this edition of
Parallel Universe, we are happy to share three examples of this value that the longstanding MPI standard
has while continuing to evolve.

James Reinders
May 2015

3The Parallel Universe

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
http://lotsofcores.com
http://parallelbook.com/
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://intel.ly/R0bP4r
http://intel.ly/SCxiBK
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

4The Parallel Universe

By Mikhail Brinskiy, Software Development Engineer, and Mark Lubin, Technical Consulting
Engineer, Intel Corporation

An Introduction to MPI-3 Shared
Memory Programming
An All-MPI Alternative to MPI/OpenMP* Programming Worth Considering

Abstract

The Message Passing Interface (MPI) standard is a widely used programming interface for
distributed memory systems. Hybrid parallel programming on many-core systems most often
combines MPI with OpenMP*. This MPI/OpenMP approach uses an MPI model for communicating
between nodes while utilizing groups of threads running on each computing node in order to
take advantage of multicore/many-core architectures such as Intel® Xeon® processors and Intel®
Xeon Phi™ coprocessors.

The MPI-3 standard introduces another approach to hybrid programming that uses the new MPI
Shared Memory (SHM) model.1 The MPI SHM model, supported by Intel® MPI Library Version
5.0.22 enables changes to existing MPI codes incrementally in order to accelerate communication
between processes on the shared-memory nodes.3

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/R0bP4r
http://intel.ly/PsntXv
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

5The Parallel Universe

1-D Ring: From Standard MPI Point-to-Point to MPI SHM
We approach the semantics of the MPI SHM API by modifying a well-known 1-D ring
example, where each MPI rank can exchange MPI-1 nonblocking messages with its left
and right neighbors.4

We intend to run our code on multiple multicore nodes with all MPI ranks sharing memory
on each node. The function MPI_Comm_split_type enables programmers to determine
the maximum groups of MPI ranks that allow such memory sharing. This function has a
powerful capability to create “islands” of processes on each node that belong to the output
communicator shmcomm :

MPI_Irecv (&buf[0],…, prev,…, MPI_COMM_WORLD, &reqs[0]);

MPI_Irecv (&buf[1],…, next,…, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend (&rank,…, prev,…, MPI_COMM_WORLD, &reqs[2]);

MPI_Isend (&rank,…, next,…, MPI_COMM_WORLD, &reqs[3]);

 {do some work}

MPI_Waitall (4, reqs, stats);

1 Figure 1. Nearest neighbor exchange in a 1-D ring topology and corresponding MPI-1 code

MPI_Comm shmcomm;

MPI_Comm_split_type (MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED,0, MPI_INFO_NULL,
&shmcomm);

In this article, we present a tutorial on how to start using MPI SHM on multinode systems using
Intel Xeon with Intel Xeon Phi. The article uses a 1-D ring application as an example and includes
code snippets to describe how to transform common MPI send/receive patterns to utilize the MPI
SHM interface. The MPI functions that are necessary for internode and intranode communications
will be described. A modified MPPTEST benchmark has been used to illustrate performance of
the MPI SHM model with different synchronization mechanisms on Intel Xeon and Intel Xeon Phi
based clusters. With the help of Intel MPI Library Version 5.0.2, which implements the MPI-3
standard, we show that the shared memory approach produces significant performance
advantages compared to the MPI send/receive model.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

6The Parallel Universe

To execute MPI send/receive point-to-point operations between the nodes (as in the
original example) and execute MPI SHM functions within each node, we need a mechanism
to distinguish between ranks that fit into the same node versus ranks belonging to different
nodes. To accomplish this, we separate MPI groups from the global communicator and
shared memory communicator shmcomm:

Then we can map global rank numbers onto the shmcomm ranks numbers and store this
mapping into the partners_map array (Figure 2).

MPI_Comm_group (MPI_COMM_WORLD, &world_group);

MPI_Comm_group (shmcomm, &shared_group);

MPI_Group_translate_ranks (world_group, n_partners, partners, shared_group,
partners_map);

2 Mapping of global ranks to shmcomm ranks. If some of the neighboring ranks are residing on a different node,
their mapping in the resulting array partners_map will be a predefined constant, MPI_UNDEFINED.

The companion collective function then allocates MPI-3 remote memory access (RMA) type
memory windows on each node. They are called windows because MPI restricts what part of a
process’s memory will be made available to other processes:

MPI_Win_allocate_shared (alloc_length, 1,info, shmcomm, &mem, &win);

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

7The Parallel Universe

for (j=0; j<n_partners; j++)

{

 if (partners_map[j] != MPI_UNDEFINED)

 MPI_Win_shared_query (win, partners_map[j],…, &partners_ptrs[j]);

}

Unlike the point-to-point message-passing model, the MPI SHM interface assumes explicit use of
synchronizations to ensure memory consistency and assumes that the changes in memory are
visible to the other processes. In some cases, it enables higher performance at the cost of more
complex code that each developer needs to understand and maintain. Therefore, in this article,
we focus on the semantics of these new synchronizations and their effect on performance.

3 MPI_Win_shared_query can return different process-local addresses for the same physical memory
on different processes

The MPI SHM model, supported by Intel® MPI Library Version
5.0.2, enables changes to existing MPI codes incrementally
in order to accelerate communication between processes on
the shared-memory nodes.

The so-called passive target MPI RMA synchronization, defined by the pair of MPI_Win_lock_
all and MPI_Win_unlock_all functions for all processes sharing an RMA window, was
chosen as one of the most performance-efficient.5 The term “lock” here does not have the
same connotation familiar to shared memory programmers such as with mutexes. The pair of
MPI_Win_lock_all and MPI_Win_unlock_all simply denotes the time interval, called
an RMA access epoch, when remote memory operations are allowed to occur. In this case,
the MPI_Win_sync function has to be used to ensure completion of memory updates and
MPI_Barrier to synchronize all processes on the node in time (Figure 4).

The MPI_Win_shared_query API can be used to find out the process-local addresses for
shared memory segments using a conditional test, partners_map[j]!= MPI_UNDEFINED,
which is true when the current rank and its communication partners reside on the same node
and therefore share common memory. The returned memory pointers array, partners_ptrs,
can be used for simple loads and stores, replacing costly MPI send/receive functions within the
shared memory domain (Figure 3).

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

8The Parallel Universe

Calling MPI_Win_lock for each particular neighbor is a valid approach as well, and
sometimes it can provide performance advantages, but it requires more lines of code.
Alternatively, one could employ the active target MPI RMA communication mode that relies on
a pair of MPI_Win_fence operations surrounding memory updates. The MPI_Win_fence
method is less verbose compared to lock/unlock epochs since it already includes barrier
synchronizations, but it produced slower results in our experiments.

With correct synchronizations in place, all processes can retrieve their neighbors’ information
either via shared memory or using standard point-to-point communications if neighbors are
on the different nodes (Figure 5).

for (j=0; j<n_partners; j++){

 if (partners_map[j] != MPI_UNDEFINED)

 {

 i0 = partners_ptrs[j][0]; //load ops from MPI SHM!

 i1 = partners_ptrs[j][1];

 i2 = partners_ptrs[j]+2;

 } else { // inter-node non-blocking MPI

 MPI_Irecv (&rbuf[j],…, partners[j], 1 , MPI_COMM_WORLD, rq++);

 MPI_Isend (&rank,…, partners[j], 1 , MPI_COMM_WORLD, rq++);

 }

}

5 Halo exchanges using MPI SHM on the node and standard nonblocking MPI send/receive for internode communications

//Start passive RMA epoch

MPI_Win_lock_all (MPI_MODE_NOCHECK, win);

// write into mem array hello_world info

mem[0] = rank;

mem[1] = numtasks;

memcpy(mem+2, name, namelen);

MPI_Win_sync (win); // memory fence - sync node exchanges

MPI_Barrier (shmcomm); //time barrier

4 Passive RMA synchronizations are needed for MPI SHM updates. The performance assertion MPI_MODE_NOCHECK
hints that the epoch can begin immediately at the target. Note that on some platforms one more MPI_Win_sync would
be needed after the MPI_Barrier to ensure memory consistency at the reader side.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

9The Parallel Universe

After completion of MPI SHM communications, we can close the access epoch using
MPI_Win_unlock_all. The internode communications are synced with MPI_Waitall
as usual.

The resulting code is available for download.

Modifying MPPTEST Halo Exchange to Include MPI SHM
To evaluate the performance of the MPI SHM available in Intel MPI Library Version 5.0.2 on
clusters based on Intel Xeon processors and Intel Xeon Phi coprocessors, we modified the halo
exchange algorithm from the MPPTEST benchmark6 using as a prototype the 1-D ring example.
Although the MPPTEST halo test does not have the computational kernels present in many real
applications, it provides an unhindered view of how different-order halo exchanges, message
sizes, and MPI synchronizations may affect performance.

It is known that the MPI SHM model provides performance benefits by avoiding regular
send/receive memory copy operations, MPI stack latencies, and tag matching.7 The replacement
of these traditional MPI mechanisms with fast intranode communications, such as memory
copy operations, exposes in turn the effect of the remaining major contribution to overall
intranode performance, the different available MPI SHM synchronizations briefly described in
the last section.

We implemented three new halo patterns for the MPPTEST suite—mpi3shm_lockall,
mpi3shm_lock, and mpi3shm_fence—that can be used as new MPPTEST configuration
parameters. All of them use the same MPI SHM communication scheme, but they employ
different shared memory synchronization primitives:

• mpi3shm_lockall. This relies on MPI_Win_lock_all and MPI_Win_unlock_all to open
and close an access epoch and relies on MPI_Barrier and MPI_Win_sync for process
synchronization (memory and time).

• mpi3shm_lock. This is the same as mp3shm_lockall but uses separate MPI_Win_lock
and MPI_Win_unlock calls for each neighbor in the halo exchange.

• mpi3shm_fence. A pair of successive MPI_Win_Fence calls ensures that any local stores to
the shared memory executed between them are consistent, and thus there is no need for any
other synchronization primitives.

To investigate different processes topologies in halo exchanges, we introduced a new
configuration parameter into the MPPTEST halo benchmarks: -dimension. This parameter
instructs MPPTEST to use one of two available process decompositions, 1-D or 2-D, with the
latter used by default. If the specified number of partners is more than enough for nearest

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://tinyurl.com/MPI-SHM-example

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

10The Parallel Universe

neighbors’ exchanges, the decomposition with deeper density is used. An example based on nine
processes and four partners is shown in Figure 6. In the case of 1-D decomposition, the rank 4
partners are ranks 2, 3, 5 and 6, while in the 2-D case its neighbors are ranks 1, 3, 5 and 7.

(b)(a)

0 1 42 3 5 6 7 8

0 1 2

43 5

6 7 8

6 Process decomposition: (a) 1-D with four neighbors; (b) 2-D with four neighbors

mpirun -n 64 -machinefile hostfile ./mpptest -halo -waitall -logscale -n_avg
1000 -npartner 8 -dimension 2

where the argument after –halo specifies the particular communication pattern for ghost cell
exchanges (i.e., –waitall is used in the case of point-to-point messages; –logscale indicates

In our experiments, 1-D process decompositions produced up to a 20 percent advantage
using MPI SHM versus point-to-point communications, depending on message size.

Finally, we modified the reported timing by adjusting it to the timing for a process with the
biggest execution time. The current MPPTEST approach reports overall timing as a timing of
a Rank 0, which might not be representative, especially in nonperiodic cases where Rank 0
typically has fewer neighbors than other processes.

Evaluation Environment and Results
In our performance studies, we used the Intel® Endeavor cluster, in which each node is equipped
with dual Intel® Xeon® E5-2697 processors, one Intel® Xeon Phi™ 7120P-C0 coprocessor, and
one Mellanox Connectx-3 InfiniBand* adapter connected to the same socket. The cluster was
running Red Hat 6.5 Linux* OS, Intel® MPSS 3.3.30726, and OFED* 1.5.4.1. We used Intel MPI
Library Version 5.0.2, Intel® C++ Compiler Version 15.0.1, and the MPPTEST benchmark with the
modifications described in the previous section.

The following command line was used to obtain the performance data:

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

11The Parallel Universe

that we want to run the powers of two message sizes tests, starting from 4 bytes up to 128KB;
–n_avg specifies the number of iterations to be used; and –npartner determines the number
of neighbors per process). As described in the previous section, we introduced three new
parameters corresponding to our new benchmarks (–mpi3shm_lock, –mpi3shm_lockall
and –mpi3shm_fence) that can be used in place of –waitall. The –dimension parameter is
optional (the default dimension is 2); this was also described in the last section.

Figure 7 shows the results obtained on one coprocessor with 32 processes and eight partners.
In this case, the MPI SHM feature noticeably outperforms the regular point-to-point pattern
regardless of synchronization type (please note the logarithmic scale of the y-axis). However,
we should note that with a relatively small amount of updates (i.e., iterations in MPPTEST) the
synchronization overhead based on locks might become crucial. This is because we do locking
once per test, thus its contribution to the overall time is inverse to the number of iterations.
Another observation is that using separate locks provides better performance than locking all
the processes. This may become especially significant when the number of node neighbors to
exchange the data with is significantly less than the number of processes bound to the interested
window (thus, calling MPI_Win_lock_all/MPI_Win_unlock_all may lead to unnecessary
communication with all the processes rather than to the neighbors only). Also, we see that using
MPI_Win_fence gives the worst result of the sync primitives selected for this comparison.

7 Different halo patterns on one coprocessor with 32 processes and eight partners

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

12The Parallel Universe

Then we analyzed how the number of neighbors in halo exchanges impacts overall performance.
Figure 8 shows the speedup of MPI SHM with lock synchronization in comparison to the
common MPI_Isend/MPI_Irecv approach. We see that the performance advantage of our
approach grows with the number of processes partners. This is expected because the relative
cost of MPI SHM synchronizations stays the same regardless of the number of partners, while the
performance advantage of simple memory copies compared to point-to-point operations grows
with every other exchange. With 12 partners per process, we get up to 2.6x improvement with
small message sizes and as much as 4.9x with relatively large message sizes.

We repeated the measurements on two Intel Xeon Phi coprocessors connected to different
nodes. We used 64 processes, 32 per coprocessor. The results depicted in Figure 9 show lesser
speedup than we observed on a single node. This is because some exchanges are done via
the network, and the cost of intranode communication is just a part of the overall cost. We see
that a personal lock-based shared memory approach is the best for almost all message sizes

8 Speedup of MPI SHM approach compared to the point-to-point based (measured on one coprocessor with 32 processes)

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

13The Parallel Universe

The speedup of the lock-based approach compared to the reference point-to-point one
with different numbers of neighbors is shown in Figure 10. We see that with four partners,
our approach is beneficial only above medium-sized messages. However, as it was with the
one-node case, the performance benefit becomes more significant with a growing number of
neighbors. With eight and 12 partners’ processes, we get up to 1.2x improvement on small
message sizes and 1.8x on big ones.

The preliminary studies with four and eight nodes using both Intel Xeon processors and Intel
Xeon Phi coprocessors have shown similar results. Scaling with higher numbers of nodes and
comparing hybrid MPI and OpenMP codes are left for future studies.

9 Different halo patterns on two Intel® Xeon Phi™ coprocessors with 64 processes (32 per card) and eight partners

except very small messages, where the standard point-to-point scheme performs better. The
experiments described so far have been done with default 2-D neighbors’ topology. Using 1-D
process topology, the personal locks-based MPI SHM approach also outperforms all other
approaches at small message sizes. Also, starting from 4KiB messages, all shared memory-bound
patterns outperform the point-to-point based ones.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

14The Parallel Universe

Conclusion
In this article, we described the shared memory capabilities introduced in the MPI-3 standard.
Because using this feature requires application modification, we demonstrated how to cope with
it based on a simple 1-D ring “Hello World” example and extended it for several node runs. Using
a modified MPPTEST benchmark, we managed to get up to 4.7x improvement over a standard
point-to-point approach on one Intel Xeon Phi coprocessor. Moreover, we showed that the
proposed approach may benefit halo exchanges even for multinode cases, and we obtained up
to 1.8x improvement with two Intel Xeon Phi coprocessors.

Finally, our analysis indicates that it might be beneficial to use MPI SHM for ghost cell exchange-
based applications, especially when there are larger numbers of halo exchange neighbors.

10 Speedup of MPI SHM approach compared to the point-to-point based ones
(measured on two coprocessors with 64 processes)

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

15The Parallel Universe

Acknowledgments
Thanks to Charles Archer for contributing a solution on how to apply MPI Groups to the
multinode MPI SHM code, to Jim Dinan for many useful discussions, and to Robert Reed
and Steve Healey for reviewing a draft of this article.

Modernizing your code on Intel® architecture
can help you achieve breakthrough performance
for highly parallel applications. Take advantage
of a special offer on the latest Intel® Xeon Phi™
coprocessors, plus a free 12-month trial of Intel®
Parallel Studio XE Cluster Edition.

Get started >

Unlock your code’s potential

Copyright © 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Intel is committed to protecting your privacy. For more information about Intel’s privacy practices, please visit www.intel.com/privacy or write to Intel Corporation, ATTN Privacy, Mailstop RNB4-145, 2200 Mission College Blvd., Santa
Clara, CA 95054 USA.

Intel®
Parallel Studio XE

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
https://software.intel.com/en-us/articles/intel-code-modernization-enablement-program

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

16The Parallel Universe

References
1. T. Hoefler et al., “Leveraging MPI’s One-Sided Communication Interface for Shared-

Memory Programming: Recent Advances in the Message Passing Interface,” Proceedings of
the 19th European MPI Users’ Group Meeting (EuroMPI 2012), Vienna, Austria, Vol. 7490,
Sept. 23–26, 2012.

2. T. Hoefler et al., “MPI+MPI: A New Hybrid Approach to Parallel Programming with MPI
Plus Shared Memory,” Computing (2013), Vol. 95, No. 12, p. 1,121.

3. M. Brinskiy et al., “Mastering Performance Challenges with the new MPI-3 Standard,”
Parallel Universe Magazine Issue 18

4. B. Barney, “Message Passing Interface Tutorial: Non-Blocking Message
Passing Routines.”

5. W. D. Gropp et al., “Using Advanced MPI. Modern features of the Message-Passing Interface,”
MIT Press, November 2014.

6. W. D. Gropp and Rajeev Thakur, “Revealing the Performance of MPI RMA Implementations,
PVM/MPI’07,” Proceedings of the 14th European Conference on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 272‒280.

7. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard Version 3.0,
University of Tennessee (Knoxville), Sept. 21, 2012.

For more information regarding performance and optimization choices in Intel® Software Products,
visit http://software.intel.com/en-us/articles/optimization-notice.

Try the Intel® MPI Library
Download now for a 30-day evaluation >

Also available as part of Intel® Parallel Studio XE Cluster Edition >

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://goparallel.sourceforge.net/wp-content/uploads/2014/07/PUM18_Mastering_Performance_with_MPI3.pdf
https://computing.llnl.gov/tutorials/mpi/#Non-Blocking_Message_Passing_Routines
https://computing.llnl.gov/tutorials/mpi/#Non-Blocking_Message_Passing_Routines
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://software.intel.com/en-us/articles/optimization-notice
https://software.intel.com/en-us/intel-mpi-library-evaluation-options/
http://makebettercode.com/parallelstudioxe2015/en

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

17The Parallel Universe

By Michael Steyer, Technical Consulting Engineer, Software and Services Group,
Developer Products Division, Intel Corporation

Introduction
High performance computing (HPC) users running numerical codes may experience cases where
floating-point operations create slightly different results. Usually this would not be considered a
problem, but due to the nature of such applications, differences can quickly propagate forward
through the iterations and combine into larger differences.

In order to address these variations, the Intel® Compiler has several switches that manipulate
floating-point precision, while the Intel® Math Kernel Library (Intel® MKL) Conditional
Numerical Reproducibility (CNR) feature1 provides functions for obtaining reproducible
floating-point results. Also, deterministic reduction algorithms are available for Intel® OpenMP
and Intel® Threading Building Blocks (Intel® TBB) runtimes. Some of the collective operations

Intel® MPI Library
Conditional Reproducibility

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/ShS7Qw
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

18The Parallel Universe

of the Intel® MPI Library, however, might also lead to slight differences in their results. This
article will address methods that can be used to gather conditionally reproducible results from
collective operations of the Intel MPI Library.

Motivation
Let’s have a look at a simple example with 64 MPI ranks calling an MPI_Reduce operation
where double precision values are accumulated.

Figure 1 shows the Fortran code that calls an MPI_Reduce operation. Each MPI rank writes a
very small number (2^-60) to its local_value variable—except where Rank #16 (Index 15)
writes 1.0 and Rank #17 (Index 16) writes -1.0. All local_value fields from the different ranks
will then be accumulated to a global sum using MPI_Reduce. After the reduction operation,
Rank 0 will write out global_sum with up to 20 digits after the decimal point.

program rep

 use mpi

 implicit none

 integer :: n_ranks,rank,errc

 real*8 :: global_sum,local_value

 call MPI_Init(errc)

 call MPI_Comm_size(MPI_COMM_WORLD, n_ranks, errc)

 call MPI_Comm_rank(MPI_COMM_WORLD, rank, errc)

 local_value = 2.0 ** -60

 if(rank.eq.15) local_value= +1.0

 if(rank.eq.16) local_value= -1.0

 call MPI_Reduce(local_value,global_sum,1,MPI_DOUBLE_PRECISION, &

 MPI_SUM,0,MPI_COMM_WORLD, errc)

 if(rank.eq.0) write(*,’(f22.20)’) global_sum

 call MPI_Finalize(errc)

end program rep

1 Fortran 90 accumulation example

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/SCxiBK

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

19The Parallel Universe

Assume we have four nodes available, in which each system has 32 processor cores. Since
we can run our application with only two systems, let’s consider two different distributions
schemas of MPI ranks:

A) 64 ranks across all four nodes => 16 ranks per node
B) 64 ranks on only two nodes => 32 ranks per node

Due to its highly optimized nature, Intel MPI Library will try to leverage distributed and shared
memory resources as efficiently as possible. Depending on the size of the run (#MPI ranks)
and the message sizes that have to be exchanged, the library can choose among different
algorithms available for each collective operation. Choosing the topologically aware algorithm
for the reduce operation may result in a different order of operation for cases A and B.

To reduce load on the cluster interconnect, the algorithm would accumulate local (per node)
operations first and then send these results only once through the cluster network in order to
accumulate the final result.

A) Reduce(Reduce(#1 – #16) + Reduce(#17 – #32) + Reduce(#33 – #48) + Reduce(#49 – #64))
B) Reduce(Reduce(#1 – #32) + Reduce(#33 – #64))

The associative law “(a + b) + c = a + (b + c)” assumes exact computations and effectively
unlimited precision; therefore, it does not apply when using limited precision representations.
Since floating-point numbers are approximated by a limited number of bits representing the
value, operations on these values will frequently introduce rounding errors. For a sequence
of floating-point operations, the total rounding error can depend on the order in which these
operations are executed.2

The Intel MPI Library offers algorithms to gather conditionally
reproducible results, even when the MPI rank distribution
environment differs from run to run.

As a result of the different order of operations in cases A and B, the final Reduce could generate
slightly different values.

While the results could be slightly different, they are still valid according to the IEEE 754
floating-point standard.3 Let’s break down the distribution of ranks for cases A and B from a
pure floating-point perspective. This will provide a clearer picture of the actual problem:

A) ((… + 2^-60 + (+1)) + ((-1) + 2^-60 + …) + …
B) ((… + 2^-60 + (+1) + (-1) + 2^-60 + …) + …

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

20The Parallel Universe

Preparation
Before addressing Intel MPI Library reproducibility, we should make sure that all other parts of
the application produce numerically stable results.

For example, the OpenMP standard, as a frequently used hybrid threading extension to MPI, does
not specify the order in which partial sums should be combined. Therefore, the outcome of a
reduction operation in OpenMP can vary from run to run depending on the runtime parameters.
The Intel OpenMP runtime provides the environment variable KMP_DETERMINISTIC_REDUCTION,
which can be used to control the runtime behavior.4 Also, the Intel® TBB Library does support
deterministic reductions using the “parallel_deterministic_reduce” function.5

Read more about using both the Intel Compiler and Intel MKL in the article “Using the Intel Math
Kernel Library and Intel Compilers to Obtain Run-to-Run Numerical Reproducible Results.”6

$ cat ${machinefile_A}

ehk248:16

ehs146:16

ehs231:16

ehs145:16

$ cat ${machinefile_B}

ehk248:32

ehs146:32

ehs231:0

ehs145:0

$ mpiifort -fp-model strict –o ./rep.x ./rep.f90

$ export I_MPI_ADJUST_REDUCE=3

$ mpirun -n 64 -machinefile ${machinefile_A} ./rep.x

0.00000000000000000000

$ mpirun -n 64 -machinefile ${machinefile_B} ./rep.x

0.00000000000000004163

2 Getting diverse floating-point results

In case A, +1 and -1 have to be accumulated with the very small 2^-60 values. In case B, +1 and
-1 will be eliminated since they’re calculated in the same step.

Depending on the Intel MPI Library runtime configuration (shown in Table 1), this can result in the
output in Figure 2.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

21The Parallel Universe

Reproducibility
To explicitly set the expectations, we need to differentiate the terms reproducible and repeatable.
Furthermore, when we use the term reproducible, we always mean conditional reproducibility.

Repeatable Provides consistent results if the application is launched under exactly the same conditions—
repeating the run on the same machine and configuration.

Reproducible
(conditional)

Provides consistent results even if the distribution of ranks differs, while the number of ranks
(and #threads for hybrid applications) involved has to be stable. Also, the runtime including
the microarchitecture has to be consistent.7

All Intel MPI Library operations guarantee repeatable results.

The reproducibility of Intel MPI Library operations is guaranteed under the following conditions:
1. Do not use topologically aware algorithms inside the collective reduction operations.

2. Avoid the recursive doubling algorithm for the MPI_Allreduce operation.

3. Avoid MPI_Reduce_scatter_block—as well as the MPI-3 nonblocking-collective operations.

The first condition for reproducibility can be met by explicitly setting the corresponding
collective reduction operation algorithm using the I_MPI_ADJUST_ environment variables.
A detailed documentation can be found in the Intel MPI Library Reference Manual8 in the
“Collective Operation Control” chapter. The information provided in the document clearly
states which algorithms are topologically aware and should be avoided.

Table 1 shows the five collective operations, which use reductions, and the corresponding
Intel MPI Library environment variables. Set these accordingly in order to leverage the
nontopologically aware algorithms (fulfilling the first condition above):

Table 1

Collective MPI Operation Using
Reductions

Intel MPI Collective Operation
Control Environment

Nontopologically Aware Algorithms

MPI_Allreduce I_MPI_ADJUST_ALLREDUCE (1)a, 2 , 3 , 5 , 7 , 8, 9b

MPI_Exscan I_MPI_ADJUST_EXSCAN 1

MPI_Reduce_scatter I_MPI_ADJUST_REDUCE_SCATTER 1 , 2 , 3 , 4

MPI_Reduce I_MPI_ADJUST_REDUCE 1 , 2 , 5, 7a

MPI_Scan I_MPI_ADJUST_SCAN 1

a Keep in mind that while the first algorithm of MPI_Allreduce is not topologically aware, it does not guarantee conditionally
reproducible results—see the second condition for details.

b The Knomial algorithm (IMPI ≥ 5.0.2) provides reproducible results, only if the I_MPI_ADJUST_<COLLECTIVE-OP-NAME>_KN_RADIX
environment is kept stable or unmodified.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

22The Parallel Universe

To see which algorithms are currently selected, set the environment variable I_MPI_DEBUG=6
and review the output. The default algorithms for collective operations can differ, depending
on the size of the run (#ranks) as well as the transfer message sizes. Figure 3 shows the
debug output for the collective operations used in the simple MPI reduce application
introduced earlier.

…

[0] MPI startup(): Reduce_scatter: 4: 0-2147483647 & 257-512

[0] MPI startup(): Reduce_scatter: 4: 0-5 & 513-2147483647

[0] MPI startup(): Reduce_scatter: 5: 5-307 & 513-2147483647

[0] MPI startup(): Reduce_scatter: 1: 307-1963 & 513-2147483647

[0] MPI startup(): Reduce_scatter: 3: 1963-2380781 & 513-2147483647

[0] MPI startup(): Reduce_scatter: 4: 0-2147483647 & 513-2147483647

[0] MPI startup(): Reduce: 1: 0-2147483647 & 0-2147483647

[0] MPI startup(): Scan: 0: 0-2147483647 & 0-2147483647

[0] MPI startup(): Scatter: 1: 1-494 & 0-32

[0] MPI startup(): Scatter: 2: 495-546 & 0-32

[0] MPI startup(): Scatter: 1: 547-1117 & 0-32

[0] MPI startup(): Scatter: 3: 0-2147483647 & 0-32

[0] MPI startup(): Scatter: 1: 1-155 & 33-2147483647

…

3 Example of selected collective operations

One can see that for the MPI_Reduce collective operation, the first algorithm is being selected
across all message sizes (0‒2147483647) and ranges of MPI ranks (0‒2147483647) by default.
This is why it was necessary to select a different topology-aware algorithm (3) for the example
above in order to get differing results for the MPI reduction (I_MPI_ADJUST_REDUCE=3).

The second condition can be met by avoiding the recursive doubling algorithm for the
MPI_Allreduce operation (I_MPI_ADJUST_ALLREDUCE=1). While the order of MPI ranks
is guaranteed to be stable, the order of operands inside each MPI rank can differ due to the
applied optimizations.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

23The Parallel Universe

If, however, the operation is covered by the commutative law “a + b = b + a,” even the recursive
doubling algorithm can be used to achieve reproducible results.

The third condition is necessary since the MPI_Reduce_scatter_block—as well as the
new MPI-39 nonblocking-collective operations—is implemented by using topology-aware
algorithms. These collective operations cannot be adjusted by the Intel MPI Library user (as of
Version 5.0.2), as they are only determined at runtime based on certain operation parameters.

In Figure 4, we show how to achieve reproducible results for the simple reduction example
used in the Motivation section of this article. Therefore, we will apply a nontopology-aware
collective operation algorithm in the Intel MPI Library environment.

As we have seen in Figure 3, the first algorithm was already the default case. Another option
here was not specifying any I_MPI_ADJUST_REDUCE environment at all and leaving the
default settings intact.

$ cat ${machinefile_A}

ehk248:16

ehs146:16

ehs231:16

ehs145:16

$ cat ${machinefile_B}

ehk248:32

ehs146:32

ehs231:0

ehs145:0

$ mpiifort -fp-model strict –o ./rep.x ./rep.f90

$ export I_MPI_ADJUST_REDUCE=1

$ mpirun -n 64 -machinefile ${machinefile_A} ./rep.x

0.00000000000000004163

$ mpirun -n 64 -machinefile ${machinefile_B} ./rep.x

0.00000000000000004163

4 Getting reproducible floating-point results

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

24The Parallel Universe

Keep in mind that while the distribution of MPI ranks along the nodes changed, all other
parameters, such as the number of ranks and the architecture used, have been kept stable.
This is necessary, as according to the definition of conditional reproducibility, the runtime
environment has to be the same.

Intel® Xeon Phi™ Coprocessor
When discussing conditional reproducibility for the Intel MPI Library, there is no difference
between treatment for an Intel® Xeon® processor and an Intel® Xeon Phi™ coprocessor.
The same considerations we discussed apply to both. This allows the user to transparently
integrate the Intel Xeon Phi coprocessor into HPC solutions.

Remember, however, that different microarchitectures/instruction sets also come with
different hardware-rounding support, which can lead to different results between the two
microarchitectures. Also, as defined in the Reproducibility section of this article, the conditions
have to be the same and, therefore, the number of threads and MPI ranks have to be stable.

Summary
In this article, we have shown several methods to enable the Intel MPI Library to use
algorithms that guarantee deterministic reductions for the different collective MPI operations.

We also demonstrated the impact of such algorithms, using a simple example of an MPI
reduce operation moving from a repeatable to a conditionally reproducible outcome. This has
been achieved without any need to modify the application’s source code.

The Intel MPI Library offers algorithms to gather conditionally reproducible results, even when
the MPI rank distribution environment differs from run to run. It is important to understand
that all other parameters, like the number of ranks or the microarchitecture, have to be
equal from run to run. This is necessary in order to fulfill the requirements for conditionally
reproducible results.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

25The Parallel Universe

End Notes
1. T. Rosenquist, “Introduction to Conditional Numerical Reproducibility (CNR),”

Intel Corporation, 2012.

2. D. Goldberg, “What Every Computer Scientist Should Know About Floating-Point
Arithmetic,” Association for Computing Machinery, Inc., 1991.

3. IEEE Standard for Binary Floating-Point Arithmetic, The Institute of Electrical and
Electronics Engineers, Inc., 1985.

4. M.J. Corden and D. Kreitzer, “Consistency of Floating-Point Results using the Intel®
Compiler,” Intel Corporation, 2012.

BLOG HIGHLIGHTS

Read more

Tuning Tips for Compute Offload to Intel® Processor Graphics
BY ANOOP MADHUSOODHANAN PRABHA »

Below are some tuning tips, which will help the programmer tune his kernel to get better performance
from processor graphics:

• Offloaded loop nests must have enough iterations for all hardware threads available on Processor
Graphics. Using perfectly nested parallel _Cilk_for loops allows parallelization in the dimensions of the
parallel loop nest.

• Pragmas and code restructuring can be employed to get offloaded code vectorized.

• Using __restrict and __assume_aligned keywords may help vectorization too.

• Using the pin clause of the offload pragma will eliminate data copying to/from the GPU.

• Scalar memory accesses are much less efficient than vector accesses. Using Intel® Cilk™ Plus array
notation for memory accesses may help vectorize computation. A single memory access can handle
up to 128 bytes. Gather/scatter operations of 4-byte elements are quite efficient, but with 2-byte
elements are slower. Gather/scatter operations may result from array sections with non-unit strides.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
https://software.intel.com/en-us/articles/tuning-tips-for-compute-offload-to-intelr-processor-graphics
https://software.intel.com/en-us/user/509771
https://software.intel.com/en-us/user/509771

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

26The Parallel Universe

Try Intel® Threading Building Blocks (Intel® TBB) >
Available in these software tool suites:
Intel® Parallel Studio XE >
Intel® System Studio >
Intel® Integrated Native Developer Experience (Intel® INDE) >

5. A. Katranov, “Deterministic Reduction: A New Community Preview Feature in Intel®
Threading Building Blocks,” 2012.

6. T. Rosenquist and S. Story, “Using the Intel Math Kernel Library and Intel Compilers
to Obtain Run-to-Run Numerical Reproducible Results,”
Intel® Parallel Universe Magazine, 2012.

7. Even if the target application is compiled for one single vector instruction set such
as AVX, running it on different microarchitectures such as Sandy Bridge or Haswell
might trigger libraries to utilize different vector instruction sets based on the available
microarchitecture. See “Consistency of Floating-Point Results using the Intel® Compiler”3
for more information.

8. Intel® MPI Library—Documentation, Intel Corporation, 2015.

9. “MPI: A Message-Passing Interface Standard—Version 3.0,” Message-Passing Interface
Forum, 2012.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
https://software.intel.com/en-us/intel-tbb
http://makebettercode.com/parallelstudioxe2015/en
http://makebettercode.com/systemstudio/en
http://makebettercode.com/inde/en
https://software.intel.com/en-us/blogs/2012/05/11/deterministic-reduction-a-new-community-preview-feature-in-intel-threading-building-blocks
https://software.intel.com/en-us/blogs/2012/05/11/deterministic-reduction-a-new-community-preview-feature-in-intel-threading-building-blocks
https://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_CBWR.PDF
https://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_CBWR.PDF
https://software.intel.com/en-us/articles/intel-mpi-library-documentation
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

27The Parallel Universe

Introduction
High performance computing (HPC) applications tend to consume most of the available system
memory on a node; therefore, it is useful to deal with the limited memory resources on a
cluster thoughtfully. However, in order to provide the maximum amount of dedicated memory
to an application, other memory-consuming parts on a cluster must be taken into account. In
particular, the operating system and libraries that are used need to be understood. As the memory
consumption of the message passage interface (MPI) library grows with the job size, along with
the number of MPI ranks, estimating the memory footprint becomes rather complex.

This article will serve as an orientation about the estimated memory consumption for the
Intel® MPI Library, using different fabrics. (The authors cannot offer a byte-accurate prediction
model because actual memory consumption depends on the operating system environment.) This
article will also help users fine-tune the Intel MPI Library settings for a reduced memory footprint.

By Dmitry Durnov, Senior Software Engineer, and Michael Steyer, Technical Consulting Engineer,
Software and Services Group, Intel Corporation Developer Products Division

Intel® MPI Memory Consumption

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/SCxiBK
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

28The Parallel Universe

The Memory of a Library
Memory consumption analysis is a complex task, as there are many sources that may influence
the memory footprint. Even though it is possible to predict how much virtual memory will
be allocated, the amount of physical memory used will depend on the characteristics of the
application that is utilizing the library and the operating system configuration.

The memory-consuming parts of the Intel MPI Library can be split into two categories: parts that
scale with the number of MPI processes involved, and parts that have a fixed memory footprint.
The largest fraction of memory comes from needs that scale consumption with the job size.

Intel® Math Kernel Library (Intel® MKL) 11.3 Beta, released April 2015, offers the inspector-executor API for
Sparse BLAS (SpMV 2). This API divides operations into two steps. During an initial analysis stage, the API
inspects the matrix sparsity pattern and applies matrix structure changes. In subsequent routine calls, this
information is reused in order to improve performance.

This inspector-executor API supports key Sparse BLAS operations for iterative sparse solvers, and covers
all the functionality available in the classic Sparse BLAS implementation available in Intel MKL:

• Sparse matrix-vector multiplication

• Sparse matrix-matrix multiplication with sparse or dense result

• Triangular system solution

• Sparse matrix addition

Intel® Math Kernel Library Inspector-Executor Sparse
BLAS Routines
BY ZHANG Z »

BLOG HIGHLIGHTS

Read more

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
https://software.intel.com/en-us/user/491056
https://software.intel.com/en-us/articles/intel-math-kernel-library-inspector-executor-sparse-blas-routines

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

29The Parallel Universe

There are several reasons the prediction for a library’s memory consumption depends on the
platform (operating system and architecture). One factor is the operating system’s choice of page
sizes. The page size will influence the alignment and size of buffers that are used for sending
and receiving messages among different MPI processes. Another factor is use-diverse
middleware. Some middleware libraries are used at a very low level and are therefore part of
the memory consumers that scale with job size. Different versions of such libraries may have
different buffer sizes for each connection. This can also lead to a varying memory footprint for
the Intel MPI Library.

To best address these challenges of the memory-consumption prediction, this article will focus
on the worst-case scenario: an all-to-all connection. In this scenario, each MPI rank has an active
connection to every other MPI rank, and therefore n^2 active connections overall. Furthermore,
the message sizes have been set close to the maximum internal MPI eager buffers, while the
memory footprint of larger message transfers will be reflected by the application. This way,
almost all allocated memory will be used. If a buffer in virtual memory is not filled completely,
it might not require an equal amount of physical memory in a machine.

All the graphs in this article focus on the worst-case Intel MPI Library memory consumption
per rank. The amount of memory consumed per node will therefore depend on the number
of ranks being used on each node. Each graph includes a dotted line indicating the memory
consumption of 64GB per node, as an orientation for a system with 28 MPI ranks per node,
such as a Haswell EP. The memory consumption estimates are based on the internals of Intel®
MPI Library Version 5.0.3.048.

Please note that in real-life applications that do not need all-to-all connection patterns, the Intel
MPI memory footprint will be much smaller. Therefore, the estimations provided in this article
can be considered worst-case assumptions. In most applications, the dynamic connections
establishment logic of the Intel MPI Library, which is present in almost all transport methods
supported, will hold only a minimal number of necessary connections per rank.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

30The Parallel Universe

Intel® MPI Fabrics and Memory
The Intel MPI Library supports the following low-level transport mechanisms:

 > Shared Memory (SHM). Used for intra-node message transport. It provides several configurations
for memory consumption/latency trade-offs and supports architecture-specific optimizations for the
latest processors.

 > Direct Access Programming Library (DAPL) (Reliable Connection [RC] and User Datagram [UD]).
Based on the User Direct Access Programming Library (uDAPL). uDAPL provides a high level of
flexibility for the hardware utilization of different vendors. Vendor- and technology-specific features
are transparent to the uDAPL level.

 > OFA. This transport layer is based on the direct usage of IB-verbs RC.

 > Tag Matching Interface (TMI). Based on the Performance Scaled Messaging (PSM) API, which is
the main API for Intel® True Scale Fabric hardware.

 > TCP. Based on TCP sockets and also applicable to solutions such as IPoIB.

Additionally, the Intel MPI Library supports combinations of these fabrics, which can be used to
separate a fabric for intra- as well as inter-node communication.

Simplify HPC Cluster and
Parallel Programming

All-New Spring 2015 Intel® Software
Tools Technical Webinars
Get ready to take your code to the next level! The Spring
2015 series of Intel® software tools technical webinars is
happening now. Learn more about data-driven threading,
vectorization, and more in these hour-long webinars.

Register now, or watch archived versions.

For more complete information about compiler optimizations, see our Optimization Notice.

Copyright © 2015, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Register today >

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/SCxiBK
https://software.intel.com/en-us/articles/intel-software-tools-technical-webinar-series

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

31The Parallel Universe

DAPL RC (top) vs. DAPL UD (bottom)1

MPI
Rank UD

OP

MPI
Rank

RC
OP MPI

Rank
RC
OP MPI

Rank
RC
OP MPI

Rank
UD
OP

MPI
Rank

RC
OP MPI

Rank
RC
OP MPI

Rank
RC
OP MPI

Rank
UD
OP

MPI
Rank

RC
OPRC

OPRC
OPRC

OPRC
OPRC

OPRC
OPRC

OP

MPI
Rank

RC
OP MPI

Rank
RC
OP MPI

Rank
RC
OP MPI

Rank
RC
OP

MPI
Rank

RC
OP MPI

Rank
RC
OP MPI

Rank
RC
OP MPI

Rank
RC
OP

When it comes to Intel MPI Library memory consumption, however, these fabrics behave very
differently. Due to the nature of DAPL RC, where each rank holds a QP (Queue Pair) buffer and
transport buffers for each other rank (n), the per-rank memory consumption for DAPL RC grows
linearly to the number of MPI ranks (n * number of buffers per connection). DAPL UD, in contrast,
performs better at scale, while it only utilizes one QP as well as one common pool of buffers for
all ranks (n * buffer pool size). Figure 1 illustrates the differences between DAPL RC and DAPL UD.

The use of connectionless communication in DAPL UD also has disadvantages, such as the lack of
RDMA support (although it is available in DAPL UD + DAPL RC mixed mode). Also, the potentially
longer delay in transfers, due to the segmentation and reassembly of each message, can be a
disadvantage. However, the large memory savings, compared to DAPL RC, show its performance
benefits on a large scale of MPI ranks.

Figure 2 shows the Intel MPI Library’s memory consumption difference between DAPL RC and
DAPL UD in the all-to-all connections scenario. Please keep in mind that these estimations are
unlikely due to the worst-case representation. Therefore, these numbers can be considered an
upper limit rather than an exact memory consumption model of the Intel MPI Library.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

32The Parallel Universe

For our validations, we forced the MPI_Alltoall operation and utilized the pairwise
exchange algorithm in order to get the highest memory footprint by setting the
I_MPI_ADJUST_ALLTOALL environment to “3.”

Memory consumption of DAPL RC vs. DAPL UD (lower is better)2

TMI is an API used by Intel MPI Library to get benefits from low-level transports, which provide
their own messages matching logic. The main technology currently used below TMI is PSM,
available on Intel® True Scale Fabric and other adapters of the Intel® Omni-Path Architecture
family. This technology bypasses the IB-verbs layer and has a fixed-memory footprint for
transport buffers. The amount of memory required per connection was further reduced in the
latest Intel MPI Library versions in order to align with PSM as a scalable fabric solution.

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

33The Parallel Universe

Memory consumption of DAPL UD vs. TMI (lower is better)3

Large-Scale Memory Tuning
While DAPL UD already works in a highly memory-conservative fashion, one can further tune the
fabric for memory efficiency on large-scale MPI runs. Table 1 shows some default environment
settings versus their tuned versions.

Table 1. DAPL UD default vs. tuned environment variables

Environment Variable Default Value Tuned Value

I_MPI_DAPL_UD_SEND_BUFFER_NUM Runtime dependent 8208

I_MPI_DAPL_UD_RECV_BUFFER_NUM Runtime dependent 8208

I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE 256 8704

I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE Runtime dependent 8704

I_MPI_DAPL_UD_RNDV_EP_NUM 4 2

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

34The Parallel Universe

These environment settings set the number of internal DAPL UD buffers to a fixed value,
while the default size of DAPL UD buffer pools scales along with the number of MPI ranks.
At the same time, the tuning parameters fix the memory required for lower-level QP-related
buffers. The impact of these settings is especially interesting for large-scale MPI runs, as one
can see in Figure 3.

Memory consumption DAPL UD default vs. DAPL UD tuned (lower is better)4

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

35The Parallel Universe

Summary
In this article, we have shown the worst-case memory-consumption of the Intel MPI
Library on different fabrics. This information can serve the user as an upper-bound
memory-consumption estimation despite not being a byte-accurate prediction. With this
information, users will be able to determine how much memory will be left at a certain scale
for their HPC applications.

Users with Mellanox interconnects on their cluster should focus on the DAPL UD fabric
to reduce the Intel MPI memory footprint for large-scale runs. While this article did not
consider the memory consumption using the OFA fabric, it would still provide a good
memory scalability and end up somewhere in between DAPL RC and DAPL UD for memory.

Users also can further reduce the memory consumption of the DAPL UD fabric by
modifying the Intel MPI internal buffer structure. The best memory-consumption scalability
of the Intel MPI Library can be observed using the TMI fabric on Intel True Scale Fabric and
future Intel Omni-Path interconnects.

Try the Intel MPI Library
Download now for a 30-day evaluation >

Also available as part of Intel® Parallel Studio XE Cluster Edition >

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
https://software.intel.com/en-us/intel-mpi-library-evaluation-options/
http://makebettercode.com/parallelstudioxe2015/en

Copyright © 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, Cilk, VTune, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

	The Parallel Universe

