
00001101
00001010
00001101
00001010
01001100
01101111
01110010
01100101
01101101
00100000
01101000
01110001
01110011
01110101

Improve Productivity and
Boost C++ Performance
Intel® C++ Compiler Standard Edition for
Embedded Systems with Bi-Endian Technology

OpenMP* API Version 4.5: A Standard Evolves

Issue

24
2016

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseCONTENTS
FE

AT
U

RE
FE

AT
U

RE

Letter from the Editor 4
Time-Saving Tips as Spring Begins in the Northern Hemisphere
by James Reinders

Improve Productivity and Boost C++ Performance 5
The new Intel® SIMD Data Layout Template library optimizes C++ code and helps improve SIMD efficiency.

Intel® C++ Compiler Standard Edition for
Embedded Systems with Bi-Endian Technology 11
Intel® C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology helps
developers looking to overcome platform lock-in.

OpenMP* API Version 4.5: A Standard Evolves 23
OpenMP* version 4.5 is the next step in the standard’s evolution, introducing new
concepts for parallel programming as well as additional features for offload programming.

Intel® MPI Library: Supporting the Hadoop* Ecosystem 32
With data analytics breaking into the HPC world, the question of using MPI and big data
frameworks in the same ecosystem is getting more attention.

Finding Your Memory Access Performance Bottlenecks 42
The new Intel VTune Amplifier XE Memory Access analysis feature shows how some tough
memory problems can be resolved.

Optimizing Image Identification with
Intel® Integrated Performance Primitives 62
Intel worked closely with engineers at China’s largest and most-used Internet service portal to help
them achieve a 100 percent performance improvement on the Intel® architecture-based platform.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel UniverseCONTENTS CONT...

Develop Smarter Using the Latest IoT and Embedded Technology 73
A closer look at tools for coding, analysis, and debugging with all Intel® microcontrollers,
Internet of Things (IoT) devices, and embedded platforms.

Tuning Hybrid Applications with Intel® Cluster Tools 79
This article provides a step-by-step workflow for hybrid application analysis and tuning.

Vectorize Your Code Using Intel® Advisor XE 2016 89
Vectorization Advisor boasts new features that can assist with vectorization on the next
generation of Intel® Xeon Phi.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

Time-Saving Tips as Spring Begins in the Northern Hemisphere

I love springtime. I carve out time so I can plant seeds to get our garden going. Nature gets busy, and everyday
life seems to pick up as well. With so much to do, we all look for ways to make life easier, more efficient, and more
productive. Software development can have its fair share of menial, time-consuming tasks. I definitely want to fast-
forward past the tedious so there is more time for fun stuff.

In this issue, our authors offer some suggestions on how to provide less time-intensive ways to achieve better
performance with some very specific solutions: AoS to SoA in C++, bi-endian compilation, and richer OpenMP*
support. It’s fair to say that working to get vectorization can be tedious when reasoning which layout of data in
memory will yield the best performance. Should AoS become SoA?

Our first feature, “Improve Productivity and Boost C++ Performance,” discusses how the new Intel® SIMD Data
Layout Template (SDLT) helps with memory layout optimization to potentially increase performance of SIMD-ready
C++ code.

We do not make tools to settle Lilliputian disagreements about eggs, but we can help deal with compiling code for
Intel® processors even if the code was written originally for big-endian processors. “Intel® C++ Compiler Standard
Edition for Embedded Systems with Bi-Endian Technology” describes how this edition of Intel® compilers can
help easily migrate legacy applications from big-endian to little-endian architectures. Rather than extensively
rewriting code, we can reuse code for both architectures with this helpful tool.

“OpenMP* API Version 4.5: A Standard Evolves” is an in-depth look at the new version of OpenMP and how it
helps us better express parallelism in applications and offloaded code. OpenMP 4.5 offers task-generating loops
that relieve us from having to find solutions to tame load imbalances and resolve composability issues caused by
parallel loops, among other benefits.

We may never escape life’s seemingly endless to-do lists. But, we do offer some ways, in this issue, to save time in
our pursuits of high performance for our applications. What you do with your time savings is up to you!

James Reinders
March 2016

4The Parallel Universe

James Reinders, an expert on parallel programming, is coeditor of the recent High Performance Parallel
Programming Pearls Volumes One and Two. His other book credits include Multithreading for Visual
Effects (2014), Intel® Xeon Phi™ Coprocessor High Performance Programming (2013), Structured Parallel
Programming (2012), Intel® Threading Building Blocks: Outfitting C++ for Multicore Processor Parallelism
(2007), and VTune™ Performance Analyzer Essentials (2005).

LETTER FROM THE EDITOR

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

Udit Patidar, Product Marketing Engineer, Developer Products Division, Intel Corporation

Improve productIvIty and
Boost c++ performance
Introducing the Intel® SIMD Data Layout Template (Intel® SDLT)
to Boost Efficiency in Your Vectorized C++ Code

Intel provides many tools to help you find hotspots in your code (e.g., Intel® VTune™ Amplifier XE)
and offer advice on optimizing your code (e.g., Intel® Advisor XE). Intel® C++ Compiler generates
detailed optimization reports that can tell you whether vectorization of a particular C++ loop
was successful.1 Intel is introducing a new template library included in Intel C++ Compiler, a
component in Intel® Parallel Studio XE or Intel® System Studio. If you are an application developer
using C++, you know it takes considerable effort to hand-optimize memory access layout. The
Intel® SIMD Data Layout Template (Intel SDLT) library optimizes C++ codes by enabling the

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/c-compilers

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

struct Point3s

 float x;
 float y;
 float z;
};

std::vector<Point3s> inputDataSet(count);
std::vector<Point3s> outputDataSet(count);

for(int i=0; i < count; ++i) {
 Point3s inputElement = inputDataSet[i];
 Point3s result = // loop iteration independent algorithm
 // that transforms the inputElement.
 // algorithm uses high level objects & helper methods.
 outputDataSet[i] = result;
}

programmer to switch from an array of structures (AOS) representation to a structure of arrays
(SOA) representation with minimal effort or overhead. Such an SOA representation improves
memory utilization and facilitates vectorization avoiding data-structure layout conversions.

The latest Intel® processors and coprocessors offer vector instructions and support the single
instruction/multiple data (SIMD) programming model. With Intel® Advanced Vector Extensions
512 (Intel® AVX-512) instructions, vectorized codes theoretically become capable of delivering 8x
more peak performance for double-precision (or 16x single-precision) floating-point computations
over the performance of nonvectorized codes. Unfortunately, the theoretical limit is rarely reached,
especially on legacy codes that were not written with vectorization in mind. Without addressing
the memory layout of data, you may end up leaving a lot of performance on the table.

In C++, the choice of how to lay data out in memory is crucial to achieving efficient vectorization.
This is especially true when dealing with structures and arrays. It is common for developers to
represent an array with a container from the C++ Standard Template Library, like std::vector.2

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/intel-vectorization-tools

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

SDLT_PRIMITIVE(Point3s, x, y, z)

sdlt::soa1d_container<Point3s> inputDataSet(count);
sdlt::soa1d_container<Point3s> outputDataSet(count);

auto inputData = inputDataSet.const_access();
auto outputData = outputDataSet.access();

#pragma forceinline recursive
#pragma omp simd
for(int i=0; i < count; ++i) {
 Point3s inputElement = inputData[i];
 Point3s result = // loop iteration independent algorithm
 // that transforms the inputElement.
 // Keep algorithm high level using object helper methods.
 outputData[i] = result;
}

Although such a data layout might feel natural for a C++ programmer, the overhead of loading
this AOS data set into vector registers can negate the performance gains of vectorizing.
Converting the AOS representation to an SOA representation might be better suited for
vectorization, but is very counterintuitive to the C++ programmer.3

Enter Intel SDLT.

The SDLT library provides an AOS interface to the user but stores the data in SOA format in
memory. It abstracts the problem of SIMD-friendly data layout away from the programmer. Intel®
SDLT offers a high-level interface using standard ISO C++11 features and does not require special
compiler support to work. Because of its SIMD-friendly layout, it can better take advantage of the
Intel® compiler’s performance features such as OpenMP* SIMD extensions and Intel® Cilk™ Plus
SIMD extensions.

To use the library, you declare your data types as primitives, describing them to SDLT. Then
you can use your primitives with generic SDLT containers (instead of std::vector). Use the
container’s data accessors instead of array pointers or iterators. When used with an explicit vector
programming model, the accessors from Intel SDLT containers handle data transformation and
let the compiler generate efficient SIMD code.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/intel-vectorization-tools

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

When an accessor is used with the loop’s index to export to or import from a local variable
(inside loop body), the compiler’s vectorizor can transparently access the underlying SIMD-
friendly data format and, when possible, perform unit stride loads. In many cases, the compiler
can optimize its private representation of local objects inside loop to be SOA. In the example
above, because the container’s underlying memory layout is SOA as well as the compiler’s
private representation of local objects, the compiler can generate efficient unit stride loads.

Representing data in memory SOA enables the compiler to directly load array elements into
vector registers. This greatly helps SIMD vectorization reach its potential. In contrast, computing
directly on AOS layouts can necessitate extra instructions to populate vector registers,
essentially consuming execution slots but not contributing any results.

In summary, you can use SDLT to increase your productivity by letting it worry about optimal
memory layout, as well as potentially increase performance of your SIMD-ready C++ code, as
shown in the table below.

Increase productivity
for developers using C++

Improve performance

Integrate simply

Rather than stop using C++ objects and revert to
C arrays when enabling SIMD code, use generic
containers with minimal effort. Let SDLT handle
data layout transformations for you.

By making memory access contiguous, the
compiler can generate more efficient SIMD code
and, in some cases, utilize vectorization where
the overhead was previously too high.

SDLT containers provide a similar interface to
std::vector. Data accessors are compatible
with existing Intel vector programming models
and fit right in with other Intel® performance
libraries.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

The AOS-to-SOA problem is widely studied. And SDLT has already gained considerable traction
in many industries. As an example, DreamWorks Animation has a mathematical library which
was written using the standard C++ programming principles (i.e., without explicit vectorization
in mind). It would be disruptive and difficult to manually change the data structure layout to
an SOA on such a large scale. It was a large barrier to enabling SIMD, since the mathematical
library affects almost all areas of character animation. Once refactored with SDLT, existing
codes continued to compile (without changes) and loops could now be vectorized, showing
great benefits.

“We used [SDLT] to vectorize the deformer code in Premo*, the in-house animation tool for
DreamWorks Animation. The performance improvements we were able to achieve were
dramatic, and these improvements will translate directly into higher-quality characters that
will be seen on-screen in future movies. Also, the library itself was easy to use and integrate
into our existing codebase.”

Martin Watt, DreamWorks Animation

SDLT Helps DreamWorks Animation Advance the State of the Art

When evaluating whether SDLT might be suitable for you, consider this rule of thumb:4
It is almost always better to vectorize than not to vectorize on Intel SIMD-capable hardware.

Given the increased number of data lanes in the latest Intel coprocessors, not carefully
considering SDLT might prevent you from modernizing your code and exaggerate the
shortcomings and downsides of traditional C++ applications. Try the new SDLT feature to
enable an SOA layout for your C++ application. It might just improve your SIMD efficiency
and give you a pleasant surprise.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

References
1. “Get a Helping Hand from the Vectorization Advisor,” The Parallel Universe Issue 23.

2. Introduction to the Intel® SIMD Data Layout Templates (Intel® SDLT).

3. How to Manipulate Data Structure to Optimize Memory Use on 32-Bit Intel® Architecture.

4. Case Study: Comparing Arrays of Structures and Structures of Arrays
Data Layouts for a Compute-Intensive Loop.

Code samples and compiler documentation:
1. Averaging Filter implementation using Intel® SDLT

2. SDLT Code examples

3. More Intel SDLT code examples

How to Get tHe Intel® c++ compIler
Download a free 30-day evaluation of Intel® Parallel Studio XE >
Download a free 30-day evaluation of Intel® System Studio >
Find a reseller near you >
Students, educators, and open source contributors: Get a free copy >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/sites/default/files/managed/6f/5d/parallel_mag_issue23.pdf
https://software.intel.com/en-us/node/600110
https://software.intel.com/en-us/articles/how-to-manipulate-data-structure-to-optimize-memory-use-on-32-bit-intel-architecture
https://software.intel.com/en-us/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts
https://software.intel.com/en-us/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts
https://software.intel.com/en-us/code-samples/intel-c-compiler/application-domains/finance/averaging-filter-sdlt
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt
https://software.intel.com/en-us/node/600131
http://makebettercode.com/parallelstudioxe-eval/en?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
http://makebettercode.com/systemstudio/en?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
http://software.intel.com/en-us/intel-software-products-resellers?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
http://software.intel.com/en-us/qualify-for-free-software?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

Intel® c++ compIler standard
edItIon for emBedded systems
wItH BI-endIan tecHnoloGy
Avoid Legacy Platform Lock-in from Big-E Platform and Software
Dependencies and Easily Migrate to Little-Endian Architectures

Kittur Ganesh, Software Technical Consulting Engineer, Intel Corporation

Intel® C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology is
a productivity tool for developers locked into legacy platforms due to big-endian software
dependencies who want to easily migrate their legacy applications from big-endian to little-
endian architectures. Rather than rewrite the entire application code base, developers can speed
migration with reduced code changes, code reuse, and one code base for both big-endian and
little-endian architectures.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/c-compilers

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

The Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology
also offers the performance benefits of the Intel® C++ Compiler, delivering outstanding
application performance.

This article presents a comprehensive overview of the key features including the top issues to
watch for when porting legacy applications to little-endian architecture systems.

Overview
In the early to mid-1990s, big-endian RISC architectures (e.g., SPARC*, MIPS*, PowerPC*)
dominated the embedded market segment and were used widely in computer networking,
telecommunications, set-top boxes, DSL, cable modems, etc. In fact, most applications were
developed for these systems. However, with the release of several new generations of faster,
more scalable versions of x86 architecture processors, many developers faced a dilemma on how
best to port these applications to the little-endian x86 architecture systems.

Although the applications are developed in standardized high-level languages (C/C++), traditional
compilers can compile only to a single-endian architecture. Porting from one endian architecture
to another becomes problematic if there are endianness byte-order dependencies in the source
code bases, since it can result in severe runtime issues when executed on the target architecture.
To address these dependencies, developers have to locate the hard-to-find, byte-order-
dependent code and manually convert it to endian-neutral code―or satisfy the endianness of
the target architecture.

If performance is a higher priority than time to market (TTM), migration through manual
conversion can be very error-prone and expensive. If the application is already endian-neutral,
it may just be a matter of recompiling the application, such as the EEMBC* benchmark samples,
which are endian-agnostic.

For applications that contain endianness dependencies, using the Intel C++ Compiler Standard
Edition for Embedded Systems with Bi-Endian Technology can result in correct code generation
while maintaining higher performance. In addition, porting is all about handling data endian types
such as function prototypes and variable declarations, while the manual porting process involves
handling bit-field accesses and shift operations, etc., which is tedious.

Unlike the Intel C++ Compiler, the Intel C++ Compiler Standard Edition for Embedded Systems
with Bi-Endian Technology enables developers to compile and build applications with the byte
order semantics in the source code bases intact, as long as the intended endianness of the
byte order of dependent data is specified using the language extensions, a part of the compiler
usage model (described later in this article). The compiler inserts byte-swap instructions where

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/c-compilers

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

necessary on the designated byte-order-dependent code so that the native endian architecture
data in memory is converted into the target endian architecture byte order semantics for proper
runtime execution.

The Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology is a
command-line, Linux* hosted, Linux target, stand-alone compiler specifically designed to enable
developers to migrate applications from big-endian to little-endian architectures.

Benefits include:

 • Faster and easier migration. Enables faster migration to little-endian Intel® architecture.

 • Minimal code changes. Instead of requiring a rewrite of the entire application code base, the compiler
allows reuse of the big-endian code base with minimal code changes, reducing implementation and
validation effort.

 • Common code base. Allows maintaining one code base for both big-endian and little-endian
architectures.

The Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology is
similar to the Intel C/C+ Compiler for Linux* and shares a common core of technology related to
optimization and performance models. The key difference between the compilers is the bi-endian
technology, which is supported only in the Intel C++ Compiler Standard Edition for Embedded
Systems with Bi-Endian Technology.

Usage model key features are outlined in the subsequent sections of this article through easy-
to-understand code snippets, including some common issues to watch for during the porting
process. Understanding these key features should help developers quickly get started with
the Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology to
seamlessly migrate legacy applications to Intel architecture.

A Solution for Byte Endianness and Byte-Order Basics
Byte endianness is the system architecture attribute specifying the representation of data layout
in memory for multiple byte access. The little-endian variables are stored with the least significant
byte in the lowest memory byte address location, while the big-endian variables are stored with
the least significant byte in the highest memory byte address. In this context, the big-endian
model means that both big-endian and the little-endian data are allowed in memory accordingly.

Figure 1 shows the representation of the data 0x89ABCDEF in memory, with the big-endian
variables using the opposite ordering of bytes within memory compared to little-endian variables,
which have the least significant byte (EF) stored in the highest memory byte address.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

1 Little vs. big-endian

Figure 2 shows a sample code snippet containing byte-order dependency, which produces
different results when executed on big-endian versus little-endian architecture systems. As noted,
on the little-endian system, the pointer ap points to 78, the least significant byte, while it points to
12 on a big-endian system. To fix this issue, the programmer can manually transform the byte-
order code into endian-neutral code or reflect the endianness of the target architecture. But the
manual process consumes enormous time and effort to identify byte-order-dependent code in
legacy applications consisting of millions of lines of code―and can be error-prone as well.

Figure 3 shows the Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian
Technology solution to the endianness dependency issue in Figure 2. The programmer needs to
only identify the byte order of the data using the language construct (big-endian switch) for the
compiler to enforce the big-endian byte order semantics―producing identical results on both
architectures.

In the code snippet in Figure 3, value “a” is stored in big-endian format independent on which
system the code is executed. On little-endian systems, the value “a” is byte-swapped by the
compiler when necessary. The Intel C++ Compiler Standard Edition for Embedded Systems
with Bi-Endian Technology inserts the byteswap (bswap) instruction to emulate the big-endian
execution only when necessary, to minimize the generated instructions whenever possible to
reduce performance overhead.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

3 Identical results on big-endian and little-endian systems

2 Byte-order-dependent code execution

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

4 Mixed-endian code development

Usage Model and Language Support
The Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology
provides bi-endian language extensions, enabling the developer to indicate the byte order (a type
attribute) of data types including built-in types or typedef, code regions, and variable declarations.
These language extensions enforce appropriate byte-order semantics on the assigned data types
during execution on the target architecture.

As shown in Figure 4, the Intel C++ Compiler Standard Edition for Embedded Systems with Bi-
Endian Technology provides various ways of designating the program code byte order, such as
command line switches, prolog/epilog files mechanism, pragmas, and attributes support.

The Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology
resolves the data accesses using big-endian or little-endian conventions as supported through
the implicit and explicit usage models. The implicit model is designed to designate the byte order
for a file or an entire application through the use of command line options such as –big-endian or
–little-endian switches or using the prolog and epilog files mechanism to set the implicit endian
mode for the entire file or directories as well. It is advisable to use this implicit model where
possible during the migration process for simplifying and accelerating the porting process.

The explicit model supports mixed-endian development through pragma byte-order attributes
features. The programmer can designate the byte order of variables and functions at varying
levels of granularity. The explicit model, due to this control on granularity levels, enables mixed-
endian development.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

5 Implicit mode using prolog and epilog feature

Figure 5 shows a a code snippet sample specifying endian byte order for directories using the
prolog and epilog switches. Likewise, Figure 6 shows a code sample using the command line
switch –big-endian, #pragma byte_order and attribute features at a finer granularity through
explicit declarations. The command line option –big-endian sets the endian order for the whole
program to big-endian byte order at a higher granularity. The #pragma byte_order (push, little-
endian) specifies that all the declarations following the # pragma are of little-endian byte order
including any include files, except for the variable b, which is specified as big-endian through the
endian attribute applied to a specific variable. Similarly, the developer can assign the byte order
to different data types such as float, arrays, structures, and structures with bit-fields.

In general, the bi-endian functionality in the Intel C++ Compiler Standard Edition for Embedded
Systems with Bi-Endian Technology can be summarized as follows: If the code is specified as big-
endian, the compiler will treat the code as though it executes on the big-endian system and insert
byte-swap instructions (bswap) at crucial points and, where possible, eliminate code to increase
performance. Likewise, code specified as little-endian will run as native code, and the compiler
will not insert any bswap instructions, since they are not necessary. The programmer can mix
little-endian and big-endian code in the application.

Figure 6 shows a code sample involving incompatible endian data type (msg) mismatch. To
fix this issue, the user can use the –symcheck option, which then invokes the bepostld tool to
perform a type match of all symbols used in the application. If it detects a type mismatch, it prints
an error message with detailed information useful for the developer to fix the error. The bepostld
tool is the bi-endian post link utility. It enables the programmer to identify incompatible type
definitions for global variables and functions, in addition to performing the initialization of static
big-endian pointers.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

6 Byte order attribute usage at a finer granularity

7 Typical usage example

Adopting Intel C++ Compiler Standard Edition for
Embedded Systems with Bi-Endian Technology
As mentioned earlier, the 1990s saw many applications for big-endian architectures like SPARC,
MIPS, and PowerPC. Many of these legacy applications are still used as part of the mixed-endian
development environment. Intel C++ Compiler Standard Edition for Embedded Systems with Bi-
Endian Technology can help accelerate the porting of old legacy code to Intel architecture systems.

Figure 7 shows a typical use case in such an embedded environment.

Embedded Operating System
– System library and GNU* Libc (little-endian)
– HW interface (little-endian)
– Routing code in the user space (big-endian)
– Bi-Endian Interface (Linux* OS and Libc)
 o System/libc calls are through an abstraction layer
 o Wrapper for used Libc and system service calls (customized)
Bare metal
– Own operating system and routing code (big-endian)
– HW Interface (little-endian)
– Bi-Endian interface is through the HW interface

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

Top Issues to Watch For
Porting large legacy applications can be easier if the endianness of the directories is set
correctly, eliminating all warnings on byte-order mismatch reported by the compiler, getting rid
of endianness consistency errors reported by the bepostld tool across modules, and ensuring
correct implementation of the function prototypes. Common issues during the migration
process include:

1. Missing prototype. Figure 8 shows an example. When the sample is executed, the program
will crash, since the compiler has no indication that atoi() and printf() are little-endian and
therefore incorrectly passes byte-swapped arguments. Solution: Add stdio.h and stdlib.h
include files.

2. Wrong casting. Figure 9 shows a sample code snippet where the formal and actual
arguments have different sizes. Solution: Compile with –param-byte-order=little-endian.

8 Missing prototype

9 Wrong casting

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

3. Pointed-to type mismatch. Figure 10 shows type mismatch as sscanf() assigns little-endian
value in big-endian var ‘i’. Solution: Declare ‘i’ as little-endian; swap value inside a wrapper for
‘sscanf’. Or compile with –resolve-byte-order-mismatch to let the compiler fix the
problem automatically.

4. Missing byte order on the pointer type. Figure 11 shows a sample code snippet involving
missing byte order on the pointer. The solution is to assign the correct endianness of little
endian to the “end” pointer using the attribute feature as shown in Figure 11.

5. Variable length arguments. Figure 12 shows a code snippet involving variable length
arguments. vprintf() retrieves vargs in little-endian byte order, but ‘foo’ is called with big-
endian args, resulting in byte-order mismatch. Note that the compiler doesn’t automatically
adjust the byte order of arguments passed via va_list. Also, the variable length arguments
should be passed and retrieved in the same byte order (Figure 13).

10 Pointed-to type mismatch

11 Missing byte order on pointer type

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

6. main(). A few key points to note regarding the main()function arguments and byte order:

• Arguments to main are treated as little-endian by default:
 typedef __attribute__((littleendian)) int leint;
 int main(leint argc, char __attribute__((littleendian)) **argv) { }

• If big-endian arguments are required:
 typedef __attribute__((bigendian)) int beint;
 typedef __attribute__((bigendian)) char *pIntel C++ Compiler Standard

 Edition for Embedded Systems with Bi-Endian Technologyhar;

 int main (beint argc, pIntel C++ Compiler Standard Edition for Embedded

 Systems with Bi-Endian Technologyhar *argv __attribute__((bigendian)) {}

Note: Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology
will not diagnose or warn for the above, as big-endian type is explicitly set in the code.

12 Variable-length args

13 Variable-length args (continued)

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

7. Intel C++ Compiler Standard Edition for Embedded
Systems with Bi-Endian Technology porting tips:
• Ensure correct endianness of files and directories.
• Eliminate all warnings on byte-order mismatch.
• Get rid of the errors reported by the bepostld utility.
• Watch out for big-endian issues caused by size mismatch (16 versus 32),
 variable arguments, function pointers, type casting, etc.
• Ensure correct function prototypes with proper endianness byte order.

Conclusion
Intel C++ Compiler Standard Edition for Embedded Systems with Bi-Endian Technology is a
productivity tool for developers looking to overcome platform lock-in due to big endian software
dependencies and migrate large legacy applications to little-endian architectures. We discussed
some top issues to watch for when porting byte-order-dependent applications from big-endian to
little-endian architectures. Also, the Intel C++ Compiler Standard Edition for Embedded Systems with
Bi-Endian Technology shares a common core of technology related to optimization and performance
models with the classic Intel C/C+ Compiler for Linux―delivering outstanding performance.

try tHe Intel® c++ compIler standard edItIon for
emBedded systems wItH B-endIan tecHnoloGy
Learn more >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/c-compilers/biendian?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

openmp* apI versIon 4.5:
a standard evolves

The OpenMP* API specification is a well-known and widely used standard for multithreading on
shared-memory systems. Version 4.5 is the next step in the standard’s evolution, introducing new
concepts for parallel programming as well as additional features for offload programming.

Support for Heterogenous Programming with Easier Parallel Execution of Loops

Michael Klemm, Senior Application Engineer, Intel Corporation
and Christian Terboven, HPC Group, RWTH Aachen University

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

History
The previous version of the OpenMP API specification (4.0) was released in July 2013. A major
feature added was basic support for heterogeneous programming by offloading computation
from the host to coprocessors. Due to the growing demand of the high-performance computing
community for compute power, coprocessing gained a lot of interest. It became clear that
OpenMP 4.0 lacked critical features to support heterogeneous programming optimally. At the
same time, programmers are always required to look for new parallelization opportunities and to
better express parallelism in their codes.

OpenMP 4.5 strives to improve offloading to coprocessors, as well as to add useful features to
make parallel programming easier. In this article, we will describe three key new features of
OpenMP 4.5:

 • Task-generating loops for easier parallel execution of loops

 • Locks with hints to expose more parallelism when using locks

 • Improvements to offloading to make use of coprocessors in the system

A German version of this article was published in the online magazine Heise Developer.

Task-Generating Loops
Parallel loops are one of the most important parts of OpenMP applications. The traditional
worksharing constructs (for in C/C++ and do in Fortran) are very simple ways of expressing
thread-parallel loops by dividing loop iterations into chunks and distributing them across the
threads in a parallel team. However, these constructs have several restrictions that complicate
the life of a parallel programmer when dealing with large application codes. One of the most
problematic issues is that nesting worksharing constructs in other worksharing constructs is
prohibited by OpenMP. Because of that, one cannot nest a parallel loop inside another without
creating a new team of threads to execute the inner parallel loop.

1 Example code using the new taskloop construct with an OpenMP* task

void taskloop_example() {
#pragma omp taskgroup
 {
#pragma omp task
 long_running_task() // can execute concurrently

#pragma omp taskloop collapse(2) grainsize(500) nogroup
 for (int i = 0; i < N; i++)
 for (int j = 0; j < M; j++)
 loop_body();
 }
}

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-studio-xe
http://www.heise.de/developer/artikel/OpenMP-4-5-Eine-kompakte-Uebersicht-zu-den-Neuerungen-3020235.html

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

The new taskloop construct solves the
problem by using OpenMP tasks to execute
the loop chunks instead of assigning them
directly to worker threads. Since OpenMP
tasks can be nested arbitrarily, none of the
nesting restrictions of worksharing constructs
apply. Figure 1 shows how to mix OpenMP
tasks and the taskloop construct. The
OpenMP task in the example calls the
function long_running_task() to mimic
some long-running activity that can execute
concurrently with the following loop. The
taskloop construct then cuts the loop’s
iteration space into chunks and creates
one OpenMP task for each chunk. Any free
worker thread picks up one of these tasks and
executes it. If the long-running task finishes
early, its executing thread can also pick up
tasks created by the taskloop. Because
tasks may be nested arbitrarily, each of the
executing tasks may, in turn, create new ones
to further increase the level of concurrency in
the application. The OpenMP runtime system
takes care of load balancing the tasks across
workers until all tasks have been executed.

The taskloop construct inherits its syntax from both the worksharing constructs and the
tasking constructs. Besides the usual clauses to control visibility and sharing of data (shared,
private, firstprivate, and lastprivate), it also supports the task clauses (final and
mergeable). In addition, the construct accepts the nogroup clause that deactivates the implicit
task group that automatically synchronizes all tasks created by the construct. In the example, we
use an explicit taskgroup construct to synchronize execution of the long-running task and the
taskloop construct.

The size of the generated tasks can be controlled by the grainsize clause. It defines how
many loop iterations are assigned to each created task. If the programmer prefers to specify the
number of tasks, the num_tasks clause can be used instead. Finally, collapse can be used to
create a product loop out of perfectly nested loops. This is similar to what the collapse clause
achieves for worksharing constructs.

template<class K, class V>
struct hash_map {

 hash_map() {
 omp_init_lock(&lock);
 }

 ~hash_map() {
 omp_destroy_lock(&lock);
 }

 V& find(const K& key) const {
 V* ret = 0;
 omp_set_lock(lock);
 ret = internal_find(key);
 omp_unset_lock(lock);
 return *ret;
 }

 void insert(const K& key, const V& value) {
 omp_set_lock(lock);
 internal_insert(key, value);
 omp_unset_lock(lock);
 }
 //...

private:
 mutable omp_lock_t lock;
 hash_buckets *buckets;
 // ...
};

2 Example of a hash map to map keys to values

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

OpenMP 4.5 also extends the OpenMP task constructs task and taskloop with the priority
clause. It can be used to influence the order of task execution by the runtime system. The clause
takes a positive integer value: the higher the value, the higher the priority of the created task. It is
used as a hint to the runtime system to suggest that it should execute tasks with higher priority
before tasks with lower priority. However, the OpenMP implementation is not required to adhere
to the hint, so one cannot assume that using priorities guarantees a certain ordering of task
execution. If the programmer does not specify any priority, it is assumed to be zero by default.

Locks, Locks, Locks
Mutual exclusion by acquiring and releasing
locks is an inevitable evil in many parallel
programs. To avoid race conditions and data
corruption, locks usually have to be taken
before entering a code region that accesses a
shared resource. This protection of the resource
comes with a price to pay in terms of serializing
execution and thus limiting parallelism. In some
applications, locks are placed for safety reasons,
despite the fact that the probability of a conflict
due to concurrent access to the shared resource
is very low, but not zero.

The example code in Figure 2 shows a very
simplistic and inefficient implementation of
a hash map used to map a key of type K to a
value of type V. Despite being a short example
without error handling or other optimizations,
the code shows one particular locking issue.
The mutual exclusion is activated by acquiring
the lock immediately after entering each of the
methods of the hash_map class. The effect is
that execution is serialized to avoid potential
race conditions on the individual hash buckets. However, this is frequently unnecessary, as data
structures with hash functions are designed to avoid access conflicts as much as possible. It
would thus be perfectly safe for multiple threads to enter the hash map code if each thread works
on a different hash bucket or element. In typical implementations you will find locks to protect
individual buckets or elements, or even lock-free data structures. In any case, getting to a scalable
and efficient solution requires a lot of engineering work.

template<class K, class V>
struct hash_map {

 hash_map() {
 omp_init_lock_with_hint(&lock,
 kmp_lock_hint_hle);
 }

 ~hash_map() {
 omp_destroy_lock(&lock);
 }

 V& find(const K& key) const {
 V* ret = 0;
 omp_set_lock(lock);
 ret = internal_find(key);
 omp_unset_lock(lock);
 return *ret;
 }

 void insert(const K& key, const V& value) {
 omp_set_lock(lock);
 internal_insert(key, value);
 omp_unset_lock(lock);
 }

private:
 mutable omp_lock_t lock;
 hash_buckets *buckets;
};

3 Using speculative locks to optimistically

execute a critical region

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

Hint Semantics

kmp_lock_hint_hle Use hardware lock elision feature of Intel® TSX for the lock.

kmp_lock_hint_rtm Use a lock implemented with the restricted transactional memory feature of
Intel® TSX.

kmp_lock_hint_adaptive Use a speculative, adaptive lock that checks for contention and falls back to a
traditional test-and-set lock in case of too many conflicts.

OpenMP 4.5 offers a new feature to alleviate this burden. Programmers can use a new API to
pass a hint for each lock to the OpenMP runtime and inform it about the intended usage of the
locks in the application code. Two new functions to initialize a lock are defined: omp_init_
lock_with_hint and omp_init_nest_lock_with_hint. These functions accept an
additional argument of type omp_lock_hint_t (see Table 1 for possible lock hints). As with
other hints in OpenMP, the implementation can use the hint to optimize the lock implementation
for the intended usage. For instance, the implementation can then replace a test-and-set lock
with a lock based on futexes (short for “fast userspace mutex”). Or it can make use of special
hardware instructions, e.g., Intel® Transaction Synchronization Extensions (Intel® TSX). In all
circumstances, the lock semantics are preserved so that the observable behavior of the program
is not affected.

The hints are integer expression, so that they can be combined by the | operator in C/C++ or
by the + operator in Fortran. This gives a programmer more flexibility in expressing the desired
usage of a particular lock. The OpenMP standard also explicitly allows an implementation to
extend the predefined hints with additional hints. The Intel OpenMP runtime makes use of this
by defining the additional hints listed in Table 2.

Table 1. Supported lock hints in OpenMP* 4.5

Table 2. Additional lock hints as defined by the Intel® OpenMP* runtime

Hint Semantics

omp_lock_hint_none The OpenMP runtime can freely choose the lock implementation.

omp_lock_hint_uncontended Threads rarely access the lock concurrently, so expected contention is low.

omp_lock_hint_contended Optimize the lock for frequent conflicts by multiple threads trying to acquire
the lock at the same time.

omp_lock_hint_nonspeculative Do not use optimistic locking; there are too many conflicts due to overlapping
working sets of the acquiring threads.

omp_lock_hint_speculative Use optimistic locking; the working set of the threads is expected to be distinct
so that conflicts are unlikely.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

In Figure 3, the code uses the new feature to pass information to the OpenMP runtime that the
lock should be executed speculatively, as the programmer assumes that thread will not conflict
while accessing the hash map. On a processor with Intel TSX, the hardware will optimistically
ignore the lock instead of acquiring and releasing the lock (see Figure 4). Only if the hardware
detects that lock semantics have been violated—for instance, if one thread modified a hash bucket
while another thread was reading from it—will the processor revert and re-execute code with
traditional locking for mutual exclusion.

As a rough guideline for when to use speculative locking, one can consider two fundamental cases.
First, Intel TSX and speculative locking pay off if a lock is uncontended and does not produce a lot
of conflicts (as in the hash table example). Second, if many readers but only a few writers compete
for a lock and thus produce a lot of contention, but almost no conflicts, then a speculative lock can
reduce the lock overhead as well.

Offloading
OpenMP 4.0 extended the multithreading paradigm of OpenMP with heterogeneous offloading
to attached compute devices such as coprocessors. The target construct sends the control
flow from a host thread to the coprocessor. Programmers can use the map clause to specify
data objects to be transferred and the direction of the data transfer (see Figure 5). Usually, the
offloaded code regions are known as kernels and are massively parallel fragments that make use
of the respective properties of the target device.

4 Traditional mutual exclusion (left) and optimistic mutual exclusion (right)

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

double var1[N];

void offload_example() {
#pragma omp target data map(tofrom:var1[:N])
 {

 C *c = new C();

#pragma omp target
 c.kernel1(); // uses var1 and members of C

#pragma omp target
 c.kernel2(); // uses var1 and members of C

 delete c;
 }
}

5 Execution model for offloaded code regions including data transfers

6 Device data environments bound to the lexical scope of the target data construct

OpenMP 4.0 introduced device data environments that can keep data alive across different offload
regions to save expensive data transfers between the host and target. Figure 6 shows an example
of such a data region that keeps var1 on the target device during the invocation of kernel1
and kernel2. The duration of the data region is bound to the lexical scope structured block
associated with the target data construct. When the code reaches the opening curly brace, the
data environment is created and data is transferred. Once the code reaches the closing curly brace,
the data environment is destroyed. While this allows the implementation to keep the environment
across multiple kernel invocations, it prohibits the mapping of new data or the mapping of data in
an unstructured way, e.g., in the constructor or destructor of the C++ class.

OpenMP 4.5 provides new constructs to overcome these restrictions. The target enter data and
target exit data directives create and destroy data mapping on the target device:

#pragma omp target enter data map(map-type: var-list) [clauses]

#pragma omp target exit data map(map-type: var-list) [clauses]

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

Figure 7 shows how the new directives
can be used to create and destroy
data environments in a C++ object’s
constructor and destructor. When an
instance of the C class is constructed, the
values member is mapped to the target
device. When the object is destroyed,
the destructor also disposes of the data
environment associated with values.

Another extension concerns the
mapping of elements of structured data
types. OpenMP 4.0 allowed only scalar
variables, arrays, or bitwise copyable data
structures to be mapped. OpenMP 4.5
extends data transfers to cover partial
mapping of members of structured
data types. Figure 8 shows a few of the
new possibilities.

Finally, OpenMP 4.5 contains support for
asynchronous offloading. Previously the
host thread waited for the completion
of the offloaded code region before
it continued with execution. With the
nowait clause, programmers can turn a
target construct into an OpenMP task
that is executed concurrently with the
encountering host thread. The target
enter data and target exit data
directives also support the new clause to
allow for asynchronous data transfers.

Because the asynchronous offloads and
data transfers are regular OpenMP tasks,
the new feature inherits the depend
clause to synchronize asynchronous
execution with other OpenMP tasks
executing on the host. The example code
in Figure 9 performs an asynchronous

7 Creating and destroying device data environments

in C++ objects

class C {

 public:
 C() {
#pragma omp target enter data map(alloc:values[M])
 }

 ~C() {
#pragma omp target exit data map(delete:values[M])
 }
 private:
 double *values;
};

struct A {
 int field;
 double array [N];
} a;

#pragma omp target map(a.field)
#pragma omp target map(a.array[23:42])

8 Mapping of elements in structured data types

double data[N];

void synchronization_example() {
#pragma omp target enter data map(to:data[N]) \
 depend(out:data[0]) nowait

 do_something_on_the_host_1();

#pragma omp target depend(inout:data[0]) nowait
 perform_kernel_on_device();

 do_something_on_the_host_2();

#pragma omp target exit data map(from:data[N]) \
 depend(inout:data[0])

#pragma omp task depend(in:data[0])
 task_on_the_host(data);

 do_something_on_the_host_3();
}

9 Asynchronous offloading and data transfers and

synchronization with host threads

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

data transfer that overlaps with host execution. The depend clause defers the kernel invocation
until the data transfer has completed. The same kind of dependency avoids premature data
transfer back from the device, unless kernel execution has finished. Finally, the host thread creates
a task that is awaiting completion of the last data transfer, before it starts concurrently to execute
the host code in do_something_on_the_host_3().

Conclusion
Besides several corrections, OpenMP 4.5 brings new features that enable programmers to better
express parallelism and to increase the performance of both host applications and offloaded
code. Task-generating loops relieve programmers from cumbersome solutions to tame load
imbalances and resolve composability issues caused by parallel loops. Support for locks with hints
provides an easy way for programmers to optimize the locking behavior of their applications and
to exploit modern processor support for hardware transactional memory in a portable manner.
Finally, the extensions to offloading allow for asynchronous execution to overlap computation and
communication on both the host and the attached coprocessors.

need an openmp-compatIBle compIler?
try Intel® c++ or fortran compIlers.
Part of Intel® Parallel Studio XE and Intel® System Studio >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/fortran-compilers
http://makebettercode.com/parallelstudioxe-eval?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
http://makebettercode.com/systemstudio/en?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

Intel® mpI lIBrary: supportInG
tHe Hadoop* ecosystem

Mikhail Smorkalov, Software Development Engineer, Intel Corporation

For decades, MPI has dominated as the model to use in distributed calculations. However, with
high-performance computing (HPC) incorporating workloads requiring processing of huge
volumes of input data, new approaches and frameworks have appeared. The most popular
ones are the Apache Hadoop* MapReduce paradigm¹ in general and the Hadoop software stack
(including all tools and frameworks running on top of it) in particular.

Vanilla Hadoop is composed of several modules² and implies certain constraints on the scope
of problems it can solve efficiently. For example, MapReduce is not good at iterative algorithms
since it requires dumping the intermediate results to the storage between the iterations. These

MPI Often Outperforms Hadoop MapReduce in Tasks with Heavy Computations

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-trace-analyzer

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

shortcomings triggered development of other frameworks on top of Hadoop, e.g., Apache
Spark*, Apache Storm*, which allow for efficient in-memory data caching between the iterations.
Moreover, YARN*, as a cluster management framework, allows for arbitrary paradigms, not only
MapReduce, thus broadening the area of Hadoop applicability to the fields where mostly MPI
could be found previously.

While some tasks can be solved much more easily and efficiently using the Hadoop stack,
even machine learning that often requires a lot of heavy computations and intensive internode
communication gains popularity on the Hadoop platform―although multiple studies3, 4

demonstrate that MPI outperforms Hadoop frameworks significantly in this sphere. With
some, there is a misconception that MPI is just for HPC. This article helps shed some light on
benefits and challenges connected with using MPI in the Hadoop ecosystem, complementing or
supplementing the tools commonly used in this area.

New HPC Challenges
Historically, high-performance computations dealt with compute-intensive areas, like weather
modeling, physics, and chemistry, where input is relatively small but the number of calculations―
and sometimes the volume of output data―is huge. MPI is the best fit for such problems,
providing a number of communication patterns, and usually MPI implementations, that use
hardware capabilities in a highly efficient way.

However, new application domains require creation of data-intensive applications that operate
on terabyte and petabytes of input data. Frequently, they do not require a lot of internode
communication, so efficient, reliable, and scalable input/output (IO), becomes a very significant
aspect. This aspect is addressed by HDFS* in Hadoop.

Another challenge is that the duration of data analytics tasks can be quite significant―making
transparent fault management a must. Moreover, streaming tasks may run permanently, so a
node crash is inevitable at some point. The Hadoop software stack encapsulates a mechanism for
graceful task handover without the need to restart the whole job. Only failed subtasks are handed
over to healthy nodes. Also, the Hadoop scheduler does its best to run tasks as close to data as
possible, thus securing the best possible data locality.

All these features make the Hadoop platform attractive for data scientists and analysts. And
this has stimulated development of multiple analytics frameworks and libraries in the Hadoop
ecosystem. These frameworks allow for using many programming languages (e.g., Python*, Java*,
Scala*), thus lowering barriers to entry. MPI implementations traditionally provide only C and
Fortran bindings required by the standard. It is worth mentioning that some MPI implementations
provide Java and Python interfaces.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

MPI Repertoire
First, let’s consider the rich and comprehensive set of MPI communication patterns that can be
used to implement the MapReduce program. Obviously, the Map phase can be implemented via
MPI_Scatter(v) functions, while the natural choice for the Reduce phase is either MPI_Reduce⁵
or, if the reduction needs all data in place to proceed, MPI_Alltoall(v), followed by some merge
operation. Moreover, the MPI implementations usually provide several algorithms for each
collective operation and select the optimal one depending on the scale, message size, and
hardware architecture. So the main operations used in the Hadoop world have natural analogs in
MPI. But what about fault management and data management functionalities, which are vital for
the big data world? Does MPI provide something to address those challenges?

Indeed, Hadoop scalability is great due to the data locality aspect that means getting data from
the storage closest to the process whenever possible. The HPC world uses parallel file systems
accessed via network, thus putting serious requirements on the network bandwidth and load
balancing when working with huge input data. However, modern parallel file systems (e.g., Lustre*
or GPFS*) are supposed to provide near-linear scalability with increasing the system size. This
means they can be used for scalable data management. Moreover, Intel’s distribution of Lustre
takes care of running Hadoop over the Lustre file system with optimal data access.⁶ While it is
not always possible to keep absolute data locality when running Hadoop applications, parallel file
systems can provide applications with fast parallel access to remote data.

Even in the Hadoop world, people tend to file systems different from HDFS.7, 8 The advantages
come from the parallel nature of those storage systems and high-bandwidth interconnects that
are used in HPC clusters. For example,8 shows that Lustre FS* can provide much faster data
access than even local drive access on commodity nodes.

Moreover, MPI-IO includes collective IO operations that can be tuned flexibly. For example, they
allow for collective buffering so that the only process on the node is writing/reading to the FS,
thus decreasing concurrency when doing IO.

As for fault tolerance, it is definitely one of the strongest advantages of the Hadoop platform.
It allows for almost transparent recovery in case of hardware failure. At the same time, fault
tolerance is a rather weak side of the MPI standard. Some implementations may allow for writing
fault-tolerant MPI programs by following special workflow,9 but it requires significant efforts from
application engineers. User-level fault tolerance that may be introduced in the MPI 4.0 standard
also does not introduce any transparent fault management, but at least should make the life of
MPI developers easier. The only transparent fault management mechanism available in MPI is
check-pointing.10 It is based on global snapshots, though, implying that absolutely all tasks (even
healthy ones) will be restarted from the checkpoint. So, this is one of the few aspects where
MPI implementations are obviously inferior to Hadoop―making MPI less than optimal for long-
running services such as streaming processing apps.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

Another advantage of the Hadoop ecosystem is the wide community that contributes to the
Hadoop ecosystem in different areas. A number of tools and technologies provide convenient
access to different types of data sources such as files, relational databases, and streams. On the
other hand, MPI is a relatively low-level technology focused on performance, so it does not provide
a lot of syntax sugar in API. However, initiatives like Intel® Data Analytics Acceleration Library (Intel®
DAAL)11 introduce a way to efficiently implement the whole dataflow, from reading data from
different data sources to transformations and calculations on them, including a broad range of
algorithms. This may attract developers who previously did not want to bother with implementing
all dataflow by themselves but would like to get the performance advantages of MPI.

Also, it is worth mentioning that vanilla Hadoop uses TCP/IP for communication between the
nodes in the shuffling phase, making getting benefits from fast interconnects complicated. There
are initiatives related to using RDMA for intercommunication,12 though.

Finally, many people consider the high scalability of Hadoop when selecting the tools for solving
their task, but MPI is generally also very good in this. For example, Intel® MPI Library’s proven
scalability is up to 340,000 processes.13

Running MPI in the Hadoop Ecosystem
As the previous sections show, MPI can address some of the challenges of emerging HPC, being
a competitor to Apache Spark in certain areas. However, using MPI with Hadoop tools and
frameworks is complicated, since HPC and Hadoop used to progress in parallel, following the
needs of most common applications in corresponding areas, thus utilizing different ecosystems,
including resource managers. Current activities related to merging HPC and Hadoop worlds
are mostly focused on moving Hadoop tools into the HPC environment (or even implementing
new MapReduce frameworks atop MPI, such as MR-MPI14) to utilize performance advantages
provided by high-end systems. However, while speeding up data analytics and machine
learning applications by running them on HPC clusters is one of the options (and maybe the
most promising one),15 its value is not that obvious for companies that already have Hadoop
infrastructure and successfully use it.

Another option is running MPI applications in the Hadoop environment without maintaining
two different infrastructures on the cluster or setting up two different clusters.16 This section
describes the mechanism for integrating MPI into the Hadoop ecosystem built on top of Cloudera
Distribution Including Apache Hadoop* (CDH*).17

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-mpi-library

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

36The Parallel Universe

The CDH package includes Llama*,18 an application master for YARN, originally designed to
be used by Impala*.19 Llama provides a cross-language Apache Thrift* API for requesting and
releasing resources and some additional functionality (e.g., gang scheduling, which is vital
for running MPI). With this set of features, it becomes possible to programmatically obtain
information about Hadoop cluster nodes and request the resources for an MPI job when needed,
and thus to share the same infrastructure dynamically between MPI and Hadoop jobs.

To make use of Llama functionality and gracefully run MPI on a Hadoop cluster, two
complementary services need to be implemented:

 • MPI Llama client: Entity that queries Llama to get required information (e.g., cluster node names)
and request/release resources.

 • MPI Llama callback service: Daemon that waits for notification from Llama on certain
events (e.g., node allocation).

The actual workflow consists
of three independent phases
(Figure 1):

 • Start-up: Launching
complementary services (client
and callback), registering them in
Llama, and requesting resources
based on MPI job needs. This
phase is finished as soon as the
callback service gets notification
that resources are allocated.

 • MPI job start: Natively running
the MPI job on Hadoop cluster
nodes, based on the resource list
provided by Llama.

 • Finalization phase: Releasing
resources and shutting down
complementary services when
the MPI job has finished.

1 Running MPI in a Hadoop* cluster

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

One obvious advantage of this mechanism is that Llama communication time does not depend
on the MPI application complexity, so it just adds constant overhead compared to a pure MPI run.
This means that all results related to a performance comparison between MPI and Hadoop/Spark
applications are still relevant, since the contribution of Llama communication overhead into the
total wall time would be vanishingly small for real applications.

Another advantage of this approach over the others (e.g., the academic mpich2-yarn20 project) is
that it is not tied to a certain MPI implementation, since requesting resources and launching MPI
jobs are independent phases of the workflow. Thus, moving to another MPI implementation is a
matter of changing MPI launch command. For example, using BDMPI21 as an MPI implementation
provides a way to use MPI for efficient execution of out-of-core algorithms, making it a flexible
alternative to native Hadoop frameworks for big data problems.

The functionality described above has been implemented in the Intel® MPI Library 5.1 Update 2
(please see the Intel MPI reference guide for an exact usage model).

It’s also important to realize that running MPI on a Hadoop cluster generally imposes some
limitations:

 • MPI-IO is available on shared folders only or locally, as MPI implementations do not support HDFS. This
means the cluster admin may want to set up an NFS folder in addition to HDFS.

 • YARN does not provide information about container CPU affinity, so pinning functionality should be
used carefully when more than one application is running on the same node.

Performance Evaluation
Two distributed algorithms commonly used in data analytics are selected as a target:

1. Singular value decomposition (SVD)

2. Principal component analysis (PCA, using the correlation method)

Spark- and MPI-backed samples for each of the algorithms are taken from the Intel DAAL
distribution and composed of the same building blocks, so the performance difference is
explained by different distribution frameworks (Spark versus MPI) and languages (Java versus
C), but not by implementation details. The Spark-backed SVD sample has also been modified
to avoid collecting the left orthogonal matrix on driver node as that is generally excessive and
doesn’t benefit from the Spark paradigm of RDDs (so the complexity of the Spark-backed
algorithm is a bit lower than for the MPI-backed one).

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

In our performance studies, we used an eight-node cluster in which each node is equipped with
one Intel® Xeon® processor X5570, one NetEffect* NE020 10 Gb accelerated Ethernet adapter,
and 12 GB of RAM. The cluster was running the SLES* 11.0 Linux* operating system and the
Cloudera Express* 5.4.6 version of CDH (Spark v.1.3.0). We used Intel MPI Library Version
5.1.2, Intel DAAL 2016 Update 1, Intel® C++ Compiler Version 15.0.4, JDK v.1.7.0_67, and
Scala v. 2.10.4.

Performance was measured on 16, 32, 48, and 64 data blocks, each containing 10,000 x 1,000
elements of the input matrix. The full dataset of 64 blocks was 4.2 GB in size. When running the
MPI-backed sample, one MPI process per block was started. For Spark, the desired number of
executors was set to the number of blocks via the spark.executor.instances property, which is not
always respected since Spark follows its own heuristics when it defines the number of executors.
Also, since Spark is quite sensitive to JVM and its own configurations, memory settings were
selected empirically (listed under Figures 2 and 3) to facilitate the best performance.

2 Singular value decomposition

spark.executor.memory = 1300m
spark.yarn.executor.memoryOverhead = 1024m
spark.kryoserializer.buffer.max.mb = 512m

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

3 Principal component analysis

spark.executor.memory = 1024m
spark.yarn.executor.memoryOverhead = 768m

Total wall time in the measurements above consists of two summands―actual calculation and
the overhead. The latter, for the MPI sample, is defined as the time required for Intel MPI to
negotiate the resources with Llama and start the MPI job, and for Spark―as a difference between
the wall time and sum of durations of all computation stages.

Note that since MPI is sensitive to running in oversubscription mode, performance may be a bit
degraded when the number of MPI ranks is higher than the number of physical cores. However,
the wall time is still much shorter than for Spark.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

Conclusions and Outlook
The measurements previously mentioned, together with other published results,3, 4 demonstrate
that MPI can be a good fit for some algorithms used in data analytics, and MPI integration into the
Hadoop ecosystem proposed in this article allows for broader MPI usage in this area.

It is important to understand that although MPI can significantly outperform and replace Hadoop-
based frameworks for some problems, it is not as well suited for others. So, it is more natural
to use them together, providing a new level of synergy. Some long-running services may be
implemented with Hadoop tools, while relatively short tasks, which involve a lot of computations
and tricky communication, can be moved to MPI.

Besides the performance that MPI can provide, there are millions of lines of MPI code created
over the years on which Hadoop developers can piggyback. Furthermore, with data analytics
breaking into HPC world and emergence of the high-performance data analytics domain, the
question of using MPI and big data frameworks in the same ecosystem should get more attention.
Integration of MPI into the Hadoop ecosystem is one of the options to address it.

blog hightlight

I got an email request to write a blog about three things I would advocate to a programmer that could
be used to speed up her program. My first flippant thought was, “Location! Location! Location!” That
got me thinking about real estate and led my meandering mind to answer the original query with a
paraphrase of Blake (played by Alec Baldwin) from the film Glengarry Glen Ross: “A-B-C. A-Always, B-Be,
C-Concurrent. Always be concurrent.”

I quickly realized such a simple quote was packed with so much more than just three simple things. I’ve
written dozens of IDZ blog posts on individual items (granularity, load balance, task decomposition,
parallelizing loops, etc.) that would be much more relevant. (If you can find them online, feel free to
pick three and don’t bother to finish reading the rest of this post. Or, better yet, finish reading this one
now and search online later for more focused recommendations.) I even wrote a book on the topic of
concurrent and parallel programming. If you’ve got a copy, take out any three pages from the latter half
of the book and you’ll likely have three different things you can do to speed up code. (Also, now that
you’ve ruined your copy by tearing out those three pages, feel free to buy another copy.)

Three Pieces of Advice for Code Modernization Success
BY CLAY BRESHEARS >

BloG HIGHlIGHts

Read more

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
http://www.nytimes.com/2009/06/28/magazine/28FOB-onlanguage-t.html?_r=0
https://software.intel.com/en-us/user/334588
https://software.intel.com/en-us/blogs/2016/01/04/three-pieces-of-advice-for-code-modernization-success

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

References
1. J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters.” Comm. ACM, 51(1): 107‒113, January 2008.

2. Apache Hadoop Wiki, hadoop.apache.org/#What+Is+Apache+Hadoop%3F.

3. S. Jha, J. Qiu, A. Luckow, P. Mantha, and G.C. Fox. “A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and
Architectures,” eprint arXiv:1403.1528, March 2014.

4. F. Liang, C. Feng, X. Lu, and Z. Xu. “Performance Benefits of DataMPI: A Case Study with BigDataBench.” In The 4th Workshop
on Big Data Benchmarks, Performance Optimization, and Emerging Hardware, BPOE-4, Salt Lake City, Utah, 2014.

5. T. Hoefler, A. Lumsdaine, and J. Dongarra. “Towards Efficient MapReduce Using MPI.”
Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 240–249, 2009.

6. “Intel® Enterprise Edition for Lustre*,”
intel.com/content/www/us/en/software/intel-enterprise-edition-for-lustre-software.html.

7. A. Woodie. “What Can GPFS on Hadoop Do For You?” Datanami, February 2014,
datanami.com/2014/02/18/what_can_gpfs_on_hadoop_do_for_you_/.

8. N. Rutman. “Map/Reduce on Lustre: Hadoop Performance in HPC Environments” (technical white paper). Xyratex,
xyratex.com/sites/default/files/Xyratex_white_paper_MapReduce_1-4.pdf.

9. W. Gropp and E. Lusk. “Fault Tolerance in MPI Programs.” The International Journal of High Performance Computing
Applications, Volume 18, No. 3, Fall 2004, pp. 363–372.

10. J. Hursey, J.M. Squyres, and A. Lumsdaine. “A Checkpoint and Restart Service Specification for Open MPI” (technical report),
open-mpi.org/papers/iu-cs-tr635/iu-cs-tr635.pdf.

11. “Announcing Intel® Data Analytics Acceleration Library 2016 Beta,”
software.intel.com/en-us/articles/announcing-intel-data-analytics-acceleration-library-2016-beta.

12. High-Performance Big Data Project, Network-Based Computing Laboratory, Ohio State University.
“RDMA-Based Apache Hadoop,” hibd.cse.ohio-state.edu.

13. Intel® MPI Library, software.intel.com/en-us/intel-mpi-library.

14. S. Plimpton. “MapReduce and MPI.” SOS 17 - Intersection of HPC & Big Data, March 2013.

15. J. Dursi. “HPC Is Dying, and MPI Is Killing It.” dursi.ca/hpc-is-dying-and-mpi-is-killing-it.

16. The Nielsen Company. “Bridging the Worlds of High Performance Computing and Big Data,”
sites.nielsen.com/newscenter/bridging-the-worlds-of-high-performance-computing-and-big-data.

17. “CDH Components,” cloudera.com/content/cloudera/en/products-and-services/cdh.html.

18. Cloudera, Inc. “Llama,” cloudera.github.io/llama.

19. Cloudera, Inc. “Apache Impala,” impala.io.

20. GitHub, Inc. “mpich2-yarn,” github.com/alibaba/mpich2-yarn.

21. Karypis Lab. “BDMPI - Big Data Message Passing Interface,” glaros.dtc.umn.edu/gkhome/bdmpi/overview.

try Intel® mpI lIBrary
A part of Intel® Parallel Studio XE Cluster Edition >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://hadoop.apache.org/#What+Is+Apache+Hadoop%3F
http://www.intel.com/content/www/us/en/software/intel-enterprise-edition-for-lustre-software.html
http://www.datanami.com/2014/02/18/what_can_gpfs_on_hadoop_do_for_you_/
http://www.xyratex.com/sites/default/files/Xyratex_white_paper_MapReduce_1-4.pdf
https://www.open-mpi.org/papers/iu-cs-tr635/iu-cs-tr635.pdf
https://software.intel.com/en-us/articles/announcing-intel-data-analytics-acceleration-library-2016-beta
http://hibd.cse.ohio-state.edu/
https://software.intel.com/en-us/intel-mpi-library
http://www.dursi.ca/hpc-is-dying-and-mpi-is-killing-it/
http://sites.nielsen.com/newscenter/bridging-the-worlds-of-high-performance-computing-and-big-data/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
http://cloudera.github.io/llama/
http://impala.io/
https://github.com/alibaba/mpich2-yarn
http://glaros.dtc.umn.edu/gkhome/bdmpi/overview
http://makebettercode.com/parallelstudioxe-eval?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

Kevin O’Leary, Software Technical Consulting Engineer; Dmitry Ryabtsev, Software Development Engineer;
and Alexey Budankov, Software Development Engineer; Intel Corporation

How your application accesses memory can dramatically impact performance. It’s not enough to
parallelize your application by adding threads and vectorization. Memory bandwidth is just as
important, but is often not as well understood by software developers. Tools that help minimize
memory latency and increase bandwidth can help developers pinpoint performance bottlenecks
and diagnose their causes.

Today’s modern processors have many different types of memory accesses. For example, the
latency of an L1 cache hit is vastly different from the latency of an access that misses all of your

fIndInG your memory access
performance Bottlenecks
Improve Application Performance Quickly and Simply with the
New Memory Access Analysis Feature of Intel® VTune™ Amplifier XE

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/intel-vectorization-tools

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

memory caches and needs to access DRAM. There are additional complexities brought about by
non-uniform memory access (NUMA) architectures.

Intel® VTune™ Amplifier XE is a performance profiler that has many features you can use to
analyze memory accesses. These features are contained in the new Memory Access analysis type,
which lets you:

 • Detect performance problems by memory hierarchy (e.g., L1-, L2-, LLC-, DRAM-bound).

 • Track memory objects and attribute the latency these objects cause to their
appropriate code and data structures.

 • Analyze bandwidth-limited accesses (including DRAM and Intel® QuickPath Interconnect [Intel® QPI]
bandwidth) and quickly see graphs and histograms of your DRAM and QPI that show you bandwidth
over the timeline of your program.

 • Identify NUMA-related issues contributing to performance problems.

This article provides an overview of the new Memory Access feature and how it can help solve
several tough memory problems and greatly increase an application’s performance.

Overview
To access Intel VTune Amplifier’s Memory Access feature, click on the new
“Memory Access” analysis type, and then click “Start” (Figure 1).

1 Access the Memory Access feature

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

2 Bandwidth histogram

3 Memory bandwidth

View Bandwidth Utilization

You can see how effectively your DRAM and QPI bandwidth are being utilized. You need to be
concerned about high bandwidth utilization. To help fix this, you can find the places in your code
contributing to bandwidth (Figure 2).

View Memory Objects Inducing Bandwidth

Identify the code source and memory objects that are inducing bandwidth. Grouping by the
Bandwidth Domain allows you to identify memory objects that are contributing the most to your
memory bandwidth (Figure 3). You can see the sections of code that have more DRAM issues,
QPI issues, etc.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

4 Memory usage

Graph Memory Bandwidth over the Timeline of Your Application

Your memory bandwidth will, in general, vary as your program runs. By viewing the bandwidth in
a graph that shows your read/write bandwidth in GB/sec, you can see where in your application
spikes in memory usage and target the section of your application where the extra memory
usage occurs (Figure 4). You can then filter by selecting the area in the timeline where the spike
was occurring and see only the code that was active during that time.

The ability to track down the code sections in your application that are inducing memory
bandwidth is a powerful feature. Average latency is critical when tuning for memory accesses.
Viewing bandwidth in the timeline graph is a simple way to characterize your memory usage
as your application runs. In the latest version of Intel VTune Amplifier, the bandwidth graph is
relative to the maximum possible that your platform is capable of achieving, so you can clearly
see how much performance you are leaving on the table.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

Solving Memory Problems

Tough Problem No. 1: False Sharing

First, some quick definitions:

Sharing: If more than one thread accesses the same piece of memory, then they are said to
“share” the memory. Because of the way that modern computers are organized, this sharing can
cause all sorts of performance penalties. These performance penalties are necessary because all
of the different threads/cores need to agree what is stored at a memory address and synchronize
all of the various caches due to this contention.

False sharing: This is when two different threads access a piece of memory that is located on the
same cache line. They don’t actually share the same piece of memory, but because the memory
references are located close together, they just happen to be stored together on the same
cache line. When multiple threads have false sharing, they have the same type of performance
penalties as threads that are actually sharing the same piece of memory―but they are taking the
performance hit that is completely unnecessary.

For this case, we’ll study the linear_regression application from the Phoenix System*
(csl.stanford.edu/~christos/sw/phoenix).

Step No. 1: Run Memory Access Analysis to Uncover Potential Memory Issues

Run Memory Access analysis with these options enabled:

 • Select Memory Objects Analysis.

 • Set Object Size Threshold to 1 to capture all memory allocations.

The Summary view shows some key metrics (Figure 5).

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
http://csl.stanford.edu/~christos/sw/phoenix

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

6 Bottom-Up tab

For our first run, the elapsed time is 50 seconds. We can also see that the application is
“Memory Bound” and that more than 42 percent of CPU resources are wasted waiting for
memory operations to complete. Note that the Memory Bound metric is colored pink; this
indicates that a potential performance issue needs to be addressed.

Step No. 2: Investigate the Memory Issue Identified

Switch to the Bottom-Up tab (Figure 6) to see more details.

5 Key metrics

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

We see that almost all of our time is spent in a single function, linear_regression_pthread.
We can also see that this function is L1 and DRAM bound.

Expand the grid row for the linear_regression_pthread function to see what memory objects it
accessed and sort by Loads (Figure 7).

We see that the hottest object—stddefines.h:52 (512 B)—is quite small, only 512 bytes. It
should fit fully into the L1 cache, but the Average Latency metric shows a latency of 44 cycles.
This far exceeds the normal L1 access latency of four cycles, which often means we have some
contention issues that could be either true or false sharing.

By examining the allocation stack for the “stddefines.h:52 (512B)” object (Figure 8), we can see
source location where the object was allocated.

In this example, num_procs is the number of threads and the structure being allocated is lreg_args.

7 Expand Grid row and sort by Loads

8 Source location

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

The threads are accessing the lreg_args structure as follows:

We can see that each thread is independently accessing its element in the array,
so it does look like false sharing.

Step No. 3: Modify the Code to Remove the False Sharing

False sharing can typically be easily avoided by adding padding so that threads always access
different cache lines.

Modify the lreg_args structure by adding a char pad[80] field as follows:

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

Step No. 4: Rerun Memory Access Analysis

Figure 9 shows the new result.

The new elapsed time is 12 seconds. We improved the application’s performance by
approximately 4x just by making a one line code change that padded a structure. The Memory
Bound metric is also much lower and the L1 Bound issue has been resolved.

9 Elapsed time

Tough Problem No. 2: NUMA Issues

In a processor that supports NUMA, it is not enough to know that you missed a cache on the
CPU where you are running. In NUMA architectures, you could also be referencing the cache and
DRAM on another CPU. The latencies for this type of access are an order of magnitude greater
than the local case. You need the ability to identify and optimize these remote memory accesses.

For this case, we’ll study a simple triad application parallelized using OpenMP* and running a
dual-socket Intel® Xeon® processor.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

51The Parallel Universe

First, we initialize the arrays and then call the Triad function that uses “omp parallel for.”

Step No. 1: Run Memory Access Analysis

Run the Memory Access analysis on this application. The expectation is for it to be DRAM
bandwidth-bound, without utilizing the system bandwidth up to the maximum (Figure 10).

Here is the code:

The all-new Intel® Software Products Technical Webinars
begin soon. Improve your application performance,
streamline your workload, and learn the best tips and
tricks from Intel® software experts.

REGISTER NOW FOR EACH FREE WEBINAR.

LEARN MORE >

Copyright © 2016, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Get InspIred tHIs sprInG

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
http://software.intel.com/events/development-tools-webinars?utm_campaign=CMD&utm_source=PUM24&utm_medium=Ad&utm_content=Spring16webinars

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

52The Parallel Universe

The summary section includes some very useful metrics. We can see the elapsed time is 12.449
seconds. The Memory Bound metric is high and highlighted (as we expected). What is puzzling is
the Bandwidth Utilization histogram shows only a medium DRAM bandwidth utilization level of
50 to 60 GB/s. This will need to be investigated.

Some other useful metrics are:

 • Average Latency. This is the average number of cycles our memory accesses are taking. Note: An L1
memory access can usually be done in four cycles, but a remote DRAM access can take approximately
300 cycles.

 • KNL Bandwidth Estimate. This is an estimate of the expected per-core bandwidth if run on next-
generation Intel® Xeon Phi™ coprocessors. This is useful for users who will be moving to this platform
and would like to know if the memory access portion of their code is ready.

10 Memory Access analysis

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

53The Parallel Universe

11 Bottom-Up tab

Step No. 2: Investigate Bandwidth Utilization

Switch to the Bottom-Up tab (Figure 11) to see more details.

From the timeline graph, we see that DRAM bandwidth is utilized on only one of the sockets,
package_1. In addition, we see high QPI (intra-socket) traffic, up to 30 GB/s. This is a typical
issue on NUMA machines, where memory is allocated on one node and the work is split among
multiple nodes. This forces some of them to have to load the data remotely over QPI links, which
is much slower than accessing local memory.

blog highlightThe next-generation Intel® Xeon Phi™ coprocessor family x200 product (code-name Knights Landing)
brings in new memory technology, a high bandwidth on package memory called Multi-Channel
DRAM (MCDRAM) in addition to the traditional DDR4. MCDRAM is a high bandwidth (~4x more than
DDR4), low-capacity (up to 16GB) memory, packaged with the Knights Landing Silicon. MCDRAM can
be configured as a third-level cache (memory-side cache) or as a distinct NUMA node (allocatable
memory) or somewhere in between. With the different memory modes by which the system can
be booted, it becomes very challenging from a software perspective to understand the best mode
suitable for an application.

An Intro to MCDRAM (High Bandwidth Memory) on Knights Landing
BY MIKE PEARCE >

BloG HIGHlIGHts

Read more

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/user/336031
https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

54The Parallel Universe

Step No. 3: Modify the Code to Avoid Remote Memory Access

If we change the code to make both sockets access only local memory, thus avoiding remote
node accesses, it should run faster. On Linux*, memory pages are allocated on first access. So the
solution for our case is simple: We should initialize the memory on the same nodes where we’ll
be working with them. We can accomplish by adding an omp parallel for pragma to our
initialization loop:

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

Step No. 4: Rerun Memory Analysis with KMP_AFFINITY Variable

12 Bandwidth utilization

Our elapsed time has decreased from 12.449 to 6.69 seconds, almost a 2x speed-up. Also, our
DRAM and width utilization moved to high levels, aligned with expectations (Figure 12).

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

Bandwidth is now equally split between the sockets and QPI traffic is 3x lower (Figure 13).

The complexities of NUMA architectures necessitate greater attention to the details of your
memory accesses. By optimizing the memory accesses in your application that have the greatest
latencies, you can get the biggest potential performance gains.

Tough Problem No. 3: Optimizing for Next-Generation Intel® Xeon Phi™ Coprocessors

Memory bandwidth often becomes a limiting factor for application performance. The new
generation of Intel Xeon Phi coprocessors features a special on-package MCDRAM memory
that aims to alleviate this physical bandwidth limit problem. MCDRAM memory can deliver
much greater bandwidth speed-up in addition to the 90 GB/s for the traditional DRAM (DDR4)
memory that you can also access. However, MCDRAM memory has limited size, so it is important
to determine which data objects should be placed to this high-bandwidth type of memory to
benefit the most.

Step No. 1: Run Memory Access Analysis

In this example, we’ll be using the miniFE* benchmark from the Mantevo Suite* (mantevo.org/).
Profiling the benchmark without modifications using the Intel VTune Amplifier Memory Access
analysis features, we observe that the benchmark code is memory bound. This means it induces
a significant amount of traffic in the traditional memory and may benefit from employing the
high-bandwidth capabilities of MCDRAM (Figure 14).

Copyright © 2016, Intel Corporation. All rights reserved. Intel, the Intel logo, and Quark are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

tHe smart way to
create smart code
Create Exciting IoT Solutions

Create blazing-fast applications with deep system-wide insight into power, performance,
and reliability. Intel® System Studio for Microcontrollers, an Eclipse*-integrated software
suite, is designed to empower Intel® Quark™ microcontroller developers to create fast,
intelligent things.

Learn more >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://mantevo.org/
http://software.intel.com/intel-system-studio-microcontrollers/download?utm_campaign=CMD&utm_source=PUM24&utm_medium=Ad&utm_content=ISS/

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

Step No. 2: Investigate the Memory Allocation-Inducing Bandwidth

Applying Function/Memory Object/Allocation Stack grouping in the Bottom Up view of Memory
Access analysis results, we find that the majority of memory accesses are produced in the objects
of miniFE::CSRMatrix and miniFE::Vector classes (Figure 15).

14 Memory access

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

15 Function/Memory Object/Allocation Stack grouping

16 Stack Pane

17 Source View

In addition, the Stack Pane provides the full allocation call stack of miniFE::CSRMatrix class data,
where we can see the source code location of the allocation operation (Figure 16).

Clicking on the line associated with the CSRMatrix.hpp:93 string, the Source View is opened at the
place of allocation operation in CSRMatrix.hpp file at line 93 (Figure 17).

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

…
#include “/opt/mk-0.3.0/include/hbwmalloc.h”
…
template<typename Scalar,
 typename LocalOrdinal,
 typename GlobalOrdinal,
 typename ComputeNode>
struct CSRMatrix {
…
 typedef Scalar ScalarType;
 typedef LocalOrdinal LocalOrdinalType;
 typedef GlobalOrdinal GlobalOrdinalType;
 typedef ComputeNode ComputeNodeType;

 bool has_local_indices;
 std::vector<GlobalOrdinal, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal> > rows;
 std::vector<LocalOrdinal, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal> > row_offsets;
 std::vector<LocalOrdinal, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal> > row_offsets_external;
 std::vector<GlobalOrdinal, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal> > packed_cols;
 std::vector<Scalar, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal> > packed_coefs;
 LocalOrdinal num_cols;
 ComputeNode& compute_node;
…
}

template<typename Scalar,
 typename LocalOrdinal,
 typename GlobalOrdinal,
 typename ComputeNode>
struct CSRMatrix {
…
 typedef Scalar ScalarType;
 typedef LocalOrdinal LocalOrdinalType;
 typedef GlobalOrdinal GlobalOrdinalType;
 typedef ComputeNode ComputeNodeType;

 bool has_local_indices;
 std::vector<GlobalOrdinal> rows;
 std::vector<LocalOrdinal> row_offsets;
 std::vector<LocalOrdinal> row_offsets_external;
 std::vector<GlobalOrdinal> packed_cols;
 std::vector<Scalar> packed_coefs;
 LocalOrdinal num_cols;
 ComputeNode& compute_node;
…
}

The miniFE::CSRMatrix class data is managed by STL vector containers that have the flexibility of
specifying a custom memory allocator class for stored vector elements:

Step No. 2: Allocate Objects Using High-Bandwidth Memory

Moving miniFE::CSRMatrix and miniFE::Vector data objects to MCDRAM memory is possible by
employing the memkind library API (https://github.com/memkind/memkind). The
hbwmalloc.h header file provides the implementation of the hbwmalloc::hbwmalloc_allocator
class, which may be used to parameterize the STL vector container with MCDRAM (high-
bandwidth) type of memory.

For our case, the modifications look like this:

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://github.com/memkind/memkind

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

[vtune@nntvtune46 src]$ /usr/bin/time /tmp/miniFE-2.0_openmp_ref_ORIG/src/miniFE.x.sh
MiniFE Mini-App, OpenMP Peer Implementation
Creating OpenMP Thread Pool...
Counted: 12 threads.
Running MiniFE Mini-App...
 creating/filling mesh...0.197327s, total time: 0.197329
generating matrix structure...13.5858s, total time: 13.7832
 assembling FE data...13.3513s, total time: 27.1345
 imposing Dirichlet BC...2.61192s, total time: 29.7464
 imposing Dirichlet BC...1.11535s, total time: 30.8617
making matrix indices local...1.19209e-06s, total time: 30.8617
Starting CG solver ...
Initial Residual = 201.001
Iteration = 20 Residual = 0.0609161
…
Iteration = 200 Residual = 0.00112011
Final Resid Norm: 0.00112011
2671.76user 9.53system 3:55.02elapsed 1140%CPU (0avgtext+0avgdata 1511308maxresident)k0inputs+8out-
puts (0major+49614minor)pagefaults 0swaps

[vtune@nntvtune46 src]$ /usr/bin/time /tmp/miniFE-2.0_openmp_ref_KNL/src/miniFE.x.sh
MiniFE Mini-App, OpenMP Peer Implementation
Creating OpenMP Thread Pool...
Counted: 12 threads.
Running MiniFE Mini-App...
 creating/filling mesh...0.198685s, total time: 0.198686

Rebuilding the modified source code and reapplying the Memory Access analysis to the new
version of the benchmark code, we observe that miniFE::CSRMatrix and miniFE::Vector data
objects are now created using hbwmalloc::hbwmalloc_allocator class provided by the memkind
library (Figure 18).

Step No. 3: Re-Run the Benchmark

Running the modified version of the benchmark on Intel Xeon Phi coprocessor memory with
MCDRAM we see that it executes almost four times faster than the original version of the
benchmark allocating its intensively processed data in the traditional DRAM memory:

18 Memory Access analysis

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

61The Parallel Universe

This example demonstrates how bandwidth-bound code can benefit from placing its most
intensively processed data in the MCDRAM memory available on the latest Intel Xeon Phi
platform, and how the memkind library can greatly simplify this task.

Conclusion
It is crucial to optimize the memory accesses of your program. Understanding how your program
is accessing memory by using a tool such as Intel VTune Amplifier XE can greatly assist you in
getting the most out of your hardware.

We showed an overview of the new Intel VTune Amplifier XE Memory Access analysis feature. We
also showed how some tough memory problems could be resolved by using this feature.

We showed how users could detect false sharing problems by seeing high average latency values
for relatively small memory objects. We improved application performance by 4x with a trivial
one-line code change by just padding a structure.

We showed how users could help detect NUMA issues with a significant amount of remote memory
accesses and improved application performance by 2x after removing the remote access.

Finally, we demonstrated how finding the portions of your code that can take advantage of the
memory technologies available on the latest Intel Xeon Phi platform can help increase the speed
of the benchmark application 4x.

try Intel® vtune™ amplIfIer Xe
Part of Intel® Parallel Studio XE >

generating matrix structure...13.9371s, total time: 14.1358
 assembling FE data...13.1823s, total time: 27.3181
 imposing Dirichlet BC...2.51502s, total time: 29.8331
 imposing Dirichlet BC...1.10896s, total time: 30.942
making matrix indices local...9.53674e-07s, total time: 30.942
Starting CG solver ...
Initial Residual = 201.001
Iteration = 20 Residual = 0.0609161
…
Iteration = 200 Residual = 0.00112011
Final Resid Norm: 0.00112011
475.87user 2.09system 0:52.25elapsed 914%CPU (0avgtext+0avgdata 2598752maxresident)k0inputs+8outputs
(0major+23143minor)pagefaults 0swaps

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
http://makebettercode.com/parallelstudioxe-eval/en?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

62The Parallel Universe

optImIzInG ImaGe IdentIfIcatIon wItH
Intel® InteGrated performance prImItIves

Yueqiang Lu, Application Engineer, Intel APAC R&D Ltd., and
Ying Hu, Technical Consulting Engineer, Intel APAC R&D Ltd.

Tencent, Inc., is China’s largest and most-used Internet service portal. It owns both the largest
online game community and the largest Web portal (qq.com), as well as the No. 1 and No. 2
applications (WeChat*, QQ*) in China.

Every day, Tencent needs to process billions of new user-generated images from WeChat, QQ,
and QQ Album*. Some hot applications even have hundreds of millions of images to be uploaded,
stored, processed, and downloaded in a single day―which consumes vast computing resources.

Tencent Speeds MD5 Image Identification by 2x

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
http://qq.com

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

63The Parallel Universe

To manage, store, and process these images, Tencent developed Tencent File System* (TFS*).
But even with compression, the image volume reached hundreds of petabytes. Moreover, it is
still growing explosively―and the supported cluster has more than 20,000 servers.

Technical Background
Based on TFS, the image processing system provides uploading, scaling, encoding, and
downloading services. As an image uploads, TFS scales it into a different resolution and creates
the related ID by Message Digest Algorithm 5 (MD5).1 Next, the image is transcoded into WebP*
format for storage. While downloading an image, the system must find the right place to read the
image, and then transcode it into the user-required image format and resolution (Figure 1).

Because the website has tons of visits each second, there’s a small possibility that the image
download component will read the wrong image. Avoiding this kind of error requires an MD5
calculation and check. However, this is a huge computing workload―so Tencent needed to
maximize MD5 computing performance.

Originally, Tencent used the md5sum* utility tool along with the Operator* OS to compute the
MD5 value for each image file. Intel worked closely with Tencent engineers to help them optimize
performance with Intel® Integrated Performance Primitives (Intel® IPP)―which helped Tencent
achieve a 100 percent performance improvement on the Intel® architecture-based platform.

Intel® Streaming SIMD Extensions and Software Optimization
Intel introduced an instruction set extension with the Intel® Pentium® III processor called Intel®
Streaming SIMD Extensions (Intel® SSE). This was a major redesign of an earlier single instruction,
multiple data (SIMD) instruction set called MMX®, introduced with the Intel Pentium processor.

1 Tencent File System* image processing

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-ipp/
https://software.intel.com/en-us/articles/intel-vectorization-tools

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

64The Parallel Universe

2 SIMD operation on 8 data instructions

Intel evolved the Intel SSE instruction set along with Intel architecture, extending it by wider
vectors and adding a new extensible syntax and rich functionality. The latest SIMD instruction set,
Intel® Advanced Vector Extensions 2 (Intel® AVX2), can be found in the Intel® Core™ i7 processor.

Most of the Intel® Xeon® processors in the TFS system support Intel SSE2, one of the Intel® SIMD
processor supplementary instruction sets. Intel SSE2 is supplemented by Intel SSE3, Intel SSE4.x,
and Intel Advanced Vector Extensions (Intel AVX).

Intel AVX is a 256-bit instruction set extension to Intel SSE, designed to provide even higher
performance for applications that are compute-intensive. Intel AVX adds new functionality to the
Intel SIMD instruction set (based on Intel SSE) on floating-point and integer computing, and it
includes a more compact SIMD instruction set.

Figure 2 shows one SIMD operation on 8 data (32-bit integer type, floating point type) instructions.

Intel AVX improves performance by extending the breadth of vector processing capability across
floating-point and integer data domains. This results in higher performance and more efficient
data management across a wide range of applications such as image and audio/video processing,
scientific simulations, financial analytics, and 3D modeling and analysis.

Algorithms That Benefit from Intel SSE

Algorithms that can benefit from Intel SSE2 include those that employ logical or mathematical
operations on data sets larger than a single 32-bit or 64-bit word. Intel SSE uses vector
instructions, or SIMD architecture, to complete operations such as bitwise XOR, integer or floating-
point multiply-and-accumulate, and scaling in a single clock cycle for multiple 32-bit or 64-bit
words. Speed-up comes from the parallel operation and the size of the vector (multiword data) to
which each mathematical or logical operator is applied.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

65The Parallel Universe

Examples of algorithms that can significantly benefit from SIMD vector instructions include:

 • Image processing and graphics. Both scale in terms of resolution (pixels per unit area) and the pixel
encoding (bits per pixel to represent intensity and color) and both benefit from speedup relative to
processing frame rates.

 • Digital signal processing (DSP). Samples digitized from sensors and instrumentation have resolution-
like images as well as data acquisition rates. Often, a time series of digitized data that is one-dimensional
will still be transformed using algorithms, like a DFT (Discrete Fourier Transform), that operate over a
large number of time series samples.

 • Digest, hashing, and encoding. Algorithms used for security, data corruption protection, and data loss
protection such as simple parity, CRC (cyclic redundancy check), MD5, SHA (secure hash algorithm),
Galois math, Reed-Solomon encoding, and CBC (cypher-block-chaining) all make use of logical and
mathematical operators over blocks of data, often many kilobytes in size.

 • Data transformation and data compression. Most often, simulations in engineering and scientific
computing involve data transformation over time and can include grids of data that are transformed.
For example, in physical thermodynamic, mechanical, fluid-dynamic, or electrical-field models, a grid
of floating-point values is used to represent the physical fields as finite elements. These finite element
grids are then updated through mathematical transformations over time to simulate a physical process.

Intel IPP Optimized for Intel AVX
Intel IPP is a performance building block for all kinds of image and signal processing, data
compression, and cryptography needs. These ready-to-use, royalty-free functions are highly
optimized using Intel SSE, Intel AVX, Intel AVX2, and Intel AVX-512 instruction sets, which often
outperform what an optimized compiler can produce alone.3

AVX = Advanced Vector Extensions
SSE = Streaming SIMD Extensions

SSSE = Supplemental Streaming SIMD Extensions

Table 1. Intel® IPP features

Table 1 summarizes the features of Intel IPP.

Optimized for Performance
and Power Efficiency

Intel Engineered and
Future-Proofed to Shorten
Development Time

Wide Range of Cross-Platform
and OS Functionalitiesy

Highly tuned routines Fully optimized for current and past
processors

Thousands of highly optimized
signal, data, and media functions

Highly optimized using SSSE4,
SSSE3, Intel® SSE, and Intel®
AVX, Intel® AVX2, Intel® AVX-512
instruction sets

Saves development, debug, and
maintenance time

Broad domain support

Performance beyond what an
optimized compiler produces alone

Code once now, receive future
optimizations later

Supports Intel® Quark™,
Intel® Core™, Intel® Xeon®, and
Intel® Xeon Phi™ platforms

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

66The Parallel Universe

Associated with Processor-Specific Libraries

IA-32 Architecture IA- 64 Architecture Description

px mx Generic code optimized for processors with Intel® Streaming SIMD
Extensions (Intel® SSE)

w7 Optimized for processors with Intel SSE2

m7 Optimized for processors with Intel SSE3

v8 u8 Optimized for processors with Supplemental Streaming SIMD
Extensions 3 (SSSE3), including the Intel® Atom™ processor

p8 y8 Optimized for processors with Intel SSE4.1

g9 e9 Optimized for processors with Intel® Advanced Vector Extensions
(Intel® AVX) and Intel® Advanced Encryption Standard New Instructions
(Intel® AES-NI)

h9 l9 Optimized for processors with Intel AVX2

n0 Optimized for Intel AVX-512 on Knights Landing (F, CD, ER, PF)

k0 Optimized for Intel AVX-512 on Intel® Xeon® (F, CD<BW, DQ, VL)

The Intel IPP library is optimized for a variety of SIMD instruction sets. Besides the optimization,
Intel IPP also provides an automatic “dispatching” mechanism, which can detect the SIMD
instruction set that is available on the running processor and select the optimal SIMD instructions
for that processor.

Table 2 shows processor-specific codes that Intel IPP uses.

Table 2. Processor-specific codes

See Understanding CPU Dispatching in the Intel® IPP Library for more information on dispatching. For more information on Intel IPP
functions optimized for Intel AVX, read the article Intel® IPP Functions Optimized for Intel® AVX.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-understanding-cpu-optimized-code-used-in-intel-ipp?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
https://software.intel.com/en-us/articles/intel-ipp-functions-optimized-for-intel-avx-intel-advanced-vector-extensions?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

67The Parallel Universe

MD5 in Intel IPP

Hash functions are used in cryptography with digital signatures and for ensuring data integrity.
When used with digital signatures, a publicly available function hashes the message and signs the
resulting hash value. The party that receives the message can then hash the message and check if
the block size is authentic for the given hash value.

Hash functions are also referred to as “message digests” and “one-way encryption functions.” To
ensure data integrity, hash functions are used to compute the hash value that corresponds to a
particular input. Then, if necessary, you can check if the input data has remained unmodified. You
can recompute the hash value again using the available input and compare it to the original hash
value. Intel IPP has implemented the following hash algorithms for streaming messages:

 • MD5 [RFC 1321]

 • SHA-1

 • SHA-224

 • SHA-256

 • SHA-384

 • SHA-512 [FIPS PUB 180-2]

These algorithms are widely used in enterprise applications.

A Closer Look at MD5

MD5 is a widely used cryptographic hash function producing a 128-bit (16-byte) hash value,
typically expressed in text format as a 32-digit hexadecimal number.

Although MD5 was considered as “cryptographically broken and unsuitable” in a strict
environment, it has been widely used in the software world to provide some assurance that a
transferred file has arrived intact. For example, file servers often provide a precomputed MD5
(known as md5sum) checksum for the files, so that a user can compare the checksum of the
downloaded file to it. Most Linux*-based operating systems include md5sum utilities in their
distribution packages.

The Intel IPP MD5 functions apply hash algorithms to digesting streaming messages. It uses a state
context (for example, ippsSHA1State) as an operational vehicle to carry all necessary variables to
manage the computation of the chaining digest value. For example, the primitive implementing the
MD5 hash algorithm must use the ippsMD5State context. The function Init initializes (MD5Init)
the context and sets up specified initialization vectors. Once initialized, the function Update
(MD5Update) digests the input message stream with the selected hash algorithm until it exhausts
all message blocks. The function Final (MD5Final) is designed to pad the partial message block
into a final message block with the specified padding scheme. It then uses the hash algorithm to
transform the final block into a message digest value.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

68The Parallel Universe

Here is an example illustrating how the application code can apply the implemented MD5 hash
standard to digest the input message stream:

1. Call the function MD5GetSize to get the size required to configure the ipps MD5State context.

2. Ensure that the required memory space is properly allocated. With the allocated memory, call the
MD5Init function to set up the initial context state with the MD5-specified initialization vectors.

3. Keep calling the function MD5Update to digest the incoming message stream in the queue until its
completion. To determine the current value of the digest, call MD5GetTag between the two calls to
MD5Update.

4. Call the function MD5Final for padding the partial block into a final MD5-1 message block and
transform it into a 160-bit message digest value.

5. Clean up secret data stored in the context.

6. Call the operating system memory free service function to release the ippsMD5State context.

Intel engineers optimized Intel IPP functions mainly by the vectorization, or SSE instruction, and by
extracting Intel architecture such as cache utilization, registers reutilization, etc.

With respect to Intel IPP MD5 implementation, the optimized technique is used:

 • Fully unrolled code instead of tiny loop

 • Using cyclic registers permutation instead of memory operations

 • Coding rotations immediately instead of general parameterized 32-bit rotation

“Through close collaboration with Intel engineers, we adopted
the Intel® Integrated Performance Primitives library for the
image identification component in our online image storage and
processing application. The application’s performance improved
significantly, and our cost of operations reduced greatly. We really
appreciate the collaboration with Intel and are looking forward to
more collaboration.”

Nicholas, Leader of the TFS-Based Image Storage and Processing Team

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

69The Parallel Universe

Invoking Intel IPP to Accelerate MD5

The Intel IPP MD5 code, md5test.cpp, is compiled using gcc as follows:

[root@localhost code]# make -f Makefile.gcc
g++ -O2 ipp_md5.cpp –o ipp_md5
-I/opt/intel/compilers_and_libraries_2016.0.109/linux/ipp/include
/opt/intel/compilers_and_libraries_2016.0.109/linux/ipp/lib/intel64/libippcp.a

/opt/intel/compilers_and_libraries_2016.0.109/linux/ipp/lib/intel64/libippcore.a

This integrates the IPP crypto library into the program and extracts performance from the
computing resources automatically. Figure 3 is a screen shot of Intel® VTune™ Amplifier XE running
the ipp_md5 program. It shows the ipp function e9_ippsMD5Update takes most of the CPU time
of the program where e9 (AVX-optimized) code was running.

The Intel IPP code replaced the md5sum. With the code shown in Table 3, no more manual
optimization was needed.

Table 3. Code example

 md5sum code IPP MD5

md5sum performance.PNG > hash.md5
cat hash.md5
0e5e74555b68db366c85b1b194f258fe
performance.PNG.

The md5sum is along with Cent OS
distribution.

char* intel_md5sum(const char *p,
unsigned uiLen)
 {
 static Ipp8u MD[32];
 int size;
 IppsMD5State *ctx;
 ippsMD5GetSize(&size);
 ctx = (IppsMD5State*)malloc(size);
 IppStatus st = ippsMD5Init(ctx);
 st = ippsMD5Update((const Ipp8u *)
p, (int)uiLen, ctx);
 st = ippsMD5Final(MD, ctx);
 free(ctx);
 return (char*)MD;
}

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

70The Parallel Universe

3 Intel® VTune™ Amplifier XE running the ipp_md5 program

Performance Data

The test was run based on different sizes of image files using Intel IPP and md5sum provided by
the Linux OS. Using 10,000 iterations resulted in the performance shown in Table 4 and Figure 4.

Table 4. Test run performance results

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

71The Parallel Universe

4 Test run performance

On the Intel® Xeon® processor E5-2620 (15M Cache, 2.00 GHz, 7.20 GT/s Intel® QuickPath
Interconnect, Intel AVX-supported), comparing the md5sum along with Linux showed a 100 percent
performance improvement. Tencent engineers also implemented Intel IPP MD5 for their online system.
Their test showed about a 60 percent performance improvement compared to the original MD5.

Conclusion
Tencent has billions of new user-generated images to process every day from WeChat, QQ, and
QQ Album. All images are handled by the TFS-based image storage and processing system.
Tencent has to give each image a unique ID by MD5 hash. Intel worked with Tencent engineers to
optimize this function component using Intel IPP, achieving a 2x performance improvement.

Methods for improving the speed of computing the md5sum of images is straightforward
with Intel IPP. This work demonstrates significant progress toward being able to handle these
computationally intensive methods by optimizing them for the latest Intel® hardware using the
Intel IPP and performance-tuning methodologies.

R
un

tim
e

(s
ec

on
ds

)

Configuration Info - Versions: Intel® IPP 9.0.0, Hardware: Intel® Xeon® Processor E5-2620 (15M Cache, 2.00 GHz, 7.20 GT/s
Intel® QPI) Memory: 64G Operating System: CentOS8 6.5 x86_64; Benchmark Source: Test Image files.
*Other brands and names are the property of their respective owners.
Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimiza-
tions that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel® microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

72The Parallel Universe

References
1. md5sum on Wikipedia.

2. Using Intel® Streaming SIMD Extensions and Intel® Integrated Performance Primitives to
Accelerate Algorithms.

3. Intel® AVX Realization of IIR Filter for Complex Float Data.

download Intel® InteGrated
performance prImItIves today >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://en.wikipedia.org/wiki/Md5sum
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
https://software.intel.com/en-us/articles/intel-avx-realization-of-iir-filter-for-complex-float-data?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
https://software.intel.com/sites/campaigns/nest/?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

73The Parallel Universe

develop smarter usInG tHe latest
Iot and emBedded tecHnoloGy

It takes a lot of work to turn a great idea into a great product. And having the right tools for
the job makes the whole process much easier. Intel is providing those tools to meet all your
embedded system development needs with Intel® System Studio and Intel® System Studio
for Microcontrollers. This unified set of software development tools for coding, analysis,
and debugging works with all Intel® microcontrollers, Internet of Things (IoT) devices, and
embedded platforms.

Go from Great Idea to Great Product with Intel® System Studio

Noah Clemons, Technical Consulting Engineer, Parallel Programming Products, Intel Corporation

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-sdp-home/

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

74The Parallel Universe

In this article, we’ll:

 • Provide a quick overview of Intel System Studio and Intel System Studio for Microcontroller components

 • Discuss how the components work across all platforms

 • Describe where the components have been adapted to accommodate the new microcontroller platform

 • Explain how Intel System Studio addresses IoT needs as well as embedded development

Who Needs Intel System Studio?
Intel System Studio is for:

 • Device manufacturers who need the right tools to bring life into platforms

 • System integrators who rely on existing platforms and need to establish a full system software stack

 • Embedded software developers who need to build and optimize dedicated applications

Build Exciting Products
Intel System Studio focuses on providing all the tools you need to develop exciting products on
Intel® hardware, supporting Intel’s embedded platforms from Intel® Quark™ X1000 and Intel® Atom™
processor-based IoT gateways through Intel® Core™ and Intel® Xeon® processor-based servers.

Intel System Studio for Microcontrollers is specifically built to provide you with a customized
development environment focused on microcontrollers for the Intel® Quark™ microcontroller
D1000, D2000, and SE (coming soon).

This post continues a series of articles that describes the opencl_node, a new node available in the
Intel® Threading Building Blocks (Intel® TBB) library since version 4.4 Update 2. This node allows
OpenCL™ powered devices to be more easily utilized and coordinated by an Intel TBB flow graph. The
first article in this series can be found here.

In the previous article, I described the basic interfaces. In this posting I discuss selecting devices to use
for execution of a kernel.

Device Selection
BY ALEX KATRANOV >

BloG HIGHlIGHts

Read more

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview
https://software.intel.com/en-us/user/317878
https://software.intel.com/en-us/blogs/2015/12/14/opencl-node-basic-interfaces-and-opencl-buffer

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

75The Parallel Universe

Intel System Studio Intel System Studio for Microcontrollers

Platforms Intel® Xeon® processor, Intel® Core™ processor,
Intel® Atom™ processor, Intel® Quark™ U-series SoC

Intel® Quark™ D-series microcontroller

Software
Development
Environment

Eclipse-based integrated development
environment (IDE), Command Line*, Intel® Graphics
Performance Analyzers

Eclipse-based IDE, Command Line

Host Systems Linux*, Windows*, OS X*1 Linux*, Windows*

Compilers Intel® C++ Compiler Intel® C++ Compiler or GNU* C Compiler2

Target Platform OS Linux, Android*, Windows, FreeBSD*, VxWorks* Bare metal, Real Time* OS

Target Platform
Software

Samples, debugger, and profiler support drivers Board support package, Intel® Quark™ microcontroller
software interface, samples

Libraries Intel® Math Kernel Library, Intel® Performance
Primitives, and Intel® Threading Building Blocks
(Image, Signal Math, Data Processing, Multithreading)

C Runtime, Floating-Point Emulation, and DSP libraries

Analyzers Intel® VTune™ Amplifier, Energy Profiler, Inspector
(Memory Analyzer)

Power Analyzer3

Debuggers Applications and OS, WinDbg* Kernel debugger, Intel®-
enhanced GDB, Intel® System Debugger, JTAG, JTAG
over USB, UEFI Agent

Application and OS, Embedded System Registers View, MCU
Flashing Intel®-enhanced GDB, OpenOCD*-based JTAG

Intel System Studio
With Intel System Studio, you can choose between using the command line or GUI-based tools
including full Eclipse* or Microsoft Visual Studio* integration. These tools support targeting Windows*,
Linux*, VxWorks*, Wind River Linux*, FreeBSD*, and Android*, and support the latest versions of Intel®
processors including Intel Quark, Intel® Edison platform, Intel Atom x3 processors (formerly code-
named SoFI), Intel Atom x5, x7 processors (formerly code-named Cherry Trail), 6th generation Intel
Core processors (formerly code-named Skylake), Microsoft Windows 10, and FreeBSD.

The backbone capability of Intel System Studio is an optimizing compiler, the Intel® C/C++ Compiler,
and libraries with enhanced C++11 and C++14 (-std=c++14) feature support―generating tailored
code for your architecture as well as the ability to analyze your system. The three main libraries are
Intel® Integrated Performance Primitives (Intel® IPP), Intel® Math Kernel Library (Intel® MKL), and Intel®
Threading Building Blocks (Intel® TBB).

Intel IPP provides the performance building blocks for image, signal, and string processing; data
compression; cryptography; and computer vision through an extensive library of software functions.
Supported by both Intel System Studio and Intel System Studio for Microcontrollers, these libraries
provide additional optimizations for Intel Quark, Intel Atom, and Intel Core processors.

1. Intel® System Studio supports some, but not all OS X* features.
2. Intel® Quark™ D1000 MCU is supported by the LLVM-based Intel® Compiler; Intel® Quark™ D2000 and Intel Quark SE MCUs are supported by GCC.
3. Power Analyzer for MCUs is coming soon.

Table 1. Intel® System Studio and Intel® System Studio for Microcontrollers capabilities

Table 1 shows some of the features these suites provide.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

76The Parallel Universe

Optimized for Performance and
Power Efficiency

Intel Engineered and Future-Proofed
to Shorten Development Time

Wide Range of Cross-Platform
and OS Functionalities

Highly tuned routines Fully optimized for current and past
processors

Thousands of highly optimized
signal, data, and media functions

Highly optimized using SSSE4,
SSSE3, SSE, and AVX, AVX2,
AVX-512 instruction sets

Save development, debug, and
maintenance time Broad domain support

Performance beyond what an
optimized compiler produces alone

Code once now, receive future
optimizations later

Supports Intel® Quark™, Intel® Core™,
Intel® Xeon®, and Intel® Xeon®
platforms

These ready-to-use, royalty-free functions are highly optimized using Intel® Streaming SIMD
Extensions (Intel® SSE) and Intel® Advanced Vector Extensions (Intel® AVX, Intel® AVX2, and Intel®
AVX-512) instruction sets, which often outperform what an optimized compiler can produce alone.

Intel MKL speeds math processing in scientific, engineering, and financial applications. Version
11.2 added Parallel Direct Sparse Solver for Clusters, Verbose mode for BLAS, and LAPACK,
S/C/Z/DGEMM improvements on small matrix sizes, significant SVD and eigensolvers performance
improvements, and other features and optimizations to expand this library further.

Intel TBB is a widely used C++ template library for task parallelism. It provides parallel algorithms
and data structures, threads and synchronization primitives, and scalable memory allocation and
task scheduling. Version 4.3 also provides Memory Allocator improvements (improved tbbmalloc
to increase performance and scalability for threaded applications), improved Intel® Transactional
Sychronization Extensions (Intel® TSX) support (applications that use read-write locks can take
additional advantage of Intel TSX via tbb::speculative_spin_rw_mutex), improved compatibility
with the C++ 11 standard, tasks arenas (improved control over workload isolation and the degree
of concurrency with new class tbb::task_arena), and support for the latest Intel® architecture. (See
the Intel TBB release notes for a hardware support matrix.)

Intel® VTune™ Amplifier is an essential performance profiling and power analysis tool. It enables
you to quickly and easily get the tuning data you need for a wide array of analysis types, such as
performing a power analysis on an IoT gateway or a modem-based platform.

Intel® System Debugger offers JTAG debugging support through USB, providing an array of tools
to meet your debugging needs. The first tool is the JTAG debug and instruction trace to Microsoft
WinDbg* kernel debugger (Intel System Studio for Windows target version). This helps to isolate
tricky Windows driver issues during board bring-up and includes Intel® Processor Trace support in
the WinDbg kernel debugger to help isolate complex runtime issues.

Table 2. Benefits of Intel® System Studio

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb-support/documentation
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-system-debugger?wapkw=intel%20system%20debugger

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

77The Parallel Universe

Intel® System Studio for Microcontrollers
Intel System Studio for Microcontrollers is a new tool suite supporting Intel Quark D1000,
Intel Quark D2000, and Intel Quark SE microcontrollers. The suite offers an Eclipse-based
integrated development environment. Developers can also run the tools in Intel System Studio for
Microcontrollers from the command line using the Make utility.

Intel System Studio for Microcontrollers supports creating code to run on bare-metal systems or on
select real-time operating systems (on D2000 and SE microcontrollers). It includes a board support
package (BSP) that eliminates the need for writing the bootstrap code and simplifies I/O functions.

1 IoT end-to-end scalability

Intel® Trace Hub performs system tracing to capture system-wide hardware and software events.
(It supports 6th generation Intel Core processors.) This helps you understand complex interactions
between hardware and software faster and offers time-stamp correlated trace information.

Closed Chassis Debug is JTAG-based debug and trace over a low-cost USB connection. This lets
you develop with the form factor that meets your product goals without exposing a debug port.
Instead, a USB port can be wired to support all your debugging needs.

Figure 1 shows the tools’ end-to-end scalability for IoT projects.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-system-studio-microcontrollers
https://software.intel.com/sites/default/files/managed/d3/3c/intel-th-developer-manual.pdf?wapkw=intel%20trace%20hub

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

78The Parallel Universe

In addition to BSP for Intel Quark D2000 and Intel Quark SE microcontrollers, Intel System Studio
for Microcontrollers includes the Quark™ Microcontroller Software Interface (QMSI) package,
which includes implementation for most I/O interfaces (e.g., GPIOs, analog input, I2C, SPI, UART)
and also includes device drivers for peripherals found on customer reference boards (e.g., Bosch
BMC150* accelerometer).

Intel System Studio for Microcontrollers comes with floating-point emulation and DSP libraries,
which are highly optimized for code size (typically less than 1KB per function) with an emphasis
on performance, accuracy, and low power consumption. The DSP library, based on the popular
CMSIS-DSP* library, includes basic math, fast math, complex math, statistics, transform,
interpolation, and matrix functions. The Intel-optimized LibM includes some most frequently
used single-precision functions such as sqrtf, expf, logf, sinf, cosf, sincosf, tanf, asinf, acosf, atanf,
floorf, ceilf, and truncf. Compared to the GNU* standard C math library, it offers up to 10x better
performance and up to 5x smaller code size.

Intel System Studio integrates debugger and MCU firmware flashing support using open source
GDB and OpenOCD* software. On the hardware side, the JTAG interfacing is done using simple
and cost-effective FTDI FT232H and FTDI FT2232H USB to JTAG/UART adapters.

Cross-Platform Tools
Regardless of what platform you’re targeting, Intel System Studio has a well-defined set of
tools that work seamlessly across the wide variety of embedded, mobile, wearable, IoT, and
now microcontroller platforms. You can use these tools from very small to large many-core
applications. While this article focused on the compiler and libraries, the analysis tools work
across the same range of platforms and are worth understanding as well.

Learn more
• Intel® System Studio
• Intel® System Studio for Microcontrollers
• Intel® Math Kernel Library
• Intel® Performance Primitives
• Intel® System Debugger
• Intel® Threading Building Blocks
• Intel® vTune Amplifier

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-system-studio?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
https://software.intel.com/en-us/intel-system-studio-microcontrollers?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-system-debugger
https://software.intel.com/en-us/intel-tbb-support/documentation
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

79The Parallel Universe

tunInG HyBrId applIcatIons
wItH Intel® cluster tools

Alexey Malhanov, Software Development Engineer, and Dmitry Prohorov, Software Engineering Manager,
Intel Corporation

Modern many-core processors such as Intel® Xeon Phi™ products can provide balanced
performance-per-watt numbers to build efficient high-performance computing systems. But
the growing number of cores―with the relatively slow growth of memory size and increasing
complexity of memory hierarchy―might be a limiting scalability factor for pure MPI applications.
The need for data replication in MPI ranks and increasing MPI buffers, plus intensive intra-node
communications for hundreds of cores, can limit application performance. Hybrid programming
models of MPI + X, where “X” utilizes shared memory models for intra-node communications, can
reduce the bottlenecks and increase the scalability of the application.

Understanding MPI Utilization Inefficiencies
and Balancing Thread Level Loads

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-trace-analyzer

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

80The Parallel Universe

One of the most popular hybrid programming models is MPI + OpenMP*, since pragma-
based OpenMP is relatively easy to use to introduce thread-level parallelism and is based on
industry standards. On the other hand, the challenge of adding a programming model requires
performance analysis tools that are MPI and “X”-aware to understand scalability issues.

This article describes the capabilities of Intel® VTune™ Amplifier XE and Intel® Trace Analyzer and
Collector, which are part of Intel® Parallel Studio XE Cluster Edition, for tuning MPI + OpenMP
applications. As an example, we’ll consider a life science application, heart_demo, which simulates
electrophysiological heart activity with the help of Runge-Kutta and finite elements methods.

Hybrid Application Tuning: Where to Begin?
For any developer who creates applications that use both MPI and OpenMP, the goal is to
develop a performant application that will use the cluster time allotted to the job as efficiently
as possible. The Intel® MPI Performance Snapshot utility, a feature of Intel® Trace Analyzer and
Collector, can be considered as an entry point for that. Here, we eliminate the aspect of optimal
processes/threads ratio identification and concentrate on application efficiency improvement
for a given amount of resources. For this article, the cluster we are using has four nodes with two
sockets and 36 CPUs per socket and can launch one process per socket to avoid NUMA effects.
Thus, we have eight MPI processes with 36 OpenMP threads each.

The MPI Performance Snapshot utility is a lightweight utility that gives us the overview of
the application performance. It depicts inefficiencies connected with both MPI and OpenMP
and suggests ways to explore further and deeper with the additional analysis capabilities of
ITAC in cases where an application is MPI-bound, or to Intel VTune Amplifier XE if the application
has weaknesses in OpenMP utilization. To enable the statistics-gathering with the help of the
MPI Performance Snapshot utility, simply add the “-mps” option in a command line for
mpirun execution:

 source mpivars.sh

 source mpsvars.sh

 mpirun -mps -n 8 -ppn 2 -hosts host1,…,host4 ./heart_demo [parameters]

 mps stats.txt app_stat.txt -O report_initial.html

The first two lines are needed for setting up the necessary environment. The third launches the
application with the MPI Performance Snapshot utility profiling. And the last forms the report.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-tbb

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

81The Parallel Universe

1 MPI Performance Snapshot Summary

For the application, we get the result shown in Figure 1.

From this summary, what conclusions can we make? First, our application spends one-third of the
overall execution time in the MPI library. This might not be efficient, since part of this time could be
spent on calculation, thus reducing overall execution time. Secondly, despite the fact that the MPI
Performance Snapshot utility indicated our application is well-threaded, the OpenMP imbalance is
high. This means the workload is distributed irregularly among the threads in parallel regions.

Exploring an MPI-Bound Application with the Help of ITAC

There are three key reasons for an application to be MPI-bound:
1. High wait times inside the MPI library. This occurs when a process waits for the data from other processes.

This case is characterized with high values of MPI Imbalance indicator (Figure 1).

2. Active communications.

3. Poor or incorrectly set optimization settings of the library.

To reduce the impact of the first and second items, the user may consider the communication
pattern for restructuring. The third item could be improved with the help of the mpitune utility,
which is a part of Intel® MPI Library package.

Now, for further analysis on the MPI communications, let us use ITAC to dive deep into MPI-related
problems. To enable the statistics-gathering within ITAC, the user should add the -trace option in
a command line for mpirun execution:

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

82The Parallel Universe

2 Message profile chart

The commands to set up ITAC are similar to those used for the MPI Performance Snapshot utility
in the first round of analysis performed. The change in the third line represents the command line
for the application execution with ITAC profiling enabled. Once the profiling has been completed,
you can see the results in the ITAC graphical user interface.

ITAC is broad and rich with functionality for exploring the efficiency of MPI utilization. Figure 2
shows the message profile chart.

The cell with i-th row and j-th column in the chart depicts the communication time between
processes with numbers I and j respectively. From the chart, we can conclude that each of the
processes communicates with the others. Processes with numbers 1, 2, 3, 4, 5, 6, and 7 have
relatively large communication time with process 0. Such a picture is typical for a communication
pattern where one of the processes (in this case, with number 0) is a so-called “master” process
that distributes the workload between others and gather the results of calculations.

source mpivars.sh

source itacvars.sh

mpirun -trace -n 8 -ppn 2 -hosts host1,…,host4 ./heart_demo [parameters]

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

83The Parallel Universe

3 Message profile chart after improvements

From Figure 2, we can conclude that the reason for inefficient MPI utilization may be a too-active
communication scheme. To overcome the problem, let us reconsider the communication pattern.

For this case, we managed to reorganize the data and change the communication pattern so that
each process commutates only with the next and previous processes.

After the improvements, the message profile chart looks like Figure 3.

The communication matrix changed, becoming diagonal, and communication time between
processes drastically improved.

The MPI Performance Snapshot utility results show the dramatic improvement in the efficiency:
reorganizing the data and optimizing the communication patterns, we managed to speed up the
application more than two times (Figure 4).

However, the tool still indicates that the application is MPI-bound, which means there is still room
for refinement from the MPI point of view. Nevertheless, it is enough for our purposes and we
further concentrate on OpenMP utilization tuning in the application.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

84The Parallel Universe

4 Dramatic improvements in efficiency

Reducing OpenMP Imbalance with the Help of Intel VTune Amplifier XE

The MPI Performance Snapshot utility shows several metrics that allow assessing OpenMP
parallelization efficiency. The collection uses statistics generated from the Intel OpenMP runtime
library. It includes the ability to calculate serial time―how much wall time the application spends
in execution outside parallel regions―as well as the time spent by OpenMP threads on barriers
waiting for other threads to finish their work on barrier synchronization points. The latter can be a
result of load imbalance on an implicit region or loop or explicit user barriers. In our case, we have
significant time identified by the MPI Performance Snapshot utility as OpenMP imbalance. The
tool can use the Intel VTune Amplifier XE performance analysis tool to explore this in more detail.

As the MPI Performance Snapshot utility, Intel VTune Amplifier XE uses Intel OpenMP runtime
statistics generated in application runtime to find:

• OpenMP region/barrier markup
• Imbalanced barriers
• Parallel loop attributes (e.g., scheduling, chunking, loop iteration count)

The instrumentation in OpenMP runtime is used carefully so as not to spoil the performance
picture of the application. Mostly, these are global fork-join and barrier points, avoiding costly per-
thread instrumentation. To estimate the cost of scheduling, locks, atomic operations, reduction,
and overhead on parallel work arrangement, Intel VTune Amplifier XE uses a CPU sampling and
statistical approach that normally produces accurate results on compute-intensive workloads.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

85The Parallel Universe

From the summary view, we can see that the application has tuning potential for OpenMP parallel
code with a maximum gain of 21 percent of the application wall time. So it is worth exploring
further. Since the application has only one parallel region construct, the Top OpenMP Regions
view contains the only region.

Drilling down to a grid view and expanding the region by barriers of work-sharing constructs, we
can see the information in Figure 6.

5 Basic hotspots analysis

6 Expanding the region by barriers of work-sharing constructs

Let’s use a basic hotspots analysis (Figure 5) on a rank detected by ITAC as the most
CPU-bound to see the OpenMP efficiency information.

mpirun -gtool “amplxe-cl -collect hotspots -r result:1” -hosts

host1,…,host3 -n 8 -ppn 2 ./heart_demo [parameters]

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

86The Parallel Universe

7 Recollecting the profile with dynamic scheduling

8 Grid view

Sorting the grid by the Imbalance metric, we can choose a loop of interest to play with dynamic
scheduling to eliminate the imbalance impact. For simplicity, let’s apply dynamic scheduling for
all parallel loops, choosing nondefault chunking to eliminate scheduling overhead (20 iterations).
After recollecting the profile with dynamic scheduling, we can see results in Figure 7.

Figure 7 shows that the application runtime is improved by 12 seconds. The imbalance numbers
became better. The grid view (Figure 8) shows us the parallel loops that benefited most.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

87The Parallel Universe

The parallel loop at line 275 in heart_demo.cpp shows 4 seconds of elapsed time
improvement. Loops in heart_demo.cpp lines 322, 338, 352, and 366 show 2 seconds of
improvement per loop, even though the imbalance did not completely vanish. The loop in
heart_demo.cpp line 294 became 1.5 seconds worse because scheduling overhead annihilated
the imbalance improvement. This means it makes sense to keep it static. The results in this case
will look like Figure 9.

Playing with scheduling, we need to be careful with cache usage (Figure 10). Cache reuse can
become worse with the dynamic nature of work distribution by worker threads. That, in turn,
can make parallel loop time even longer.

9 Hotspots by CPU usage

10 Cache usage

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

88The Parallel Universe

Conclusions
We have described a step-by-step workflow for hybrid application analysis and tuning. The
Message Profile chart from ITAC helped us to understand MPI utilization inefficiencies and
eliminate them by changing the communication pattern. Intel VTune Amplifier XE gave insight
into OpenMP parallelization efficiency and helped to better balance thread level loads.

We have not covered all possible strategies for hybrid application analysis and tuning, since the
tools have rich functionality, which is out of our scope. Tool utilization scenarios can vary from
application to application. You should refer to the appropriate user manuals to learn about tool
functionality and choose the best approach for your project.

try Intel® vtune™ amplIfIer Xe and
Intel® trace analyzer and collector
Part of Intel® Parallel Studio XE Cluster Edition >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
http://makebettercode.com/parallelstudioxe-eval/en?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

89The Parallel Universe

vectorIze your code usInG
Intel® advIsor Xe 2016
Kevin O’Leary, Software Technical Consulting Engineer, Kirill Rogozhin, Software Development Manager,
and Vadim Kartoshkin, Technical Writer, Intel Corporation

Many factors can make programs difficult for automatic vectorization. In this article, we will
examine some of the factors that can make vectorizing code problematic without providing
the compiler with some additional hints. Vectorizing loops is critical for increasing your
applications’ performance, and Intel® Advisor XE is the tool that can guide you through the
process of vectorization.

Solve Common Problems When Increasing Performance

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

90The Parallel Universe

Intel Advisor XE 2016 is a dynamic analysis tool that now contains a Vectorization Advisor feature
(Figure 1). Using Vectorization Advisor, you can survey all the loops in your application and see:

 • Which loops were vectorized and which loops were not

 • What prevented vectorization for the non-vectorized loops

 • The speedup and vectorization efficiency for the vectorized loops

 • Any issues that decreased efficiency of the vectorized loops

 • The vectorized and non-vectorized loops that were limited by the memory layout

In this article, we will provide an overview of the Vectorization Advisor and show some new
features that can assist you with vectorization on the next generation of Intel® Xeon Phi™
(formerly Knights Landing). We will also provide some examples of common problems and show
how you can utilize the Vectorization Advisor to vectorize them.

	 Filter	by	showing	
vectorized	loops	

vectorized!

Focus	on	
hot	loops

Review	vectorization	
issues	

Determine	the	
code	efficiency

View	vectorization	
blockers

Study	the	vector	instruction	
sets	used

View	trip	
counts

1 Vectorization Advisor: All the data you need, at your fingertips

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/intel-vectorization-tools

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

91The Parallel Universe

Five Steps to Improve Your Vector Efficiency
1. Survey. The first step is surveying the application. During this survey step, you can see the loops where

your application is spending time. The hot loops are where you will get the greatest benefit from
optimizing. Figure 2 is a Survey Report of an application. In Intel Advisor XE, you can filter by the type of
loop: vectorized or non-vectorized. Non-vectorized loops show what is preventing vectorization.

2. View recommendations. Get specific advice for improving your vectorization efficiency. Also, see issues
that prevent vectorization.

3. Trip counts. We collect loop iteration trip counts as a separate collection step. It is very important to
know not just that a loop is hot, but also the trip count. If your trip count is low, there may not be enough
iterations to vectorize efficiently. You can also see if your trip count is divisible by your vector length and
will not require a remainder loop.

4. Dependency analysis. To generate correct code, the compiler must take a conservative view with
respect to the semantics of the language it is compiling for. If it is possible for a dependency to exist
based on the rules of the language, then the compiler must assume the dependency exists. By using a
dynamic tool such as Intel Advisor XE, you can check if the assumed dependency is real.

5. Memory access pattern (MAP) analysis. You may greatly increase the vectorization efficiency of your
application if you know how your data structures are laid out in memory and accessed in your loop. It is
important that memory references are aligned properly, accessed in unit stride manner, etc. There are
several techniques related to memory access that can assist with vectorization, such as converting your
data structures from Arrays of Structures to Structures of Arrays. Using a MAP analysis,
you can uncover the patterns that are inherently vector-inefficient.

	

2 Vector efficiency: Your performance thermometer

Achieved Original (scalar) code Upper bound – 100% efficient

Efficiency Speedup

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

92The Parallel Universe

Vectorization Advisor can estimate your code’s vectorization efficiency. By examining the
efficiency metric, you can see which loops have issues that need to be addressed. If a loop
is vectorized but at low efficiency, you can first check if Vectorization Advisor gives any
recommendations for improving the code efficiency. Generally, data structure layout can
affect vector efficiency greatly. In this case, you can run a MAP analysis to determine if you are
referencing memory in a vector-friendly manner.

No Access to Intel® AVX-512 Hardware Yet?
Using Intel Advisor XE, you can get your code ready for the next generation Intel Xeon Phi
coprocessors even if you don’t have access to the hardware yet. Enable this functionality by
generating code for multiple vector instruction sets (including AVX-512) using the Intel® Compiler
–ax option, and then analyze the resulting binary with Vectorization Advisor.

Compile the Code with –ax Flags

First, order the compiler to generate binaries with alternative code paths (besides the default
ones). You can do that by specifying the –ax options. For example, generate code for both SSE2
and AVX2 instruction set analyses (ISAs) in the same binary using the following compilation flag:

With this option, the compiler generates assembly for the SSE2 instruction set (this is the default
if you don’t specify a different default instruction set with the –x or –m flag) and also generates
alternative code paths for the AVX2 instruction set that will be used if the system on which the
binary executes has the hardware with the corresponding ISA.

If you want to generate the code that targets some high-end hardware (including Intel Xeon Phi
machines, for example), you can order the compiler to generate code that will use the highest
ISA available.

Consider this example, where we target minimum ISA as SSE4.1 and expect the code to
use corresponding instructions on the machines with AVX2 and AVX-512 instruction set
architectures:

In this case, the compiler generates the code that includes the following code paths:

–axCORE-AVX2

-axCORE-AVX512, –axCORE-AVX2, –xsse4.1

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

93The Parallel Universe

	

	
	
	
	
	
	
	

View	Efficiency	
Estimates

View	ISA
View	Potential	

Gain

Study	Traits View	Instructions	
Utilized

Compare	Vector	
Width

3 Intel® Advisor XE Survey report

 • –xsse4.1 changes the default code path to SSE4.1 if the hardware does not support
the alternative ones.

 • –axCORE-AVX2 sets the first alternative, which will be used on a machine with
AVX2-enabled hardware.

 • –axCORE-AVX512 sets the second alternative, enabling a machine with AVX-512 ISA
to use corresponding instructions.

If you are interested in viewing the difference between the codes generated for different vector
ISAs, refer to the Intel Advisor Survey report to take a deeper look at the non-executed loops.
The report provides information about various traits used for different ISAs and enables you to
compare estimated gains (Figure 3).

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

94The Parallel Universe

Enable Non-Executed Code Paths Analysis

Once you have your binary compiled to use different and most suitable instruction sets
depending on the hardware capabilities, you need to enable Intel Advisor to analyze all versions
of the vector loops residing in your binary, as follows.

1. Run Intel Advisor XE.

2. In Project Properties (Ctrl+P):
 a. Specify path to the binary.

 b. Check “Analyze loops in not executed code path.”

3. Click OK.

If you work in command line (e.g., an MPI application on a cluster node), use CLI syntax:

mpirun -n 2 -gtool "advixe-cl -collect survey -support-multi-isa-binaries
-no-auto-finalize --project-dir=/tmp/my_proj" /tmp/bin/my_app

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

95The Parallel Universe

Viewing Loops Residing in Non-Executed Code Paths

Survey the Binary

Click the Collect button at the workflow tab.

Warning: Finalization of Intel® Advisor XE results for all loops (including the non-executed ones for ISAs different from those
available with the current hardware) might take more time than usual.

Turn on Viewing the Non-Executed Loops in the Survey Report

Once the Survey analysis results are collected, refer to the Survey report. You need to
enable viewing of non-executed loops in the Survey grid, which can be done by clicking the
corresponding button:

Once you click the button, Intel Advisor will refresh the grid and add non-executed loops under
“parent” loops. To see them, expand a vectorized loop . You will see the non-executed loops
among those that did execute (Figure 4).

4 Non-executed loops among executed loops

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

96The Parallel Universe

Survey Columns to Study

Now look at the Vectorized Loops column (extend using with the button):

Intel Advisor also shows compiler diagnostics for the non-executed loops , which include:
 • The Vector ISA column, which simply notifies you which ISA the particular code path targets.

 • The VL (Vector Length) column, which reports the vector length. So, for the case of running the sample
code used while writing this article on an Intel Xeon Phi-enabled machine, vector loop needs 16 to
32 (depending on a loop) operations fewer than its scalar version, which leading to potentially higher
performance.

 • The Compiler Estimated Gain column, which shows the performance predictions made by the compiler.
The estimated gain is compared to the scalar version of the same loop running on the hardware supporting
the target ISA. In other words, the compiler estimates a 6.05X gain for the vectorized version of the loop
against its scalar version, with both running on the same AVX2-enabled machine. Another example is the
13.29X gain predicted by the compiler in the case of running the same loop on an AVX-512 machine.

You definitely want to view the Instruction Set Analysis column to compare AVX2 and
AVX-512 loops:

 • The Traits column reports instructions, whose presence may impact code performance significantly (in
both negative and positive ways). For AVX-512-enabled loops, Intel Advisor may indicate such traits as
Gather, Compress, SQRT reciprocal, Mask Manipulations, among others, enabled with the AVX-512 ISA only.

 • The Vector Width column, which shows the vector register width in bits, which is hardware-specific.

 • The Instruction Sets column, which reports instruction sets used for individual instructions.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

97The Parallel Universe

View Assembly Representation

To view the assembly of a code path with a different ISA (e.g., AVX-512), select the loop in the
Survey grid, then click on the Loop Assembly tab:

Using this feature, you can view the difference between AVX2 and AVX-512 code paths.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

98The Parallel Universe

More Background on Loop Vectorization
A typical vectorized loop consists of:

 • Main vector body: Fastest among the three.

 • Optional peel part: Used for unaligned references in your loop. Uses Scalar or slower vector.

 • Remainder part: Due to the number of iterations (trip count) not being divisible by vector length.
Uses a scalar or slower vector.

A larger vector register means more iterations in peel/remainder, so:
 • Make sure you align your data (and you tell the compiler it is aligned)

 • Make the number of iterations divisible by the vector length

AVX-512 Diagnostic Examples

RTM Stencil Project

Stencil computation is the basis for the Reverse Time Migration algorithm in seismic computing.
The underlying mathematical problem is to solve the wave equation using a finite difference
method. This sample computes a 3D 25-point stencil. Generating AVX-512 code for an RTM
Stencil sample project shows that the compiler estimates an AVX-512 speedup of 25.28x and
AVX2 speedup of 9.59x (Figure 5).

Since the vector length difference is 2x, we would expect the AVX-512 code to be 2x faster, but it
is estimated to be 2.63x faster.

Using Intel Advisor XE you can also see a possible answer for the discrepancy. The AVX2 code has
scalar remainder, but in AVX-512 the remainder is vectorized.

5 Speedup for RTM Stencil sample project

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/code-samples/intel-c-compiler/application-domains/Stencil/rtm-stencil
https://software.intel.com/en-us/code-samples/intel-c-compiler/application-domains/Stencil/rtm-stencil

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

99The Parallel Universe

LCD Vectorization Benchmark

In this example project, the compiler estimated gains for the two versions: 12.20x (AVX2) vs.
36.34x (AVX-512). So the AVX-512 code is 2.97x faster but the vector length is only twice as big.
In the RTM Stencil example, the compiler was not able to vectorize the AVX2 remainder loop.

In this case, both AVX2 and AVX-512 code paths have vectorized remainders. This is likely
explained by using masked operations in AVX-512.

For AVX2:

For AVX-512:

According to the data in the Vectorization details, it turns out that the AVX-512 code used
masked operations in the remainder loop, leading to a 16.88x speedup, while the AVX2
remainder loop had a speedup of only 2.60x.

Using masked operations enables the AVX-512 version to vectorize the “peel” loop as well. Note
that in the loop below, the AVX-512 version has vectorized peel, body, and remainder loops.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

100The Parallel Universe

The AVX-512 vectorized remainder has a “full” VL of 16, while the AVX2 version has a VL of 4—
less than the VL of the AVX2 body. The AVX2 version has only a scalar peel loop, while AVX-512
peel is vectorized with an estimated speedup 9.0x.

Key Takeaways
A couple of things to summarize:

 • Now you can generate and analyze the code that targets multiple ISAs at once on a single machine.
In addition, you can make performance predictions based on the compiler reports.

 • With Intel Advisor, you can now view ISA-specific “families” of instructions, used for individual
instructions, and also view traits that are code-path specific.

Also see:
 • Intel® C++ Compiler Code Generation Options
 • Intel® Fortran Compiler Code Generation Options
 • x, Qx compiler options of the Intel® C++ Compiler
 • x, Qx compiler options of the Intel® Fortran Compiler
 • ax, Qax compiler options of the Intel® C++ Compiler
 • ax, Qax compiler options of the Intel® Fortran Compiler

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/node/581723
https://software.intel.com/en-us/node/579297
https://software.intel.com/en-us/node/581749
https://software.intel.com/en-us/node/579311
https://software.intel.com/en-us/node/581725
https://software.intel.com/en-us/node/579299

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

101The Parallel Universe

Conclusion
In this article, we presented an overview of Intel Advisor XE 2016 and also the feature that
enables you to analyze the code that targets AVX-512 ISAs while running this code on a machine
with only an AVX2-enabled processor. We also presented examples that demonstrate how
Vectorization Advisor can assist you in vectorizing C++ STL code.

To get the most out of your hardware, you need to modernize your code with vectorization
and threading. Taking a methodical approach such as the one outlined in this paper, and taking
advantage of the powerful tools in Intel Parallel Studio XE, can make the modernization task
dramatically easier.

try Intel® advIsor Xe 2016
Available as part of Intel® Parallel Studio XE >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en
http://makebettercode.com/parallelstudioxe-eval?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Watch Weekly for Free Advice from Intel Experts

Build better data analysis applications, vectorize effectively,
and boost performance. Register now for each session
you’d like to attend.

For more complete information about compiler optimizations, see our Optimization Notice.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Intel® software products
 tecHnIcal weBInars
Spring 2016 Series

date topIc presenter
Wednesday, March 16
9:00 to 10:00 a.m. PDT Have a Heart: Love Your Hybrid Programs James Tullos reGIster

Tuesday, March 22
9:00 to 10:00 a.m. PDT

We Are Family: Harnessing Heterogeneous Systems
with Intel® Threading Building Blocks Mike Voss reGIster

Tuesday, March 29
9:00 to 10:00 a.m. PDT Effective Parallel Optimizations with Intel® Fortran Martyn Corden reGIster

Tuesday, April 5
9:00 to 10:00 a.m. PDT

Faster Data Applications on Spark* Clusters Using
Intel® Data Analytics Acceleration Library Zhang Zhang reGIster

Tuesday, April 12
9:00 to 10:00 a.m. PDT

A New Era for OpenMP*: Beyond Shared Memory
Parallel Programming Xinmin Tian reGIster

Tuesday, April 19
9:00 to 10:00 a.m. PDT

Improving Vectorization Efficiency Using
Intel® Standard Data Layout Template Library

Anoop
Madhusoodhanan
Prabha

reGIster

Tuesday, April 26
9:00 to 10:00 a.m. PDT

Vectorize or Performance Dies: Tune for the Latest AVX
SIMD Instructions―Even without the Latest Hardware Kevin O’Leary reGIster

Tuesday, May 3
9:00 to 10:00 a.m. PDT Boost Python* Performance with Intel® Math Kernel Library

Ricardo
Covarrubias
Carreno

reGIster

Tuesday, May 10
9:00 to 10:00 a.m. PDT

Intermittent Multithreading Bugs: Find and Squash Races,
Deadlocks, and Memory Bugs Kevin O’Leary reGIster

Tuesday, May 17
9:00 to 10:00 a.m. PDT

Understanding the Effect of NUMA on Your Workloads:
Intel® VTune™ Amplifier with Memory Analysis Bhanu Shankar reGIster

Tuesday, May 24
9:00 to 10:00 a.m. PDT

Performance Analysis of Python* Applications with
Intel® VTune™ Amplifier Vasilij Litvinov reGIster

Tuesday, May 31
9:00 to 10:00 a.m. PDT

Building Fast Code for Data Compression and Protection
in Intel® Integrated Performance Primitives Yu Chao reGIster

https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://attendee.gotowebinar.com/register/4417444467585231873
https://attendee.gotowebinar.com/register/2596497081337190657
https://attendee.gotowebinar.com/register/7125831877867473665
https://attendee.gotowebinar.com/register/666446255776537089
https://attendee.gotowebinar.com/register/1028082227221904641
https://attendee.gotowebinar.com/register/1804385814943459073
https://attendee.gotowebinar.com/register/7591704850161105409
https://attendee.gotowebinar.com/register/6856469121248950529
https://attendee.gotowebinar.com/register/8257261228686639617
https://attendee.gotowebinar.com/register/2901567577580488705
https://attendee.gotowebinar.com/register/7515787970309798401
https://attendee.gotowebinar.com/register/5608816993327851009

Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

103The Parallel Universe

Copyright © 2016, Intel Corporation. All rights reserved. Intel, the Intel logo, Atom, Core, Cilk, Pentium, Quark, VTune, Xeon, and Xeon Phi
are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice#opt-en

	Button 2:

