
RAL-TR-2009-028

December 2009

D.J. Worth, C. Greenough and L.S. Chin

A Survey of C and C++ Software Tools
for Computational Science

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

RAL-TR-2009-028

A Survey of C and C++ Software Tools for

Computational Science

D.J. Worth, C. Greenough and L.S. Chin

December 2009

Abstract

This report provides a survey of some of the software tools currently available to assist
in the development of scientific software in C and C++. There are far more tools
available for these languages than can be covered in this report and we come at the task
of surveying the field with the eyes of scientific software developers. These developers
do not work in the same way as commercial developers nor often to the same rules!
The lack of a strict development model means that tools aimed at managing the
complete lifecycle are missing from this report, however we will introduce the basic
idea of the software lifecycle, its components and tools that could be used at each
stage. There are sections covering coding (including source code quality assurance),
source code control, the build environment, compiling, debugging, testing and source
code documentation. We will also include material on libraries that we consider may
be useful in the scientific software field.

Keywords: Scientific Software, Software Engineering, C, C++, Software Tools

Reports can be obtained from www.softeng.cse.clrc.ac.uk

Software Engineering Group
Computational Science & Engineering Department
STFC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
Oxfordshire OX11 0QX

Contents

1 Introduction 4
1.1 History of C and C++ . 4
1.2 C and C++ in Scientific Software . 5
1.3 Software Development . 5

2 Design 6
2.1 Dia . 7
2.2 Kivio . 7
2.3 ArgoUML . 7
2.4 Xfig . 7

3 Implementation 7
3.1 Writing Code . 7

3.1.1 Anjuta DevStudio . 8
3.1.2 Code::Blocks . 8
3.1.3 Eclipse CDT . 9
3.1.4 Geany . 9
3.1.5 KDevelop . 9
3.1.6 Microsoft Visual Studio . 10
3.1.7 Sun Studio . 10
3.1.8 XCode . 10

3.2 Source Code Control . 11
3.2.1 CVS . 11
3.2.2 Subversion . 11
3.2.3 Distributed Source Code Control . 12

3.3 Code Documentation . 12
3.3.1 Doxygen . 13
3.3.2 Natural Docs . 13
3.3.3 ROBODoc . 13

3.4 Static Analysis of Source Code . 13
3.4.1 Splint . 14
3.4.2 cppcheck . 14
3.4.3 Rough Auditing Tool for Security . 15
3.4.4 C and C++ Code Counter . 15
3.4.5 CppNcss . 15
3.4.6 Gnocchi . 15
3.4.7 LDRA Testbed . 16

4 Testing 16
4.1 Unit testing . 17

4.1.1 CUnit . 17
4.1.2 CppUnit . 17

4.2 Integration and System Testing . 18
4.2.1 Ndiff . 19
4.2.2 Numdiff . 19
4.2.3 Toldiff . 19
4.2.4 GNU gcov . 19

1

4.2.5 ggcov . 19
4.2.6 lcov . 19
4.2.7 gprof . 20
4.2.8 oprofile . 20
4.2.9 Google Perf Tools . 20
4.2.10 Sun Studio . 20
4.2.11 Intel VTune . 21
4.2.12 The GNU Project Debugger . 21
4.2.13 DDD . 21
4.2.14 Nemiver . 22
4.2.15 Integrated Debuggers . 22
4.2.16 Mudflap . 22
4.2.17 Valgrind . 22

5 Compilation and Build Systems 22
5.1 Compilers . 23

5.1.1 GNU Compiler . 23
5.1.2 Intel Compiler . 23
5.1.3 Borland Compiler . 23
5.1.4 Digital Mars Compiler . 23
5.1.5 IBM Compiler . 23
5.1.6 Microsoft Visual C++ . 23
5.1.7 Sun Compiler . 24
5.1.8 XCode . 24

5.2 Build systems . 24
5.2.1 The Autotools . 24
5.2.2 Make . 25
5.2.3 CMake . 25
5.2.4 SCons . 25
5.2.5 Jam . 26

6 Useful Libraries 26
6.1 Numerical Libraries . 27

6.1.1 The Matrix Template Library . 27
6.1.2 LAPACK++ . 27
6.1.3 SparseLib++ . 27
6.1.4 Iterative Methods Library in C++ . 28
6.1.5 Numerical Matrix/Vector Classes in C++ 28
6.1.6 Template Numerical Toolkit . 28
6.1.7 ARPACK++ . 29
6.1.8 Boost Basic Linear Algebra . 29
6.1.9 GNU Scientific Library . 29
6.1.10 Blitz++ . 29
6.1.11 PETSc . 30
6.1.12 Getfem++ . 30
6.1.13 Overture . 30
6.1.14 FFTPACK++ . 31
6.1.15 The NAG C Library . 31

6.2 Visualisation . 31

2

6.2.1 The Visualization ToolKit—VTK . 31
6.2.2 PLplot . 32
6.2.3 PGPLOT . 32

6.3 Other Libraries . 32
6.3.1 GLib . 32
6.3.2 Boost . 33

3

1 Introduction

It is a truth universally acknowledged that a developer in possession of an algorithm
must be in want of the Fortran programming language.

Or, to put it another way, for many many years it has been held as self evident that ef-
ficient scientific software must be written in Fortran. While there are strong arguments in
favour of this assumption: built in array datatypes, limitation to procedural coding style, bet-
ter optimising compilers, availability of supporting numerical libraries among others, non of
these is enough to reject other languages. The main reason Fortran continues to be used and
the language evolve is the large amount of legacy code built up over the last decades. This
code requires support and maintenance to keep it portable to new architectures and there are
tools and techniques to help with this process described in [1] and the resources available at
http://www.softeng.cse.clrc.ac.uk/bpwiki/Home.

We are not suggesting a wholesale switch of development language requiring re-engineering
from Fortran to C++, that would be a waste of effort. When considering new software de-
velopment however software groups are considering C and C++ as languages, e.g. the GNU
Scientific Library (GSL) [2], SciMath [3], LAPACK++ [4] and CHARM++ [5]. These libraries
are discussed further in section 6.

If scientific software developers are using or considering using C and C++ then it makes sense
to use it properly, with good standards of software engineering and associated tools. After all
what good are state-of-the-art algorithms and models and an all-consuming drive for the ultimate
in efficiency when there is no evidence that the code does what it was required to, is easy for
someone with the correct scientific background to maintain and develop, nor been tested in a
thorough and planned way. Without this evidence agreement with experiment is nothing more
than serendipity.

To address this point we give details about tools and techniques for good scientific software
development with C and C++ staring in section 2. We will look at the areas of software design,
implementation, testing and building software and offer a pragmatic approach in each that we
hope will not leave the reader drowning in jargon, paperwork, and the process.

We complete the introduction by looking at the history of C and C++, their roles in scientific
software and give a brief overview of the software development lifecycle. This latter section
describes software engineering terms that are used throughout the report.

1.1 History of C and C++

There is a great deal of material available on-line regarding C and C++ so we only give a brief
history and introduction to the two languages here.

C was originally developed at the Bell Telephone Laboratories in 1972 by Dennis Ritchie as
a means of programming on the Unix operating system. It is a procedural language with the
program split in to separate functions that are called to achieve the desired behaviour. It was
originally designed and used for system software but has been widely used to develop applications
software. Many compilers are available and it is supported on a wide array of architectures and
platforms. It was not until 1989 that ANSI X3.159-1989 “Programming Language C” was ratified
and this version of the language is often referred to as ANSI C, Standard C, or sometimes C89.
The ISO adopted that standard a year later as ISO/IEC 9899:1990, sometimes called C90. A
new standard (C99) was published as ISO/IEC 9899:1999 in 1999 and work is in progress on a
third.

As an enhancement to C, C++ was developed by Bjarne Stroustrup in 1979 again at Bell
Labs. The enhancements were in the area of object-orientation and added classes, inheritance,

4

virtual functions, operator overloading, templates and exception handling. The first standard
(ISO/IEC 14882:1998) was adopted in 1998 and a second (ISO/IEC 14882:2003) in 2003. Work
is in progress on a third. As an extension to C is is possible to program procedurally in C++.

1.2 C and C++ in Scientific Software

To date there has been little scientific application development in C or C++. There is a lot of
software written in both languages and their popularity is demonstrated by the number of tools
and libraries available in each language. We have already mentioned some scientific libraries
developed in C and C++ and there are many more that we haven’t. These are the building
blocks for applications but it seems that those developing applications have largely stuck with
what they (or their supervisors/project managers) know—Fortran. The issue of legacy software
also supports the dominance of Fortran. New developments within existing software lead to new
science and papers; re-engineering of existing code, whether by changing language or improving
implementation in the existing language, does not.

The major argument against C is that is does not have native array data types. Arrays must
be implemented as pointers with all the attendant memory management overhead(aches) they
involve especially when multi-dimensional arrays are necessary. Until dynamic arrays appeared
in Fortran 90, the memory management facilities of C were sometimes used to provide dynamic
initial sizing of arrays in Fortran.

The object-oriented enhancements of C that produced C++ did nothing to improve the chances
of the latter’s adoption by the scientific community. All the overheads of virtual functions and
operator overloading as well as the perceived insistence on data hiding made the knee jerk reaction
one of “would not touch it with a long stick”.

One of the author’s experiences with C++ in the mid-90s has left him well aware of the prob-
lems of class proliferation, horrific levels of inheritance and abstraction for the sake of abstraction
in which nothing must be seen to be doing any work.

There is little work on comparing performance of C or C++ against Fortran, the main reason
being that no-one wants to re-engineer to a new language just to do a performance comparison.
The nearest we can get is comparing algorithms in the area of numerical linear algebra (upon
which much of scientific computing is based) and there is evidence that shows C++ can perform
as well as Fortran with the right implementation [6]. The same author has put together a report
on useful techniques for implementing scientific programs in C++, with an emphasis on using
templates to improve performance [7].

1.3 Software Development

Many and varied are the descriptions of the software development process and its stages, just look
up “Software development process” in Wikipedia. Ranging from the much derided waterfall model
in which (formally) one stage leads to the next with no chance to revisit previous stages in the light
of experience to the modern concepts of extreme programming (XP) and test driven development
in which tasks are broken down into short iterations, there is little formal documentation and
integration is continuous.

The common features of all the models are:

• Requirements

• Design

• Implementation

5

• Testing

• Release

In this document we will address in detail the middle four of these.
Requirements gathering is scientific software is usually a matter of one or two people deciding

what would be interesting or necessary to include for their research. So long as these require-
ments are written down in a way that will make them useful when the process is complete it
is not important how this is done. Requirements can be used as embryonic user and developer
documentation and a basis for testing the whole system and should be understandable by code
writers and those who will come after wanting to develop and maintain the code.

The release of software is also outside the scope of this document. All we will say is that
software that is easy to install, or which may be complex but has good install instructions will
stand more chance of being tried and used.

The details for design, implementation and testing are given in the following sections and
following them we discuss compilers and build systems and some useful libraries that may reduce
the work when developing scientific software.

2 Design

“Oh, no. I don’t need design. I’ll get on much quicker if I just start coding.” This is one of
the standard responses when the subject of software design is raised in scientific circles. Such an
attitude is very short sighted. A single developer may get on more quickly by jumping straight
to code but will be left floundering if they want to collaborate with other developers or explain
how their software works. There is nothing wrong with wanting to get into coding early and the
experienced software developer has a plan in his or her head. So why not take half a day making
the design explicit? It is not against the rules to change things later, nor is change a sign of
weakness.

There are many methods for writing down the design. A flow chart could be used for C or
simply a textual list of the stages involved in the algorithm. For C++ there are a number of
object oriented modelling languages that describe the classes and their interactions. Currently
the most popular of these is the Unified Modeling Language (UML) [8] and its use can become
extremely complicated—something that should be avoided in our pragmatic approach.

If we were asked to make recommendations then:

C Use a numbered list to write a kind of pseudo-code for the algorithm. Second level numbering
could be used to expand some sections as required. Several lists could be used with one at
the highest level and others for lower level detail.

C++ Use a class diagram to give an idea of the classes in the code and their relationships. Add
the public methods (don’t bother with constructors, set/get methods etc.) and important
attributes for each class. Then write down how the software is built from these classes if
it is not clear from the class diagram (which it might not be to other developers). The
diagram should not be to complicated as it will be difficult to keep it up to date as the
design changes during development.

The design can be written on paper or there are software tools that could be used. Some free
tools are described in the rest of this section.

6

2.1 Dia

One tool that is fairly simple to use is Dia (http://live.gnome.org/Dia) available for Linux
and Windows. It can produce flow charts and class diagrams in UML and has a simple code
generation facility. Diagrams are loaded and saved to a custom XML format (gzipped by default,
to save space) and Dia can export diagrams to a number of formats, including EPS, SVG, XFIG,
WMF and PNG, and can print diagrams (including ones that span multiple pages).

There are a number of tools listed on the website that can take C++ code and create diagrams
in Dia format.

2.2 Kivio

Kivio (http://www.koffice.org/kivio/) is part of KOffice for KDE and is available for Linux.
It can produce flow charts and class diagrams in UML. A diagram can be saved in a number of
formats and printed.

2.3 ArgoUML

ArgoUML (http://argouml.tigris.org/) includes support for all standard UML 1.4 diagrams.
It runs on any Java platform and is available in ten languages. Diagrams can be saved as GIF,
PNG, PostScript, Encapsulated PS, PGML and SVG. It also provides code generation for Java,
C++, C#, PHP4 and PHP5. There are many other advanced features such as design critics and
suggested corrections for problems identified in the design, “To Do” lists and checklists.

2.4 Xfig

An old favourite, Xfig (http://www.xfig.org/) contains drawing objects for flowcharts and
UML class diagrams.

3 Implementation

This is where we really want to be. Writing code, running on big machines (that aren’t really quite
big enough), getting results and publishing papers. Just hold on, there is more to implementation
than writing the code. It needs doing in a way that makes it easy to develop with collaborators,
easy to maintain and port to new platforms and of good “quality”.

3.1 Writing Code

This is an area that provokes flame wars, name calling and raised eyebrows and we are definitely
not recommending one way of writing code over another, or one tool over another. There are
broadly two types of tools here:

• Integrated development environments (IDEs) that include editor, GUI designer, source code
control, compilation, debugging, running. The editor may include syntax highlighting,
code auto-completion using type ahead suggestions, calltips for functions, bookmarks and
refactoring support (changing variable names, extracting interface for abstract base class
etc).

• Traditional editors that just edit text.

7

The division between these classifications is becoming increasingly blurred as the more tradi-
tional editors offer plugins to extend their functionality such as adding compilation from within
the editor.

We will concentrate on IDEs here as they are problably less well known than the traditional
editors such as vi, (x)emacs, gedit, kate, etc.

3.1.1 Anjuta DevStudio

This is a comprehensive GTK based IDE for various languages but has most functionality for C
and C++ (http://anjuta.sourceforge.net/features). The features include

• File manager: Open file, compile, CVS/Subversion actions, project actions.
• Project manager: Open automake/autoconf project.
• Project wizard using autogen.
• Syntax highlighting, autoindentation, automatic code reformating (using indent).
• Code autocompletion: Automatic code completion for known symbols. Type ahead sug-

gestions to choose for completion.
• Calltips for function prototypes: Provides helpful tips for typing function calls with their

prototype and arguments hint.
• Code folding/hiding: Fold code blocks, functions, balanced texts to hide them in hierarchical

order. Unfold to unhide them.
• Powerful search and replace: Supports string and regexp search expressions, search in files,

search in project etc.
• Build messages highlight: Error/warning/information messages are indicated in the editor.
• Symbols view and navigation: Shows all symbols in your project organized into their types.
• Integrated debugger using gdb.
• Integrated glade (http://glade.gnome.org/) user interface designer.
• Valgrind plugin and gprof profiler plugin.

3.1.2 Code::Blocks

Code::Blocks (http://www.codeblocks.org/) is a free C++ IDE designed to be very extensible
and fully configurable. It is built using wxWidgets and runs on Linux, Mac and Windows.
Features include:

• Syntax highlighting
• Code folding
• Code completion
• Class browser
• Smart indent
• Multiple compiler support (GCC (MingW / GNU GCC), MSVC++, Digital Mars, Borland

C++ 5.5, Open Watcom)
• Custom build system (no makefiles)
• Integrated debugger (GNU gdb and Microsoft CDB)

Other features are provided with plugins.

8

3.1.3 Eclipse CDT

The C/C++ development tool, CDT (http://www.eclipse.org/cdt/), is an Eclipse project
providing a fully functional C and C++ Integrated Development Environment (IDE) for the
Eclipse platform. It runs under Java on Linux, Mac and Windows and provides the following
features:

• Syntax highlighting
• Project wizard and management
• Code assist: Pops up completion suggestions as you type
• Doxygen comment added for parameters and return types
• Code folding
• Code refactoring
• Index of entities in a file
• Compiling source code with error highlighting in the code
• Integrated debugger

The Eclipse platform has many other projects that enhance CDT such as integration of
CVS/Subversion commands for files and GUI developers.

3.1.4 Geany

Geany (http://www.geany.org/Main/About) is a small and lightweight Integrated Development
Environment. It was developed to provide a small and fast IDE, which has only a few dependencies
from other packages. Another goal was to be as independent as possible from a special Desktop
Environment like KDE or GNOME—Geany only requires the GTK2 runtime libraries and will
run under Linux, Mac OS X and Windows.

Some basic features of Geany:

• Syntax highlighting
• Code folding
• Symbol name auto-completion
• Construct completion/snippets
• Call tips
• Symbol lists
• Code navigation
• Build system to compile and execute your code
• Simple project management

Other features are provided with plugins.

3.1.5 KDevelop

KDevelop (http://www.kdevelop.org/) is an IDE for KDE. Its feature set includes:

• Project management: Using automake, qmake, custom makefiles, ant for java projects
• Syntax highlighting
• On the fly syntax error indication

9

• Automatic code completion and code hinting for class variables, methods, function argu-
ments and more.

• Class browser
• Code folding
• Code refactoring
• Integrated compilation
• Integrated debugger using gdb
• Integrated CVS and Subversion features
• GUI developer with QT
• Valgrind integration

3.1.6 Microsoft Visual Studio

The Microsoft IDE (http://msdn.microsoft.com/en-gb/vs2008/products/cc149003.aspx)
runs on Windows and includes many features that are simply unnecessary for scientific soft-
ware development. The free C++ Express edition (http://www.microsoft.com/express/vc/)
may be worth a look but it has a strong slant towards the “visual” element and writing games.

3.1.7 Sun Studio

Sun Studio (http://developers.sun.com/sunstudio/index.jsp) is an IDE for C, C++ and
Fortran that includes a great many tools for software development including parallelising compil-
ers, code-level and memory debuggers, performance and thread analysis tools, OpenMP support
as well as optimized maths libraries. The tools come packaged in a NetBeans based IDE running
under Linux and Solaris with Java. There are two version one stable and the other (Sun Studio
Express) showcasing the latest features.

Little specific to the source code editor can be gleaned from the website but from a quick trial
we see it has:

• Syntax highlighting
• Project management
• Code completion
• CVS/Subversion integration
• Compilation with Sun’s compiler
• Integrated debugging

3.1.8 XCode

XCode (http://developer.apple.com/tools/xcode/index.html) is Apple’s IDE for Mac OS
X. It is described as a graphical workbench that tightly integrates a professional text editor, a
robust build system, a debugger, and the powerful GCC compiler capable of targeting Intel and
PowerPC regardless of host platform.

The complete Mac OS X developer tools chain is distributed as part of Xcode; these tools
include Interface Builder, Instruments, Dashcode, the WebObjects framework, and the complete
reference documentation, to name just a few.

10

3.2 Source Code Control

As source code changes and versions of software distributed (either in source or compiled form)
it is necessary to keep track of the changes made. Tracking changes made by collaborators is
even more important, especially if those changes break existing functionality or mean code will
not compile. One way of doing it is to keep separate directories for each version but no one has
the discipline to do this correctly one their own, let alone when working in a team. The answer
the source code control.

Source code control allows developers to track changes to the code over time, monitor who has
changed what and when, undo changes and let a development team work in a controlled manner
on the same source code (assuming no pathological behaviour!).

We will consider CVS and Subversion here because they are the two most widely used tools in
this area and on this occasion recommend that Subversion is better. Distributed version control
mechanisms will be mentioned briefly.

3.2.1 CVS

CVS (http://www.nongnu.org/cvs/) is a long standing source code control tool and is still
widely used by software development teams with existing CVS repositories. CVS works in a
client/server idiom with a central repository containing all the source code and version informa-
tion on the server and developers (clients) checking out a particular version (usually the latest)
from the repository to work on. When changes are complete they are committed to the repository
with a log message. When two people have edited the same file a process of merging the second
lot of changes may be necessary.

CVS stores the changes for each file in the repository but not the directories to which the
files belong. This means files cannot be removed from a directory but empty files can be omitted
when checking out code.

The concept of a module is very useful when a repository holds source code for individual
components of a large piece of software in several directories. A module is a set of directories
that can be checked out using the module name.

There are a number of CVS clients for various operating systems listed at
http://ximbiot.com/cvs/wiki/CVS%20Clients.

3.2.2 Subversion

Subversion (http://subversion.tigris.org/) has been described as a “better” CVS and has
most of the features of CVS. It has extended CVS in the following ways:

• Directories and symbolic links have version information
• Copying, deleting and renaming are part of the version history
• Commits are atomic, i.e. a commit will fail if any part of it fails.
• Only changes are transferred during commits and updates, reducing network traffic, even

for binary files.
• Standalone server option.

There are a number of Subversion clients for various operating systems listed at
http://subversion.tigris.org/links.html#clients.

11

3.2.3 Distributed Source Code Control

Both CVS and Subversion have a central repository and this is the repository, whereas distributed
source code control has many repositories, possibly one for each developer. Repositories can
be cloned and developers work separately without needing a network connection keeping their
changes in their own repository, presumably committing frequently and then only commiting to
somewhere more central when the code is ready. Independent work without the necessity of a
network is more productive and this is one of the major advantages however a big disadvantage
is that more complex merging will be required to produce a canonical version of the software.

This type of control seems to fit well with test driven development or extreme programming
(XP) where commits are small and frequent but not necessarily of interest to the whole project
until a feature is complete. It also chimes with the emphasis on communication between devel-
opers that is central to XP.

Some of the more popular tools in this area are:

• Bazaar — http://www.bazaar-vcs.org/ — Linux, Mac, Windows

• Darcs — http://darcs.net/ — Linux, Mac, Windows

• Git — http://git.or.cz/ — Linux, Mac, Windows

• GNU Arch — http://www.gnu.org/software/gnu-arch/ — Linux, Mac, Windows

• Mercurial — http://www.selenic.com/mercurial/ — Linux, Mac, Windows

• Svk — http://svk.bestpractical.com/ — Linux, Mac, Windows

3.3 Code Documentation

The concept of documenting code goes along with the concept of documenting the design and
often gets the same response! Our response is the same. Think about those with whom you wish
to collaborate and those who will maintain the code in the future. If software is to have a life then
future developers will need to know what it does and how it does it. Comments in the code are
the obvious solution but they must be relevant, useful and kept up to date. Equally important
are comments on the purpose of a function or class and its attributes and methods. Again they
need to be relevant, useful and kept up to date. In both cases “useful” means information that
will help a new developer to gain a good understanding of how the code works so that they can
get on with their work.

The tools listed in this section help by suggesting information that should go in such comments
but cannot write the text. All the tools are designed to extract useful information (put in by
the developer during development) and present it in an accessible form (e.g. HTML) for other
developers or to help code re-use.

While not advocating coding before design we point out that there are tools available that can
parse C++ code and create class diagrams to be read by Dia (see Section 2.1). They all require
some tweaking of the resulting diagram in Dia but this is a good way of documenting the code.
Tools are:

• AutoDia — http://www.aarontrevena.co.uk/opensource/autodia/

• Mendoosa — http://medoosa.sourceforge.net/

• cpp2dia — http://cpp2dia.sourceforge.net/

12

The search for a tool that can produce a call graph from C code has proved fruitless with
those found either not compiling or not creating any output.

By far the most common way of documenting source code is by using special comment formats
that can be parsed by a tool to create documentation to support and describe the code in an
easy to navigate form such as HTML. The most well known and widely used of these is Doxygen
and it is the recommended tool for documenting code.

3.3.1 Doxygen

We have used Doxygen (http://www.stack.nl/~dimitri/doxygen/) in our own projects and
have found it very useful to provide supporting documentation, API documentation and developer
documentation. It can handle C++, C, Java, Objective-C, Python, IDL (Corba and Microsoft
flavors), Fortran, VHDL, PHP, C#, and to some extent D and produce output in HTMLLATEX,
RTF, PostScript, hyperlinked PDF, compressed HTML, and Unix man pages.

It uses special comment markers and tags to provide information that appears in the docu-
mentation. General documentation as well as documentation for classes, methods, attributes,
functions, data types among others is possible and it can use GraphViz to produce dependency
graphs and inheritance diagrams if desired.

One useful thing to do is to configure Doxygen to extract the code structure from undocu-
mented source files. This can make it easy to navigate a large body of source code for the first
time.

3.3.2 Natural Docs

Rather than using special tags Natural Docs (http://www.naturaldocs.org/) attempts to have
a more natural style of comments using keywords. It is a different approach and one we have
not tried in our own projects. Basic support is available for C, C++ and Fortran among many
others and it outputs HTML, either plain or using frames.

3.3.3 ROBODoc

ROBODoc (http://www.xs4all.nl/~rfsber/Robo/robodoc.html) can be used to document
functions, methods, classes, variables, makefile entries, system tests, and many other things. It
works with C, C++, Fortran, Perl and any other language that supports remarks. Documentation
can be produced in HTML, XML DocBook, TROFF, ASCII, LaTeX or RTF format.

3.4 Static Analysis of Source Code

To some (including the authors in previous lives) compilation and execution are the ultimate test
of good software. Agreement with experiment gives confidence that the software is in some sense
correct but that is usually only for a favourite set of input files. Going beyond this is something
that is becoming increasingly important as new platforms and novel architectures emerge. Any of
these changes could trip up the software so it would be best to find out sooner than later—there
will be less validation to be re-done.

One area to be addressed is therefore testing and there is a whole section on that coming up
next. A second area in which tools can help is in analysis of source code itself. Since this does
not require the code to be run it is often called static analysis. It goes beyond the efforts of a
compiler and can check for

• Memory leaks.

13

• Unsafe practices — does the software present a security risk to the platform on which it is
run.

• Coding conventions — style and layout.

Another element of static analysis is measuring the quality of software. Definitions of quality
abound and we will not regurgitate them here except to say that quality is often a measure of
how easy source code is to understand, maintain and develop. Quality is measured by metrics
of which there are many hundred, some simple and others complex and there are special metrics
for object oriented code. Our advise is that metrics should not be seen as the ultimate arbiter
of good quality code. For example, if a function contains many simple if-then-else statements
(e.g. printing an error message based on an error code) the complexity is high but it is easy
to understand what is going on. Software developers must use their judgement to known when
things need changing and when not.

The tools described in sections 3.4.1 to 3.4.3 concern checks on coding practices and those
described in sections 3.4.4 to 3.4.6 concern software metrics. There are many commercial metrics
tools available, among the most well known ones are:

• Understand for C/C++ by Scientific Toolworks Inc.
http://www.scitools.com/products/understand/

• McCabe IQ by McCabe Software. http://www.mccabe.com/iq.htm

• Resource Standard Metrics by M Squared Technologies.
http://msquaredtechnologies.com/m2rsm/index.html

• LDRA Testbed. http://www.ldra.com/testbed.asp.

3.4.1 Splint

Splint (http://lclint.cs.virginia.edu/) is a tool for statically checking C programs for se-
curity vulnerabilities and coding mistakes. With minimal effort, Splint can be used as a better
lint. If additional effort is invested adding annotations to programs, Splint can perform stronger
checking than can be done by any standard lint. It is a command line tool but a GUI has recently
been released.

In our experience a straight forward execution of splint on source code has generated a very
large amount of warnings and errors. This can be reduced by using the -weak flag which relaxes
some conditions and only remarks on the most severe problems.

3.4.2 cppcheck

This program (http://cppcheck.wiki.sourceforge.net/) tries to detect bugs that your c/c++
compiler does not see. It is versatile and can check code that has non-standard code such as
various compiler extensions, inline assembly code, etc. The standard checks are:

• Bad usage of memset/memcpy/memmove
• Memory leaks
• Buffer overruns
• Check class constructors (uninitialized member variables?)
• Using old functions that should be avoided such as ‘gets’ and ‘scanf’
• Invalid function usage. A few extra checks when using standard functions.

14

• Division with signed and unsigned operands
• Detect base classes that have non-virtual destructors

There are extra checks that can be enabled (but sometimes produce false positives) and other
checks for things like unused code, usage of all struct members, operator= is correct.

3.4.3 Rough Auditing Tool for Security

RATS (http://www.fortify.com/security-resources/rats.jsp) is a tool for scanning C,
C++, Perl, PHP and Python source code and flagging common security related programming
errors such as buffer overflows and TOCTOU (Time Of Check, Time Of Use) race conditions.

RATS scanning tool provides a security analyst with a list of potential trouble spots on which
to focus, along with describing the problem, and potentially suggest remedies. It also provides a
relative assessment of the potential severity of each problem, to better help an auditor prioritize.
This tool also performs some basic analysis to try to rule out conditions that are obviously not
problems.

As its name implies, the tool performs only a rough analysis of source code. It will not
find every error and will also find things that are not errors. Manual inspection of code is still
necessary, but greatly aided with this tool.

3.4.4 C and C++ Code Counter

CCCC (http://sourceforge.net/projects/cccc) is a tool which analyses C++ and Java files
and generates a report on various metrics of the code. Metrics supported include lines of code,
McCabe’s complexity [9] and metrics proposed by Chidamber and Kemerer [10] and Kafura and
Henry [11].

Metrics are presented for the collection of files given, individual classes and their methods and
C functions. The output is a collection of HTML pages that allow easy navigation of the results
with colour coding of warning or danger levels for each metric and helpfully provide explanations
of the metrics.

CCCC is our prefered tool for C and C++ metrics.

3.4.5 CppNcss

This tool (http://cppncss.sourceforge.net/) provides various measurements (also known as
metrics) by statically analysing C++ source code, mainly aiming at evaluating maintainability.
The features listed on its website include

• Non Commenting Source Statements (NCSS) and Cyclomatic Complexity Number (CCN)
measurements [9]

• Measurements on file (declaration/implementation files) and function/method level
• Command line or Ant task driven
• Text or XML output
• XSL stylesheet for converting to HTML

3.4.6 Gnocchi

Gnocchi (http://www.muftor.com/Wikka/wikka.php?wakka=Gnocchi) is a complexity analyser
for C++ code. It calculates complexity on a per function basis but instead of trying to parse
C++ code Gnocchi reads the coverage information produced by GCC. If code is compiled with

15

-fprofile-arcs or -ftest-coverage (depending on compiler version) GCC creates a .gcno file
for every object file. This is not so convenient as the other tools.

Gnocchi calculates cyclomatic [9] and the NPATH [12] complexity measures.

3.4.7 LDRA Testbed

This commercial tool is included here as it has components that cover static analysis, testing
has a static analysis component (http://www.ldra.com/staticanalysis.asp). The analysis
results include:

• Programming Standards Verification. Assesses whether the source code conforms to a set
of user-configurable programming standards.

• Structured Programming Verification. Reports on whether the source code is properly
structured.

• Complexity Metric Production. Reports on a number of complexity metrics such as Cy-
clomatic Complexity, Knots, Essential Cyclomatic Complexity, Essential Knots and many
more.

• Full Variable Cross Reference. Examines and reports global and local variable usage within
and across procedures and file boundaries.

• Unreachable Code Reporting. Reports on areas of redundant code.
• Static Data Flow Analysis. Follows variables through the source code and reports any

anomalous use.
• Information Flow Analysis. Analyses inter-dependencies of variables for all paths through

the code.
• Loop Analysis. Reports the looping structure and depth of nesting within the code.
• Analysis of Recursive Procedures. All the analysis above is performed individually and on

sets of mutually recursive procedures.
• Procedure Interface Analysis. The interface for each procedure is analysed for defects

and deficiencies. The interfaces are then projected through the call graph of a system to
highlight integration defects.

4 Testing

Now the source code is written, with useful comments, with reasonable metric values and it is
safely stored in a source code repository. It compiles using gcc and there are no apparent memory
leaks or other problems because splint says so. It runs on the favourite set of test problems and
gives the right answer.

The next step is testing . . . But hang on, it was tested with the test problems.

Are these tests sufficient?

What do you mean?

Well, does it handle invalid input in a helpful way? does it fail gracefully? does each
component work correctly? what about each function or method?

I see, please tell me more.

We are looking at two areas here:

16

• Testing components of the program in isolation to ensure that they work correctly. If
external libraries are used then we assume that they are correct or run their supplied
tests. Trivial functions or class methods can be visually inspected for correctness but more
complex functions or methods should be tested to ensure that they work correctly. This is
known as unit testing and we describe tools in Section 4.1.

• Testing the the program as a whole. This covers things such as validation against experi-
mental results, verification that it works correctly with invalid input, useful error handling,
ensuring that important sections of the code are actually tested, and performance testing.
This is known as integration or system testing and tools are described in Section 4.2

The Software Engineering Group has produced a detailed report testing including sections on
test management and testing tools [13].

4.1 Unit testing

As we mentioned before, unit testing is testing individual components of the source code to
make sure they work as we intend. This is useful in a number of ways: to provide confidence
that a numerical algorithm has been coded correctly, to demonstrate that a physical properties
component produces the correct results, to test a new algorithm or new implementation of the
component quickly against previous results, it is easier to do coverage testing for the component
in isolation rather than as part of the whole.

There is a great deal of material on unit testing available on-line and we will not go into detail
here except to explain that there are three section to a unit test:

1. Set up supporting data structures, classes and input data for the test (known as the fixture).

2. Run the function/method and test the results.

3. Free memory and delete data no longer required (known as tear down).

Individual unit tests are built into test suites and summary results of the suites reported at
the end of the testing process. There are tools to help developers perform unit testing.

4.1.1 CUnit

CUnit (http://cunit.sourceforge.net/) is a lightweight system for writing, administering,
and running unit tests in C. It provides C programmers a basic testing functionality with a
flexible variety of user interfaces. It is built as a static library which is linked with the user’s
testing code. It uses a simple framework for building test structures, and provides a rich set of
assertions for testing common data types. In addition, several different interfaces are provided
for running tests and reporting results. These interfaces currently include: automated output to
XML, basic non-interactive interface, interactive console interface, and interactive Curses based
interface.

We have used this tool in non-interactive mode and found that it is straight forward to set up
suites of unit tests and run them as part of on-going software development and as a regression
testing tool.

4.1.2 CppUnit

CppUnit (http://apps.sourceforge.net/mediawiki/cppunit/index.php?title=Main_Page)
is a C++ unit testing framework. It started its life as a port of JUnit to C++ and has been
developed with the following features:

17

• XML output with hooks for additional data (XSL format available in release 1.10.2 needs
some fixing)

• Compiler-like text output to integrate with an IDE
• Helper macros for easier test suite declaration
• Hierarchical test fixture support
• Test registry to reduce recompilation need
• Test plug-in for faster compile/test cycle (self testable dynamic library)
• Protector to encapsulate test execution (allow capture of exception not derived from std::exception)

Code is included to build applications to run the tests with a variety of graphical toolkits:
MFC, QT, Curses and WxWidgets.

4.2 Integration and System Testing

In this section we will discuss how to test the whole executable version of the code to ensure that
it is in the best state to be distributed to users. The users will want to know that it has been
tested and show to get the correct answers and also that it will run their data sets.

The first of these is sometimes referred to as validation testing and there should be a number
of test cases that produce results that can be checked against experiment or known solutions. To
help in this area there are tools that can compare files of numbers in the same way as the unix
diff command but with a tolerance within which two real numbers are considered equal. These
tools are also necessary when comparing the results of one version of the software with a newer
version to ensure that no bugs have been introduced1, known as regression testing.

Ensuring that the software will run on a user’s data sets is a little more complex. It is often
called verification testing and means testing that the software does what the input tells it to do
and that it can detect invalid input. Knowing what code the software executes for given inputs
falls under the label of coverage analysis and there are a number of tools that can show the code
statements executed during a run of the software. A debugger could be used for this but leaves no
record of the lines executed. Extending coverage testing over all data sets will build up a picture
of which portions of the code have not been executed and could contain unforeseen problems
once users get their hands on the code. Adding a new data set to run one of these portions will
increase confidence.

A second use for coverage analysis is to see lines or portions of code that are executed a very
large number of times. These are potential areas for developer inspired rather that compiler
produced optimisation. Performance analysis tools are available to provide timings either at a
function or line level to help see exactly how much time is spent in the various parts of the code.

While not strictly testing tools, debuggers tend to be used during the testing phase of de-
velopment when the numerical results are not those expected, the software does not behave as
expected, or crashes inexplicably. In C and C++ programs, where memory management is the
developer’s responsibility, errors can be down to use of uninitialised memory, pointer errors, dou-
bly freeing a pointer, and memory leaks. Tools to help identify such problems are also described
here.

The rest of this section discusses the tools for these forms of testing as follows:

• Validation with numerical differencing — Sections 4.2.1 to 4.2.3.

• Coverage analysis — Sections 4.2.4 to 4.2.6.
1Of course, if the original results were erroneous because of a bug that has been fixed a different test is required.

18

• Performance analysis — Sections 4.2.7 to 4.2.11.

• Debuggers, memory analysis etc — Sections 4.2.12 to 4.2.17.

We mention the commercial tool LDRA Testbed (http://www.ldra.com/testbed.asp) here
as it has a coverage analysis component in addition to a static analysis component which may
make it a worthwhile investment for serious C/C++ developers.

4.2.1 Ndiff

Ndiff (http://www.math.utah.edu/~beebe/software/ndiff/) assumes that you have two text
files containing numerical values, and the two files are expected to be identical, or at least
numerically similar. ndiff allows you to specify absolute and/or relative error tolerances for
differences between numerical values in the two files, and then reports only the lines with values
exceeding those tolerances. It also tells you by how much they differ.

4.2.2 Numdiff

Numdiff (http://www.nongnu.org/numdiff/) is a program that can be used to compare puta-
tively similar files line by line and field by field, ignoring small numeric differences and/or different
numeric formats. It can also carry out the usual text differencing operations. By default, Numdiff
assumes the fields are separated by white spaces (blanks, horizontal tabulations and newlines),
but the user can also specify its list of separators through a command line option.

4.2.3 Toldiff

Tolerant file differencing tool Toldiff (http://sourceforge.net/projects/toldiff/) is a diff
tool that allows tolerable (insignificant) differences between two files to be suppressed showing
only the important ones. The tolerable differences are recorded running the tool with an appro-
priate command line flag.

4.2.4 GNU gcov

The gcov tool (http://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html) is part of the GNU
gcc compiler suite and works with code compiled with gcc using special flags. It allows a developer
to discover how often each line of code is executed and which lines of code actually are executed.

4.2.5 ggcov

Ggcov (http://ggcov.sourceforge.net/) is a GTK+ GUI for exploring test coverage data
produced by C and C++ programs compiled with gcc. It is a GUI replacement for gcov but
note that ggcov is not a front end for gcov; instead it reads the same data files directly and does
various extra processing on them.

ggcov also has a web interface which provides a large fraction of the functionality of the GTK+
GUI.

4.2.6 lcov

LCOV (http://ltp.sourceforge.net/coverage/lcov.php) is an extension of GCOV consist-
ing of a set of PERL scripts which build on the textual GCOV output to implement the following
enhanced functionality:

19

• HTML based output: coverage rates are additionally indicated using bar graphs and specific
colours.

• Support for large projects: overview pages allow quick browsing of coverage data by pro-
viding three levels of detail: directory view, file view and source code view.

LCOV was initially designed to support Linux kernel coverage measurements, but works as
well for coverage measurements on standard user space applications.

4.2.7 gprof

The GNU tool gprof (http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html) requires
that the executable has been compiled with the GNU C/C++ compiler using certain options.
Running the executable will then generate profiling data which is analysed using gprof.

The result of the analysis is a file containing two tables, the flat profile and the call graph
(plus text which briefly explain the contents of these tables).

The flat profile shows how much time the program spent in each function, and how many
times that function was called. If the information required is simply which functions burn most
of the cycles, it is stated concisely here.

The call graph shows, for each function, which functions called it, which other functions
it called, and how many times. There is also an estimate of how much time was spent in the
subroutines of each function. This can suggest places where it would be worth trying to eliminate
function calls that use a lot of time.

4.2.8 oprofile

OProfile (http://oprofile.sourceforge.net/news/) is a system-wide profiler for Linux sys-
tems, capable of profiling all running code at low overhead. OProfile is released under the GNU
GPL.

It consists of a kernel driver and a daemon for collecting sample data, and several post-profiling
tools for turning data into information.

OProfile leverages the hardware performance counters of the CPU to enable profiling of a wide
variety of interesting statistics, which can also be used for basic time-spent profiling. All code is
profiled: hardware and software interrupt handlers, kernel modules, the kernel, shared libraries,
and applications. Profile data can be produced on the function-level or instruction-level detail.
Source trees annotated with profile information can be created. A hit list of applications and
functions that take the most time across the whole system can be produced.

4.2.9 Google Perf Tools

(http://code.google.com/p/google-perftools/) These tools are for use by developers so that
they can create more robust applications. Especially of use to those developing multi-threaded
applications in C++ with templates. Includes TCMalloc, heap-checker, heap-profiler and cpu-
profiler. Perf Tools is distributed under the terms of the BSD License.

4.2.10 Sun Studio

The Sun Studio performance analysis tool (http://developers.sun.com/sunstudio/index.jsp)
comprises a Collector and a Performance Analyzer used to collect and analyse performance data
for an application. Both tools can be used from the command line or from a graphical user
interface.

20

The Collector and Performance Analyzer are designed for use by any software developer, even
if performance tuning is not the developers main responsibility. These tools provide a more
flexible, detailed, and accurate analysis than the commonly used profiling tools prof and gprof,
and are not subject to an attribution error in gprof.

The Collector and Performance Analyzer tools help to answer the following kinds of questions:

• How much of the available resources does the program consume?
• Which functions or load objects are consuming the most resources?
• Which source lines and instructions are responsible for resource consumption?
• How did the program arrive at this point in the execution?
• Which resources are being consumed by a function or load object?

4.2.11 Intel VTune

(http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm) The VTune
Performance Analyzer from Intel makes application performance tuning easier with a graphical
user interface and no recompiles required. It is compiler and language independent so it works
with C, C++, Fortran, C#, Java, .NET and more. Unlike some products that offer only call
graph analysis or only a limited set of sampling events, VTune analyzer offers both with an ex-
tensive set of tuning events for all the latest Intel processors. It is available for both Linux and
Windows platforms.

4.2.12 The GNU Project Debugger

GDB (http://www.gnu.org/software/gdb/gdb.html) comes with the GNU C/C++ compiler.
It allows you to see what is going on ‘inside’ another program while it executes—or what another
program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

• Start a program, specifying anything that might affect its behaviour.
• Make a program stop on specified conditions.
• Examine what has happened when the program has stopped.
• Change things in the program, thus correcting the effects of one bug (which will need

correcting in the source code) and go on to learn about another.

The program being debugged can be written in Ada, C, C++, Objective-C, Pascal (and many
other languages). Those programs might be executing on the same machine as GDB (native)
or on another machine (remote). GDB can run on most popular UNIX and Microsoft Windows
variants.

4.2.13 DDD

GNU DDD (http://www.gnu.org/software/ddd/) is a graphical front-end for command-line
debuggers such as GDB, DBX, WDB, Ladebug, JDB, XDB, the Perl debugger, the bash debug-
ger bashdb, the GNU Make debugger remake, or the Python debugger pydb. Besides “usual”
front-end features such as viewing source texts, DDD has become famous through its interactive
graphical data display, where data structures are displayed as graphs.

21

4.2.14 Nemiver

Nemiver (http://projects.gnome.org/nemiver/) is an on-going effort to write a standalone
graphical debugger that integrates well in the GNOME desktop environment. It currently features
a back end which uses the well known GNU Debugger gdb to debug C / C++ programs. It allows
the user to set breakpoints, view values of variables and step through the code.

4.2.15 Integrated Debuggers

The following IDEs have integrated debuggers.

• Sun Studio — dbx

• Microsoft Visual Studio

• Eclipse CDT — gdb back-end

• Anjuta — gdb back-end

• Code::Blocks — gdb and Microsoft cdb back-ends

• KDevelop — gdb back-end

4.2.16 Mudflap

Mudflap is a pointer debugging system included in the gcc compiler. It is enabled by passing
-fmudflap to the compiler. For front-ends that support it (C and very simple C++ programs), it
instruments all risky pointer/array dereferencing operations, some standard library string/heap
functions, and some other associated constructs with range/validity tests. Modules so instru-
mented should be immune to buffer overflows, invalid heap use, and some other classes of C/C++
programming errors. The instrumentation relies on a separate runtime library (libmudflap), which
will be linked into a program if -fmudflap -lmudflap is given at link time. Run-time behaviour
of the instrumented program is controlled by the MUDFLAP OPTIONS environment variable.

Details of the options can be found at http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging.

4.2.17 Valgrind

Valgrind (http://valgrind.org/) is an instrumentation framework for building dynamic anal-
ysis tools. There are Valgrind tools that can automatically detect many memory management
and threading bugs, and profile programs in detail. It can also used to build new tools.

The Valgrind distribution currently includes six production-quality tools: a memory error de-
tector, two thread error detectors, a cache and branch-prediction profiler, a call-graph generating
cache profiler, and a heap profiler. It also includes one experimental tool, which detects out of
bounds reads and writes of stack, global and heap arrays. It runs on the following platforms:
X86/Linux, AMD64/Linux, PPC32/Linux, PPC64/Linux.

5 Compilation and Build Systems

Compilation is the act of turning the source code into a machine executable application. A
compiler is used for this task and, unless there is only one source file (usually bad, very very
bad!), the compiler will need to be run on all the source files and then on the resulting object
files to create the executable. No-one would do this manually and so there are a number of build

22

systems that can ease this task by knowing how to compile to object file and executable and
knowing which object files need updating and which not.

5.1 Compilers

Compiling source code to an application is something so routine that it becomes forgotten in the
development cycle. For many there is no need to look beyond the GNU compilers that come
with Linux or MinGW or Cygwin but some of the commercial products may offer something that
could be useful. We will not present a comparison between compilers here just the bare details
for a number of compilers.

5.1.1 GNU Compiler

Gcc is the standard compiler available in Linux and is a C compiler. The companion C++
compiler is g++. Details on the compiler can be found at http://gcc.gnu.org/onlinedocs/
and the gcc website is http://gcc.gnu.org/.

Versions of gcc and g++ can be installed on Windows by making use of cygwin [14] and
MinGW [15].

5.1.2 Intel Compiler

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/284132.htm. This
website is the starting point for information on Intel compilers. All we will say here is that
version are available for Windows to run under MS Visual Studio, Linux to run under Eclipse
and Mac OS X to run under XCode.

5.1.3 Borland Compiler

Borland offer a full Windows IDE as a commercial product but the command line version of
their Windows C++ compiler (version 5.5) and associated tools can be downloaded free. Use the
following website for details http://www.codegear.com/downloads/free/cppbuilder.

5.1.4 Digital Mars Compiler

Digital Mars (http://www.digitalmars.com/) offer a C/C++ compiler. They claim the fastest
compile/link times in the industry and powerful optimization technology with advanced register
allocation and instruction scheduling.

5.1.5 IBM Compiler

IBM (http://www-01.ibm.com/software/awdtools/xlcpp/) offer C and C++ compilers for
Linux (IBM Power Systems, including the POWER6 processors), AIX, Blue Gene, z/OS, OS/390
and z/VM.

5.1.6 Microsoft Visual C++

The compiler comes as part of the IDE —
http://msdn.microsoft.com/en-gb/vs2008/products/cc149003.aspx.

23

5.1.7 Sun Compiler

The compiler comes as part of Sun Studio (http://developers.sun.com/sunstudio/index.jsp)
and has the following highlighted features:

• Auto-parallelisation of single-threaded code
• Static data-race and deadlock-detection for x86
• Option for Thread Analyzer support
• Compiler flags to optimize for multi-core architectures

5.1.8 XCode

XCode, Apple’s IDE for Mac OS X (http://developer.apple.com/tools/xcode/index.html)
comes with a version of the gcc compiler but can be used with the Intel compiler.

5.2 Build systems

These systems are designed to let the developer encode the steps to compile the application so
that these steps do not have to be remembered. In addition they can shorten the compile time
by working out which source files have changed and only compiling the files affected by these
changes. Some IDEs have their own build systems and hide the details from the user while still
allowing access to flags or options for debug symbols, language compliance, optimisation etc.

Most of the systems use the idea of targets to simplify the command for building the applica-
tion. The developer does not have to remember the application’s name, he or she can say “build
everything”, or “build the application so I can debug it” or “run the analysis tools” or “build the
application and run the tests”. This is a good way of automating analysis and testing.

Let us star with the autotools designed to ease the process of compiling and installing software
then move on to the various build systems.

5.2.1 The Autotools

The autotools are a set of tools designed to make compilation and installation of software easy
on multiple platforms using a simple set of commands. They search the target platform for the
libraries and headers required by the software and take instruction on where the software is to
be installed. Finally they generate makefiles (see Section 5.2.2) to build and install the software.
If a developer makes use of these tools then the user should only need to type three commands:

% ./configure
% make
% make install

The autotools are:

autoconf http://www.gnu.org/software/autoconf/ Autoconf creates a configuration script
for a package from a template file that lists the operating system features that the package
can use, in the form of M4 macro calls.

automake http://www.gnu.org/software/automake/ Automake is a tool for automatically
generating ‘Makefile.in’ files compliant with the GNU Coding Standards. Automake re-
quires the use of Autoconf.

24

libtool http://www.gnu.org/software/libtool/ GNU libtool is a generic library support
script. Libtool hides the complexity of using shared libraries behind a consistent, portable
interface.

A good tutorial on these useful but rather complex tools can be found at
http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool.

5.2.2 Make

This is the original build system used routinely to build major software projects over many years
and still the most popular. It is available on Linux, Windows (via cygwin [14] or MinGW [15])
and Mac OS X. There is no definitive make website but a good introduction can be found at the
GNU Make site http://www.gnu.org/software/make/.

Make gets its knowledge of how to build your program from a file called the makefile, which
lists each of the non-source files (including the executables) and how to compute each of them
from other (source) files. Developers should consider the makefile part of their source code.

Some of the capabilities of make are:

• Make enables an end user to build and install the application without knowing the details
of how that is done because these details are recorded in the makefile.

• Make figures out automatically which files it needs to update, based on which source files
have changed. It also automatically determines the proper order for updating files, in case
one non-source file depends on another non-source file.

• Make is not limited to any particular language. For each non-source file in the program,
the makefile specifies the shell commands to compute it. These shell commands can run
a compiler to produce an object file, the linker to produce an executable, ar to update a
library, or TeX or Makeinfo to format documentation.

• Make is not limited to building a package. It can also be used to control installing or
uninstalling a package, generate tag tables for it, or anything else done often enough to
make it worth while writing down how to do it.

5.2.3 CMake

Cross platform make (http://www.cmake.org/) is a family of tools designed to build, test
and package software. CMake is used to control the software compilation process using sim-
ple platform and compiler independent configuration files. CMake generates native makefiles and
workspaces that can be used in the compiler environment of choice.

CMake is designed to support complex directory hierarchies and applications dependent on
several libraries. For example, CMake supports projects consisting of multiple toolkits (i.e.,
libraries), where each toolkit might contain several directories, and the application depends on
the toolkits plus additional code. CMake can also handle situations where executables must be
built in order to generate code that is then compiled and linked into a final application.

5.2.4 SCons

SCons (http://www.scons.org/) is an Open Source software construction tool—that is, a next-
generation build tool. Think of SCons as an improved, cross-platform substitute for the classic
Make utility with integrated functionality similar to autoconf/automake and compiler caches such
as ccache. In short, SCons is an easier, more reliable and faster way to build software.

25

It is known to work on Linux, other POSIX systems (including AIX, *BSD systems, HP/UX,
IRIX and Solaris), Windows NT, Mac OS X, and OS/2 and features include:

• Configuration files are Python scripts—use the power of a real programming language to
solve build problems.

• Reliable, automatic dependency analysis built-in for C, C++ and Fortran—no more “make
depend” or “make clean” to get all of the dependencies. Dependency analysis is easily
extensible through user-defined dependency Scanners for other languages or file types.

• Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt and SWIG, and building TeX
and LaTeX documents. Easily extensible through user-defined Builders for other languages
or file types.

• Integrated Autoconf-like support for finding #include files, libraries, functions and typedefs.

5.2.5 Jam

Jam (http://www.perforce.com/jam/jam.html) (to go with SCons presumably!) is a software
build tool that makes building simple things simple and building complicated things manageable.
It has been freely available as C source for many years and is widely used to build commercial
and academic software. Jam is a very good solution for conventional C/C++ compile-and-link
builds.

Because Jam understands C/C++ dependencies, there is no need to declare header or ob-
ject files. The built-in Jam rule “Main” handles header file dependencies and object files both
automatically and on-the-fly.

Some of the features are:

• Jam is small, it has negligible CPU overhead, and it does not create or leave behind tem-
porary files.

• Jam is able to build large projects spread across many directories in a single pass and
can manage and distribute build steps to multiple processors on one or more networked
machines.

• Jam runs on UNIX, VMS, NT, OS/2, Macintosh OS X, and Macintosh MPW. Most Jamfiles
are also portable.

• Platform independent rules and platform specific actions can be defined separately from
dependency rules.

• Developers can enhance/extend Jam by creating user defined rules to utilize other built-in
directives.

• Jam includes flow-control statements, variables, and a few other features of general purpose
languages.

6 Useful Libraries

There are so many C and C++ libraries designed to provide useful functionality for the software
developer that it would be impossible to cover even all the technological areas let alone the
individual libraries. In this section we will concentrate on our selection for scientific software
developers, limited (?) to the following areas:

• Numerical algorithms

• Visualisation

26

• Other general libraries

A Larger list can be found at on Mathtools.net [16]

6.1 Numerical Libraries

At the heart of the vast majority of scientific computing are numerical algorithms, for linear
algebra, solving differential equations or integral equations, and performing Fourier transforms.
The following selection of libraries range from the very simple class libraries for matrix objects
and operations to the complete libraries of numerical algorithms. A larger list can be found on
the Object-Oriented Numerics Page [17].

6.1.1 The Matrix Template Library

The Matrix Template Library (MTL—http://www.osl.iu.edu/research/mtl/) is a high-performance
generic component library that provides comprehensive linear algebra functionality for a wide va-
riety of matrix formats.

As with the Standard Template Library (STL), MTL uses a five-fold approach, consisting of
generic functions, containers, iterators, adaptors, and function objects, all developed specifically
for high performance numerical linear algebra. Within this framework, MTL provides generic
algorithms corresponding to the mathematical operations that define linear algebra. Similarly,
the containers, adaptors, and iterators are used to represent and to manipulate concrete linear
algebra objects such as matrices and vectors. MTL includes a large number of data formats and
algorithms, including most popular sparse and dense matrix formats and functionality equivalent
to Level 3 BLAS.

To many scientific computing users, however, the advantages of an elegant programming inter-
face are secondary to issues of performance. Generic programming is a powerful tool in this regard
as well - performance tuning can itself be described in a generic fashion. These performance tun-
ing abstractions are realized in a generic low-level library - the Basic Linear Algebra Instruction
Set (BLAIS). Experimental results show that MTL with the BLAIS achieves performance that
is as good as, or better than, vendor-tuned libraries. Thus, MTL demonstrates that the proper
abstractions can be used to achieve high levels of performance, contrary to conventional wisdom.
In addition, MTL requires orders of magnitude fewer lines of code for its implementation, with
the concomitant savings in development and maintenance effort.

6.1.2 LAPACK++

LAPACK++ (http://sourceforge.net/projects/lapackpp/) is a library for high performance
linear algebra computations. This version includes support for solving linear systems using LU,
Cholesky, QR matrix factorizations, for real and complex matrices.

6.1.3 SparseLib++

SparseLib++ (http://math.nist.gov/sparselib++/) is a C++ class library for efficient sparse
matrix computations across various computational platforms. The software package consists of
matrix classes encompassing several sparse storage formats (e.g. compressed row, compressed
column and coordinate formats), and providing basic functionality for managing sparse ma-
trices. The Sparse BLAS Toolkit is used to for efficient kernel mathematical operations (e.g.
sparse matrix-vector multiply) and to enhance portability and performance across a wide range
of computer architectures. Included in the package are various preconditioners commonly used

27

in iterative solvers for linear systems of equations. The focus is on computational support for
iterative methods (for example, see IML++), but the sparse matrix objects presented here can
be used in their own right.

SparseLib++ matrices can be built out of nearly any C++ matrix/vector classes; it is shipped
with the MV++ classes by default.

6.1.4 Iterative Methods Library in C++

This library (http://math.nist.gov/iml++/) is a C++ template based library of modern iter-
ative methods for solving both symmetric and nonsymmetric linear systems of equations. It is
a companion library to SparseLib++ and MV++. The algorithms are fully templated in that
the same source code works for dense, sparse, and distributed matrices. Methods implemented
include:

• Richardson Iteration
• Chebyshev Iteration
• Conjugate Gradient (CG)
• Conjugate Gradient Squared (CGS)
• BiConjugate Gradient (BiCG)
• BiConjugate Gradient Stabilized (BiCGSTAB)
• Generalized Minimum Residual (GMRES)
• Quasi-Minimal Residual Without Lookahead (QMR)

6.1.5 Numerical Matrix/Vector Classes in C++

MV++ (http://math.nist.gov/mv++/) is a small, efficient, set of concrete vector and simple
matrix classes for numerical computing. It is not intended as a general vector container class,
but rather designed specifically for optimized numerical computations on RISC and pipelined
architectures. It is one step above a C/C++ array. The various MV++ classes form the building
blocks of larger user-level libraries such as SparseLib++.

6.1.6 Template Numerical Toolkit

TNT (http://math.nist.gov/tnt/index.html) as it is known, is a collection of interfaces and
reference implementations of numerical objects useful for scientific computing in C++. The
toolkit defines interfaces for basic data structures, such as multidimensional arrays and sparse
matrices, commonly used in numerical applications. The goal of this package is to provide reusable
software components that address many of the portability and maintenance problems with C++
codes.

TNT provides a distinction between interfaces and implementations of TNT components. For
example, there is a TNT interface for two-dimensional arrays which describes how individual
elements are accessed and how certain information, such as the array dimensions, can be used
in algorithms; however, there can be several implementations of such an interface: one that uses
expression templates, or one that uses BLAS kernels, or another that is instrumented to provide
debugging information. By specifying only the interface, applications codes may utilize such
algorithms, while giving library developers the greatest flexibility in employing optimization or
portability strategies.

28

6.1.7 ARPACK++

ARPACK++ (http://www.caam.rice.edu/software/ARPACK/arpack++.html) is an object-oriented
version of the ARPACK package. It consists a collection of classes that offers C++ programmers
an interface to ARPACK. It preserves the full capability, performance, accuracy and low mem-
ory requirements of the FORTRAN package, but takes advantage of the C++ object-oriented
programming environment.

Some of the features included in ARPACK++ are:

• The use of templates to reduce the work needed to establish and solve eigenvalue problems
and to simplify the structure utilized to handle such problems.

• The ability to easily find interior eigenvalues and to solve generalized problems. ARPACK++
includes several matrix classes that use routines from SuperLU, UMFPACK and LAPACK
to solve linear systems. With these classes, spectral transformations such as the shift and
invert method can be employed to find internal eigenvalues of regular and generalized prob-
lems without requiring the user to explicitly solve linear systems.

• A friendly interface that avoids the complication of the reverse communication interface
that characterizes the FORTRAN version of ARPACK. For instance, the user can supply
the non-zero elements of a matrix and obtain its eigenvalues and eigenvectors stored using
the Standard Template Library (STL) vector class.

• A structure that minimizes the work needed to generate an interface between ARPACK
and other libraries, such as the Template Numerical Toolkit (TNT) (see 6.1.6.

6.1.8 Boost Basic Linear Algebra

uBLAS (http://www.boost.org/doc/libs/1_37_0/libs/numeric/ublas/doc/index.htm) is the
Boost basic linear algebra library. It is a C++ template class library that provides BLAS level
1, 2, 3 functionality for dense, packed and sparse matrices. The design and implementation unify
mathematical notation via operator overloading and efficient code generation via expression tem-
plates. Functionality

uBLAS provides templated C++ classes for dense, unit and sparse vectors, dense, identity,
triangular, banded, symmetric, hermitian and sparse matrices. Views into vectors and matrices
can be constructed via ranges or slices and adaptor classes. The library covers the usual basic
linear algebra operations on vectors and matrices: reductions like different norms, addition and
subtraction of vectors and matrices and multiplication with a scalar, inner and outer products
of vectors, matrix vector and matrix matrix products and triangular solver. The glue between
containers, views and expression templated operations is a mostly STL conforming iterator in-
terface.

6.1.9 GNU Scientific Library

The GNU Scientific Library (GSL—http://www.gnu.org/software/gsl/) is a numerical library
for C and C++ programmers. It is free software under the GNU General Public License.

The library provides a wide range of mathematical routines such as random number generators,
special functions and least-squares fitting. There are over 1000 functions in total with an extensive
test suite. Take a look at the website for the details.

6.1.10 Blitz++

Blitz++ (http://www.oonumerics.org/blitz/) is a C++ class library for scientific computing
which provides performance on par with Fortran 77/90. It uses template techniques to achieve

29

high performance. The current versions provide dense arrays and vectors, random number gener-
ators, and small vectors and matrices. Blitz++ is distributed freely under an open source license,
and contributions to the library are welcomed.

6.1.11 PETSc

PETSc (http://www.mcs.anl.gov/petsc/petsc-as/), is a suite of data structures and routines
written in C for the scalable (parallel) solution of scientific applications modeled by partial
differential equations. It employs the MPI standard for all message-passing communication.
Features include:

• Parallel vectors: includes code for communicating ghost points
• Parallel matrices: several sparse storage formats, easy, efficient assembly.
• Scalable parallel preconditioners
• Krylov subspace methods
• Parallel Newton-based nonlinear solvers
• Parallel timestepping (ODE) solvers

6.1.12 Getfem++

The Getfem++ project (http://home.gna.org/getfem/) focuses on the development of a generic
and efficient C++ library for finite element methods. The goal is to provide a library allowing
the computation of any elementary matrix (even for mixed finite element methods) on the largest
class of methods and elements, and for arbitrary dimension (i.e. not only 2D and 3D problems).

It offers a complete separation between integration methods (exact or approximated), geomet-
ric transformations (linear or not) and finite element methods of arbitrary degrees. It can really
relieve a more integrated finite element code of technical difficulties of elementary computations.

The library also includes the usual tools for finite elements such as assembly procedures for
classical PDEs, interpolation methods, computation of norms, mesh operations (including auto-
matic refinement), boundary conditions, post-processing tools such as extraction of slices from a
mesh ...

Getfem++ has no meshing capabilities (apart regular meshes and a small attempt), hence it
is necessary to import meshes. Imports formats currently known by getfem are GiD , GmSH and
emc2 mesh files. However, given a mesh, it is possible to refine it automatically.

6.1.13 Overture

Overture (https://computation.llnl.gov/casc/Overture/) is an object-oriented code frame-
work for solving partial differential equations. It provides a portable, flexible software develop-
ment environment for applications that involve the simulation of physical processes in complex
moving geometry . It is implemented as a collection of C++ libraries that enable the use of
finite difference and finite volume methods at a level that hides the details of the associated
data structures. Overture is designed for solving problems on a structured grid or a collection
of structured grids. In particular, it can use curvilinear grids, adaptive mesh refinement, and
the composite overlapping grid method to represent problems involving complex domains with
moving components. Techniques for building grids on CAD geometries and for building hybrid
grids that can be used with applications that use unstructured grids have also been developed.

30

6.1.14 FFTPACK++

(http://programming.ccp14.ac.uk/mumit-khan/~khan/software/fftpack/fftpack.html) FFT-
Pack++ is a C++ wrapper for FFTPACK complex routines using LAPACK++ Matrix and Vec-
tor classes. FFTPACK routines were converted to C using f2c and also modified to use double
precision complex using -r8 to f2c.

6.1.15 The NAG C Library

The NAG C Library (http://www.nag.co.uk/numeric/CL/CLdescription.asp) is a commer-
cial library described as “the largest and most comprehensive collection of mathematical and
statistical algorithms for C and C++ programmers available today”. Organizations all over the
world rely on the NAG C Library because of the quality and accuracy the software gives to their
work.

Containing over 1000 functions covering a wide range of mathematical and statistical areas,
the NAG C Library functions are powerful, reliable and available on a wide range of systems
commonly used for technical computing. NAG C Library Contents

Below is a list of some of the main numerical and statistical capabilities of the Library. Further
details on the contents of the Library are included in the online manual.

• Optimization, including linear, quadratic, integer and nonlinear programming, least squares
problems, constrained minimization and constrained quadratic programming for large sparse
problems

• Ordinary and partial differential equations, and mesh generation
• Numerical integration
• Roots of nonlinear equations (including polynomials)
• Solution of dense, banded and sparse linear equations and eigenvalue problems
• Special functions
• Curve and surface fitting and interpolation
• Large scale eigen problems
• Large, sparse systems of linear equations
• Random number generation
• Simple calculations on statistical data
• Correlation and regression analysis
• Multivariate methods

6.2 Visualisation

One facet of software that is associated with C++ is the user interface and the really interesting
part of the user interface for scientific software is the presentation of results. Text files are all
very well for the testing phase but for wowing potential users and funders, exciting graphics is
what are required! That is what this section is all about, libraries that can make producing great
looking graphics from results easy(er).

6.2.1 The Visualization ToolKit—VTK

VTK (http://www.vtk.org/) is an open source, freely available software system for 3D computer
graphics, image processing, and visualization used by thousands of researchers and developers

31

around the world. VTK consists of a C++ class library, and several interpreted interface layers
including Tcl/Tk, Java, and Python.

VTK supports a wide variety of visualization algorithms including scalar, vector, tensor, tex-
ture, and volumetric methods; and advanced modeling techniques such as implicit modelling,
polygon reduction, mesh smoothing, cutting, contouring, and Delaunay triangulation. In addi-
tion, dozens of imaging algorithms have been directly integrated to allow the user to mix 2D
imaging / 3D graphics algorithms and data. The design and implementation of the library has
been strongly influenced by object-oriented principles.

6.2.2 PLplot

PLplot (http://plplot.sourceforge.net/) is a cross-platform software package for creating
scientific plots. To help accomplish that task it is organized as a core C library, language bindings
for that library (including C, C++ and Fortran), and device drivers which control how the plots
are presented in non-interactive and interactive plotting contexts.

The PLplot core library can be used to create standard x-y plots, semi-log plots, log-log plots,
contour plots, 3D surface plots, mesh plots, bar charts and pie charts. Multiple graphs (of the
same or different sizes) may be placed on a single page, and multiple pages are allowed for those
device formats that support them.

6.2.3 PGPLOT

The PGPLOT Graphics Subroutine Library (http://www.astro.caltech.edu/~tjp/pgplot/)
is a Fortran- or C-callable, device-independent graphics package for making simple scientific
graphs. It is intended for making graphical images of publication quality with minimum effort
on the part of the user. For most applications, the program can be device-independent, and the
output can be directed to the appropriate device at run time.

The PGPLOT library consists of two major parts: a device-independent part and a set of
device-dependent “device handler” subroutines for output on various terminals, image displays,
dot-matrix printers, laser printers, and pen plotters. Common file formats supported include
PostScript and GIF.

PGPLOT itself is written mostly in standard Fortran-77, with a few non-standard, system-
dependent subroutines. PGPLOT subroutines can be called directly from a Fortran-77 or Fortran-
90 program. A C binding library (cpgplot) and header file (cpgplot.h) are provided that allow
PGPLOT to be called from a C or C++ program; the binding library handles conversion between
C and Fortran argument-passing conventions.

6.3 Other Libraries

The aim here is to give brief details on useful libraries that a novice C/C++ developer might
want to know about as he or she starts out.

6.3.1 GLib

GLib is the underlying C library for GTK+ (http://www.gtk.org) the Gimp ToolKit. GLib
provides the fundamental algorithmic language constructs commonly duplicated in applications.
This library has features including:

• Object and type system
• Main loop

32

• Dynamic loading of modules (i.e. plug-ins)
• Thread support
• Timer support
• Memory allocator
• Threaded Queues (synchronous and asynchronous)
• Lists (singly linked, doubly linked, double ended)
• Hash tables
• Arrays
• Trees (N-ary and binary balanced)
• String utilities and charset handling
• Lexical scanner and XML parser
• Base64 (encoding & decoding)

6.3.2 Boost

From the website http://www.boost.org/.

Boost provides free peer-reviewed portable C++ source libraries.

We emphasize libraries that work well with the C++ Standard Library. Boost libraries
are intended to be widely useful, and usable across a broad spectrum of applications.
The Boost license encourages both commercial and non-commercial use.

We aim to establish “existing practice” and provide reference implementations so
that Boost libraries are suitable for eventual standardization. Ten Boost libraries are
already included in the C++ Standards Committee’s Library Technical Report (TR1)
as a step toward becoming part of a future C++ Standard. More Boost libraries are
proposed for the upcoming TR2.

The idea is to boost programmer productivity.

References

[1] D.J. Worth and C. Greenough, A Survey of Software Tools for Computational Science, RAL
Technical Report RAL-TR-2006-011, 2006.

[2] The GNU Scientific Library, http://www.gnu.org/software/gsl/.

[3] SciMath from Advanced Scientific Applications Inc., http://www.scimath.com/.

[4] LAPACK++, http://sourceforge.net/projects/lapackpp/.

[5] CHARM++, A machine independent parallel programming system,
http://charm.cs.uiuc.edu/research/charm/.

[6] T. Veldhuizen, Scientific Computing: C++ Versus Fortran: C++ has more than caught up,
Dr. Dobb’s Journal of Software Tools, 22, 11, pp 34, 36–38, 91, Nov 1997.

[7] T. Veldhuizen, Techniques for Scientific C++, Indiana University Computer
Science Technical Report 542 Version 0.4, August 2000. Also available at
http://ubiety.uwaterloo.ca/~tveldhui/papers/techniques/techniques.html.

33

[8] The Unified Modeling Language, http://en.wikipedia.org/wiki/Unified_Modeling_Language.

[9] T.J. McCabe, A complexity measure, IEEE Trans. Software Eng., SE2, no 4, pp 308–320,
1976.

[10] S.R. Chidamber and C.F. Kemerer. A Metrics suite for Object Oriented design. M.I.T. Sloan
School of Management E53-315. 1993.

[11] D. Kafura, and S.M. Henry, Software Quality Metrics Based on Interconnectivity, Journal
of Systems and Software, 2, pp. 121–131, 1982.

[12] B.A. Nejmeh, NPATH: a measure of execution path complexity and its applications, Com-
mun, ACM, 31, no 2, pp 188–200, 1988.

[13] A Survey of Software Testing Tools for Computational Science, L.S. Chin, D.J. Worth, and
C. Greenough, RAL Technical Report RAL-TR-2007-010, July 2007.

[14] Cygwin, a Linux-like environment for Windows, http://www.cygwin.com/.

[15] MinGW, Minimalist GNU for Windows, http://www.mingw.com/.

[16] Link Exchange for the Technical Computing Community, C/C++ Section
http://www.mathtools.net/C_C__/index.html.

[17] The Object-Oriented Numerics Page, http://www.oonumerics.org/oon/.

34

