
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133390094
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133390094
https://plusone.google.com/share?url=http://www.informit.com/title/9780133390094
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133390094
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133390094/Free-Sample-Chapter

Systems Performance

This page intentionally left blank

Systems Performance
Enterprise and the Cloud

Brendan Gregg

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Gregg, Brendan.

Systems performance : enterprise and the cloud / Brendan Gregg.
pages cm

Includes bibliographical references and index.
ISBN-13: 978-0-13-339009-4 (alkaline paper)
ISBN-10: 0-13-339009-8 (alkaline paper)

1. Operating systems (Computers)—Evaluation. 2. Application software—Evaluation. 3. Business
Enterprises—Data processing. 4. Cloud computing. I. Title.

QA76.77.G74 2014
004.67'82—dc23

2013031887

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. To obtain permission to use material from this work, please submit a written request to Pearson Educa-
tion, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to (201) 236-3290.

ISBN-13: 978-0-13-339009-4
ISBN-10: 0-13-339009-8
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
Second Printing, January 2014

v

Contents

Preface xxv

Acknowledgments xxxiii

About the Author xxxv

Chapter 1 Introduction 1
1.1 Systems Performance 1

1.2 Roles 2

1.3 Activities 3

1.4 Perspectives 4

1.5 Performance Is Challenging 4

1.5.1 Performance Is Subjective 5

1.5.2 Systems Are Complex 5

1.5.3 There Can Be Multiple Performance Issues 6

1.6 Latency 6

1.7 Dynamic Tracing 7

1.8 Cloud Computing 8

1.9 Case Studies 9

1.9.1 Slow Disks 9

vi Contents

1.9.2 Software Change 11

1.9.3 More Reading 13

Chapter 2 Methodology 15
2.1 Terminology 16

2.2 Models 17

2.2.1 System under Test 17

2.2.2 Queueing System 17

2.3 Concepts 18

2.3.1 Latency 18

2.3.2 Time Scales 19

2.3.3 Trade-offs 20

2.3.4 Tuning Efforts 21

2.3.5 Level of Appropriateness 22

2.3.6 Point-in-Time Recommendations 23

2.3.7 Load versus Architecture 24

2.3.8 Scalability 24

2.3.9 Known-Unknowns 26

2.3.10 Metrics 27

2.3.11 Utilization 27

2.3.12 Saturation 29

2.3.13 Profiling 30

2.3.14 Caching 30

2.4 Perspectives 32

2.4.1 Resource Analysis 33

2.4.2 Workload Analysis 34

2.5 Methodology 35

2.5.1 Streetlight Anti-Method 36

2.5.2 Random Change Anti-Method 37

2.5.3 Blame-Someone-Else Anti-Method 38

2.5.4 Ad Hoc Checklist Method 38

2.5.5 Problem Statement 39

2.5.6 Scientific Method 39

Contents vii

2.5.7 Diagnosis Cycle 41

2.5.8 Tools Method 41

2.5.9 The USE Method 42

2.5.10 Workload Characterization 49

2.5.11 Drill-Down Analysis 50

2.5.12 Latency Analysis 51

2.5.13 Method R 52

2.5.14 Event Tracing 53

2.5.15 Baseline Statistics 54

2.5.16 Static Performance Tuning 55

2.5.17 Cache Tuning 55

2.5.18 Micro-Benchmarking 56

2.6 Modeling 57

2.6.1 Enterprise versus Cloud 57

2.6.2 Visual Identification 58

2.6.3 Amdahl’s Law of Scalability 60

2.6.4 Universal Scalability Law 61

2.6.5 Queueing Theory 61

2.7 Capacity Planning 65

2.7.1 Resource Limits 66

2.7.2 Factor Analysis 68

2.7.3 Scaling Solutions 69

2.8 Statistics 69

2.8.1 Quantifying Performance 69

2.8.2 Averages 70

2.8.3 Standard Deviations, Percentiles, Median 72

2.8.4 Coefficient of Variation 72

2.8.5 Multimodal Distributions 73

2.8.6 Outliers 74

2.9 Monitoring 74

2.9.1 Time-Based Patterns 74

2.9.2 Monitoring Products 76

2.9.3 Summary-since-Boot 76

viii Contents

2.10 Visualizations 76

2.10.1 Line Chart 77

2.10.2 Scatter Plots 78

2.10.3 Heat Maps 79

2.10.4 Surface Plot 80

2.10.5 Visualization Tools 81

2.11 Exercises 82

2.12 References 82

Chapter 3 Operating Systems 85
3.1 Terminology 86

3.2 Background 87

3.2.1 Kernel 87

3.2.2 Stacks 89

3.2.3 Interrupts and Interrupt Threads 91

3.2.4 Interrupt Priority Level 92

3.2.5 Processes 93

3.2.6 System Calls 95

3.2.7 Virtual Memory 97

3.2.8 Memory Management 97

3.2.9 Schedulers 98

3.2.10 File Systems 99

3.2.11 Caching 101

3.2.12 Networking 102

3.2.13 Device Drivers 103

3.2.14 Multiprocessor 103

3.2.15 Preemption 103

3.2.16 Resource Management 104

3.2.17 Observability 104

3.3 Kernels 105

3.3.1 Unix 106

3.3.2 Solaris-Based 106

3.3.3 Linux-Based 109

3.3.4 Differences 112

Contents ix

3.4 Exercises 113

3.5 References 113

Chapter 4 Observability Tools 115
4.1 Tool Types 116

4.1.1 Counters 116

4.1.2 Tracing 118

4.1.3 Profiling 119

4.1.4 Monitoring (sar) 120

4.2 Observability Sources 120

4.2.1 /proc 121

4.2.2 /sys 126

4.2.3 kstat 127

4.2.4 Delay Accounting 130

4.2.5 Microstate Accounting 131

4.2.6 Other Observability Sources 131

4.3 DTrace 133

4.3.1 Static and Dynamic Tracing 134

4.3.2 Probes 135

4.3.3 Providers 136

4.3.4 Arguments 137

4.3.5 D Language 137

4.3.6 Built-in Variables 137

4.3.7 Actions 138

4.3.8 Variable Types 139

4.3.9 One-Liners 141

4.3.10 Scripting 141

4.3.11 Overheads 143

4.3.12 Documentation and Resources 143

4.4 SystemTap 144

4.4.1 Probes 145

4.4.2 Tapsets 145

4.4.3 Actions and Built-ins 146

x Contents

4.4.4 Examples 146

4.4.5 Overheads 148

4.4.6 Documentation and Resources 149

4.5 perf 149

4.6 Observing Observability 150

4.7 Exercises 151

4.8 References 151

Chapter 5 Applications 153
5.1 Application Basics 153

5.1.1 Objectives 155

5.1.2 Optimize the Common Case 156

5.1.3 Observability 156

5.1.4 Big O Notation 156

5.2 Application Performance Techniques 158

5.2.1 Selecting an I/O Size 158

5.2.2 Caching 158

5.2.3 Buffering 159

5.2.4 Polling 159

5.2.5 Concurrency and Parallelism 160

5.2.6 Non-Blocking I/O 162

5.2.7 Processor Binding 163

5.3 Programming Languages 163

5.3.1 Compiled Languages 164

5.3.2 Interpreted Languages 165

5.3.3 Virtual Machines 166

5.3.4 Garbage Collection 166

5.4 Methodology and Analysis 167

5.4.1 Thread State Analysis 168

5.4.2 CPU Profiling 171

5.4.3 Syscall Analysis 173

5.4.4 I/O Profiling 180

5.4.5 Workload Characterization 181

Contents xi

5.4.6 USE Method 181

5.4.7 Drill-Down Analysis 182

5.4.8 Lock Analysis 182

5.4.9 Static Performance Tuning 185

5.5 Exercises 186

5.6 References 187

Chapter 6 CPUs 189
6.1 Terminology 190

6.2 Models 191

6.2.1 CPU Architecture 191

6.2.2 CPU Memory Caches 191

6.2.3 CPU Run Queues 192

6.3 Concepts 193

6.3.1 Clock Rate 193

6.3.2 Instruction 193

6.3.3 Instruction Pipeline 194

6.3.4 Instruction Width 194

6.3.5 CPI, IPC 194

6.3.6 Utilization 195

6.3.7 User-Time/Kernel-Time 196

6.3.8 Saturation 196

6.3.9 Preemption 196

6.3.10 Priority Inversion 196

6.3.11 Multiprocess, Multithreading 197

6.3.12 Word Size 198

6.3.13 Compiler Optimization 199

6.4 Architecture 199

6.4.1 Hardware 199

6.4.2 Software 209

6.5 Methodology 214

6.5.1 Tools Method 215

6.5.2 USE Method 216

xii Contents

6.5.3 Workload Characterization 216

6.5.4 Profiling 218

6.5.5 Cycle Analysis 219

6.5.6 Performance Monitoring 220

6.5.7 Static Performance Tuning 220

6.5.8 Priority Tuning 221

6.5.9 Resource Controls 222

6.5.10 CPU Binding 222

6.5.11 Micro-Benchmarking 222

6.5.12 Scaling 223

6.6 Analysis 224

6.6.1 uptime 224

6.6.2 vmstat 226

6.6.3 mpstat 227

6.6.4 sar 230

6.6.5 ps 230

6.6.6 top 231

6.6.7 prstat 232

6.6.8 pidstat 234

6.6.9 time, ptime 235

6.6.10 DTrace 236

6.6.11 SystemTap 243

6.6.12 perf 243

6.6.13 cpustat 249

6.6.14 Other Tools 250

6.6.15 Visualizations 251

6.7 Experimentation 254

6.7.1 Ad Hoc 255

6.7.2 SysBench 255

6.8 Tuning 256

6.8.1 Compiler Options 256

6.8.2 Scheduling Priority and Class 256

6.8.3 Scheduler Options 257

Contents xiii

6.8.4 Process Binding 259

6.8.5 Exclusive CPU Sets 259

6.8.6 Resource Controls 260

6.8.7 Processor Options (BIOS Tuning) 260

6.9 Exercises 260

6.10 References 262

Chapter 7 Memory 265
7.1 Terminology 266

7.2 Concepts 267

7.2.1 Virtual Memory 267

7.2.2 Paging 268

7.2.3 Demand Paging 269

7.2.4 Overcommit 270

7.2.5 Swapping 271

7.2.6 File System Cache Usage 271

7.2.7 Utilization and Saturation 271

7.2.8 Allocators 272

7.2.9 Word Size 272

7.3 Architecture 272

7.3.1 Hardware 273

7.3.2 Software 278

7.3.3 Process Address Space 284

7.4 Methodology 289

7.4.1 Tools Method 289

7.4.2 USE Method 290

7.4.3 Characterizing Usage 291

7.4.4 Cycle Analysis 293

7.4.5 Performance Monitoring 293

7.4.6 Leak Detection 293

7.4.7 Static Performance Tuning 294

7.4.8 Resource Controls 294

7.4.9 Micro-Benchmarking 294

xiv Contents

7.5 Analysis 295

7.5.1 vmstat 295

7.5.2 sar 298

7.5.3 slabtop 302

7.5.4 ::kmastat 302

7.5.5 ps 304

7.5.6 top 305

7.5.7 prstat 305

7.5.8 pmap 306

7.5.9 DTrace 308

7.5.10 SystemTap 312

7.5.11 Other Tools 312

7.6 Tuning 314

7.6.1 Tunable Parameters 314

7.6.2 Multiple Page Sizes 317

7.6.3 Allocators 318

7.6.4 Resource Controls 318

7.7 Exercises 319

7.8 References 320

Chapter 8 File Systems 323
8.1 Terminology 324

8.2 Models 325

8.2.1 File System Interfaces 325

8.2.2 File System Cache 325

8.2.3 Second-Level Cache 326

8.3 Concepts 326

8.3.1 File System Latency 327

8.3.2 Caching 327

8.3.3 Random versus Sequential I/O 328

8.3.4 Prefetch 329

8.3.5 Read-Ahead 330

8.3.6 Write-Back Caching 330

Contents xv

8.3.7 Synchronous Writes 331

8.3.8 Raw and Direct I/O 331

8.3.9 Non-Blocking I/O 332

8.3.10 Memory-Mapped Files 332

8.3.11 Metadata 333

8.3.12 Logical versus Physical I/O 333

8.3.13 Operations Are Not Equal 335

8.3.14 Special File Systems 336

8.3.15 Access Timestamps 336

8.3.16 Capacity 337

8.4 Architecture 337

8.4.1 File System I/O Stack 337

8.4.2 VFS 337

8.4.3 File System Caches 339

8.4.4 File System Features 344

8.4.5 File System Types 345

8.4.6 Volumes and Pools 351

8.5 Methodology 353

8.5.1 Disk Analysis 353

8.5.2 Latency Analysis 354

8.5.3 Workload Characterization 356

8.5.4 Performance Monitoring 358

8.5.5 Event Tracing 358

8.5.6 Static Performance Tuning 359

8.5.7 Cache Tuning 360

8.5.8 Workload Separation 360

8.5.9 Memory-Based File Systems 360

8.5.10 Micro-Benchmarking 361

8.6 Analysis 362

8.6.1 vfsstat 363

8.6.2 fsstat 364

8.6.3 strace, truss 364

8.6.4 DTrace 365

xvi Contents

8.6.5 SystemTap 375

8.6.6 LatencyTOP 375

8.6.7 free 376

8.6.8 top 376

8.6.9 vmstat 376

8.6.10 sar 377

8.6.11 slabtop 378

8.6.12 mdb ::kmastat 379

8.6.13 fcachestat 379

8.6.14 /proc/meminfo 380

8.6.15 mdb ::memstat 380

8.6.16 kstat 381

8.6.17 Other Tools 382

8.6.18 Visualizations 383

8.7 Experimentation 383

8.7.1 Ad Hoc 384

8.7.2 Micro-Benchmark Tools 384

8.7.3 Cache Flushing 387

8.8 Tuning 387

8.8.1 Application Calls 387

8.8.2 ext3 389

8.8.3 ZFS 389

8.9 Exercises 391

8.10 References 392

Chapter 9 Disks 395
9.1 Terminology 396

9.2 Models 397

9.2.1 Simple Disk 397

9.2.2 Caching Disk 397

9.2.3 Controller 398

9.3 Concepts 399

9.3.1 Measuring Time 399

Contents xvii

9.3.2 Time Scales 400

9.3.3 Caching 401

9.3.4 Random versus Sequential I/O 402

9.3.5 Read/Write Ratio 403

9.3.6 I/O Size 403

9.3.7 IOPS Are Not Equal 404

9.3.8 Non-Data-Transfer Disk Commands 404

9.3.9 Utilization 404

9.3.10 Saturation 405

9.3.11 I/O Wait 406

9.3.12 Synchronous versus Asynchronous 407

9.3.13 Disk versus Application I/O 407

9.4 Architecture 407

9.4.1 Disk Types 408

9.4.2 Interfaces 414

9.4.3 Storage Types 415

9.4.4 Operating System Disk I/O Stack 418

9.5 Methodology 421

9.5.1 Tools Method 422

9.5.2 USE Method 422

9.5.3 Performance Monitoring 423

9.5.4 Workload Characterization 424

9.5.5 Latency Analysis 426

9.5.6 Event Tracing 427

9.5.7 Static Performance Tuning 428

9.5.8 Cache Tuning 429

9.5.9 Resource Controls 429

9.5.10 Micro-Benchmarking 429

9.5.11 Scaling 431

9.6 Analysis 431

9.6.1 iostat 432

9.6.2 sar 440

9.6.3 pidstat 441

xviii Contents

9.6.4 DTrace 442

9.6.5 SystemTap 451

9.6.6 perf 451

9.6.7 iotop 452

9.6.8 iosnoop 455

9.6.9 blktrace 457

9.6.10 MegaCli 459

9.6.11 smartctl 460

9.6.12 Visualizations 461

9.7 Experimentation 465

9.7.1 Ad Hoc 465

9.7.2 Custom Load Generators 465

9.7.3 Micro-Benchmark Tools 466

9.7.4 Random Read Example 466

9.8 Tuning 467

9.8.1 Operating System Tunables 467

9.8.2 Disk Device Tunables 469

9.8.3 Disk Controller Tunables 469

9.9 Exercises 470

9.10 References 471

Chapter 10 Network 473
10.1 Terminology 474

10.2 Models 474

10.2.1 Network Interface 474

10.2.2 Controller 475

10.2.3 Protocol Stack 476

10.3 Concepts 476

10.3.1 Networks and Routing 476

10.3.2 Protocols 477

10.3.3 Encapsulation 478

10.3.4 Packet Size 478

10.3.5 Latency 479

Contents xix

10.3.6 Buffering 481

10.3.7 Connection Backlog 481

10.3.8 Interface Negotiation 482

10.3.9 Utilization 482

10.3.10 Local Connections 482

10.4 Architecture 483

10.4.1 Protocols 483

10.4.2 Hardware 486

10.4.3 Software 488

10.5 Methodology 493

10.5.1 Tools Method 494

10.5.2 USE Method 495

10.5.3 Workload Characterization 496

10.5.4 Latency Analysis 497

10.5.5 Performance Monitoring 498

10.5.6 Packet Sniffing 498

10.5.7 TCP Analysis 500

10.5.8 Drill-Down Analysis 500

10.5.9 Static Performance Tuning 501

10.5.10 Resource Controls 502

10.5.11 Micro-Benchmarking 502

10.6 Analysis 503

10.6.1 netstat 503

10.6.2 sar 509

10.6.3 ifconfig 511

10.6.4 ip 512

10.6.5 nicstat 512

10.6.6 dladm 513

10.6.7 ping 514

10.6.8 traceroute 514

10.6.9 pathchar 515

10.6.10 tcpdump 516

10.6.11 snoop 517

xx Contents

10.6.12 Wireshark 520

10.6.13 DTrace 520

10.6.14 SystemTap 533

10.6.15 perf 533

10.6.16 Other Tools 534

10.7 Experimentation 535

10.7.1 iperf 535

10.8 Tuning 536

10.8.1 Linux 536

10.8.2 Solaris 539

10.8.3 Configuration 542

10.9 Exercises 542

10.10 References 543

Chapter 11 Cloud Computing 545
11.1 Background 546

11.1.1 Price/Performance Ratio 546

11.1.2 Scalable Architecture 547

11.1.3 Capacity Planning 548

11.1.4 Storage 550

11.1.5 Multitenancy 550

11.2 OS Virtualization 551

11.2.1 Overhead 553

11.2.2 Resource Controls 555

11.2.3 Observability 558

11.3 Hardware Virtualization 563

11.3.1 Overhead 566

11.3.2 Resource Controls 572

11.3.3 Observability 574

11.4 Comparisons 581

11.5 Exercises 583

11.6 References 584

Contents xxi

Chapter 12 Benchmarking 587
12.1 Background 588

12.1.1 Activities 588

12.1.2 Effective Benchmarking 589

12.1.3 Benchmarking Sins 591

12.2 Benchmarking Types 597

12.2.1 Micro-Benchmarking 597

12.2.2 Simulation 599

12.2.3 Replay 600

12.2.4 Industry Standards 601

12.3 Methodology 602

12.3.1 Passive Benchmarking 603

12.3.2 Active Benchmarking 604

12.3.3 CPU Profiling 606

12.3.4 USE Method 607

12.3.5 Workload Characterization 608

12.3.6 Custom Benchmarks 608

12.3.7 Ramping Load 608

12.3.8 Sanity Check 611

12.3.9 Statistical Analysis 612

12.4 Benchmark Questions 613

12.5 Exercises 614

12.6 References 615

Chapter 13 Case Study 617
13.1 Case Study: The Red Whale 617

13.1.1 Problem Statement 618

13.1.2 Support 619

13.1.3 Getting Started 620

13.1.4 Choose Your Own Adventure 622

13.1.5 The USE Method 623

13.1.6 Are We Done? 626

13.1.7 Take 2 627

xxii Contents

13.1.8 The Basics 628

13.1.9 Ignoring the Red Whale 628

13.1.10 Interrogating the Kernel 629

13.1.11 Why? 631

13.1.12 Epilogue 633

13.2 Comments 633

13.3 Additional Information 634

13.4 References 634

Appendix A USE Method: Linux 637
Physical Resources 637

Software Resources 640

Reference 641

Appendix B USE Method: Solaris 643
Physical Resources 643

Software Resources 646

References 647

Appendix C sar Summary 649
Linux 649

Solaris 650

Appendix D DTrace One-Liners 651
syscall Provider 651

proc Provider 655

profile Provider 655

sched Provider 657

fbt Provider 658

pid Provider 659

io Provider 660

sysinfo Provider 660

vminfo Provider 661

ip Provider 661

Contents xxiii

tcp provider 662

udp provider 663

Appendix E DTrace to SystemTap 665
Functionality 665

Terminology 666

Probes 666

Built-in Variables 667

Functions 668

Example 1: Listing syscall Entry Probes 668

Example 2: Summarize read() Returned Size 668

Example 3: Count syscalls by Process Name 670

Example 4: Count syscalls by syscall Name, for Process
ID 123 671

Example 5: Count syscalls by syscall Name, for
"httpd" Processes 672

Example 6: Trace File open()s with Process Name
and Path Name 672

Example 7: Summarize read() Latency for "mysqld"
Processes 672

Example 8: Trace New Processes with Process Name
and Arguments 673

Example 9: Sample Kernel Stacks at 100 Hz 674

References 674

Appendix F Solutions to Selected Exercises 675
Chapter 2—Methodology 675

Chapter 3—Operating Systems 675

Chapter 6—CPUs 675

Chapter 7—Memory 676

Chapter 8—File Systems 676

Chapter 9—Disks 677

Chapter 11—Cloud Computing 677

xxiv Contents

Appendix G Systems Performance Who’s Who 679

Glossary 683

Bibliography 689

Index 697

xxv

Preface

There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we

know there are some things we do not know.
But there are also unknown unknowns—

there are things we do not know we don’t know.

—U.S. Secretary of Defense Donald Rumsfeld, February 12, 2002

While the above statement was met with chuckles from those attending the press
briefing, it summarizes an important principle that is as relevant in complex tech-
nical systems as it is in geopolitics: performance issues can originate from any-
where, including areas of the system that you know nothing about and are
therefore not checking (the unknown-unknowns). This book may reveal many of
these areas, while providing methodologies and tools for their analysis.

About This Book

Welcome to Systems Performance: Enterprise and the Cloud! This book is about the
performance of operating systems and of applications from operating system con-
text, and it is written for both enterprise and cloud computing environments. My
aim is to help you get the most out of your systems.

When working with application software that is under constant development,
you may be tempted to think of operating system performance—where the kernel

xxvi Preface

has been developed and tuned for decades—as a solved problem. It isn’t! The oper-
ating system is a complex body of software, managing a variety of ever-changing
physical devices with new and different application workloads. The kernels are
also in constant development, with features being added to improve the perfor-
mance of particular workloads, and newly encountered bottlenecks being removed
as systems continue to scale. Analyzing and working to improve the performance
of the operating system is an ongoing task that should lead to continual perfor-
mance improvements. Application performance can also be analyzed in the operat-
ing system context; I’ll cover that here as well.

Operating System Coverage

The main focus of this book is the study of systems performance, with tools, exam-
ples, and tunable parameters from Linux- and Solaris-based operating systems
used as examples. Unless noted, the specific distribution of an operating system is
not important in the examples used. For Linux-based systems, the examples are
from a variety of bare-metal systems and virtualized cloud tenants, running either
Ubuntu, Fedora, or CentOS. For Solaris-based systems, the examples are also
either bare-metal or virtualized and are from either Joyent SmartOS or OmniTI
OmniOS. SmartOS and OmniOS use the open-source illumos kernel: the active
fork of the OpenSolaris kernel, which itself was based on the development version
of what became Oracle Solaris 11.

Covering two different operating systems provides an additional perspective for
each audience, offering a deeper understanding of their characteristics, especially
where each OS has taken a different design path. This helps the reader to under-
stand performance more comprehensively, without being limited to a single OS,
and to think about operating systems more objectively.

Historically, more performance work has been done for Solaris-based systems,
making them the better choice for some examples. The situation for Linux has
been greatly improving. When System Performance Tuning [Musumeci 02] was
written, over a decade ago, it also addressed both Linux and Solaris but was heav-
ily oriented toward the latter. The author noted reasons for this:

Solaris machines tend to be more focused on performance. I suspect this is because
Sun systems are more expensive than their Linux counterparts, on average. As a
result, people tend to be a lot more picky about performance, so more work has been
done in that area on Solaris. If your Linux box doesn’t perform well enough, you can
just buy another one and split up the workload—it’s cheap. If your several-million-
dollar Ultra Enterprise 10000 doesn’t perform well and your company is losing non-
trivial sums of money every minute because of it, you call Sun Service and start
demanding answers.

Preface xxvii

This helps explain Sun’s historical performance focus: Solaris profits were tied
to hardware sales, and real money was frequently on the line for performance
improvements. Sun needed—and could afford to hire—over 100 full-time perfor-
mance engineers (including, at times, myself and Musumeci). Together with Sun’s
kernel engineering teams, many developments were made in the field of systems
performance.

Linux has come a long way in terms of performance work and observability,
especially now that it is being used in large-scale cloud computing environments.
Many performance features for Linux, included in this book, have been developed
only within the past five years.

Other Content

Example screen shots from performance tools are included, not just for the data
shown, but also to illustrate the types of data available. The tools often present the
data in intuitive ways, many in the style of earlier Unix tools, producing output
that is familiar and often self-explanatory. This means that screen shots can be a
powerful way to convey the purpose of these tools, some requiring little additional
description. (If a tool does require laborious explanation, that may be a failure of
design!)

The history of technologies can provide useful insight to deepen your under-
standing, and it has been mentioned in places. It is also useful to learn a bit about
the key people in this industry (it’s a small world): you’re likely to come across
them or their work in performance and other contexts. A “who’s who” list has been
provided in Appendix G.

What Isn’t Covered

This book focuses on performance. To perform all the example tasks given will
require, at times, some system administration activities, including the installation
or compilation of software (which is not covered here). Specifically on Linux, you
will need to install the sysstat package, as many of its tools are used in this text.

The content also summarizes operating system internals, which are covered in
more detail in separate dedicated texts. Advanced performance analysis topics are
summarized so that you are aware of their existence and can then study them from
additional sources if and when needed.

xxviii Preface

How This Book Is Structured

The book includes the following:

� Chapter 1, Introduction, is an introduction to systems performance analysis,
summarizing key concepts and providing examples of performance activities.

� Chapter 2, Methodology, provides the background for performance analy-
sis and tuning, including terminology, concepts, models, methodologies for
observation and experimentation, capacity planning, analysis, and statistics.

� Chapter 3, Operating Systems, summarizes kernel internals for the per-
formance analyst. This is necessary background for interpreting and under-
standing what the operating system is doing.

� Chapter 4, Observability Tools, introduces the types of system observabil-
ity tools available, and the interfaces and frameworks upon which they are
built.

� Chapter 5, Applications, discusses application performance topics and
observing them from the operating system.

� Chapter 6, CPUs, covers processors, cores, hardware threads, CPU caches,
CPU interconnects, and kernel scheduling.

� Chapter 7, Memory, is about virtual memory, paging, swapping, memory
architectures, busses, address spaces, and allocators.

� Chapter 8, File Systems, is about file system I/O performance, including
the different caches involved.

� Chapter 9, Disks, covers storage devices, disk I/O workloads, storage con-
trollers, RAID, and the kernel I/O subsystem.

� Chapter 10, Network, is about network protocols, sockets, interfaces, and
physical connections.

� Chapter 11, Cloud Computing, introduces operating-system- and hardware-
based virtualization methods in common use for cloud computing and their
performance overhead, isolation, and observability characteristics.

� Chapter 12, Benchmarking, shows how to benchmark accurately, and how
to interpret others’ benchmark results. This is a surprisingly tricky topic, and
this chapter shows how you can avoid common mistakes and try to make
sense of it.

� Chapter 13, Case Study, contains a systems performance case study, show-
ing how a real cloud customer issue was analyzed from beginning to end.

Preface xxix

Chapters 1 to 4 provide essential background. After reading them, you can ref-
erence the remainder of the book as needed.

Chapter 13 is written differently, using a storytelling approach to paint a bigger
picture of a performance engineer’s work. If you’re new to performance analysis,
you might want to read this first, for context, and then return to it again when
you’ve read the other chapters.

As a Future Reference

This book has been written to provide value for many years, by focusing on back-
ground and methodologies for the systems performance analyst.

To support this, many chapters have been separated into two parts. The first
part consists of terms, concepts, and methodologies (often with those headings),
which should stay relevant many years from now. The second provides examples of
how the first part is implemented: architecture, analysis tools, and tunables,
which, while they will become out-of-date, will still be useful in the context of
examples.

Tracing Examples

We frequently need to explore the operating system in depth, which can be per-
formed by kernel tracing tools. There are many of these at various stages of devel-
opment, for example, ftrace, perf, DTrace, SystemTap, LTTng, and ktap. One of
them has been chosen for most of the tracing examples here and is demonstrated
on both Linux- and Solaris-based systems: DTrace. It provides the features needed
for these examples, and there is also a large amount of external material about it,
including scripts that can be referenced as use cases of advanced tracing.

You may need or wish to use different tracing tools, which is fine. The DTrace
examples are examples of tracing and show the questions that you can ask of the
system. It is often these questions, and the methodologies that pose them, that are
the most difficult to know.

Intended Audience

The intended audience for this book is primarily systems administrators and oper-
ators of enterprise and cloud computing environments. It is also a reference for
developers, database administrators, and web server administrators who need to
understand operating system and application performance.

xxx Preface

As the lead performance engineer at a cloud computing provider, I frequently work
with support staff and customers who are under enormous time pressure to solve mul-
tiple performance issues. For many, performance is not their primary job, and they
need to know just enough to solve the issues at hand. This has encouraged me to keep
this book as short as possible, knowing that your time to study it may be very limited.
But not too short: there is much to cover to ensure that you are prepared.

Another intended audience is students: this book is also suitable as a support-
ing text for a systems performance course. During the writing of this book (and for
many years before it began), I developed and taught such classes myself, which
included simulated performance issues for the students to solve (without provid-
ing the answers beforehand!). This has helped me to see which types of material
work best in leading students to solve performance problems, and that has guided
my choice of content for this book.

Whether you are a student or not, the chapter exercises give you an opportunity
to review and apply the material. These include (by suggestion from reviewers)
some optional advanced exercises, which you are not expected to solve (they may
be impossible; they should be thought-provoking at least).

In terms of company size, this book should contain enough detail to satisfy small
to large environments, including those with dozens of dedicated performance staff.
For many smaller companies, the book may serve as a reference when needed, with
only some portions of it used day to day.

Typographic Conventions

The following typographical conventions are used throughout this book:

netif_receive_skb() function name

iostat(1) man page

Documentation/ . . . Linux docs

CONFIG_ . . . Linux configuration option

kernel/ . . . Linux kernel source code

fs/ Linux kernel source code, file systems

usr/src/uts/ . . . Solaris-based kernel source code

superuser (root) shell prompt

$ user (non-root) shell prompt

^C a command was interrupted (Ctrl-C)

[...] truncation

mpstat 1 typed command or highlighting

Preface xxxi

Supplemental Material and References

The following selected texts (the full list is in the Bibliography) can be referenced
for further background on operating systems and performance analysis:

[Jain 91] Jain, R. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion, and Modeling. Wiley, 1991.

[Vahalia 96] Vahalia, U. UNIX Internals: The New Frontiers. Prentice Hall,
1996.

[Cockcroft 98] Cockcroft, A., and R. Pettit. Sun Performance and Tuning:
Java and the Internet. Prentice Hall, 1998.

[Musumeci 02] Musumeci, G. D., and M. Loukidas. System Performance Tun-
ing, 2nd Edition. O’Reilly, 2002.

[Bovet 05] Bovet, D., and M. Cesati. Understanding the Linux Kernel,
3rd Edition. O’Reilly, 2005.

[McDougall 06a] McDougall, R., and J. Mauro. Solaris Internals: Solaris 10
and OpenSolaris Kernel Architecture. Prentice Hall, 2006.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

[Gove 07] Gove, D. Solaris Application Programming. Prentice Hall,
2007.

[Love 10] Love, R. Linux Kernel Development, 3rd Edition. Addison-
Wesley, 2010.

[Gregg 11] Gregg, B., and J. Mauro. DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X and FreeBSD. Prentice Hall, 2011.

This page intentionally left blank

xxxiii

Acknowledgments

Deirdré Straughan has, once again, provided amazing help, sharing my interest in
technical education deeply enough to survive another book. She has been involved
from concept to manuscript, at first helping me plan what this book would be, then
spending countless hours editing and discussing every draft page, identifying
many parts I hadn’t explained properly. At this point I’ve worked with her on over
2,000 pages of technical content (plus blog posts!), and I’m lucky to have had such
outstanding help.

Barbara Wood performed the copy edit and worked through the text in great
detail and in great time, making numerous final improvements to its quality, read-
ability, and consistency. With the length and complexity, this is a difficult text to
work on, and I’m very glad for Barbara’s help and hard work.

I’m very grateful for everyone who provided feedback on some or all of the book.
This is a deeply technical book with many new topics and has required serious
effort to review the material—frequently requiring kernel source code from differ-
ent kernels to be double-checked and understood.

Darryl Gove provided outstanding feedback, both at a deeply technical level and
for the high-level presentation and organization of material. He is an author him-
self, and I look forward to any of his future books, knowing how driven he is to pro-
vide the best possible material to our readers.

I’m very grateful to Richard Lowe and Robert Mustacchi, who both worked
through the entire book and found topics I had missed or needed to explain better.
Richard’s understanding of different kernel internals is astonishing, and also a

xxxiv Acknowledgments

little terrifying. Robert also helped considerably with the Cloud Computing chap-
ter, bringing to bear his expertise from working on the KVM port to illumos.

Thanks for the feedback from Jim Mauro and Dominic Kay: I’ve worked with
them on books before, and they have great minds for comprehending difficult tech-
nical content and then explaining it to readers.

Jerry Jelinek and Max Bruning, both of whom have kernel engineering exper-
tise, also provided detailed feedback on multiple chapters.

Adam Leventhal provided expert feedback for the File Systems and Disks chap-
ters, notably helping me to understand the current nuances of flash memory—an
area where he has longstanding expertise, having invented innovative new uses of
flash memory while at Sun.

David Pacheco provided excellent feedback on the Applications chapter, and Dan
McDonald on the Network chapter. I’m lucky to have them bring their expertise to
areas they know so well.

Carlos Cardenas worked through the entire book and provided some unique
feedback that I was seeking regarding statistical analysis.

I’m grateful to Bryan Cantrill, Keith Wesolowski, Paul Eggleton, Marsell
Kukuljevic-Pearce, and Adrian Cockcroft, for their feedback and contributions.
Adrian’s comments encouraged me to reshuffle the chapter order, helping the
reader better relate to the material covered.

I’m grateful to authors before me, whose names are listed in the Bibliography,
who have forged paths into systems performance and documented their findings.
I’ve also captured expertise I’ve learned from performance experts I’ve worked
with over the years, including Bryan Cantrill, Roch Bourbonnais, Jim Mauro,
Richard McDougall, and many others, from whom I’ve learned much.

Thanks to Bryan Cantrill for supporting this project, and to Jason Hoffman for
his enthusiasm.

Thanks to Claire, Mitchell, and other family and friends for making the sacri-
fices to support me in a project like this.

And a special thanks to Greg Doench, senior editor at Pearson, for his help,
patience, and advice on the project.

I’ve enjoyed working on this book, though it has at times been daunting. It
would have been much easier for me to write it over a decade ago, when I knew
less about the complexities and subtle nuances of systems performance. Since
then, I’ve worked as a software engineer, a kernel engineer, and a performance
engineer, and in enterprise, storage, and cloud computing. I’ve debugged perfor-
mance issues everywhere in the stack, from applications to metal. This experi-
ence, and knowing how much has not yet been documented, has both discouraged
and encouraged me to write about it. This is the book I thought needed to be writ-
ten, and it’s a relief to have it done.

xxxv

About the Author

Brendan Gregg is the lead performance engineer at Joyent, where he analyzes
performance and scalability for small to large cloud computing environments, at
any level of the software stack. He is the primary author of DTrace (Prentice Hall,
2011), and coauthor of Solaris Performance and Tools (Prentice Hall, 2007), as well
as numerous articles about systems performance. He was previously a perfor-
mance lead and kernel engineer at Sun Microsystems, and also a performance con-
sultant and trainer. He developed the DTraceToolkit and the ZFS L2ARC, and
many of his DTrace scripts are shipped by default in Mac OS X and Oracle Solaris
11. His recent work has included performance visualizations.

This page intentionally left blank

This page intentionally left blank

189

6
CPUs

CPUs drive all software and are often the first target for systems performance
analysis. Modern systems typically have many CPUs, which are shared among all
running software by the kernel scheduler. When there is more demand for CPU
resources than there are resources available, process threads (or tasks) will queue,
waiting their turn. Waiting can add significant latency during the runtime of
applications, degrading performance.

The usage of the CPUs can be examined in detail to look for performance
improvements, including eliminating unnecessary work. At a high level, CPU
usage by process, thread, or task can be examined. At a lower level, the code path
within applications and the kernel can be profiled and studied. At the lowest level,
CPU instruction execution and cycle behavior can be studied.

This chapter consists of five parts:

� Background introduces CPU-related terminology, basic models of CPUs,
and key CPU performance concepts.

� Architecture introduces processor and kernel scheduler architecture.

� Methodology describes performance analysis methodologies, both observa-
tional and experimental.

� Analysis describes CPU performance analysis tools on Linux- and Solaris-
based systems, including profiling, tracing, and visualizations.

� Tuning includes examples of tunable parameters.

190 Chapter 6 � CPUs

The first three sections provide the basis for CPU analysis, and the last two show
its practical application to Linux- and Solaris-based systems.

The effects of memory I/O on CPU performance are covered, including CPU
cycles stalled on memory and the performance of CPU caches. Chapter 7, Memory,
continues the discussion of memory I/O, including MMU, NUMA/UMA, system
interconnects, and memory busses.

6.1 Terminology

For reference, CPU-related terminology used in this chapter includes the following:

� Processor: the physical chip that plugs into a socket on the system or pro-
cessor board and contains one or more CPUs implemented as cores or hard-
ware threads.

� Core: an independent CPU instance on a multicore processor. The use of
cores is a way to scale processors, called chip-level multiprocessing (CMP).

� Hardware thread: a CPU architecture that supports executing multiple
threads in parallel on a single core (including Intel’s Hyper-Threading Tech-
nology), where each thread is an independent CPU instance. One name for
this scaling approach is multithreading.

� CPU instruction: a single CPU operation, from its instruction set. There are
instructions for arithmetic operations, memory I/O, and control logic.

� Logical CPU: also called a virtual processor,1 an operating system CPU
instance (a schedulable CPU entity). This may be implemented by the proces-
sor as a hardware thread (in which case it may also be called a virtual core), a
core, or a single-core processor.

� Scheduler: the kernel subsystem that assigns threads to run on CPUs.

� Run queue: a queue of runnable threads that are waiting to be serviced by
CPUs. For Solaris, it is often called a dispatcher queue.

Other terms are introduced throughout this chapter. The Glossary includes basic
terminology for reference, including CPU, CPU cycle, and stack. Also see the termi-
nology sections in Chapters 2 and 3.

1. It is also sometimes called a virtual CPU; however, that term is more commonly used to refer
to virtual CPU instances provided by a virtualization technology. See Chapter 11, Cloud
Computing.

6.2 Models 191

6.2 Models

The following simple models illustrate some basic principles of CPUs and CPU per-
formance. Section 6.4, Architecture, digs much deeper and includes implementation-
specific details.

6.2.1 CPU Architecture

Figure 6.1 shows an example CPU architecture, for a single processor with four
cores and eight hardware threads in total. The physical architecture is pictured,
along with how it is seen by the operating system.

Each hardware thread is addressable as a logical CPU, so this processor appears
as eight CPUs. The operating system may have some additional knowledge of
topology, such as which CPUs are on the same core, to improve its scheduling
decisions.

6.2.2 CPU Memory Caches

Processors provide various hardware caches for improving memory I/O perfor-
mance. Figure 6.2 shows the relationship of cache sizes, which become smaller and
faster (a trade-off) the closer they are to the CPU.

The caches that are present, and whether they are on the processor (integrated)
or external to the processor, depend on the processor type. Earlier processors pro-
vided fewer levels of integrated cache.

Figure 6-1 CPU architecture

192 Chapter 6 � CPUs

6.2.3 CPU Run Queues

Figure 6.3 shows a CPU run queue, which is managed by the kernel scheduler.

The thread states shown in the figure, ready to run and on-CPU, are covered in
Figure 3.7 in Chapter 3, Operating Systems.

The number of software threads that are queued and ready to run is an impor-
tant performance metric indicating CPU saturation. In this figure (at this instant)
there are four, with an additional thread running on-CPU. The time spent waiting
on a CPU run queue is sometimes called run-queue latency or dispatcher-queue
latency. In this book, the term scheduler latency is used instead, as it is appropri-
ate for all dispatcher types, including those that do not use queues (see the discus-
sion of CFS in Section 6.4.2, Software).

For multiprocessor systems, the kernel typically provides a run queue for each
CPU and aims to keep threads on the same run queue. This means that threads are
more likely to keep running on the same CPUs, where the CPU caches have cached
their data. (These caches are described as having cache warmth, and the approach to
favor CPUs is called CPU affinity.) On NUMA systems, memory locality may also be
improved, which also improves performance (this is described in Chapter 7, Memory).

Figure 6-2 CPU cache sizes

Figure 6-3 CPU run queue

6.3 Concepts 193

It also avoids the cost of thread synchronization (mutex locks) for queue operations,
which would hurt scalability if the run queue was global and shared among all CPUs.

6.3 Concepts

The following are a selection of important concepts regarding CPU performance,
beginning with a summary of processor internals: the CPU clock rate and how
instructions are executed. This is background for later performance analysis, par-
ticularly for understanding the cycles-per-instruction (CPI) metric.

6.3.1 Clock Rate

The clock is a digital signal that drives all processor logic. Each CPU instruction
may take one or more cycles of the clock (called CPU cycles) to execute. CPUs exe-
cute at a particular clock rate; for example, a 5 GHz CPU performs 5 billion clock
cycles per second.

Some processors are able to vary their clock rate, increasing it to improve per-
formance or decreasing it to reduce power consumption. The rate may be varied on
request by the operating system, or dynamically by the processor itself. The ker-
nel idle thread, for example, can request the CPU to throttle down to save power.

Clock rate is often marketed as the primary feature of the processor, but this
can be a little misleading. Even if the CPU in your system appears to be fully uti-
lized (a bottleneck), a faster clock rate may not speed up performance—it depends
on what those fast CPU cycles are actually doing. If they are mostly stall cycles
while waiting on memory access, executing them more quickly doesn’t actually
increase the CPU instruction rate or workload throughput.

6.3.2 Instruction

CPUs execute instructions chosen from their instruction set. An instruction
includes the following steps, each processed by a component of the CPU called a
functional unit:

1. Instruction fetch

2. Instruction decode

3. Execute

4. Memory access

5. Register write-back

194 Chapter 6 � CPUs

The last two steps are optional, depending on the instruction. Many instructions
operate on registers only and do not require the memory access step.

Each of these steps takes at least a single clock cycle to be executed. Memory
access is often the slowest, as it may take dozens of clock cycles to read or write to
main memory, during which instruction execution has stalled (and these cycles
while stalled are called stall cycles). This is why CPU caching is important, as
described in Section 6.4: it can dramatically reduce the number of cycles needed for
memory access.

6.3.3 Instruction Pipeline

The instruction pipeline is a CPU architecture that can execute multiple instruc-
tions in parallel, by executing different components of different instructions at the
same time. It is similar to a factory assembly line, where stages of production can
be executed in parallel, increasing throughput.

Consider the instruction steps previously listed. If each were to take a single
clock cycle, it would take five cycles to complete the instruction. At each step of
this instruction, only one functional unit is active and four are idle. By use of pipe-
lining, multiple functional units can be active at the same time, processing differ-
ent instructions in the pipeline. Ideally, the processor can then complete one
instruction with every clock cycle.

6.3.4 Instruction Width

But we can go faster still. Multiple functional units can be included of the same
type, so that even more instructions can make forward progress with each clock
cycle. This CPU architecture is called superscalar and is typically used with pipe-
lining to achieve a high instruction throughput.

The instruction width describes the target number of instructions to process in
parallel. Modern processors are 3-wide or 4-wide, meaning they can complete up to
three or four instructions per cycle. How this works depends on the processor, as
there may be different numbers of functional units for each stage.

6.3.5 CPI, IPC

Cycles per instruction (CPI) is an important high-level metric for describing where
a CPU is spending its clock cycles and for understanding the nature of CPU utili-
zation. This metric may also be expressed as instructions per cycle (IPC), the
inverse of CPI.

6.3 Concepts 195

A high CPI indicates that CPUs are often stalled, typically for memory access. A
low CPI indicates that CPUs are often not stalled and have a high instruction
throughput. These metrics suggest where performance tuning efforts may be best
spent.

Memory-intensive workloads, for example, may be improved by installing faster
memory (DRAM), improving memory locality (software configuration), or reducing
the amount of memory I/O. Installing CPUs with a higher clock rate may not
improve performance to the degree expected, as the CPUs may need to wait the
same amount of time for memory I/O to complete. Put differently, a faster CPU
may mean more stall cycles but the same rate of completed instructions.

The actual values for high or low CPI are dependent on the processor and pro-
cessor features and can be determined experimentally by running known work-
loads. As an example, you may find that high-CPI workloads run with a CPI at ten
or higher, and low CPI workloads run with a CPI at less than one (which is possi-
ble due to instruction pipelining and width, described earlier).

It should be noted that CPI shows the efficiency of instruction processing, but
not of the instructions themselves. Consider a software change that added an inef-
ficient software loop, which operates mostly on CPU registers (no stall cycles): such
a change may result in a lower overall CPI, but higher CPU usage and utilization.

6.3.6 Utilization

CPU utilization is measured by the time a CPU instance is busy performing work
during an interval, expressed as a percentage. It can be measured as the time a
CPU is not running the kernel idle thread but is instead running user-level appli-
cation threads or other kernel threads, or processing interrupts.

High CPU utilization may not necessarily be a problem, but rather a sign that
the system is doing work. Some people also consider this an ROI indicator: a
highly utilized system is considered to have good ROI, whereas an idle system is
considered wasted. Unlike with other resource types (disks), performance does not
degrade steeply under high utilization, as the kernel supports priorities, preemp-
tion, and time sharing. These together allow the kernel to understand what has
higher priority, and to ensure that it runs first.

The measure of CPU utilization spans all clock cycles for eligible activities,
including memory stall cycles. It may seem a little counterintuitive, but a CPU
may be highly utilized because it is often stalled waiting for memory I/O, not just
executing instructions, as described in the previous section.

CPU utilization is often split into separate kernel- and user-time metrics.

196 Chapter 6 � CPUs

6.3.7 User-Time/Kernel-Time

The CPU time spent executing user-level application code is called user-time, and
kernel-level code is kernel-time. Kernel-time includes time during system calls,
kernel threads, and interrupts. When measured across the entire system, the user-
time/kernel-time ratio indicates the type of workload performed.

Applications that are computation-intensive may spend almost all their time
executing user-level code and have a user/kernel ratio approaching 99/1. Exam-
ples include image processing, genomics, and data analysis.

Applications that are I/O-intensive have a high rate of system calls, which exe-
cute kernel code to perform the I/O. For example, a web server performing net-
work I/O may have a user/kernel ratio of around 70/30.

These numbers are dependent on many factors and are included to express the
kinds of ratios expected.

6.3.8 Saturation

A CPU at 100% utilization is saturated, and threads will encounter scheduler latency
as they wait to run on-CPU, decreasing overall performance. This latency is the time
spent waiting on the CPU run queue or other structure used to manage threads.

Another form of CPU saturation involves CPU resource controls, as may be
imposed in a multitenant cloud computing environment. While the CPU may not
be 100% utilized, the imposed limit has been reached, and threads that are runna-
ble must wait their turn. How visible this is to users of the system depends on the
type of virtualization in use; see Chapter 11, Cloud Computing.

A CPU running at saturation is less of a problem than other resource types, as
higher-priority work can preempt the current thread.

6.3.9 Preemption

Preemption, introduced in Chapter 3, Operating Systems, allows a higher-priority
thread to preempt the currently running thread and begin its own execution
instead. This eliminates the run-queue latency for higher-priority work, improv-
ing its performance.

6.3.10 Priority Inversion

Priority inversion occurs when a lower-priority thread holds a resource and blocks
a higher-priority thread from running. This reduces the performance of the higher-
priority work, as it is blocked waiting.

6.3 Concepts 197

Solaris-based kernels implement a full priority inheritance scheme to avoid pri-
ority inversion. Here is an example of how this can work (based on a real-world
case):

1. Thread A performs monitoring and has a low priority. It acquires an address
space lock for a production database, to check memory usage.

2. Thread B, a routine task to perform compression of system logs, begins
running.

3. There is insufficient CPU to run both. Thread B preempts A and runs.

4. Thread C is from the production database, has a high priority, and has been
sleeping waiting for I/O. This I/O now completes, putting thread C back into
the runnable state.

5. Thread C preempts B, runs, but then blocks on the address space lock held by
thread A. Thread C leaves CPU.

6. The scheduler picks the next-highest-priority thread to run: B.

7. With thread B running, a high-priority thread, C, is effectively blocked on a
lower-priority thread, B. This is priority inversion.

8. Priority inheritance gives thread A thread C’s high priority, preempting B,
until it releases the lock. Thread C can now run.

Linux since 2.6.18 has provided a user-level mutex that supports priority inheri-
tance, intended for real-time workloads [1].

6.3.11 Multiprocess, Multithreading

Most processors provide multiple CPUs of some form. For an application to make
use of them, it needs separate threads of execution so that it can run in parallel.
For a 64-CPU system, for example, this may mean that an application can execute
up to 64 times faster if it can make use of all CPUs in parallel, or handle 64 times
the load. The degree to which the application can effectively scale with an increase
in CPU count is a measure of scalability.

The two techniques to scale applications across CPUs are multiprocess and
multithreading, which are pictured in Figure 6.4.

On Linux both the multiprocess and multithread models may be used, and both
are implemented by tasks.

Differences between multiprocess and multithreading are shown in Table 6.1.
With all the advantages shown in the table, multithreading is generally consid-

ered superior, although more complicated for the developer to implement.

198 Chapter 6 � CPUs

Whichever technique is used, it is important that enough processes or threads
be created to span the desired number of CPUs—which, for maximum perfor-
mance, may be all of the CPUs available. Some applications may perform better
when running on fewer CPUs, when the cost of thread synchronization and
reduced memory locality outweighs the benefit of running across more CPUs.

Parallel architectures are also discussed in Chapter 5, Applications.

6.3.12 Word Size

Processors are designed around a maximum word size—32-bit or 64-bit—which is
the integer size and register size. Word size is also commonly used, depending on

Figure 6-4 Software CPU scalability techniques

Table 6-1 Multiprocess and Multithreading Attributes

Attribute Multiprocess Multithreading

Development Can be easier. Use of fork(). Use of threads API.

Memory overhead Separate address space per process
consumes some memory resources.

Small. Requires only extra
stack and register space.

CPU overhead Cost of fork()/exit(), which
includes MMU work to manage
address spaces.

Small. API calls.

Communication Via IPC. This incurs CPU cost includ-
ing context switching for moving
data between address spaces, unless
shared memory regions are used.

Fastest. Direct access to share
memory. Integrity via syn-
chronization primitives (e.g.,
mutex locks).

Memory usage While some memory may be dupli-
cated, separate processes can
exit() and return all memory back
to the system.

Via system allocator. This may
incur some CPU contention
from multiple threads, and
fragmentation before mem-
ory is reused.

6.4 Architecture 199

the processor, for the address space size and data path width (where it is some-
times called the bit width).

Larger sizes can mean better performance, although it’s not as simple as it
sounds. Larger sizes may cause memory overheads for unused bits in some data
types. The data footprint also increases when the size of pointers (word size)
increases, which can require more memory I/O. For the x86 64-bit architecture,
these overheads are compensated by an increase in registers and a more efficient
register calling convention, so 64-bit applications will more likely be faster than
their 32-bit versions.

Processors and operating systems can support multiple word sizes and can run
applications compiled for different word sizes simultaneously. If software has been
compiled for the smaller word size, it may execute successfully but perform rela-
tively poorly.

6.3.13 Compiler Optimization

The CPU runtime of applications can be significantly improved through compiler
options (including setting word size) and optimizations. Compilers are also fre-
quently updated to take advantage of the latest CPU instruction sets and to imple-
ment other optimizations. Sometimes application performance can be significantly
improved simply by using a newer compiler.

This topic is covered in more detail in Chapter 5, Applications.

6.4 Architecture

This section introduces CPU architecture and implementation, for both hardware
and software. Simple CPU models were introduced in Section 6.2, Models, and
generic concepts in the previous section.

These topics have been summarized as background for performance analysis.
For more details, see vendor processor manuals and texts on operating system
internals. Some are listed at the end of this chapter.

6.4.1 Hardware

CPU hardware includes the processor and its subsystems, and the CPU intercon-
nect for multiprocessor systems.

Processor

Components of a generic two-core processor are shown in Figure 6.5.

200 Chapter 6 � CPUs

The control unit (pictured as control logic) is the heart of the CPU, performing
instruction fetch, decoding, managing execution, and storing results.

This example processor depicts a shared floating-point unit and (optional)
shared Level 3 cache. The actual components in your processor will vary depend-
ing on its type and model. Other performance-related components that may be
present include the following:

� P-cache: prefetch cache (per CPU)

� W-cache: write cache (per CPU)

� Clock: signal generator for the CPU clock (or provided externally)

� Timestamp counter: for high-resolution time, incremented by the clock

� Microcode ROM: quickly converts instructions to circuit signals

� Temperature sensors: for thermal monitoring

� Network interfaces: if present on-chip (for high performance)

Some processor types use the temperature sensors as input for dynamic over-
clocking of individual cores (including Intel Turbo Boost technology), improving
performance while the core remains in its temperature envelope.

CPU Caches

Various hardware caches are usually included in the processor (referred to as on-
chip, on-die, embedded, or integrated) or with the processor (external). These
improve memory performance by using faster memory types for caching reads and

Figure 6-5 Generic two-core processor components

6.4 Architecture 201

buffering writes. The levels of cache access for a generic processor are shown in
Figure 6.6.

They include

� Level 1 instruction cache (I$)

� Level 1 data cache (D$)

� Translation lookaside buffer (TLB)

� Level 2 cache (E$)

� Level 3 cache (optional)

The E in E$ originally stood for external cache, but with the integration of Level
2 caches it has since been cleverly referred to as embedded cache. The “Level” ter-
minology is used nowadays instead of the “E$”-style notation, which avoids such
confusion.

The caches available on each processor depend on its type and model. Over time,
the number and sizes of these caches have been increasing. This is illustrated in
Table 6.2 by the listing of Intel processors since 1978, including advances in caches
[Intel 12].

Figure 6-6 CPU cache hierarchy

Table 6-2 Example Intel Processor Cache Sizes from 1978 to 2011

Processor Date Max Clock Transistors
Data
Bus Level 1 Level 2 Level 3

8086 1978 8 MHz 29 K 16-bit —

Intel 286 1982 12.5 MHz 134 K 16-bit —

Intel 386 DX 1985 20 MHz 275 K 32-bit — — —

Intel 486 DX 1989 25 MHz 1.2 M 32-bit 8 KB — —

Pentium 1993 60 MHz 3.1 M 64-bit 16 KB — —

Pentium Pro 1995 200 MHz 5.5 M 64-bit 16 KB 256/512 KB —

continues

202 Chapter 6 � CPUs

For multicore and multithreading processors, some of these caches may be
shared between cores and threads.

Apart from the increasing number and sizes of CPU caches, there is also a trend
toward providing these on-chip, where access latency can be minimized, instead of
providing them externally to the processor.

Latency

Multiple levels of cache are used to deliver the optimum configuration of size and
latency. The access time for the Level 1 cache is typically a few CPU clock cycles,
and for the larger Level 2 cache around a dozen clock cycles. Main memory can
take around 60 ns (around 240 cycles, for a 4 GHz processor), and address transla-
tion by the MMU also adds latency.

The CPU cache latency characteristics for your processor can be determined
experimentally using micro-benchmarking [Ruggiero 08]. Figure 6.7 shows the
result of this, plotting memory access latency for an Intel Xeon E5620 2.4 GHz
tested over increasing ranges of memory using LMbench [2].

Both axes are logarithmic. The steps in the graphs show when a cache level was
exceeded, and access latency becomes a result of the next (slower) cache level.

Associativity

Associativity is a cache characteristic describing a constraint for locating new
entries in the cache. Types are

� Fully associative: The cache can locate new entries anywhere. For exam-
ple, an LRU algorithm could evict the least recently used entry in the entire
cache.

Pentium II 1997 266 MHz 7 M 64-bit 32 KB 256/512 KB —

Pentium III 1999 500 MHz 8.2 M 64-bit 32 KB 512 KB —

Intel Xeon 2001 1.7 GHz 42 M 64-bit 8 KB 512 KB —

Pentium M 2003 1.6 GHz 77 M 64-bit 64 KB 1 MB —

Intel Xeon MP 2005 3.33 GHz 675 M 64-bit 16 KB 1 MB 8 MB

Intel Xeon 7410 2006 3.4 GHz 1.3 B 64-bit 64 KB 2 x 1 MB 16 MB

Intel Xeon 7460 2008 2.67 GHz 1.9 B 64-bit 64 KB 3 x 3 MB 16 MB

Intel Xeon 7560 2010 2.26 GHz 2.3 B 64-bit 64 KB 256 KB 24 MB

Intel Xeon E7-8870 2011 2.4 GHz 2.2 B 64-bit 64 KB 256 KB 30 MB

Table 6-2 Example Intel Processor Cache Sizes from 1978 to 2011 (Continued)

Processor Date Max Clock Transistors
Data
Bus Level 1 Level 2 Level 3

6.4 Architecture 203

� Direct mapped: Each entry has only one valid location in the cache, for
example, a hash of the memory address, using a subset of the address bits to
form an address in the cache.

� Set associative: A subset of the cache is identified by mapping (e.g., hash-
ing), from within which another algorithm (e.g., LRU) may be performed. It is
described in terms of the subset size; for example, four-way set associative maps
an address to four possible locations, and then picks the best from those four.

CPU caches often use set associativity as a balance between fully associative
(which is expensive to perform) and direct mapped (which has poor hit rates).

Cache Line

Another characteristic of CPU caches is their cache line size. This is a range of
bytes that are stored and transferred as a unit, improving memory throughput. A
typical cache line size for x86 processors is 64 bytes. Compilers take this into
account when optimizing for performance. Programmers sometimes do as well; see
Hash Tables in Section 5.2.5 of Chapter 5, Applications.

Cache Coherency

Memory may be cached in multiple CPU caches on different processors at the same
time. When one CPU modifies memory, all caches need to be aware that their
cached copy is now stale and should be discarded, so that any future reads will
retrieve the newly modified copy. This process, called cache coherency, ensures that

Figure 6-7 Memory access latency testing

204 Chapter 6 � CPUs

CPUs are always accessing the correct state of memory. It is also one of the great-
est challenges when designing scalable multiprocessor systems, as memory can be
modified rapidly.

MMU

The MMU is responsible for virtual-to-physical address translation. A generic
MMU is pictured in Figure 6.8, along with CPU cache types. This MMU uses an
on-chip TLB to cache address translations. Cache misses are satisfied by transla-
tion tables in main memory (DRAM), called page tables, which are read directly by
the MMU (hardware).

These factors are processor-dependent. Some (older) processors handle TLB
misses using software to walk the page tables, and then populate the TLB with the
requested mappings. Such software may maintain its own, larger, in-memory cache
of translations, called the translation storage buffer (TSB). Newer processors can
service TLB misses in hardware, greatly reducing their cost.

Interconnects

For multiprocessor architectures, processors are connected using either a shared
system bus or a dedicated interconnect. This is related to the memory architecture
of the system, uniform memory access (UMA) or NUMA, as discussed in Chapter 7,
Memory.

A shared system bus, called the front-side bus, used by earlier Intel processors is
illustrated by the four-processor example in Figure 6.9.

The use of a system bus has scalability problems when the processor count is
increased, due to contention for the shared bus resource. Modern servers are typi-
cally multiprocessor, NUMA, and use a CPU interconnect instead.

Figure 6-8 Memory management unit and CPU caches

6.4 Architecture 205

Interconnects can connect components other than processors, such as I/O control-
lers. Example interconnects include Intel’s Quick Path Interconnect (QPI) and AMD’s
HyperTransport (HT). An example Intel QPI architecture for a four-processor sys-
tem is shown in Figure 6.10.

Figure 6-9 Example Intel front-side bus architecture, four-processor

Figure 6-10 Example Intel QPI architecture, four-processor

206 Chapter 6 � CPUs

The private connections between processors allow for noncontended access and
also allow higher bandwidths than the shared system bus. Some example speeds
for Intel FSB and QPI are shown in Table 6.3 [Intel 09].

QPI is double-pumped, performing a data transfer on both edges of the clock,
doubling the data transfer rate. This explains the bandwidth shown in the table
(6.4 GT/s x 2 bytes x double = 25.6 Gbytes/s).

Apart from external interconnects, processors have internal interconnects for
core communication.

Interconnects are typically designed for high bandwidth, so that they do not
become a systemic bottleneck. If they do, performance will degrade as CPU
instructions encounter stall cycles for operations that involve the interconnect,
such as remote memory I/O. A key indicator for this is a rise in CPI. CPU instruc-
tions, cycles, CPI, stall cycles, and memory I/O can be analyzed using CPU perfor-
mance counters.

CPU Performance Counters

CPU performance counters (CPCs) go by many names, including performance
instrumentation counters (PICs), performance monitoring unit (PMU), hardware
events, and performance monitoring events. They are processor registers that can
be programmed to count low-level CPU activity. They typically include counters for
the following:

� CPU cycles: including stall cycles and types of stall cycles

� CPU instructions: retired (executed)

� Level 1, 2, 3 cache accesses: hits, misses

� Floating-point unit: operations

� Memory I/O: reads, writes, stall cycles

� Resource I/O: reads, writes, stall cycles

Each CPU has a small number of registers, usually between two and eight, that
can be programmed to record events like these. Those available depend on the pro-
cessor type and model and are documented in the processor manual.

Table 6-3 Intel CPU Interconnect Bandwidths

Intel Transfer Rate Width Bandwidth

FSB (2007) 1.6 GT/s 8 bytes 12.8 Gbytes/s

QPI (2008) 6.4 GT/s 2 bytes 25.6 Gbytes/s

6.4 Architecture 207

As a relatively simple example, the Intel P6 family of processors provide perfor-
mance counters via four model-specific registers (MSRs). Two MSRs are the coun-
ters and are read-only. The other two MSRs are used to program the counters,
called event-select MSRs, and are read-write. The performance counters are 40-bit
registers, and the event-select MSRs are 32-bit. The format of the event-select
MSRs is shown in Figure 6.11.

The counter is identified by the event select and the UMASK. The event select
identifies the type of event to count, and the UMASK identifies subtypes or groups
of subtypes. The OS and USR bits can be set so that the counter is incremented
only while in kernel mode (OS) or user mode (USR), based on the processor protec-
tion rings. The CMASK can be set to a threshold of events that must be reached
before the counter is incremented.

The Intel processor manual (volume 3B [Intel 13]) lists the dozens of events that
can be counted by their event-select and UMASK values. The selected examples in
Table 6.4 provide an idea of the different targets (processor functional units) that
may be observable. You will need to refer to your current processor manual to see
what you actually have.

There are many, many more counters, especially for newer processors. The Intel
Sandy Bridge family of processors provide not only more counter types, but also
more counter registers: three fixed and four programmable counters per hardware
thread, and an additional eight programmable counters per core (“general-
purpose”). These are 48-bit counters when read.

Since performance counters vary among manufacturers, a standard has been
developed to provide a consistent interface across them. This is the Processor
Application Programmers Interface (PAPI). Instead of the Intel names seen in
Table 6.4, PAPI assigns generic names to the counter types, for example, PAPI_
tot_cyc for total cycle counts, instead of CPU_CLK_UNHALTED.

Figure 6-11 Example Intel performance event-select MSR

208 Chapter 6 � CPUs

Table 6-4 Selected Examples of Intel CPU Performance Counters

Event
Select UMASK Unit Name Description

0x43 0x00 data cache DATA_MEM_
REFS

All loads from any memory type. All
stores to any memory type. Each part
of a split is counted separately. . . .
Does not include I/O accesses or
other nonmemory accesses.

0x48 0x00 data cache DCU_MISS_
OUTSTANDING

Weighted number of cycles while a
DCU miss is outstanding, incre-
mented by the number of outstand-
ing cache misses at any particular
time. Cacheable read requests only
are considered. . . .

0x80 0x00 instruction
fetch unit

IFU_IFETCH Number of instruction fetches, both
cacheable and noncacheable, includ-
ing UC (uncacheable) fetches.

0x28 0x0F L2 cache L2_IFETCH Number of L2 instruction fetches. . . .

0xC1 0x00 floating-
point unit

FLOPS Number of computational floating-
point operations retired. . . .

0x7E 0x00 external
bus logic

BUS_SNOOP_
STALL

Number of clock cycles during which
the bus is snoop stalled.

0xC0 0x00 instruction
decoding
and
retirement

INST_RETIRED Number of instructions retired.

0xC8 0x00 interrupts HW_INT_RX Number of hardware interrupts
received.

0xC5 0x00 branches BR_MISS_PRED_
RETIRED

Number of mispredicted branches
retired.

0xA2 0x00 stalls RESOURCE_
STALLS

Incremented by one during every
cycle for which there is a resource-
related stall. . . .

0x79 0x00 clocks CPU_CLK_
UNHALTED

Number of cycles during which the
processor is not halted.

6.4 Architecture 209

6.4.2 Software

Kernel software to support CPUs includes the scheduler, scheduling classes, and
the idle thread.

Scheduler

Key functions of the kernel CPU scheduler are shown in Figure 6.12.

These are

� Time sharing: multitasking between runnable threads, executing those with
the highest priority first.

� Preemption: For threads that have become runnable at a high priority, the
scheduler can preempt the currently running thread, so that execution of the
higher-priority thread can begin immediately.

� Load balancing: moving runnable threads to the run queues of idle or less
busy CPUs.

The figure shows run queues per CPU. There are also run queues per priority
level, so that the scheduler can easily manage which thread of the same priority
should run.

Figure 6-12 Kernel CPU scheduler functions

210 Chapter 6 � CPUs

A brief summary of how scheduling works for recent Linux and Solaris-based
kernels follows. Function names are included, so that you can find them in the
source code for further reference (although they may have changed). Also refer to
internals texts, listed in the Bibliography.

Linux

On Linux, time sharing is driven by the system timer interrupt by calling
scheduler_tick(), which calls scheduler class functions to manage priorities
and the expiry of units of CPU time called time slices. Preemption is triggered
when threads become runnable and the scheduler class check_preempt_curr()
function is called. Switching of threads is managed by __schedule(), which
selects the highest-priority thread via pick_next_task() for running. Load bal-
ancing is performed by the load_balance() function.

Solaris

On Solaris-based kernels, time sharing is driven by clock(), which calls sched-
uler class functions including ts_tick() to check for time slice expiration. If the
thread has exceeded its time, its priority is reduced, allowing another thread to
preempt. Preemption is handled by preempt() for user threads and kpreempt()
for kernel threads. The swtch() function manages a thread leaving CPU for any
reason, including from voluntary context switching, and calls dispatcher functions
to find the best runnable thread to take its place: disp(), disp_getwork(), or
disp_getbest(). Load balancing includes the idle thread calling similar func-
tions to find runnable threads from another CPU’s dispatcher queue (run queue).

Scheduling Classes

Scheduling classes manage the behavior of runnable threads, specifically their pri-
orities, whether their on-CPU time is time-sliced, and the duration of those time
slices (also known as time quantum). There are also additional controls via sched-
uling policies, which may be selected within a scheduling class and can control
scheduling between threads of the same priority. Figure 6.13 depicts them along
with the thread priority range.

The priority of user-level threads is affected by a user-defined nice value, which
can be set to lower the priority of unimportant work. In Linux, the nice value sets
the static priority of the thread, which is separate from the dynamic priority that
the scheduler calculates.

Note that the priority ranges are inverted between Linux and Solaris-based ker-
nels. The original Unix priority range (6th edition) used lower numbers for higher
priority, the system Linux uses now.

6.4 Architecture 211

Linux

For Linux kernels, the scheduling classes are

� RT: provides fixed and high priorities for real-time workloads. The kernel
supports both user- and kernel-level preemption, allowing RT tasks to be dis-
patched with low latency. The priority range is 0–99 (MAX_RT_PRIO–1).

� O(1): The O(1) scheduler was introduced in Linux 2.6 as the default time-
sharing scheduler for user processes. The name comes from the algorithm
complexity of O(1) (see Chapter 5, Applications, for a summary of big O nota-
tion). The prior scheduler contained routines that iterated over all tasks,
making it O(n), which became a scalability issue. The O(1) scheduler dynami-
cally improves the priority of I/O-bound over CPU-bound workloads, to reduce
latency of interactive and I/O workloads.

� CFS: Completely fair scheduling was added to the Linux 2.6.23 kernel as the
default time-sharing scheduler for user processes. The scheduler manages
tasks on a red-black tree instead of traditional run queues, which is keyed
from the task CPU time. This allows low CPU consumers to be easily found
and executed in preference to CPU-bound workloads, improving the perfor-
mance of interactive and I/O-bound workloads.

The scheduling class behavior can be adjusted by user-level processes by calling
sched_setscheduler() to set the scheduler policy. The RT class supports the
SCHED_RR and SCHED_FIFO policies, and the CFS class supports SCHED_
NORMAL and SCHED_BATCH.

Figure 6-13 Thread scheduler priorities

212 Chapter 6 � CPUs

Scheduler policies are as follows:

� RR: SCHED_RR is round-robin scheduling. Once a thread has used its time
quantum, it is moved to the end of the run queue for that priority level, allow-
ing others of the same priority to run.

� FIFO: SCHED_FIFO is first-in first-out scheduling, which continues run-
ning the thread at the head of the run queue until it voluntarily leaves, or
until a higher-priority thread arrives. The thread continues to run, even if
other threads of the same priority are on the run queue.

� NORMAL: SCHED_NORMAL (previously known as SCHED_OTHER) is
time-sharing scheduling and is the default for user processes. The scheduler
dynamically adjusts priority based on the scheduling class. For O(1), the time
slice duration is set based on the static priority: longer durations for higher-
priority work. For CFS, the time slice is dynamic.

� BATCH: SCHED_BATCH is similar to SCHED_NORMAL, but with the
expectation that the thread will be CPU-bound and should not be scheduled
to interrupt other I/O-bound interactive work.

Other classes and policies may be added over time. Scheduling algorithms have
been researched that are hyperthreading-aware [Bulpin 05] and temperature-
aware [Otto 06], which optimize performance by accounting for additional proces-
sor factors.

When there is no thread to run, a special idle task (also called idle thread) is
executed as a placeholder until another thread is runnable.

Solaris

For Solaris-based kernels, the scheduling classes are as follows:

� RT: Real-time scheduling provides fixed and high priorities for real-time
workloads. These preempt all other work (except interrupt service routines)
so that application response time can be deterministic—a typical require-
ment for real-time workloads.

� SYS: System is a high-priority scheduling class for kernel threads. These
threads have a fixed priority and execute for as long as needed (or until pre-
empted by RT or interrupts).

� TS: Time sharing is the default for user processes; it dynamically adjusts pri-
ority and quantum based on recent CPU usage. Thread priority is demoted if
it uses its quantum, and the quantum is increased. This causes CPU-bound
workloads to run at a low priority with large time quantums (reducing

6.4 Architecture 213

scheduler costs), and I/O-bound workloads—which voluntarily context switch
before their quantum is used—to run at a high priority. The result is that the
performance of I/O-bound workloads is not affected by the presence of long-
running CPU jobs. This class also applies the nice value, if set.

� IA: Interactive is similar to TS, but with a slightly higher default priority. It
is rarely used today (it was previously used to improve the responsiveness of
graphical X sessions).

� FX: Fixed (not pictured in Figure 6.13) is a process scheduling class for set-
ting fixed priorities, in the same global priority range as TS (0–59).

� FSS: Fair-share scheduling (not pictured in Figure 6.13) manages CPU usage
between groups of processes, either projects or zones, based on share values.
This allows groups of projects to use the CPUs fairly based on shares, instead
of based on their number of threads or processes. Each process group can con-
sume a fraction of CPU calculated from its share value divided by the total
busy shares on the system at that time. This means that if that group is the
only busy group, it can use all CPU resources. FSS is in popular use for cloud
computing, so that tenants (zones) can be allocated shares fairly and can also
consume more CPU if it is available and unused. FSS exists in the same
global priority range as TS (0–59) and has a fixed time quantum.

� SYSDC: The system duty cycle scheduling class is for kernel threads that are
large CPU consumers, such as the ZFS transaction group flush thread. It
allows a target duty cycle to be specified (the ratio of CPU time to runnable
time) and will deschedule the thread to match the duty cycle. This prevents
long-running kernel threads, which would otherwise be in the SYS class, from
starving other threads that need to use that CPU.

� Interrupts: For the purpose of scheduling interrupt threads, they are given a
priority that is 159 + IPL (see Section 3.2.3, Interrupts and Interrupt
Threads, in Chapter 3, Operating Systems).

Solaris-based systems also support scheduling policies (not pictured in Figure
6.13) that are set using sched_setscheduler(): SCHED_FIFO, SCHED_RR,
and SCHED_OTHER (time sharing).

The idle thread is a special case, running with the lowest priority.

Idle Thread

The kernel “idle” thread (or idle task) runs on-CPU when there is no other runnable
thread and has the lowest possible priority. It is usually programmed to inform the
processor that CPU execution may either be halted (halt instruction) or throttled
down to conserve power. The CPU will wake up on the next hardware interrupt.

214 Chapter 6 � CPUs

NUMA Grouping

Performance on NUMA systems can be significantly improved by making the ker-
nel NUMA-aware, so that it can make better scheduling and memory placement
decisions. This can automatically detect and create groups of localized CPU and
memory resources and organize them in a topology to reflect the NUMA architec-
ture. This topology allows the cost of any memory access to be estimated.

On Linux systems, these are called scheduling domains [3], which are in a
topology beginning with the root domain.

On Solaris-based systems, these are called locality groups (lgrps) and begin
with the root group.

A manual form of grouping can be performed by the system administrator,
either by binding processes to run on one or more CPUs only, or by creating an
exclusive set of CPUs for processes to run on. See Section 6.5.10, CPU Binding.

Processor Resource-Aware

Other than for NUMA, the CPU resource topology can be understood by the ker-
nel so that it can make better scheduling decisions for power management and
load balancing. On Solaris-based systems, this is implemented by processor groups.

6.5 Methodology

This section describes various methodologies and exercises for CPU analysis and
tuning. Table 6.5 summarizes the topics.

Table 6-5 CPU Performance Methodologies

Methodology Types

Tools method observational analysis

USE method observational analysis

Workload characterization observational analysis, capacity planning

Profiling observational analysis

Cycle analysis observational analysis

Performance monitoring observational analysis, capacity planning

Static performance tuning observational analysis, capacity planning

Priority tuning tuning

Resource controls tuning

CPU binding tuning

6.5 Methodology 215

See Chapter 2, Methodology, for more strategies and the introduction to many of
these. You are not expected to use them all; treat this as a cookbook of recipes that
may be followed individually or used in combination.

My suggestion is to use the following, in this order: performance monitoring, the
USE method, profiling, micro-benchmarking, and static analysis.

Section 6.6, Analysis, shows operating system tools for applying these strategies.

6.5.1 Tools Method

The tools method is a process of iterating over available tools, examining key met-
rics they provide. While this is a simple methodology, it can overlook issues for which
the tools provide poor or no visibility, and it can be time-consuming to perform.

For CPUs, the tools method can involve checking the following:

� uptime: Check load averages to see if CPU load is increasing or decreasing
over time. A load average over the number of CPUs in the system usually
indicates saturation.

� vmstat: Run per second, and check the idle columns to see how much
headroom there is. Less than 10% can be a problem.

� mpstat: Check for individual hot (busy) CPUs, identifying a possible thread
scalability problem.

� top/prstat: See which processes and users are the top CPU consumers.

� pidstat/prstat: Break down the top CPU consumers into user- and
system-time.

� perf/dtrace/stap/oprofile: Profile CPU usage stack traces for either
user- or kernel-time, to identify why the CPUs are in use.

� perf/cpustat: Measure CPI.

If an issue is found, examine all fields from the available tools to learn more con-
text. See Section 6.6, Analysis, for more about each tool.

Micro-benchmarking experimental analysis

Scaling capacity planning, tuning

Table 6-5 CPU Performance Methodologies (Continued)

Methodology Types

vmstat

216 Chapter 6 � CPUs

6.5.2 USE Method

The USE method is for identifying bottlenecks and errors across all components,
early in a performance investigation, before deeper and more time-consuming
strategies are followed.

For each CPU, check for

� Utilization: the time the CPU was busy (not in the idle thread)

� Saturation: the degree to which runnable threads are queued waiting their
turn on-CPU

� Errors: CPU errors, including correctable errors

Errors may be checked first since they are typically quick to check and the easi-
est to interpret. Some processors and operating systems will sense an increase in
correctable errors (error-correcting code, ECC) and will offline a CPU as a precau-
tion, before an uncorrectable error causes a CPU failure. Checking for these errors
can be a matter of checking that all CPUs are still online.

Utilization is usually readily available from operating system tools as percent
busy. This metric should be examined per CPU, to check for scalability issues. It
can also be examined per core, for cases where a core’s resources are heavily uti-
lized, preventing idle hardware threads from executing. High CPU and core utili-
zation can be understood by using profiling and cycle analysis.

For environments that implement CPU limits or quotas (resource controls), as
occurs in some cloud computing environments, CPU utilization may need to be
measured in terms of the imposed limit, in addition to the physical limit. Your sys-
tem may exhaust its CPU quota well before the physical CPUs reach 100% utiliza-
tion, encountering saturation earlier than expected.

Saturation metrics are commonly provided system-wide, including as part of
load averages. This metric quantifies the degree to which the CPUs are over-
loaded, or a CPU quota, if present, is used up.

6.5.3 Workload Characterization

Characterizing the load applied is important in capacity planning, benchmarking,
and simulating workloads. It can also lead to some of the largest performance
gains by identifying unnecessary work that can be eliminated.

Basic attributes for characterizing CPU workload are

� Load averages (utilization + saturation)

� User-time to system-time ratio

6.5 Methodology 217

� Syscall rate

� Voluntary context switch rate

� Interrupt rate

The intent is to characterize the applied load, not the delivered performance.
The load average is suited for this, as it reflects the CPU load requested, regard-
less of the delivered performance as shown by the utilization/saturation break-
down. See the example and further explanation in Section 6.6.1, uptime.

The rate metrics are a little harder to interpret, as they reflect both the applied
load and to some degree the delivered performance, which can throttle their rate.

The user-time to system-time ratio shows the type of load applied, as intro-
duced earlier in Section 6.3.7, User-Time/Kernel-Time. High user-time rates are
due to applications spending time performing their own compute. High system-
time shows time spent in the kernel instead, which may be further understood by
the syscall and interrupt rate. I/O-bound workloads have higher system-time, sys-
calls, and also voluntary context switches as threads block waiting for I/O.

Here is an example workload description that you might receive, designed to
show how these attributes can be expressed together:

On our busiest application server, the load average varies between 2 and 8 during the
day depending on the number of active clients. The user/system ratio is 60/40, as this
is an I/O-intensive workload performing around 100 K syscalls/s, and a high rate of
voluntary context switches.

These characteristics can vary over time as different load is encountered.

Advanced Workload Characterization/Checklist

Additional details may be included to characterize the workload. These are listed
here as questions for consideration, which may also serve as a checklist when
studying CPU issues thoroughly:

� What is the CPU utilization system-wide? Per CPU?

� How parallel is the CPU load? Is it single-threaded? How many threads?

� Which applications or users are using the CPUs? How much?

� Which kernel threads are using the CPUs? How much?

� What is the CPU usage of interrupts?

� What is the CPU interconnect utilization?

� Why are the CPUs being used (user- and kernel-level call paths)?

� What types of stall cycles are encountered?

218 Chapter 6 � CPUs

See Chapter 2, Methodology, for a higher-level summary of this methodology
and the characteristics to measure (who, why, what, how). The sections that follow
expand upon the last two questions in this list: how call paths can be analyzed
using profiling, and stall cycles using cycle analysis.

6.5.4 Profiling

Profiling builds a picture of the target for study. CPU usage can be profiled by
sampling the state of the CPUs at timed intervals, following these steps:

1. Select the type of profile data to capture, and the rate.

2. Begin sampling at a timed interval.

3. Wait while the activity of interest occurs.

4. End sampling and collect sample data.

5. Process the data.

Some profiling tools, including DTrace, allow real-time processing of the captured
data, which can be analyzed while sampling is still occurring.

Processing and navigating the data may be enhanced by a separate toolset from
the one used to collect the data. One example is flame graphs (covered later),
which process the output of DTrace and other profiling tools. Another is the Perfor-
mance Analyzer from Oracle Solaris Studio, which automates collecting and
browsing the profile data with the target source code.

The types of CPU profile data are based on the following factors:

� User level, kernel level, or both

� Function and offset (program-counter-based), function only, partial stack
trace, or full stack trace

Selecting full stack traces for both user and kernel level captures the complete pro-
file of CPU usage. However, it typically generates an excessive amount of data.
Capturing only user or kernel, partial stacks (e.g., five levels deep), or even just
the executing function name may prove sufficient for identifying CPU usage from
much less data.

As a simple example of profiling, the following DTrace one-liner samples the
user-level function name at 997 Hz for a duration of 10 s:

dtrace -n 'profile-997 /arg1 && execname == "beam.smp"/ {
@[ufunc(arg1)] = count(); } tick-10s { exit(0); }'

[...]

6.5 Methodology 219

DTrace has already performed step 5, processing the data by aggregating function
names and printing the sorted frequency counts. This shows that the most com-
mon on-CPU user-level function while tracing was ut_fold_ulint_pair(),
which was sampled 4,039 times.

A frequency of 997 Hz was used to avoid sampling in lockstep with any activity
(e.g., timed tasks running at 100 or 1,000 Hz).

By sampling the full stack trace, the code path for CPU usage can be identified,
which typically points to higher-level reasons for CPU usage. More examples of
sampling are given in Section 6.6, Analysis. Also see Chapter 5, Applications, for
more on CPU profiling, including fetching other programming language context
from the stack.

For the usage of specific CPU resources, such as caches and interconnects, pro-
filing can use CPC-based event triggers instead of timed intervals. This is
described in the next section on cycle analysis.

6.5.5 Cycle Analysis

By using the CPU performance counters (CPCs), CPU utilization can be under-
stood at the cycle level. This may reveal that cycles are spent stalled on Level 1, 2,
or 3 cache misses, memory I/O, or resource I/O, or spent on floating-point opera-
tions or other activity. This information may lead to performance wins by adjust-
ing compiler options or changing the code.

Begin cycle analysis by measuring CPI. If CPI is high, continue to investigate
types of stall cycles. If CPI is low, look for ways in the code to reduce instructions
performed. The values for “high” or “low” CPI depend on your processor: low could
be less than one, and high could be greater than ten. You can get a sense of these
values by performing known workloads that are either memory-I/O-intensive or
instruction-intensive and measuring the resulting CPI for each.

Apart from measuring counter values, CPC can be configured to interrupt the
kernel on the overflow of a given value. For example, at every 10,000 Level 2 cache
misses, the kernel could be interrupted to gather a stack backtrace. Over time, the

 libc.so.1`mutex_lock_impl 29
 libc.so.1`atomic_swap_8 33
 beam.smp`make_hash 45
 libc.so.1`__time 71
 innostore_drv.so`os_aio_array_get_nth_slot 80
 beam.smp`process_main 127
 libc.so.1`mutex_trylock_adaptive 140
 innostore_drv.so`os_aio_simulated_handle 158
 beam.smp`sched_sys_wait 202
 libc.so.1`memcpy 258
 innostore_drv.so`ut_fold_binary 1800
 innostore_drv.so`ut_fold_ulint_pair 4039

220 Chapter 6 � CPUs

kernel builds a profile of the code paths that are causing Level 2 cache misses,
without the prohibitive overhead of measuring every single miss. This is typically
used by integrated developer environment (IDE) software, to annotate code with
the locations that are causing memory I/O and stall cycles. Similar observability is
possible using DTrace and the cpc provider.

Cycle analysis is an advanced activity that can take days to perform with
command-line tools, as demonstrated in Section 6.6, Analysis. You should also
expect to spend some quality time with your CPU vendor’s processor manuals. Per-
formance analyzers such as Oracle Solaris Studio can save time as they are pro-
grammed to find the CPCs of interest to you.

6.5.6 Performance Monitoring

Performance monitoring can identify active issues and patterns of behavior over
time. Key metrics for CPUs are

� Utilization: percent busy

� Saturation: either run-queue length, inferred from load average, or as a
measure of thread scheduler latency

Utilization should be monitored on a per-CPU basis to identify thread scalabil-
ity issues. For environments that implement CPU limits or quotas (resource con-
trols), such as some cloud computing environments, CPU usage compared to these
limits also needs to be recorded.

A challenge when monitoring CPU usage is choosing an interval to measure and
archive. Some monitoring tools use 5 minutes, which can hide the existence of
shorter bursts of CPU utilization. Per-second measurements are preferable, but
you should be aware that there can be bursts even within a second. These can be
identified from saturation.

6.5.7 Static Performance Tuning

Static performance tuning focuses on issues of the configured environment. For
CPU performance, examine the following aspects of the static configuration:

� How many CPUs are available for use? Are they cores? Hardware threads?

� Is the CPU architecture single- or multiprocessor?

� What is the size of the CPU caches? Are they shared?

6.5 Methodology 221

� What is the CPU clock speed? Is it dynamic (e.g., Intel Turbo Boost and
SpeedStep)? Are those dynamic features enabled in the BIOS?

� What other CPU-related features are enabled or disabled in the BIOS?

� Are there performance issues (bugs) with this processor model? Are they
listed in the processor errata sheet?

� Are there performance issues (bugs) with this BIOS firmware version?

� Are there software-imposed CPU usage limits (resource controls) present?
What are they?

The answers to these questions may reveal previously overlooked configuration
choices.

The last question is especially true for cloud computing environments, where
CPU usage is commonly limited.

6.5.8 Priority Tuning

Unix has always provided a nice() system call for adjusting process priority,
which sets a nice-ness value. Positive nice values result in lower process priority
(nicer), and negative values—which can be set only by the superuser (root)—result
in higher priority. A nice(1) command became available to launch programs with
nice values, and a renice(1M) command was later added (in BSD) to adjust the
nice value of already running processes. The man page from Unix 4th edition pro-
vides this example [4]:

The value of 16 is recommended to users who wish to execute long-running programs
without flak from the administration.

The nice value is still useful today for adjusting process priority. This is most
effective when there is contention for CPUs, causing scheduler latency for high-
priority work. Your task is to identify low-priority work, which may include moni-
toring agents and scheduled backups, that can be modified to start with a nice
value. Analysis may also be performed to check that the tuning is effective, and
that the scheduler latency remains low for high-priority work.

Beyond nice, the operating system may provide more advanced controls for pro-
cess priority such as changing the scheduler class or scheduler policy, or changing
the tuning of the class. Both Linux and Solaris-based kernels include the real-time
scheduling class, which can allow processes to preempt all other work. While this
can eliminate scheduler latency (other than for other real-time processes and inter-
rupts), make sure you understand the consequences. If the real-time application

222 Chapter 6 � CPUs

encounters a bug where multiple threads enter an infinite loop, it can cause all
CPUs to become unavailable for all other work—including the administrative shell
required to manually fix the problem. This particular scenario is usually solved only
by rebooting the system (oops!).

6.5.9 Resource Controls

The operating system may provide fine-grained controls for allocating CPU cycles
to processes or groups of processes. These may include fixed limits for CPU utiliza-
tion and shares for a more flexible approach—allowing idle CPU cycles to be con-
sumed based on a share value. How these work is implementation-specific and
discussed in Section 6.8, Tuning.

6.5.10 CPU Binding

Another way to tune CPU performance involves binding processes and threads to
individual CPUs, or collections of CPUs. This can increase CPU cache warmth for
the process, improving its memory I/O performance. For NUMA systems it also
improves memory locality, also improving performance.

There are generally two ways this is performed:

� Process binding: configuring a process to run only on a single CPU, or only
on one CPU from a defined set.

� Exclusive CPU sets: partitioning a set of CPUs that can be used only by the
process(es) assigned to them. This can improve CPU cache further, as when
the process is idle other processes cannot use the CPUs, leaving the caches
warm.

On Linux-based systems, the exclusive CPU sets approach can be implemented
using cpusets. On Solaris-based systems, this is called processor sets. Configura-
tion examples are provided in Section 6.8, Tuning.

6.5.11 Micro-Benchmarking

There are various tools for CPU micro-benchmarking, which typically measure the
time taken to perform a simple operation many times. The operation may be based
on the following:

� CPU instructions: integer arithmetic, floating-point operations, memory
loads and stores, branch and other instructions

6.5 Methodology 223

� Memory access: to investigate latency of different CPU caches and main
memory throughput

� Higher-level languages: similar to CPU instruction testing, but written in
a higher-level interpreted or compiled language

� Operating system operations: testing system library and system call func-
tions that are CPU-bound, such as getpid() and process creation

An early example of a CPU benchmark is Whetstone by the National Physical
Laboratory, written in 1972 in Algol 60 and intended to simulate a scientific work-
load. The Dhrystone benchmark was later developed in 1984 to simulate integer
workloads of the time and became a popular means to compare CPU performance.
These, and various Unix benchmarks including process creation and pipe through-
put, were included in a collection called UnixBench, originally from Monash Uni-
versity and published by BYTE magazine [Hinnant 84]. More recent CPU
benchmarks have been created to test compression speeds, prime number calcula-
tion, encryption, and encoding.

Whichever benchmark you use, when comparing results between systems it’s
important that you understand what is really being tested. Benchmarks like those
described previously often end up testing compiler optimizations between differ-
ent compiler versions, rather than the benchmark code or CPU speed. Many
benchmarks also execute single-threaded, but these results lose meaning in sys-
tems with multiple CPUs. A four-CPU system may benchmark slightly faster than
an eight-CPU system, but the latter is likely to deliver much greater throughput
when given enough parallel runnable threads.

For more on benchmarking, see Chapter 12, Benchmarking.

6.5.12 Scaling

Here is a simple scaling method, based on capacity planning of resources:

1. Determine the target user population or application request rate.

2. Express CPU usage per user or per request. For existing systems, CPU usage
can be monitored with the current user count or request rate. For future sys-
tems, load generation tools can simulate users so that CPU usage can be
measured.

3. Extrapolate users or requests when the CPU resources reach 100% utiliza-
tion. This provides the theoretical limit for the system.

System scalability can also be modeled to account for contention and coherency
latency, for a more realistic prediction of performance. See Section 2.6, Modeling,

224 Chapter 6 � CPUs

in Chapter 2, Methodology, for more about this, and also Section 2.7, Capacity
Planning, of the same chapter for more on scaling.

6.6 Analysis

This section introduces CPU performance analysis tools for Linux- and Solaris-
based operating systems. See the previous section for strategies to follow when
using them.

The tools in this section are listed in Table 6.6.

The list begins with tools for CPU statistics, and then drills down to tools for
deeper analysis including code-path profiling and CPU cycle analysis. This is a
selection of tools and capabilities to support Section 6.5, Methodology. See the doc-
umentation for each tool, including its man pages, for full references of its features.

While you may be interested in only Linux or only Solaris-based systems, con-
sider looking at the other operating system’s tools and the observability that they
provide for a different perspective.

6.6.1 uptime

uptime(1) is one of several commands that print the system load averages:

Table 6-6 CPU Analysis Tools

Linux Solaris Description

uptime uptime load averages

vmstat vmstat includes system-wide CPU averages

mpstat mpstat per-CPU statistics

sar sar historical statistics

ps ps process status

top prstat monitor per-process/thread CPU usage

pidstat prstat per-process/thread CPU breakdowns

time ptime time a command, with CPU breakdowns

DTrace, perf DTrace CPU profiling and tracing

perf cpustat CPU performance counter analysis

$ uptime
 9:04pm up 268 day(s), 10:16, 2 users, load average: 7.76, 8.32, 8.60

6.6 Analysis 225

The last three numbers are the 1-, 5-, and 15-minute load averages. By comparing
the three numbers, you can determine if the load is increasing, decreasing, or
steady during the last 15 minutes (or so).

Load Averages

The load average indicates the demand for CPU resources and is calculated by
summing the number of threads running (utilization) and the number that are
queued waiting to run (saturation). A newer method for calculating load averages
uses utilization plus the sum of thread scheduler latency, rather than sampling the
queue length, which improves accuracy. For reference, the internals of these calcu-
lations on Solaris-based kernels are documented in [McDougall 06b].

To interpret the value, if the load average is higher than the CPU count, there
are not enough CPUs to service the threads, and some are waiting. If the load
average is lower than the CPU count, it (probably) means that there is headroom,
and the threads could run on-CPU when they wanted.

The three load average numbers are exponentially damped moving averages,
which reflect load beyond the 1-, 5-, and 15-minute times (the times are actually
constants used in the exponential moving sum [Myer 73]). Figure 6.14 shows the
results of a simple experiment where a single CPU-bound thread was launched
and the load averages plotted.

By the 1-, 5-, and 15-minute marks, the load averages had reached about 61% of
the known load of 1.0.

Figure 6-14 Exponentially damped load averages

226 Chapter 6 � CPUs

Load averages were introduced to Unix in early BSD and were based on sched-
uler average queue length and load averages commonly used by earlier operating
systems (CTSS, Multics [Saltzer 70], TENEX [Bobrow 72]). They were described in
[RFC 546]:

[1] The TENEX load average is a measure of CPU demand. The load average is an
average of the number of runable processes over a given time period. For example, an
hourly load average of 10 would mean that (for a single CPU system) at any time dur-
ing that hour one could expect to see 1 process running and 9 others ready to run (i.e.,
not blocked for I/O) waiting for the CPU.

As a modern example, a system with 64 CPUs has a load average of 128. This
means that on average there is always one thread running on each CPU, and one
thread waiting for each CPU. The same system with a load average of ten would
indicate significant headroom, as it could run another 54 CPU-bound threads
before all CPUs are busy.

Linux Load Averages

Linux currently adds tasks performing disk I/O in the uninterruptable state to the
load averages. This means that the load average can no longer be interpreted to
mean CPU headroom or saturation only, since it is unknown from the value alone
to what degree it reflects CPU or disk load. Comparisons of the three load average
numbers are also difficult, as the load may have varied among CPUs and disks
over time.

A different way to incorporate other resource load is to use separate load aver-
ages for each resource type. (I’ve prototyped examples of this for disk, memory, and
network load, each providing its own set of load averages, and found it a similar
and useful overview for non-CPU resources.)

It is best to use other metrics to understand CPU load on Linux, such as those
provided by vmstat(1) and mpstat(1).

6.6.2 vmstat

The virtual memory statistics command, vmstat(8), prints system-wide CPU
averages in the last few columns, and a count of runnable threads in the first col-
umn. Here is example output from the Linux version:

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa

15 0 2852 46686812 279456 1401196 0 0 0 0 0 0 0 0 100 0
16 0 2852 46685192 279456 1401196 0 0 0 0 2136 36607 56 33 11 0

6.6 Analysis 227

The first line of output is the summary-since-boot, with the exception of r on
Linux—which begins by showing current values. The columns are

� r: run-queue length—the total number of runnable threads (see below)

� us: user-time

� sy: system-time (kernel)

� id: idle

� wa: wait I/O, which measures CPU idle when threads are blocked on disk I/O

� st: stolen (not shown in the output), which for virtualized environments
shows CPU time spent servicing other tenants

All of these values are system-wide averages across all CPUs, with the exception of
r, which is the total.

On Linux, the r column is the total number of tasks waiting plus those run-
ning. The man page currently describes it as something else—“the number of pro-
cesses waiting for run time”—which suggests it counts only those waiting and not
running. As insight into what this is supposed to be, the original vmstat(1) by
Bill Joy and Ozalp Babaoglu for 3BSD in 1979 begins with an RQ column for the
number of runnable and running processes, as the Linux vmstat(8) currently
does. The man page needs updating.

On Solaris, the r column counts only the number of threads waiting in the dis-
patcher queues (run queues). The value can appear erratic, as it is sampled only
once per second (from clock()), whereas the other CPU columns are based on
high-resolution CPU microstates. These other columns currently do not include
wait I/O or stolen. See Chapter 9, Disks, for more about wait I/O.

6.6.3 mpstat

The multiprocessor statistics tool, mpstat, can report statistics per CPU. Here is
some example output from the Linux version:

15 0 2852 46685952 279456 1401196 0 0 0 56 2150 36905 54 35 11 0
15 0 2852 46685960 279456 1401196 0 0 0 0 2173 36645 54 33 13 0
[...]

$ mpstat -P ALL 1
02:47:49 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle
02:47:50 all 54.37 0.00 33.12 0.00 0.00 0.00 0.00 0.00 12.50
02:47:50 0 22.00 0.00 57.00 0.00 0.00 0.00 0.00 0.00 21.00
02:47:50 1 19.00 0.00 65.00 0.00 0.00 0.00 0.00 0.00 16.00

continues

228 Chapter 6 � CPUs

The -P ALL option was used to print the per-CPU report. By default, mpstat(1)
prints only the system-wide summary line (all). The columns are

� CPU: logical CPU ID, or all for summary

� %usr: user-time

� %nice: user-time for processes with a nice’d priority

� %sys: system-time (kernel)

� %iowait: I/O wait

� %irq: hardware interrupt CPU usage

� %soft: software interrupt CPU usage

� %steal: time spent servicing other tenants

� %guest: CPU time spent in guest virtual machines

� %idle: idle

Key columns are %usr, %sys, and %idle. These identify CPU usage per CPU
and show the user-time/kernel-time ratio (see Section 6.3.7, User-Time/Kernel-Time).
This can also identify “hot” CPUs—those running at 100% utilization (%usr +
%sys) while others are not—which can be caused by single-threaded application
workloads or device interrupt mapping.

For Solaris-based systems, mpstat(1M) begins with the summary-since-boot,
followed by the interval summaries. For example:

02:47:50 2 24.00 0.00 52.00 0.00 0.00 0.00 0.00 0.00 24.00
02:47:50 3 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 4 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 5 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 6 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 7 16.00 0.00 63.00 0.00 0.00 0.00 0.00 0.00 21.00
02:47:50 8 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 9 11.00 0.00 53.00 0.00 0.00 0.00 0.00 0.00 36.00
02:47:50 10 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 11 28.00 0.00 61.00 0.00 0.00 0.00 0.00 0.00 11.00
02:47:50 12 20.00 0.00 63.00 0.00 0.00 0.00 0.00 0.00 17.00
02:47:50 13 12.00 0.00 56.00 0.00 0.00 0.00 0.00 0.00 32.00
02:47:50 14 18.00 0.00 60.00 0.00 0.00 0.00 0.00 0.00 22.00
02:47:50 15 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[...]

$ mpstat 1
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
[...]
 0 8243 0 288 3211 1265 1682 40 236 262 0 8214 47 19 0 34
 1 43708 0 1480 2753 1115 1238 58 406 1967 0 26157 17 59 0 24
 2 11987 0 393 2994 1186 1761 79 281 522 0 10035 46 21 0 34
 3 3998 0 135 935 55 238 22 60 97 0 2350 88 6 0 6

6.6 Analysis 229

The columns include

� CPU: logical CPU ID

� xcal: CPU cross calls

� intr: interrupts

� ithr: interrupts serviced as threads (lower IPL)

� csw: context switches (total)

� icsw: involuntary context switches

� migr: thread migrations

� smtx: spins on mutex locks

� srw: spins on reader/writer locks

� syscl: system calls

� usr: user-time

� sys: system-time (kernel)

� wt: wait I/O (deprecated, always zero)

� idl: idle

Key columns to check are

� xcal, to see if there is an excess rate, which consumes CPU resources. For
example, look for at least 1,000/s across several CPUs. Drill-down analysis
can explain their cause (see the example of this in Section 6.6.10, DTrace).

� smtx, to see if there is an excess rate, which consumes CPU resources and
may also be evidence of lock contention. Lock activity can then be explored
using other tools (see Chapter 5, Applications).

� usr, sys, and idl, to characterize CPU usage per CPU and the user-time/
kernel-time ratio.

 4 12649 0 414 2885 1261 3130 82 365 619 0 14866 7 26 0 67
 5 30054 0 991 745 241 1563 52 349 1108 0 17792 8 40 0 52
 6 12882 0 439 636 167 2335 73 289 747 0 12803 6 23 0 71
 7 981 0 40 793 45 870 11 81 70 0 2022 78 3 0 19
 8 3186 0 100 687 27 450 15 75 156 0 2581 66 7 0 27
 9 8433 0 259 814 315 3382 38 280 552 0 9376 4 18 0 78
 10 8451 0 283 512 153 2158 20 194 339 0 9776 4 16 0 80
 11 3722 0 119 800 349 2693 12 199 194 0 6447 2 10 0 88
 12 4757 0 138 834 214 1387 29 142 380 0 6153 35 10 0 55
 13 5107 0 147 1404 606 3856 65 268 352 0 8188 4 14 0 82
 14 7158 0 229 672 205 1829 31 133 292 0 7637 19 12 0 69
 15 5822 0 209 866 232 1333 9 145 180 0 5164 30 13 0 57

230 Chapter 6 � CPUs

6.6.4 sar

The system activity reporter, sar(1), can be used to observe current activity and
can be configured to archive and report historical statistics. It was introduced in
Chapter 4, Observability Tools, and is mentioned in other chapters as appropriate.

The Linux version provides the following options:

� -P ALL: same as mpstat -P ALL

� -u: same as mpstat(1)’s default output: system-wide average only

� -q: includes run-queue size as runq-sz (waiting plus running, the same as
vmstat’s r) and load averages

The Solaris version provides

� -u: system-wide averages for %usr, %sys, %wio (zero), and %idl

� -q: includes run-queue size as runq-sz (waiting only), and percent of time
the run queue had threads waiting as %runocc, although this value is inac-
curate between 0 and 1

Per-CPU statistics are not available in the Solaris version.

6.6.5 ps

The process status command, ps(1), lists details on all processes, including CPU
usage statistics. For example:

This style of operation originated from BSD and can be recognized by a lack of a
dash before the aux options. These list all users (a), with extended user-oriented
details (u), and include processes without a terminal (x). The terminal is shown in
the teletype (TTY) column.

A different style, from SVR4, uses options preceded by a dash:

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 23772 1948 ? Ss 2012 0:04 /sbin/init
root 2 0.0 0.0 0 0 ? S 2012 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 2012 0:26 [ksoftirqd/0]
root 4 0.0 0.0 0 0 ? S 2012 0:00 [migration/0]
root 5 0.0 0.0 0 0 ? S 2012 0:00 [watchdog/0]
[...]
web 11715 11.3 0.0 632700 11540 pts/0 Sl 01:36 0:27 node indexer.js
web 11721 96.5 0.1 638116 52108 pts/1 Rl+ 01:37 3:33 node proxy.js
[...]

6.6 Analysis 231

This lists every process (-e) with full details (-f). ps(1) on most Linux- and
Solaris-based systems supports both the BSD and SVR4 arguments.

Key columns for CPU usage are TIME and %CPU.
The TIME column shows the total CPU time consumed by the process (user +

system) since it was created, in hours:minutes:seconds.
On Linux, the %CPU column shows the CPU usage during the previous second

as the sum across all CPUs. A single-threaded CPU-bound process will report
100%. A two-thread CPU-bound process will report 200%.

On Solaris, %CPU is normalized for the CPU count. For example, a single CPU-
bound thread will be shown as 12.5% for an eight-CPU system. This metric also
shows recent CPU usage, using similar decayed averages as with load averages.

Various other options are available for ps(1), including -o to customize the
output and columns shown.

6.6.6 top

top(1) was created by William LeFebvre in 1984 for BSD. He was inspired by the
VMS command MONITOR PROCESS/TOPCPU, which showed the top CPU-consuming
jobs with CPU percentages and an ASCII bar chart histogram (but not columns of
data).

The top(1) command monitors top running processes, updating the screen at
regular intervals. For example, on Linux:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Nov13 ? 00:00:04 /sbin/init
root 2 0 0 Nov13 ? 00:00:00 [kthreadd]
root 3 2 0 Nov13 ? 00:00:00 [ksoftirqd/0]
root 4 2 0 Nov13 ? 00:00:00 [migration/0]
root 5 2 0 Nov13 ? 00:00:00 [watchdog/0]
[...]

$ top
top - 01:38:11 up 63 days, 1:17, 2 users, load average: 1.57, 1.81, 1.77
Tasks: 256 total, 2 running, 254 sleeping, 0 stopped, 0 zombie
Cpu(s): 2.0%us, 3.6%sy, 0.0%ni, 94.2%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
Mem: 49548744k total, 16746572k used, 32802172k free, 182900k buffers
Swap: 100663292k total, 0k used, 100663292k free, 14925240k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
11721 web 20 0 623m 50m 4984 R 93 0.1 0:59.50 node
11715 web 20 0 619m 20m 4916 S 25 0.0 0:07.52 node
 10 root 20 0 0 0 0 S 1 0.0 248:52.56 ksoftirqd/2
 51 root 20 0 0 0 0 S 0 0.0 0:35.66 events/0
11724 admin 20 0 19412 1444 960 R 0 0.0 0:00.07 top
 1 root 20 0 23772 1948 1296 S 0 0.0 0:04.35 init

232 Chapter 6 � CPUs

A system-wide summary is at the top and a process/task listing at the bottom,
sorted by the top CPU consumer by default. The system-wide summary includes
the load averages and CPU states: %us, %sy, %ni, %id, %wa, %hi, %si, %st. These
states are equivalent to those printed by mpstat(1), as described earlier, and are
averaged across all CPUs.

CPU usage is shown by the TIME and %CPU columns, which were introduced in
the previous section on ps(1).

This example shows a TIME+ column, which is the same as the one shown
above, but at a resolution of hundredths of a second. For example, “1:36.53” means
1 minute and 36.53 seconds of on-CPU time in total. Some versions of top(1) pro-
vide an optional “cumulative time” mode, which includes the CPU time from child
processes that have exited.

On Linux, the %CPU column by default is not normalized by CPU count; top(1)
calls this “Irix mode,” after its behavior on IRIX. This can be switched to “Solaris
mode,” which divides the CPU usage by the CPU count. In that case, the hot two-
thread process on a 16-CPU server would report percent CPU as 12.5.

Though top(1) is often a tool for beginning performance analysts, you should
be aware that the CPU usage of top(1) itself can become significant and place
top(1) as the top CPU-consuming process! This has been due to the available sys-
tem calls—open(), read(), close()—and their cost when iterating over /proc
entries for many processes. Some versions of top(1) for Solaris-based systems
have reduced the overhead by leaving file descriptors open and calling pread(),
which the prstat(1M) tool also does.

Since top(1) takes snapshots of /proc, it can miss short-lived processes that
exit before a snapshot is taken. This commonly happens during software builds,
where the CPUs can be heavily loaded by many short-lived tools from the build
process. A variant of top(1) for Linux, called atop(1), uses process accounting to
catch the presence of short-lived processes, which it includes in its display.

6.6.7 prstat

The prstat(1) command was introduced as “top for Solaris-based systems.” For
example:

$ prstat
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 21722 101 23G 20G cpu0 59 0 72:23:41 2.6% beam.smp/594
 21495 root 321M 304M sleep 1 0 2:57:41 0.9% node/5
 20721 root 345M 328M sleep 1 0 2:49:53 0.8% node/5
 20861 root 348M 331M sleep 1 0 2:57:07 0.7% node/6
 15354 root 172M 156M cpu9 1 0 0:31:42 0.7% node/5
 21738 root 179M 143M sleep 1 0 2:37:48 0.7% node/4
 20385 root 196M 174M sleep 1 0 2:26:28 0.6% node/4

6.6 Analysis 233

A one-line system summary is at the bottom. The CPU column shows recent CPU
usage and is the same metric shown by top(1) on Solaris. The TIME column
shows consumed time.

prstat(1M) consumes fewer CPU resources than top(1) by using pread() to
read /proc status with file descriptors left open, instead of the open(), read(),
close() cycle.

Thread microstate accounting statistics can be printed by prstat(1M) using
the -m option. The following example uses -L to report this per thread (per LWP)
and -c for continual output (instead of screen refreshes):

The eight highlighted columns show time spent in each microstate and sum to
100%. They are

� USR: user-time

� SYS: system-time (kernel)

� TRP: system trap

� TFL: text faults (page faults for executable segments)

� DFL: data faults

 23186 root 172M 149M sleep 1 0 0:10:56 0.6% node/4
 18513 root 174M 138M cpu13 1 0 2:36:43 0.6% node/4
 21067 root 187M 162M sleep 1 0 2:28:40 0.5% node/4
 19634 root 193M 170M sleep 1 0 2:29:36 0.5% node/4
 10163 root 113M 109M sleep 1 0 12:31:09 0.4% node/3
 12699 root 199M 177M sleep 1 0 1:56:10 0.4% node/4
 37088 root 1069M 1056M sleep 59 0 38:31:19 0.3% qemu-system-x86/4
 10347 root 67M 64M sleep 1 0 11:57:17 0.3% node/3
Total: 390 processes, 1758 lwps, load averages: 3.89, 3.99, 4.31

$ prstat -mLc 1
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
30650 root 20 2.7 0.0 0.0 0.0 0.0 76 0.5 839 36 5K 0 node/1
42370 root 11 2.0 0.0 0.0 0.0 0.0 87 0.1 205 23 2K 0 node/1
42501 root 11 1.9 0.0 0.0 0.0 0.0 87 0.1 201 24 2K 0 node/1
42232 root 11 1.9 0.0 0.0 0.0 0.0 87 0.1 205 25 2K 0 node/1
42080 root 11 1.9 0.0 0.0 0.0 0.0 87 0.1 201 24 2K 0 node/1
53036 root 7.0 1.4 0.0 0.0 0.0 0.0 92 0.1 158 22 1K 0 node/1
56318 root 6.8 1.4 0.0 0.0 0.0 0.0 92 0.1 154 21 1K 0 node/1
55302 root 6.8 1.3 0.0 0.0 0.0 0.0 92 0.1 156 23 1K 0 node/1
54823 root 6.7 1.3 0.0 0.0 0.0 0.0 92 0.1 154 23 1K 0 node/1
54445 root 6.7 1.3 0.0 0.0 0.0 0.0 92 0.1 156 24 1K 0 node/1
53551 root 6.7 1.3 0.0 0.0 0.0 0.0 92 0.1 153 20 1K 0 node/1
21722 103 6.3 1.5 0.0 0.0 3.3 0.0 88 0.0 40 0 1K 0 beam.smp/578
21722 103 6.2 1.3 0.0 0.0 8.7 0.0 84 0.0 43 0 1K 0 beam.smp/585
21722 103 5.1 1.2 0.0 0.0 3.2 0.0 90 0.0 38 1 1K 0 beam.smp/577
21722 103 4.7 1.1 0.0 0.0 0.0 0.0 87 0.0 45 0 985 0 beam.smp/580
Total: 390 processes, 1758 lwps, load averages: 3.92, 3.99, 4.31

234 Chapter 6 � CPUs

� LCK: time spent waiting for user-level locks

� SLP: time spent sleeping, including blocked on I/O

� LAT: scheduler latency (dispatcher queue latency)

This breakdown of thread time is extremely useful. Here are suggested paths for
further investigation (also see Section 5.4.1, Thread State Analysis, in Chapter 5,
Applications):

� USR: profiling of user-level CPU usage

� SYS: check system calls used and profile kernel-level CPU usage

� SLP: depends on the sleep event; trace syscall or code path for more details

� LAT: check system-wide CPU utilization and any imposed CPU limit/quota

Many of these can also be performed using DTrace.

6.6.8 pidstat

The Linux pidstat(1) tool prints CPU usage by process or thread, including
user- and system-time breakdowns. By default, a rolling output is printed of only
active processes. For example:

This example captured a system backup, involving a tar(1) command to read
files from the file system, and the gzip(1) command to compress them. The user-
time for gzip(1) is high, as expected, as it becomes CPU-bound in compression
code. The tar(1) command spends more time in the kernel, reading from the file
system.

The -p ALL option can be used to print all processes, including those that are
idle. -t prints per-thread statistics. Other pidstat(1) options are included in
other chapters of this book.

$ pidstat 1
Linux 2.6.35-32-server (dev7) 11/12/12 _x86_64_ (16 CPU)

22:24:42 PID %usr %system %guest %CPU CPU Command
22:24:43 7814 0.00 1.98 0.00 1.98 3 tar
22:24:43 7815 97.03 2.97 0.00 100.00 11 gzip

22:24:43 PID %usr %system %guest %CPU CPU Command
22:24:44 448 0.00 1.00 0.00 1.00 0 kjournald
22:24:44 7814 0.00 2.00 0.00 2.00 3 tar
22:24:44 7815 97.00 3.00 0.00 100.00 11 gzip
22:24:44 7816 0.00 2.00 0.00 2.00 2 pidstat
[...]

6.6 Analysis 235

6.6.9 time, ptime

The time(1) command can be used to run programs and report CPU usage. It is
provided either in the operating system under /usr/bin, or as a shell built-in.

This example runs time twice on a cksum(1) command, calculating the check-
sum of a large file:

The first run took 5.1 s, during which 2.8 s was in user mode—calculating the
checksum—and 0.3 s was in system-time—the system calls required to read the
file. There is a missing 2.0 s (5.1 - 2.8 - 0.3), which is likely time spent blocked on
disk I/O reads, as this file was only partially cached. The second run completed
more quickly, in 2.5 s, with almost no time blocked on I/O. This is expected, as the
file may be fully cached in main memory for the second run.

On Linux, the /usr/bin/time version supports verbose details:

$ time cksum Fedora-16-x86_64-Live-Desktop.iso
560560652 633339904 Fedora-16-x86_64-Live-Desktop.iso

real 0m5.105s
user 0m2.810s
sys 0m0.300s
$ time cksum Fedora-16-x86_64-Live-Desktop.iso
560560652 633339904 Fedora-16-x86_64-Live-Desktop.iso

real 0m2.474s
user 0m2.340s
sys 0m0.130s

$ /usr/bin/time -v cp fileA fileB
 Command being timed: "cp fileA fileB"

User time (seconds): 0.00
 System time (seconds): 0.26
 Percent of CPU this job got: 24%
 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:01.08
 Average shared text size (kbytes): 0
 Average unshared data size (kbytes): 0
 Average stack size (kbytes): 0
 Average total size (kbytes): 0
 Maximum resident set size (kbytes): 3792
 Average resident set size (kbytes): 0
 Major (requiring I/O) page faults: 0
 Minor (reclaiming a frame) page faults: 294
 Voluntary context switches: 1082
 Involuntary context switches: 1
 Swaps: 0
 File system inputs: 275432

File system outputs: 275432
Socket messages sent: 0

 Socket messages received: 0
 Signals delivered: 0
 Page size (bytes): 4096
 Exit status: 0

236 Chapter 6 � CPUs

The -v option is not typically provided in the shell built-in version.
Solaris-based systems include an additional ptime(1) version of time(1),

which provides high-precision times based on thread microstate accounting. Nowa-
days, time(1) on Solaris-based systems ultimately uses the same source of statis-
tics. ptime(1) is still useful, as it provides a -m option to print the full set of
thread microstate times, including scheduler latency (lat):

In this case, the runtime was 8.3 s, during which 6.4 s was sleeping (disk I/O).

6.6.10 DTrace

DTrace can be used to profile CPU usage for both user- and kernel-level code, and
to trace the execution of functions, CPU cross calls, interrupts, and the kernel
scheduler. These abilities support workload characterization, profiling, drill-down
analysis, and latency analysis.

The following sections introduce DTrace for CPU analysis on Solaris- and Linux-
based systems. Unless noted, the DTrace commands are intended for both operating
systems. A DTrace primer was included in Chapter 4, Observability Tools.

Kernel Profiling

Previous tools, including mpstat(1) and top(1), showed system-time—CPU time
spent in the kernel. DTrace can be used to identify what the kernel is doing.

The following one-liner, demonstrated on a Solaris-based system, samples ker-
nel stack traces at 997 Hz (to avoid lockstep, as explained in Section 6.5.4, Profil-
ing). The predicate ensures that the CPU is in kernel mode when sampling, by
checking that the kernel program counter (arg0) is nonzero:

$ ptime -m cp fileA fileB

real 8.334800250
user 0.016714684
sys 1.899085951
trap 0.000003874
tflt 0.000000000
dflt 0.000000000
kflt 0.000000000
lock 0.000000000
slp 6.414634340
lat 0.004249234
stop 0.000285583

dtrace -n 'profile-997 /arg0/ { @[stack()] = count(); }'
dtrace: description 'profile-997 ' matched 1 probe
^C

6.6 Analysis 237

The most frequent stack is printed last, which in this case is for the idle thread,
which was sampled 23,083 times. For the other stacks, the top function and ances-
try are shown.

Many pages were truncated from this output. The following one-liners show
other ways to sample kernel CPU usage, some of which condense the output much
further.

One-Liners

Sample kernel stacks at 997 Hz:

Sample kernel stacks at 997 Hz, top ten only:

Sample kernel stacks, five frames only, at 997 Hz:

[...]
 unix`do_copy_fault_nta+0x49
 genunix`uiomove+0x12e
 zfs`dmu_write_uio_dnode+0xac
 zfs`dmu_write_uio_dbuf+0x54
 zfs`zfs_write+0xc60
 genunix`fop_write+0x8b
 genunix`write+0x250
 genunix`write32+0x1e
 unix`_sys_sysenter_post_swapgs+0x149

 302

 unix`do_splx+0x65
 genunix`disp_lock_exit+0x47
 genunix`post_syscall+0x318
 genunix`syscall_exit+0x68
 unix`0xfffffffffb800ed9

 621

 unix`i86_mwait+0xd
 unix`cpu_idle_mwait+0x109

 unix`idle+0xa7
 unix`thread_start+0x8

 23083

dtrace -n 'profile-997 /arg0/ { @[stack()] = count(); }'

dtrace -n 'profile-997 /arg0/ { @[stack()] = count(); } END { trunc(@, 10); }'

dtrace -n 'profile-997 /arg0/ { @[stack(5)] = count(); }'

238 Chapter 6 � CPUs

Sample kernel on-CPU functions at 997 Hz:

Sample kernel on-CPU modules at 997 Hz:

User Profiling

CPU time spent in user mode can be profiled similarly to the kernel. The following
one-liner matches on user-level code by checking on arg1 (user PC) and also
matches processes named "mysqld" (MySQL database):

The last stack shows that MySQL was in do_command() and performing calc_
sum_of_all_status(), which was frequently on-CPU. The stack frames look a
little mangled as they are C++ signatures (the c++filt(1) tool can be used to
unmangle them).

The following one-liners show other ways to sample user CPU usage, provided
user-level actions are available (this feature is currently not yet ported to Linux).

dtrace -n 'profile-997 /arg0/ { @[func(arg0)] = count(); }'

dtrace -n 'profile-997 /arg0/ { @[mod(arg0)] = count(); }'

dtrace -n 'profile-97 /arg1 && execname == "mysqld"/ { @[ustack()] =
count(); }'

dtrace: description 'profile-97 ' matched 1 probe
^C
[...]
libc.so.1`__priocntlset+0xa
libc.so.1`getparam+0x83
libc.so.1`pthread_getschedparam+0x3c
libc.so.1`pthread_setschedprio+0x1f
mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x9ab
mysqld`_Z10do_commandP3THD+0x198
mysqld`handle_one_connection+0x1a6
libc.so.1`_thrp_setup+0x8d
libc.so.1`_lwp_start
4884

mysqld`_Z13add_to_statusP17system_status_varS0_+0x47
mysqld`_Z22calc_sum_of_all_statusP17system_status_var+0x67
mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1222
mysqld`_Z10do_commandP3THD+0x198
mysqld`handle_one_connection+0x1a6
libc.so.1`_thrp_setup+0x8d
libc.so.1`_lwp_start
5530

6.6 Analysis 239

One-Liners

Sample user stacks at 97 Hz, for PID 123:

Sample user stacks at 97 Hz, for all processes named "sshd":

Sample user stacks at 97 Hz, for all processes on the system (include process
name in output):

Sample user stacks at 97 Hz, top ten only, for PID 123:

Sample user stacks, five frames only, at 97 Hz, for PID 123:

Sample user on-CPU functions at 97 Hz, for PID 123:

Sample user on-CPU modules at 97 Hz, for PID 123:

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /arg1 && execname == "sshd"/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /arg1/ { @[execname, ustack()] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack()] = count(); }
 END { trunc(@, 10); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack(5)] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ufunc(arg1)] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[umod(arg1)] = count(); }'

240 Chapter 6 � CPUs

Sample user stacks at 97 Hz, including during system-time when the user
stack is frozen (typically on a syscall), for PID 123:

Sample which CPU a process runs on, at 97 Hz, for PID 123:

Function Tracing

While profiling can show the total CPU time consumed by functions, it doesn’t
show the runtime distribution of those function calls. This can be determined by
using tracing and the vtimestamp built-in—a high-resolution timestamp that
increments only when the current thread is on-CPU. A function’s CPU time can be
measured by tracing its entry and return and calculating the vtimestamp delta.

For example, using dynamic tracing (fbt provider) to measure the CPU time in
the kernel ZFS zio_checksum_generate() function:

Most of the time this function took between 65 and 131 μs of CPU time. This
includes the CPU time of all subfunctions.

This particular style of tracing can add overhead if the function is called fre-
quently. It is best used in conjunction with profiling, so that results can be cross-
checked.

dtrace -n 'profile-97 /pid == 123/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /pid == 123/ { @[cpu] = count(); }'

dtrace -n 'fbt::zio_checksum_generate:entry { self->v = vtimestamp; }
fbt::zio_checksum_generate:return /self->v/ { @["ns"] =
quantize(vtimestamp - self->v); self->v = 0; }'

dtrace: description 'fbt::zio_checksum_generate:entry ' matched 2 probes
^C

 ns
 value ------------- Distribution ------------- count
 128 | 0
 256 | 3
 512 |@ 62
 1024 |@ 79
 2048 | 13
 4096 | 21
 8192 | 8
 16384 | 2
 32768 | 41

65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3740
 131072 |@ 134
 262144 | 0

6.6 Analysis 241

Similar dynamic tracing may be performed for user-level code via the PID pro-
vider, if available.

Dynamic tracing via the fbt or pid providers is considered an unstable interface,
as functions may change between releases. There are static tracing providers
available for tracing CPU behavior, which are intended to provide a stable inter-
face. These include probes for CPU cross calls, interrupts, and scheduler activity.

CPU Cross Calls

Excessive CPU cross calls can reduce performance due to their CPU consumption.
Prior to DTrace, the origin of cross calls was difficult to determine. It’s now as easy
as a one-liner, tracing cross calls and showing the code path that led to them:

This was demonstrated on a Solaris-based system with the sysinfo provider.

Interrupts

DTrace allows interrupts to be traced and examined. Solaris-based systems ship
with intrstat(1M), a DTrace-based tool for summarizing interrupt CPU usage.
For example:

dtrace -n 'sysinfo:::xcalls { @[stack()] = count(); }'
dtrace: description 'sysinfo:::xcalls ' matched 1 probe
^C
[...]

 unix`xc_sync+0x39
 kvm`kvm_xcall+0xa9
 kvm`vcpu_clear+0x1d
 kvm`vmx_vcpu_load+0x3f
 kvm`kvm_arch_vcpu_load+0x16
 kvm`kvm_ctx_restore+0x3d
 genunix`restorectx+0x37
 unix`_resume_from_idle+0x83

 97

intrstat 1
[...]
 device | cpu4 %tim cpu5 %tim cpu6 %tim cpu7 %tim
-------------+--
 bnx#0 | 0 0.0 0 0.0 0 0.0 0 0.0
 ehci#0 | 0 0.0 0 0.0 0 0.0 0 0.0
 ehci#1 | 0 0.0 0 0.0 0 0.0 0 0.0
 igb#0 | 0 0.0 0 0.0 0 0.0 0 0.0
 mega_sas#0 | 0 0.0 5585 7.1 0 0.0 0 0.0
 uhci#0 | 0 0.0 0 0.0 0 0.0 0 0.0
 uhci#1 | 0 0.0 0 0.0 0 0.0 0 0.0
 uhci#2 | 0 0.0 0 0.0 0 0.0 0 0.0
 uhci#3 | 0 0.0 0 0.0 0 0.0 0 0.0
[...]

242 Chapter 6 � CPUs

The output is typically pages long on multi-CPU systems and includes interrupt
counts and percent CPU times for each driver, for each CPU. The preceding excerpt
shows that the mega_sas driver was consuming 7.1% of CPU 5.

If intrstat(1M) is not available (as is currently the case on Linux), interrupt
activity can be examined by use of dynamic function tracing.

Scheduler Tracing

The scheduler provider (sched) provides probes for tracing operations of the kernel
CPU scheduler. Probes are listed in Table 6.7.

Since many of these fire in thread context, the curthread built-in refers to the
thread in question, and thread-local variables can be used. For example, tracing
on-CPU runtime using a thread-local variable (self->ts):

Table 6-7 sched Provider Probes

Probe Description

on-cpu The current thread begins execution on-CPU.

off-cpu The current thread is about to end execution on-CPU.

remain-cpu The scheduler has decided to continue running the current thread.

enqueue A thread is being enqueued to a run queue (examine it via args[]).

dequeue A thread is being dequeued from a run queue (examine it via args[]).

preempt The current thread is about to be preempted by another.

dtrace -n 'sched:::on-cpu /execname == "sshd"/ { self->ts = timestamp; }
sched:::off-cpu /self->ts/ { @["ns"] = quantize(timestamp - self->ts);
self->ts = 0; }'

dtrace: description 'sched:::on-cpu ' matched 6 probes
^C

 ns
 value ------------- Distribution ------------- count
 2048 | 0
 4096 | 1
 8192 |@@ 8
 16384 |@@@ 12
 32768 |@@@@@@@@@@@@@@@@@@@@@@@ 94
 65536 |@@@ 14
 131072 |@@@ 12
 262144 |@@ 7
 524288 |@ 4
 1048576 |@ 5
 2097152 | 2
 4194304 | 1
 8388608 | 1
 16777216 | 0

6.6 Analysis 243

This traced the on-CPU runtime for processes named "sshd". Most of the time it
was on-CPU only briefly, between 32 and 65 μs.

6.6.11 SystemTap

SystemTap can also be used on Linux systems for tracing of scheduler events. See
Section 4.4, SystemTap, in Chapter 4, Observability Tools, and Appendix E for help
with converting the previous DTrace scripts.

6.6.12 perf

Originally called Performance Counters for Linux (PCL), the perf(1) command
has evolved and become a collection of tools for profiling and tracing, now called
Linux Performance Events (LPE). Each tool is selected as a subcommand. For
example, perf stat executes the stat command, which provides CPC-based sta-
tistics. These commands are listed in the USAGE message, and a selection is
reproduced here in Table 6.8 (from version 3.2.6-3).

Table 6-8 perf Subcommands

Command Description

annotate Read perf.data (created by perf record) and display annotated code.

diff Read two perf.data files and display the differential profile.

evlist List the event names in a perf.data file.

inject Filter to augment the events stream with additional information.

kmem Tool to trace/measure kernel memory (slab) properties.

kvm Tool to trace/measure kvm guest OS.

list List all symbolic event types.

lock Analyze lock events.

probe Define new dynamic tracepoints.

record Run a command and record its profile into perf.data.

report Read perf.data (created by perf record) and display the profile.

sched Tool to trace/measure scheduler properties (latencies).

script Read perf.data (created by perf record) and display trace output.

stat Run a command and gather performance counter statistics.

timechart Tool to visualize total system behavior during a workload.

top System profiling tool.

244 Chapter 6 � CPUs

Key commands are demonstrated in the following sections.

System Profiling

perf(1) can be used to profile CPU call paths, summarizing where CPU time is
spent in both kernel- and user-space. This is performed by the record command,
which captures samples at regular intervals to a perf.data file. A report com-
mand is then used to view the file.

In the following example, all CPUs (-a) are sampled with call stacks (-g) at 997
Hz (-F 997) for 10 s (sleep 10). The --stdio option is used to print all the out-
put, instead of operating in interactive mode.

The full output is many pages long, in descending sample count order. These sam-
ple counts are given as percentages, which show where the CPU time was spent.
This example indicates that 72.98% of time was spent in the idle thread, and
9.43% of time in the dd process. Out of that 9.43%, 87.5% is composed of the stack
shown, which is for ext4_file_write().

perf record -a -g -F 997 sleep 10
[perf record: Woken up 44 times to write data]
[perf record: Captured and wrote 13.251 MB perf.data (~578952 samples)]
perf report --stdio
[...]
Overhead Command Shared Object Symbol
........
#
 72.98% swapper [kernel.kallsyms] [k] native_safe_halt
 |

 --- native_safe_halt
 default_idle

 cpu_idle
 rest_init

 start_kernel
x86_64_start_reservations

 x86_64_start_kernel

 9.43% dd [kernel.kallsyms] [k] acpi_pm_read
 |

 --- acpi_pm_read
 ktime_get_ts

 |
 |--87.75%-- __delayacct_blkio_start

 | io_schedule_timeout
 | balance_dirty_pages_ratelimited_nr
 | generic_file_buffered_write

 | __generic_file_aio_write
 | generic_file_aio_write
 | ext4_file_write
 | do_sync_write
 | vfs_write
 | sys_write
 | system_call
 | __GI___libc_write

 |
[...]

6.6 Analysis 245

These kernel and process symbols are available only if their debuginfo files are
available; otherwise hex addresses are shown.

perf(1) operates by programming an overflow interrupt for the CPU cycle
counter. Since the cycle rate varies on modern processors, a “scaled” counter is
used that remains constant.

Process Profiling

Apart from profiling across all CPUs, individual processes can be targeted. The fol-
lowing command executes the command and creates the perf.data file:

As before, debuginfo must be available for perf(1) to translate symbols when
viewing the report.

Scheduler Latency

The sched command records and reports scheduler statistics. For example:

This shows the average and maximum scheduler latency while tracing.
Scheduler events are frequent, so this type of tracing incurs CPU and storage

overhead. The perf.data file in this example was 1.7 Gbytes for 10 s of tracing. The
INFO lines in the output show that some events were dropped. This points out an
advantage of the DTrace model of in-kernel filtering and aggregation: it can

perf record -g command

perf sched record sleep 10
[perf record: Woken up 108 times to write data]
[perf record: Captured and wrote 1723.874 MB perf.data (~75317184 samples)]
perf sched latency

 --

 Task | Runtime ms | Switches | Average delay ms | Maximum delay
ms | Maximum delay at |
 --

 kblockd/0:91 | 0.009 ms | 1 | avg: 1.193 ms | max: 1.193
ms | max at: 105455.615096 s
 dd:8439 | 9691.404 ms | 763 | avg: 0.363 ms | max: 29.953
ms | max at: 105456.540771 s
 perf_2.6.35-32:8440 | 8082.543 ms | 818 | avg: 0.362 ms | max: 29.956
ms | max at: 105460.734775 s
 kjournald:419 | 462.561 ms | 457 | avg: 0.064 ms | max: 12.112
ms | max at: 105459.815203 s
[...]
 INFO: 0.976% lost events (167317 out of 17138781, in 3 chunks)
 INFO: 0.178% state machine bugs (4766 out of 2673759) (due to lost events?)
 INFO: 0.000% context switch bugs (3 out of 2673759) (due to lost events?)

246 Chapter 6 � CPUs

summarize data while tracing and pass only the summary to user-space, minimiz-
ing overhead.

stat

The stat command provides a high-level summary of CPU cycle behavior based
on CPC. In the following example it launches a gzip(1) command:

The statistics include the cycle and instruction count, and the IPC (inverse of CPI).
As described earlier, this is an extremely useful high-level metric for determining
the types of cycles occurring and how many of them are stall cycles.

The following lists other counters that can be examined:

Look for both “Hardware event” and “Hardware cache event.” Those available
depend on the processor architecture and are documented in the processor manu-
als (e.g., the Intel Software Developer’s Manual).

$ perf stat gzip file1

 Performance counter stats for 'gzip perf.data':

 62250.620881 task-clock-msecs # 0.998 CPUs
 65 context-switches # 0.000 M/sec

 1 CPU-migrations # 0.000 M/sec
 211 page-faults # 0.000 M/sec

 149282502161 cycles # 2398.089 M/sec
 227631116972 instructions # 1.525 IPC
 39078733567 branches # 627.765 M/sec
 1802924170 branch-misses # 4.614 %
 87791362 cache-references # 1.410 M/sec
 24187334 cache-misses # 0.389 M/sec

 62.355529199 seconds time elapsed

perf list

List of pre-defined events (to be used in -e):

 cpu-cycles OR cycles [Hardware event]
 instructions [Hardware event]
 cache-references [Hardware event]
 cache-misses [Hardware event]
 branch-instructions OR branches [Hardware event]
 branch-misses [Hardware event]
 bus-cycles [Hardware event]
[...]
 L1-dcache-loads [Hardware cache event]
 L1-dcache-load-misses [Hardware cache event]
 L1-dcache-stores [Hardware cache event]
 L1-dcache-store-misses [Hardware cache event]
[...]

6.6 Analysis 247

These events can be specified using –e. For example (this is from an Intel Xeon):

Apart from instructions and cycles, this example also measured the following:

� L1-dcache-load-misses: Level 1 data cache load misses. This gives you a
measure of the memory load caused by the application, after some loads have
been returned from the Level 1 cache. It can be compared with other L1 event
counters to determine cache hit rate.

� LLC-load-misses: Last level cache load misses. After the last level, this
accesses main memory, and so this is a measure of main memory load. The
difference between this and L1-dcache-load-misses gives an idea (other
counters are needed for completeness) of the effectiveness of the CPU caches
beyond Level 1.

� dTLB-load-misses: Data translation lookaside buffer misses. This shows
the effectiveness of the MMU to cache page mappings for the workload and
can measure the size of the memory workload (working set).

Many other counters can be inspected. perf(1) supports both descriptive
names (like those used for this example) and hexadecimal values. The latter may
be necessary for esoteric counters you find in the processor manuals, for which a
descriptive name isn’t provided.

Software Tracing

perf record -e can be used with various software instrumentation points for
tracing activity of the kernel scheduler. These include software events and trace-
point events (static probes), as listed by perf list. For example:

$ perf stat -e instructions,cycles,L1-dcache-load-misses,LLC-load-misses,dTLB-load-
misses gzip file1

 Performance counter stats for 'gzip file1':

 12278136571 instructions # 2.199 IPC
 5582247352 cycles

90367344 L1-dcache-load-misses
 1227085 LLC-load-misses
 685149 dTLB-load-misses

 2.332492555 seconds time elapsed

perf list
 context-switches OR cs [Software event]
 cpu-migrations OR migrations [Software event]
[...]

continues

248 Chapter 6 � CPUs

The following example uses the context switch software event to trace when
applications leave the CPU and collects call stacks for 10 s:

 sched:sched_kthread_stop [Tracepoint event]
 sched:sched_kthread_stop_ret [Tracepoint event]
 sched:sched_wakeup [Tracepoint event]
 sched:sched_wakeup_new [Tracepoint event]
 sched:sched_switch [Tracepoint event]
 sched:sched_migrate_task [Tracepoint event]
 sched:sched_process_free [Tracepoint event]
 sched:sched_process_exit [Tracepoint event]
 sched:sched_wait_task [Tracepoint event]
 sched:sched_process_wait [Tracepoint event]
 sched:sched_process_fork [Tracepoint event]
 sched:sched_stat_wait [Tracepoint event]
 sched:sched_stat_sleep [Tracepoint event]
 sched:sched_stat_iowait [Tracepoint event]
 sched:sched_stat_runtime [Tracepoint event]
 sched:sched_pi_setprio [Tracepoint event]
[...]

perf record -f -g -a -e context-switches sleep 10
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.417 MB perf.data (~18202 samples)]
perf report --stdio
========
captured on: Wed Apr 10 19:52:19 2013
hostname : 9d219ce8-cf52-409f-a14a-b210850f3231
[...]
#
Events: 2K context-switches
#
Overhead Command Shared Object Symbol
........
#
 47.60% perl [kernel.kallsyms] [k] __schedule
 |

 --- __schedule
 schedule

 retint_careful
 |
 |--50.11%-- Perl_pp_unstack
 |
 |--26.40%-- Perl_pp_stub
 |
 --23.50%-- Perl_runops_standard

 25.66% tar [kernel.kallsyms] [k] __schedule
 |

 --- __schedule
 |

 |--99.72%-- schedule
| |

 | |--99.90%-- io_schedule
 | | sleep_on_buffer
 | | __wait_on_bit
 | | out_of_line_wait_on_bit
 | | __wait_on_buffer
 | | |
 | | |--99.21%-- ext4_bread

| | | |

6.6 Analysis 249

This truncated output shows two applications, perl and tar, and their call stacks
when they context switched. Reading the stacks shows the tar program was sleep-
ing on file system (ext4) reads. The perl program was involuntary context switched
as it is performing heavy compute, although that isn’t clear from this output alone.

More information can be found using the sched tracepoint events. Kernel sched-
uler functions can also be traced directly using dynamic tracepoints (dynamic trac-
ing), which along with the static probes can provide similar data to what was seen
earlier from DTrace, although it can require more post-processing to produce the
results you are after.

Chapter 9, Disks, includes another example of static tracing with perf(1):
block I/O tracepoints. Chapter 10, Network, includes an example of dynamic trac-
ing with perf(1) for the tcp_sendmsg() kernel function.

Documentation

For more on perf(1), see its man pages, documentation in the Linux kernel
source under tools/perf/Documentation, the “Perf Tutorial” [4], and “The Unofficial
Linux Perf Events Web-Page” [5].

6.6.13 cpustat

On Solaris-based systems, the tools for examining CPC are cpustat(1M) for system-
wide analysis and cputrack(1M) for process analysis. These refer to CPC using
the term performance instrumentation counters (PICs).

For example, to measure CPI, both cycles and instructions must be counted.
Using the PAPI names:

 | | | |--99.72%-- htree_dirbl...
 | | | | ext4_htree_f...
 | | | | ext4_readdir
 | | | | vfs_readdir
 | | | | sys_getdents
 | | | | system_call
 | | | | __getdents64

 | | | --0.28%-- [...]
 | | |
 | | --0.79%-- __ext4_get_inode_loc
[...]

cpustat -tc PAPI_tot_cyc,PAPI_tot_ins,sys 1
 time cpu event tsc pic0 pic1
 1.001 0 tick 2390794244 2095800691 910588497
 1.002 1 tick 2391617432 2091867238 832659178
 1.002 2 tick 2392676108 2075492108 917078382
 1.003 3 tick 2393561424 2067362862 831551337
 1.003 4 tick 2393739432 2020553426 909065542
[...]

250 Chapter 6 � CPUs

cpustat(1M) produces a line of output per CPU. This output can be post-
processed (e.g., with awk) so that the CPI calculation can be made.

The sys token was used so that both user- and kernel-mode cycles are counted.
This sets the flag described in CPU Performance Counters in Section 6.4.1,
Hardware.

Measuring the same counters using the platform-specific event names:

Run cpustat -h for the full list of supported counters for your processor. The
output usually ends with a reference to the vendor processor manual; for example:

See Appendix A of the “Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3B: System Programming Guide, Part 2” Order Number: 253669-026US, Feb-
ruary 2008.

The manuals describe low-level processor behavior in detail.
Only one instance of cpustat(1M) can be running on the system at the same

time, as the kernel does not support multiplexing.

6.6.14 Other Tools

Other Linux CPU performance tools include

� oprofile: the original CPU profiling tool by John Levon.

� htop: includes ASCII bar charts for CPU usage and has a more powerful
interactive interface than the original top(1).

� atop: includes many more system-wide statistics and uses process account-
ing to catch the presence of short-lived processes.

� /proc/cpuinfo: This can be read to see processor details, including clock
speed and feature flags.

� getdelays.c: This is an example of delay accounting observability and
includes CPU scheduler latency per process. It was demonstrated in
Chapter 4, Observability Tools.

� valgrind: a memory debugging and profiling toolkit [6]. It contains call-
grind, a tool to trace function calls and gather a call graph, which can be visu-
alized using kcachegrind; and cachegrind for analysis of hardware cache
usage by a given program.

cpustat -tc cpu_clk_unhalted.thread_p,inst_retired.any_p,sys 1

6.6 Analysis 251

For Solaris:

� lockstat/plockstat: for lock analysis, including spin locks and CPU con-
sumption from adaptive mutexes (see Chapter 5, Applications).

� psrinfo: processor status and information (-vp).

� fmadm faulty: to check if a CPU has been predictively faulted due to an
increase in correctable ECC errors. Also see fmstat(1M).

� isainfo -x: to list processor feature flags.

� pginfo, pgstat: processor group statistics, showing CPU topology and how
CPU resources are shared.

� lgrpinfo: for locality group statistics. This can be useful for checking that
lgrps are in use, which requires processor and operating system support.

There are also sophisticated products for CPU performance analysis, including
Oracle Solaris Studio, which is available for Solaris and Linux.

6.6.15 Visualizations

CPU usage has historically been visualized as line graphs of utilization or load aver-
age, including the original X11 load tool (xload(1)). Such line graphs are an effec-
tive way to show variation, as magnitudes can be visually compared. They can also
show patterns over time, as was shown in Section 2.9, Monitoring, of Chapter 2,
Methodology.

However, line graphs of per-CPU utilization don’t scale with the CPU counts we
see today, especially for cloud computing environments involving tens of thou-
sands of CPUs—a graph of 10,000 lines can become paint.

Other statistics plotted as line graphs, including averages, standard deviations,
maximums, and percentiles, provide some value and do scale. However, CPU utili-
zation is often bimodal—composed of idle or near-idle CPUs, and then some at
100% utilization—which is not effectively conveyed with these statistics. The full
distribution often needs to be studied. A utilization heat map makes this possible.

The following sections introduce CPU utilization heat maps, CPU subsecond-
offset heat maps, and flame graphs. I created these visualization types to solve
problems in enterprise and cloud performance analysis.

Utilization Heat Map

Utilization versus time can be presented as a heat map, with the saturation (dark-
ness) of each pixel showing the number of CPUs at that utilization and time range.
Heat maps were introduced in Chapter 2, Methodology.

252 Chapter 6 � CPUs

Figure 6.15 shows CPU utilization for an entire data center (availability zone),
running a public cloud environment. It includes over 300 physical servers and
5,312 CPUs.

The darker shading at the bottom of this heat map shows that most CPUs are
running between 0% and 30% utilization. However, the solid line at the top shows
that, over time, there are also some CPUs at 100% utilization. The fact that the
line is dark shows that multiple CPUs were at 100%, not just one.

This particular visualization is provided by real-time monitoring software
(Joyent Cloud Analytics), which allows points to be selected with a click to reveal
more details. In this case, the 100% CPU line can be clicked to reveal which serv-
ers these CPUs belonged to, and what tenants and applications are driving CPUs
at that rate.

Subsecond-Offset Heat Map

This heat map type allows activity within a second to be examined. CPU activity is
typically measured in microseconds or milliseconds; reporting this data as aver-
ages over an entire second can wipe out useful information. This type of heat map
puts the subsecond offset on the y axis, with the number of non-idle CPUs at each
offset shown by the saturation. This visualizes each second as a column, “paint-
ing” it from bottom to top.

Figure 6.16 shows a CPU subsecond-offset heat map for a cloud database (Riak).
What is interesting about this heat map isn’t the times that the CPUs were

busy servicing the database, but the times that they were not, indicated by the

Figure 6-15 CPU utilization heat map, 5,312 CPUs

6.6 Analysis 253

white columns. The duration of these gaps was also interesting: hundreds of milli-
seconds during which none of the database threads were on-CPU. This led to the
discovery of a locking issue where the entire database was blocked for hundreds of
milliseconds at a time.

If we had examined this data using a line graph, a dip in per-second CPU utili-
zation might have been dismissed as variable load and not investigated further.

Flame Graphs

Profiling stack traces is an effective way to explain CPU usage, showing which
kernel- or user-level code paths are responsible. It can, however, produce thou-
sands of pages of output. Flame graphs visualize the profile stack frames, so that
CPU usage can be understood more quickly and more clearly.

Flame graphs can be built upon data from DTrace, perf, or SystemTap. The
example in Figure 6.17 shows the Linux kernel profiled using perf.

The flame graph has the following characteristics:

� Each box represents a function in the stack (a “stack frame”).

� The y axis shows stack depth (number of frames on the stack). The top box
shows the function that was on-CPU. Everything beneath that is ancestry.
The function beneath a function is its parent, just as in the stack traces
shown earlier.

� The x axis spans the sample population. It does not show the passing of time
from left to right, as most graphs do. The left-to-right ordering has no mean-
ing (it’s sorted alphabetically).

Figure 6-16 CPU subsecond-offset heat map

254 Chapter 6 � CPUs

� The width of the box shows the total time it was on-CPU or part of an ances-
try that was on-CPU (based on sample count). Wider box functions may be
slower than narrow box functions, or they may simply be called more often.
The call count is not shown (nor is it known via sampling).

� The sample count can exceed elapsed time if multiple threads were running
and sampled in parallel.

The colors are not significant and are picked at random to be warm colors. It’s
called a “flame graph” because it shows what is hot on-CPU.

It is also interactive. It is an SVG with an embedded JavaScript routine that
when opened in a browser allows you to mouse over elements to reveal details at
the bottom. In the Figure 6.17 example, start_xmit() was highlighted, which
shows that it was present in 72.55% of the sampled stacks.

6.7 Experimentation

This section describes tools for actively testing CPU performance. See Section
6.5.11, Micro-Benchmarking, for background.

When using these tools, it’s a good idea to leave mpstat(1) continually run-
ning to confirm CPU usage and parallelism.

Figure 6-17 Linux kernel flame graph

6.7 Experimentation 255

6.7.1 Ad Hoc

While this is trivial and doesn’t measure anything, it can be a useful known work-
load for confirming that observability tools show what they claim to show. This cre-
ates a single-threaded workload that is CPU-bound (“hot on one CPU”):

This is a Bourne shell program that performs an infinite loop in the background. It
will need to be killed once you no longer need it.

6.7.2 SysBench

The SysBench system benchmark suite has a simple CPU benchmark tool that cal-
culates prime numbers. For example:

This executed eight threads, with a maximum prime number of 100,000. The run-
time was 30.4 s, which can be used for comparison with the results from other sys-
tems or configurations (assuming many things, such as that identical compiler
options were used to build the software; see Chapter 12, Benchmarking).

while :; do :; done &

sysbench --num-threads=8 --test=cpu --cpu-max-prime=100000 run
sysbench 0.4.12: multi-threaded system evaluation benchmark

Running the test with following options:
Number of threads: 8

Doing CPU performance benchmark

Threads started!
Done.

Maximum prime number checked in CPU test: 100000

Test execution summary:
 total time: 30.4125s
 total number of events: 10000
 total time taken by event execution: 243.2310
 per-request statistics:
 min: 24.31ms
 avg: 24.32ms
 max: 32.44ms
 approx. 95 percentile: 24.32ms

Threads fairness:
 events (avg/stddev): 1250.0000/1.22
 execution time (avg/stddev): 30.4039/0.01

256 Chapter 6 � CPUs

6.8 Tuning

For CPUs, the biggest performance wins are typically those that eliminate unnec-
essary work, which is an effective form of tuning. Section 6.5, Methodology, and
Section 6.6, Analysis, introduced many ways to analyze and identify the work per-
formed, helping you find any unnecessary work. Other methodologies for tuning
were also introduced: priority tuning and CPU binding. This section includes these
and other tuning examples.

The specifics of tuning—the options available and what to set them to—depend
on the processor type, the operating system version, and the intended workload.
The following, organized by type, provide examples of what options may be avail-
able and how they are tuned. The earlier methodology sections provide guidance
on when and why these tunables would be tuned.

6.8.1 Compiler Options

Compilers, and the options they provide for code optimization, can have a dra-
matic effect on CPU performance. Common options include compiling for 64-bit
instead of 32-bit, and selecting a level of optimizations. Compiler optimization is
discussed in Chapter 5, Applications.

6.8.2 Scheduling Priority and Class

The nice(1) command can be used to adjust process priority. Positive nice values
decrease priority, and negative nice values increase priority, which only the super-
user can set. The range is from -20 to +19. For example:

runs the command with a nice value of 19—the lowest priority that nice can set. To
change the priority of an already running process, use renice(1).

On Linux, the chrt(1) command can show and set the scheduling priority
directly, and the scheduling policy. The scheduling priority can also be set directly
using the setpriority() syscall, and the priority and scheduling policy can be
set using the sched_setscheduler() syscall.

On Solaris, you can set scheduling classes and priorities directly using the
priocntl(1) command. For example:

$ nice -n 19 command

priocntl -s -c RT -p 10 -i pid PID

6.8 Tuning 257

This sets the target process ID to run in the real-time scheduling class with a pri-
ority of 10. Be careful when setting this: you can lock up your system if the real-
time threads consume all CPU resources.

6.8.3 Scheduler Options

Your kernel may provide tunable parameters to control scheduler behavior,
although it is unlikely that these will ever need to be tuned.

On Linux systems, config options can be set, including the examples in Table 6.9
from a 3.2.6 kernel, with defaults from Fedora 16.

Some Linux kernels provide additional tunables (e.g., in /proc/sys/sched).
On Solaris-based systems, the kernel tunable parameters shown in Table 6.10

modify scheduler behavior.
For reference, find the matching documentation for your operating system ver-

sion (e.g., for Solaris, the Solaris Tunable Parameters Reference Manual). Such docu-
mentation should list key tunable parameters, their type, when to set them, their
defaults, and the valid ranges. Be careful when using these, as their ranges may not
be fully tested. (Tuning them may also be prohibited by company or vendor policy.)

Table 6-9 Example Linux Scheduler Config Options

Option Default Description

CONFIG_CGROUP_SCHED y allows tasks to be grouped, allocating CPU
time on a group basis

CONFIG_FAIR_GROUP_SCHED y allows CFS tasks to be grouped

CONFIG_RT_GROUP_SCHED y allows real-time tasks to be grouped

CONFIG_SCHED_AUTOGROUP y automatically identifies and creates task
groups (e.g., build jobs)

CONFIG_SCHED_SMT y hyperthreading support

CONFIG_SCHED_MC y multicore support

CONFIG_HZ 1,000 sets kernel clock rate (timer interrupt)

CONFIG_NO_HZ y tickless kernel behavior

CONFIG_SCHED_HRTICK y use high-resolution timers

CONFIG_PREEMPT n full kernel preemption (exception of spin lock
regions and interrupts)

CONFIG_PREEMPT_NONE n no preemption

CONFIG_PREEMPT_VOLUNTARY y preemption at voluntary kernel code points

258 Chapter 6 � CPUs

Scheduler Class Tuning

Solaris-based systems also provide a means to modify the time quantum and prior-
ities used by scheduling classes, via the dispadmin(1) command. For example,
printing out the table of tunables (called the dispatcher table) for the time-sharing
scheduling class (TS):

This output includes

� ts_quantum: time quantum (in milliseconds, as set resolution using -r 1000)

� ts_tqexp: new priority provided when the thread expires its current time
quantum (priority reduction)

� ts_slpret: new priority after thread sleeps (I/O) then wakes up (priority
promotion)

� ts_maxwait: maximum seconds waiting for CPU before being promoted to
the priority in ts_lwait

� PRIORITY LEVEL: priority value

This can be written to a file, modified, then reloaded by dispadmin(1M). You
ought to have a reason for doing this, such as having first measured priority con-
tention and scheduler latency using DTrace.

Table 6-10 Example Solaris Scheduler Tunables

Parameter Default Description

rechoose_interval 3 CPU affinity duration (clock ticks)

nosteal_nsec 100,000 avoid thread steals (idle CPU looking for work) if thread
ran this recently (nanoseconds)

hires_tick 0 change to 1 for a 1,000 Hz kernel clock rate, instead of
100 Hz

dispadmin -c TS -g -r 1000
Time Sharing Dispatcher Configuration
RES=1000

ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY LEVEL
 200 0 50 0 50 # 0
 200 0 50 0 50 # 1
 200 0 50 0 50 # 2
 200 0 50 0 50 # 3
 200 0 50 0 50 # 4
 200 0 50 0 50 # 5
[...]

6.8 Tuning 259

6.8.4 Process Binding

A process may be bound to one or more CPUs, which may increase its performance
by improving cache warmth and memory locality.

On Linux, this is performed using the taskset(1) command, which can use a
CPU mask or ranges to set CPU affinity. For example:

This sets PID 10790 to run only on CPUs 7 through 10.
On Solaris-based systems, this is performed using pbind(1). For example:

This sets PID 11901 to run on CPU 10. Multiple CPUs cannot be specified. For
similar functionality, use exclusive CPU sets.

6.8.5 Exclusive CPU Sets

Linux provides cpusets, which allow CPUs to be grouped and processes assigned
to them. This can improve performance similarly to process binding, but perfor-
mance can be improved further by making the cpuset exclusive—preventing other
processes from using it. The trade-off is a reduction in available CPU for the rest of
the system.

The following commented example creates an exclusive set:

For reference, see the cpuset(7) man page.
On Solaris, you can create exclusive CPU sets using the psrset(1M) command.

$ taskset -pc 7-10 10790
pid 10790's current affinity list: 0-15
pid 10790's new affinity list: 7-10

$ pbind -b 10 11901
process id 11901: was not bound, now 10

mkdir /dev/cpuset
mount -t cpuset cpuset /dev/cpuset
cd /dev/cpuset
mkdir prodset # create a cpuset called "prodset"
cd prodset
echo 7-10 > cpus # assign CPUs 7-10
echo 1 > cpu_exclusive # make prodset exclusive
echo 1159 > tasks # assign PID 1159 to prodset

260 Chapter 6 � CPUs

6.8.6 Resource Controls

Apart from associating processes with whole CPUs, modern operating systems pro-
vide resource controls for fine-grained allocation of CPU usage.

Solaris-based systems have resource controls (added in Solaris 9) for processes
or groups of processes called projects. CPU usage can be controlled in a flexible
way using the fair share scheduler and shares, which control how idle CPU can be
consumed by those who need it. Limits can also be imposed, in terms of total per-
cent CPU utilization, for cases where consistency is more desirable than the
dynamic behavior of shares.

For Linux, there are container groups (cgroups), which can also control
resource usage by processes or groups of processes. CPU usage can be controlled
using shares, and the CFS scheduler allows fixed limits to be imposed (CPU band-
width), in terms of allocating microseconds of CPU cycles per interval. CPU band-
width is relatively new, added in 2012 (3.2).

Chapter 11, Cloud Computing, describes a use case of managing CPU usage of
OS-virtualized tenants, including how shares and limits can be used in concert.

6.8.7 Processor Options (BIOS Tuning)

Processors typically provide settings to enable, disable, and tune processor-level
features. On x86 systems, these are typically accessed via the BIOS settings menu
at boot time.

The settings usually provide maximum performance by default and don’t need
to be adjusted. The most common reason I adjust these today is to disable Intel
Turbo Boost, so that CPU benchmarks execute with a consistent clock rate (bear-
ing in mind that, for production use, Turbo Boost should be enabled for slightly
faster performance).

6.9 Exercises

1. Answer the following questions about CPU terminology:

� What is the difference between a process and a processor?

� What is a hardware thread?

� What is the run queue (also called a dispatcher queue)?

� What is the difference between user-time and kernel-time?

� What is CPI?

6.9 Exercises 261

2. Answer the following conceptual questions:

� Describe CPU utilization and saturation.

� Describe how the instruction pipeline improves CPU throughput.

� Describe how processor instruction width improves CPU throughput.

� Describe the advantages of multiprocess and multithreaded models.

3. Answer the following deeper questions:

� Describe what happens when the system CPUs are overloaded with runna-
ble work, including the effect on application performance.

� When there is no runnable work to perform, what do the CPUs do?

� When handed a suspected CPU performance issue, name three methodolo-
gies you would use early during the investigation, and explain why.

4. Develop the following procedures for your operating system:

� A USE method checklist for CPU resources. Include how to fetch each met-
ric (e.g., which command to execute) and how to interpret the result. Try to
use existing OS observability tools before installing or using additional soft-
ware products.

� A workload characterization checklist for CPU resources. Include how to
fetch each metric, and try to use existing OS observability tools first.

5. Perform these tasks:

� Calculate the load average for the following system, whose load is at steady
state:

– The system has 64 CPUs.

– The system-wide CPU utilization is 50%.

– The system-wide CPU saturation, measured as the total number of run-
nable and queued threads on average, is 2.0.

� Choose an application, and profile its user-level CPU usage. Show which
code paths are consuming the most CPU.

� Describe CPU behavior visible from this Solaris-based screen shot alone:

prstat -mLc 10
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 11076 mysql 4.3 0.7 0.0 0.0 0.0 58 31 5.7 790 48 12K 0 mysqld/15620
 11076 mysql 3.5 1.0 0.0 0.0 0.0 42 46 7.6 1K 42 18K 0 mysqld/15189
 11076 mysql 3.0 0.9 0.0 0.0 0.0 34 53 8.9 1K 20 17K 0 mysqld/14454
 11076 mysql 3.1 0.6 0.0 0.0 0.0 55 36 5.7 729 27 11K 0 mysqld/15849
 11076 mysql 2.5 1.1 0.0 0.0 0.0 28 59 8.6 1K 35 19K 0 mysqld/16094
 11076 mysql 2.4 1.1 0.0 0.0 0.0 34 54 8.3 1K 45 20K 0 mysqld/16304

continues

262 Chapter 6 � CPUs

6. (optional, advanced) Develop bustop(1)—a tool that shows physical bus or
interconnect utilization—with a presentation similar to iostat(1): a list of
busses, columns for throughput in each direction, and utilization. Include satu-
ration and error metrics if possible. This will require using CPC.

6.10 References

[Saltzer 70] Saltzer, J., and J. Gintell. “The Instrumentation of Multics,”
Communications of the ACM, August 1970.

[Bobrow 72] Bobrow, D., et al. “TENEX: A Paged Time Sharing System for
the PDP-10*,” Communications of the ACM, March 1972.

[Myer 73] Myer, T. H., J. R. Barnaby, and W. W. Plummer. TENEX Exec-
utive Manual. Bolt, Baranek and Newman, Inc., April 1973.

[Hinnant 84] Hinnant, D. “Benchmarking UNIX Systems,” BYTE maga-
zine 9, no. 8 (August 1984).

[Bulpin 05] Bulpin, J., and I. Pratt. “Hyper-Threading Aware Process
Scheduling Heuristics,” USENIX, 2005.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

[Otto 06] Otto, E. Temperature-Aware Operating System Scheduling
(Thesis). University of Virginia, 2006.

[Ruggiero 08] Ruggiero, J. Measuring Cache and Memory Latency and CPU
to Memory Bandwidth. Intel (Whitepaper), 2008.

[Intel 09] An Introduction to the Intel QuickPath Interconnect. Intel,
2009.

 11076 mysql 2.5 0.8 0.0 0.0 0.0 56 32 8.8 1K 16 15K 0 mysqld/16181
 11076 mysql 2.3 1.1 0.0 0.0 0.0 8.5 79 9.0 1K 21 20K 0 mysqld/15856
 11076 mysql 2.3 1.0 0.0 0.0 0.0 12 76 9.2 1K 40 16K 0 mysqld/15411
 11076 mysql 2.2 1.0 0.0 0.0 0.0 29 57 11 1K 53 17K 0 mysqld/16277
 11076 mysql 2.2 0.8 0.0 0.0 0.0 36 54 7.1 993 27 15K 0 mysqld/16266
 11076 mysql 2.1 0.8 0.0 0.0 0.0 34 56 7.1 1K 19 16K 0 mysqld/16320
 11076 mysql 2.3 0.7 0.0 0.0 0.0 44 47 5.8 831 24 12K 0 mysqld/15971
 11076 mysql 2.1 0.7 0.0 0.0 0.0 54 37 5.3 862 22 13K 0 mysqld/15442
 11076 mysql 1.9 0.9 0.0 0.0 0.0 45 46 6.3 1K 23 16K 0 mysqld/16201
Total: 34 processes, 333 lwps, load averages: 32.68, 35.47, 36.12

6.10 References 263

[Intel 12] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Combined Volumes 1, 2A, 2B, 2C, 3A, 3B, and 3C. Intel,
2012.

[Intel 13] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3B, System Programming Guide, Part 2. Intel,
2013.

[RFC 546] TENEX Load Averages for July 1973, August 1973.
http://tools.ietf.org/html/rfc546.

[1] http://lwn.net/Articles/178253/

[2] www.bitmover.com/lmbench/

[3] http://minnie.tuhs.org/cgi-bin/utree.pl?file=V4

[4] https://perf.wiki.kernel.org/index.php/Tutorial

[5] www.eece.maine.edu/~vweaver/projects/perf_events

[6] http://valgrind.org/docs/manual/

http://lwn.net/Articles/178253/
http://www.bitmover.com/lmbench/
http://minnie.tuhs.org/cgi-bin/utree.pl?file=V4
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.eece.maine.edu/~vweaver/projects/perf_events
http://valgrind.org/docs/manual/
http://tools.ietf.org/html/rfc546

This page intentionally left blank

This page intentionally left blank

697

Index

Numbers
10 GbE networking, 493
32-bit/64-bit architecture, word size and,

198–199

A
Accelerated receive flow steering, Linux network

stack, 493
accept()

DTrace for socket connections, 521
function of key system calls, 95

Access timestamps, 336
Accounting

Linux delay accounting, 130–131
process accounting, 132
Solaris microstate accounting, 131

ACKs (acknowledgements)
defined, 683
delayed, 486
duplicate ACK detection, 485
in TCP three-way handshake, 484

Actions
DTrace, 138–139
SystemTap, 146

Active benchmarking, 604–606
Active TCP connection rate

in TCP three-way handshakes, 484
workload characterization of, 496

Activities, performance activities in order of
execution, 3–4

Ad hoc checklists, 38–39
Ad hoc experimentation

testing CPU performance, 255
testing disk performance, 465
testing file system performance, 384

Adaptive mutex locks
defined, 683
lock analysis and, 183
types of synchronization primitives, 161

Adaptive spinning mutexes, 161
Address space, 266, 683
Addresses, 683
Advanced tracing. see Dynamic tracing
Agents, for monitoring, 76
Aggregation

converting DTrace to SystemTap, 669, 671
defined, 683
DTrace, 177
as variable type/overhead, 139

Aggregation variables, DTrace, 139–141
Algorithms

associativity and, 202–203
Big O notation analyzing complexity of,

156–158
cache management, 31–32
CSMA/CD, 487
elevator seeking and, 397, 410, 419, 457

698 Index

Algorithms (continued)
hashing, 162
RCU-walk (read-copy-update-walk), 343
scheduling, 212
TCP congestion control, 102, 485–486, 538
thread management, 99

Allocators
improving performance of multithreaded

applications, 318
for memory usage, 272, 286–287
for page management in Linux, 281
tracing allocation, 308–311
types of, 287–289

Amdahl's Law of Scalability, 60–61
Analysis

appropriate level of, 22–23
benchmarking and, 589–592
drill-down analysis, 50–51

Analysis, application-related
Big O notation applied to, 156–158
drill-down analysis, 182
lock analysis, 182–185
overview of, 167–168
syscall analysis, 173
thread-state analysis, 168–171

Analysis, CPU-related
checking scheduler latency, 245–246
DTrace and, 236–238
examining CPC (cpustat), 249–250
Linux performance tools in, 250
load averages and, 224–226
monitoring top running processes, 231–234
multiprocessor statistics (mpstat), 227–229
overview of, 224
perf analysis of, 243–244
perf documentation, 249
printing CPU usage by thread or process

(pidstat), 234
profiling kernel with DTrace, 236–237
profiling processes with perf, 245
profiling system with perf, 244–245
profiling user with DTrace, 238–240
reporting on CPU usage (time,ptime),

235–236
reporting on system activity (sar), 230
Solaris performance tools, 251
summarizing CPU cycle behavior with perf

stat, 246–247
SystemTap analysis of, 243
tracing CPU cross calls, 241
tracing functions, 240–241
tracing interrupts, 241–242
tracing scheduler tracing, 242–243

tracing software with perf, 247–249
uptime analysis, 224–225
viewing process status (ps), 230–231
virtual memory statistics (vmstat), 226–227
visualizations, 251–254

Analysis, disk-related
counting I/O requests, 448–449
of disk controllers, 459–460
dynamic tracing, 450
event tracing, 444
event tracing applied to SCSI events, 449–450
examining events with DTrace, 442–443
heat maps, 462–465
io provider (DTrace) for visibility of block

device interface, 443–444
line charts/graphs, 461
overview of, 431–432
perf, 451–452
printing statistics with pidstat, 441–442
reporting/archiving current activity (sar),

440–441
scatter plots, 462
summarizing I/O seek distances, 445–446
summarizing I/O size, 444–445
summarizing latency, 446–447
summarizing per-disk statistics (iostat), 432
summarizing per-disk statistics on Linux,

433–436
summarizing per-disk statistics on Solaris,

436–440
SystemTap, 451
top analysis of (disktop.stp), 454
top analysis of (iotop), 452–454
tracing block device events on Linux

(blktrace), 457–459
tracing with iosnoop, 455–457
viewing health statistics with smartctl,

460–461
visualizations, 461

Analysis, file system-related
analyzing file system cache with, 376–377
analyzing file system statistics with sar,

377–378
analyzing file systems (kstat), 381–382
analyzing kernel memory usage on Solaris

systems, 379
analyzing kernel slab caches related to file

systems, 378–379
of block device I/O stacks, 370–371
debugging syscall interface on Linux, 364–365
DTrace and, 365
dynamic tracing, 373–375
file system statistics, 364

Index 699

LatencyTOP tool, 375
measuring system latency with DTrace,

367–368
measuring VFS latency with DTrace, 368–370
memory summary using mdb::memstat,

380–381
memory summary with /proc/meminfo, 380
operation counts with DTrace, 365–366
other tools, 382–383
overview of, 362–363
printing cache activity on UFS using

fcachestat, 379–380
showing statistics with free, 376
summarizing event counts with DTrace, 367
SystemTap analysis of, 375
tracing slow events, 372–373
tracing ZFS read latency, 371–372
of virtual file system statistics, 363–364
visualizations, 383

Analysis, memory-related
allocation tracing, 308–311
fault tracing, 311–312
kernel memory usage on Solaris systems

(kmastat), 302–303
list of performance tools, 312–314
mapping process memory (pmap), 306–308
overview of, 295
page-out daemon tracing, 312
process status (ps), 304–305
slab cache usage (slabtop), 302
system activity reporters (sar), 298–301
SystemTap, 312
top running processes on Linux (top), 305
top running processes on Solaris (prstat),

305–306
virtual memory statistics (vmstat), 295–298

Analysis, network-related
capturing and inspecting packets (snoop),

517–520
capturing and inspecting packets (tcpdump),

516–517
configuring network interfaces and routes

(ip), 512
configuring network interfaces (ifconfig),

511
DTrace for examining network events,

520–533
experimental tools, 535–536
other Linux and Solaris tools, 534
perf for static and dynamic tracing of

network events, 533–534
printing network interface statistics

(nicstat), 512–513

providing interface statistics on Solaris
(dladm), 513–514

reporting on network activity (sar), 509–511
reporting on network statistics (netstat),

503–509
SystemTap for tracing file system events, 533
testing network connectivity (ping), 514
testing routes and bandwidth between routes

(pathchar), 515–516
testing routes (traceroute), 514–515
Wireshark tool for packet capture and

analysis, 520
Anonymous memory, 266
Anonymous page-ins, 624, 626–627
Anonymous paging, 268–269
Anticipatory I/O latency policy, 420
Anti-methodologies

blame-someone-else, 38
random change, 37
streetlight, 36–37

API, 683
Application calls, tuning file systems and, 387–388
Application servers, in cloud architecture, 547
Applications

basics of, 153–155
breakpoint tracing on Linux (strace),

173–175
breakpoint tracing on Solaris (truss),

176–177
buffered tracing, 177–179
buffering, 159
caching, 158
compiled languages and, 164–165
concurrency and parallelism, 160–162
CPU profiling, 171–173
disk I/O vs. application I/O, 407
exercises and references, 186–187
garbage collection, 166–167
interpreted languages, 165–166
I/O profiling, 180–181
I/O sizing, 158–159
methodologies, 167–168
non-blocking I/O, 162–163
observability eliminating unnecessary work,

156
optimizing common code path, 156
overview of, 153
performance objectives, 155–156
polling, 159–160
processor binding, 163
programming languages and, 163–164
static performance tuning, 185–186
tuning targets, 22

700 Index

Applications (continued)
USE method applied to, 181–182
virtual machines and, 166
workload characterization applied to, 181

apptrace, for investigating library calls on
Solaris, 182

Architecture
cloud computing, 547–548
load vs. architecture in analysis of

performance issues, 24
Architecture, CPU-related

cache, 200–204
CPCs (CPU performance counters), 206–208
hardware, 199
idle threads, 213
interconnects, 204–206
MMU (memory management unit), 204
NUMA groups, 214
overview of, 191, 199
processor resource-aware, 214
processors, 199–200
schedulers, 209–210
scheduling classes, 210–213
software, 209

Architecture, disk-related
interfaces, 414
magnetic rotational disks, 408–411
operating system disk I/O stack, 418–421
overview of, 407
solid-state disks, 411–413
storage types, 415–418

Architecture, file system-related
btrfs, 351
buffer cache, 339–341
cache types, 339
COW (copy-on-write) strategy, 344
dentry (Dcache) cache, 343
DNLC (directory lookup cache), 341
ext3 and ext 4, 347–348
features, 344–345
FFS, 345–347
inode cache, 343
I/O stack model, 337
overview of, 337
page cache, 340–343
types of, 345
UFS (Unix File System), 347
VFS (virtual file system), 337–338
volumes and pools, 351–352
ZFS, 348–351

Architecture, memory-related
allocators, 286–289
busses, 274–276

free lists, 280–281
hardware, 273
heap growth and, 286
main memory, 273–274
methods for freeing memory, 278–280
MMU (memory management unit), 276–277
overview of, 272–273
page scanning for freeing memory, 282–284
process address space, 284–285
reaping for freeing memory, 281–282
software, 278

Architecture, network-related
hardware, 486–488
protocols, 483–486
software, 488–493

Arguments, DTrace, 137
argumentum ad populum logic, 597
Arithmetic mean, 70
Array, 683
The Art of Capacity Planning (Allspaw), 66
Associative arrays

converting DTrace to SystemTap, 665–666, 670
defined, 683
I/O latency and, 447
SCSI events and, 449
socket I/O and, 523
as variable type/overhead, 138–140, 143

Associativity, CPU cache and, 202–203
Asynchronous operations, disk I/O and, 407
AT&T (American Telephone and Telegraph

Company), 683
Available swap, virtual memory and, 271–272
Averages

over time, 71
plotting statistical values, 77–78
types of, 70–71

B
Backlog

connection, 481
tracing backlog drops with DTrace, 529–531

Backlog queues, TCP
analysis of usage, 500
overview of, 492–493
tuning on Linux, 537–538
tuning on Solaris, 541

Balanced system, 683
Balloon driver, resource controls in hardware

virtualization, 573–574
Bandwidth

defined, 396
interface types based on, 487

Index 701

networking terminology, 474
resource controls for network limits, 502

Baseline statistics, 54
Benchmarking

active benchmarking, 604–606
activities, 588–589
analysis, 589–590
applying micro-benchmarking to file systems,

361–362
casual approach to, 591
changing multiple factors in, 594–595
cheating, 597
cloud computing use in simulation, 57–58
complex tools for, 592
CPU profiling, 606–607
custom benchmarks, 608
exercises and references, 614–616
faith issues, 591
friendly fire, 595
ignoring errors and variance, 593
ignoring perturbations, 593–594
industry-standard benchmarks, 601–602
methodologies, 602–603
micro-benchmarking, 56–57, 502–503, 597–599
misleading benchmarks, 595–596
numbers without analysis, 591–592
overview of, 587
passive benchmarking, 603–604
ramping load, 608–611
replay, 600
sanity check, 611
simulation, 599–600
sins, 596–597
statistical analysis, 612–613
SysBench tool, 255
testing effect of software change, 12
testing wrong thing, 592–593
USE method, 607–608
workload characterization, 608
workload characterization as input for, 49–50

BGSAVE configuration, 631–633
Big O notation, applied to performance analysis,

156–158
Bimodal distributions, in statistics, 73
Binaries, in compiled languages, 164
Binary translation, 566–567
Binding

CPU binding, 222
process binding, 259
processor binding, 163

BIOS, tuning, 260
Blame-someone-else anti-method, 38

blktrace
system-wide tracing, 118
tracing block device events on Linux,

457–459
Block devices

analyzing block device I/O stacks, 370–371
device drivers for, 103
interface, 418–421
io provider (DTrace) for visibility of block

device interface, 443–444
tracing events on Linux (blktrace), 118,

457–459
Block interface, 103
Block store, for persistent storage, 550
Bonnie/Bonnie++ benchmarking tool, 385,

604–606
Borrowed virtual time (BVT), hypervisor CPU

scheduler, 572
Bottlenecks

checking resource bottlenecks, 10
complexity of systems and, 5
defined, 16
lock analysis and, 182
resource limits and, 66–67
USE method for identifying, 422

Breakpoint tracing
on Linux (strace), 173–175
on Solaris (truss), 176–177

brk(), system calls, 96
Broadcast messages, 476–477
BSD (Berkeley Software Distribution)

defined, 683
memory management, 98
resource controls, 104

btrfs file system, 351
Buckets

hash table, 162
heat map ranges, 79

Buffers/buffering
block devices and buffer cache, 103
buffer bloat, 481
buffer cache, 103, 339–341
buffer size and performance trade-offs, 21
buffered tracing, 177–179
connection backlog, 481
defined, 684
for improving application performance, 159
networks and, 481
ring, 493
TCP, 492–493
tuning Linux socket and TCP, 537
tuning on Solaris, 540

702 Index

Bursting
dynamic sizing in cloud with, 549
resource controls in OS virtualization, 556

Busses, memory, 274–276
BVT (borrowed virtual time), hypervisor CPU

scheduler, 572
Bytecode, virtual machine instruction set, 166
Bytes, I/O size in, 403

C
C programming language, 684
Cache/caching

algorithms for cache management, 31–32
analyzing file system cache with top, 376
analyzing file system cache with vmstat,

376–377
analyzing kernel slab caches, 378–379
buffer cache, 103
cache coherency, 158, 203–204
cache hit, 684
cache layers for disk I/O, 101–102
cache line size, 203
cache miss, 31, 684
cache tuning, 360
cache warmth, 192, 684
CPU memory cache, 191–192
defined, 16
disk cache, 397–398
disk I/O performance and, 401–402
file system cache, 11, 271, 325–326
file systems, 327–328, 339–343
flushing system cache, 387
hot, cold, and warm caches, 32
for improving application performance, 158
overview of, 30–31
printing cache activity on UFS using

fcachestat, 379–380
RAID and, 417
second-level cache, 326
tuning, 55–56
tuning disk cache, 429
write-back caching, 330

cachegrind profiling tool, 119
Callouts, scheduled kernel routines, 88
Capacity, file system, 337
Capacity planning

activities in systems performance, 2
benchmarking during, 588
cloud computing and, 8, 548–549
factor analysis, 68
overview of, 65–66

resource analysis and, 33
resource limits and, 66–67
scaling solutions and, 69, 223, 431

Capacity resources, main memory as, 45
Capacity-based utilization, 28–29
Caps, CPU, 556
Carrier sense multiple access with collision

detection (CSMA/CD), 487
CAS (column address strobe), in measuring

access time of main memory, 273
Cascading failures, system complexity and, 5
Case study. see Redis application, as

troubleshooting case study
Casual benchmarking issues, 591
CFQ (completely fair scheduler), I/O latency

policies, 420
cgroups (control groups), resource management

options in Linux, 104, 318
Challenges, in performance engineering

complexity of systems, 5–6
multiplicity of performance issues, 6
overview of, 4
subjective nature of performance, 5

Change management, software change case
study, 11–13

Character interface, device drivers providing, 103
Cheating, benchmarking and, 597
chroot, 552
Circular buffers, 159
Clause-local variables, DTrace, 139
Client, 684
clock() routine, kernel and, 88–89
Clock rate, CPUs, 193
close(), system calls, 95
Cloud Analytics. see Joyent Cloud Analytics
Cloud Analytics, Joyent, 81
Cloud API, 546
Cloud computing

background, 546
benchmarking in, 588–589
capacity planning, 548–549
comparing technologies, 581–583
defined, 546
exercise solutions, 677
exercises and references, 583–585
hardware virtualization. see Hardware

virtualization
multitenancy, 550–551
OS virtualization. see OS virtualization
overview of, 8–9, 545–546
price/performance ratio, 546
scalable architecture, 547–548

Index 703

simulating enterprise systems using, 57–58
storage, 550
USE method and, 48

Cloudy day performance testing, benchmarks for,
599

Code, optimizing common code path in
applications, 156

Coefficient of variation (CoV), 72
Coherence, visualization of scalability profiles, 59
Cold cache, 32
Collisions, interface identifying, 487
Column address strobe (CAS), in measuring

access time of main memory, 273
Command, 684
Comparisons of virtualization technologies,

581–583
Compatible Time-Sharing System (CTSS), 684
Competition, benchmarking the, 594–595
Compiled languages, 164–165
Compilers

CPU compiler options, 256
improving CPU runtime, 199
optimizing, 164–165

Completely fair scheduler (CFQ), I/O latency
policies, 420

Completion, targets for workload analysis, 34
Complexity of systems, 5–6
Concurrency

application performance and, 160–162
defined, 684

Configuration, tuning network performance, 542
Congestion avoidance, 483, 485
Congestion control, TCP

algorithms for, 485–486
defined, 483
tuning on Linux, 538

Congestion window
analysis of size, 500
defined, 483

connect(), system calls, 95, 520–522
Connect latency, networks, 480, 524
Connection backlog, networks, 481
Connection life span, networks, 481
Connections

local network, 482–483
performance monitoring of TCP, 498

Contention, visualization of scalability profiles, 59
Context switch

defined, 86
between user mode and kernel mode, 89

Control unit (control logic), at heart of CPU, 200
Controllers, disk. see Disk controllers

Controllers, network
as networking hardware component, 487
overview of, 475
USE method for analyzing, 496

Copy-on-write (COW) strategy, 93, 344
Core, 190
Counters

CPCs (CPU performance counters), 206–208
CPU performance, 131
overview of, 116
system-wide and per-process, 117

CoV (coefficient of variation), 72
COW (copy-on-write) strategy, 93, 344
CPCs (CPU performance counters)

checking memory bus load, 293
CPU cycle analysis, 219–220
tools for examining, 249–250
types of CPU hardware, 206–208

CPI (cycles per instruction)
CPU cycle analysis, 219–220
CPU metrics, 194–195
PICs (performance instrumentation counters)

and, 249–250
CPU affinity, 163, 192
CPU cache

associativity and, 202–203
cache coherency, 203–204
cache line size, 203
for improving memory access performance, 276
latency and, 202
overview of, 200–202

CPU counters. see CPCs (CPU performance
counters)

CPU cross calls
defined, 684
DTrace analysis of, 241
preemption and, 103

CPU cycles
clock rate and, 193
defined, 684

CPU instructions
CPI (cycles per instruction)/IPC (instructions

per cycle) metrics, 194–195
defined, 190
instruction pipeline, 194
instruction sets, 193–194
instruction width, 194
micro-benchmarking, 222

CPU mode
analysis of time in user mode or kernel mode,

196
determining CPU mode of application, 154

704 Index

CPU mode (continued)
kernel mode, 88–89
user mode, 89

CPU profiling, 171–173, 606–607
CPUs (central processing units)

affinity, 163, 192
analysis, 214, 224
architecture, 191, 199
associativity and, 202–203
binding, 222
cache. see CPU cache
checking resource controls, 562
clock rate, 193
comparing virtualization technology

performances, 581
compiler optimization, 199
compiler options, 256
counters. see CPCs (CPU performance

counters)
cpusets, 259
cpustat, 249–250
cross calls, 103, 684
cycle analysis, 219–220
cycles, 193, 684
defined, 684
determining CPU mode, 154
exercise solutions, 675–676
exercises and references, 260–263
experimentation, 254–255
factor analysis, 68
garbage collection and, 167
hardware, 199
idle threads, 213
instructions. see CPU instructions
interconnects, 204–206
I/O wait as performance metric, 406
latency and, 202
Linux performance tools, 250
load averages in analyzing, 224–226
memory cache, 191–192
micro-benchmarking, 222–223
MMU (memory management unit), 204
mode. see CPU mode
multiprocessing/multithreading, 197–198
multiprocessor statistics (mpstat), 227–229
multiprocessor support, 103
NUMA groups, 214
overhead in hardware virtualization, 566–569
overhead in OS virtualization, 553
overview of, 189–190
parallelism and, 160
performance counters, 131

performance monitoring, 220
performance trade-offs between memory and, 21
pidstat analysis, 234
preemption, 196
price/performance ratio in cloud computing,

546
priority inversion, 196–197
priority tuning, 221–222
process binding, 259
processor binding, 163
processor options, 260
processors and, 199–200
profiling, 171–173, 218–219, 606–607
prstat analysis, 232–234
ps analysis, 230–231
resource controls, 222, 260, 556–557
run queues, 192–193
sar analysis, 230
saturation and, 196
scaling, 223–224
scheduler class tuning, 258
schedulers, 98–99, 209–210, 257–258
scheduling classes, 210–213
scheduling priority and class, 256–257
software, 209
Solaris performance tools, 251
static performance tuning, 220–221
surface plots for per-CPU utilization, 80–81
SystemTap analysis of, 243
terminology regarding, 190
time,ptime analysis, 235–236
time scales of CPU cycles, 20
tools method, 215
top analysis, 231–232
tuning, 214, 256
uptime analysis, 224–225
USE method, 216, 623
utilization measurement, 195
virtual CPUs. see vCPUs (virtual CPUs)
visualizations, 251–254
vmstat analysis, 226–227
word size, 198–199
workload characterization applied to, 216–218

CPUs, DTrace analysis of
cross calls, 241
function tracing, 240–241
interrupts, 241–242
kernel profiling, 236–237
one-liners, 237–238
overview of, 236
scheduler tracing, 242–243
user profiling, 238–240

Index 705

CPUs, perf analysis of
checking scheduler latency, 245–246
documentation, 249
overview of, 243–244
process profiling, 245
software tracing, 247–249
stat command for summarizing CPU cycle

behavior, 246–247
system profiling, 244–245

cpusets, creating CPU sets in Linux, 259
cpusets, Linux, 222
cpustat, for system-wide analysis, 249–250
cputrack, for process analysis, 249
CR3 profiling, for observability in hardware

virtualization, 579–580
Credit-based hypervisor CPU scheduler, 572
Cross calls, CPU

defined, 684
DTrace analysis of, 241
preemption and, 103

CSMA/CD (carrier sense multiple access with
collision detection), 487

CTSS (Compatible Time-Sharing System), 684
Custom benchmarks, 608
CV (coefficient of variation). see CoV (coefficient

of variation)
Cycles, CPU

CPI (cycles per instruction) metric, 194–195
cycle analysis, 219–220, 293
resource controls, 222
summarizing CPU cycle behavior, 246–247

Cycles per instruction. see CPI (cycles per
instruction)

Cyclic page cache, Solaris methods for freeing
memory, 279

D
D programming language, 137, 684
Data rate, throughput and, 16
Database servers, in cloud architecture, 547
Databases

performance tuning targets, 22
sharding, 69

Datagrams, sending with UDP, 486
Dcache (Dentry) cache, 343
DDR SDRAM (double data rate synchronous

dynamic random-access memory), 274
Deadlines, I/O latency policies, 420
debuginfo file, 245, 684
DEC (Digital Equipment Corporation), 684
Decayed averages, 71

Degradation of performance, for nonlinear
scalability, 25–26

Delay accounting, Linux, 130–131, 170
Delayed ACKs algorithm, for TCP congestion

control, 486
Demand paging, 269–270
Denial-of-service (DoS) attacks, 49
Dentry (Dcache) cache, 343
Development, benchmarking during, 588
Device backlog queue, tuning on Linux, 538
Device drivers, 103
Device I/O, 574
df, analyzing file systems, 382
Diagnosis cycle, 41
Digital Equipment Corporation (DEC), 684
Direct I/O file systems, 331–332
Directory lookup cache (DNLC), 341
Directory organization, 99–100
Disk controllers

analyzing with MegaCli, 459–460
defined, 684–685
magnetic rotational disks, 411
micro-benchmarking, 430
overview of, 398–399
scaling solutions, 431
SSDs (solid-state disks), 412–413
tuning with MegaCli, 469–470
USE method for checking, 423

Disk devices
storage devices, 415
tuning, 469
USE method for checking, 422–423

Disk heads, on hard disks, 408
Disk I/O. see also I/O (input/output)

analyzing block device I/O stacks, 370–371
vs. application I/O, 407
cache, 401–402
cache layers, 101–102
characterizing disk I/O workload, 424–425
counting I/O requests (I/O stack frequency),

448–449
event tracing, 427–428, 442–444
I/O wait, 406
IOPS (I/O per second), 404
latency, 399–401
micro-benchmarking, 361–362, 429–430
observability in OS virtualization, 561
operating system disk I/O stack, 418
printing statistics with pidstat, 441–442
random vs. sequential, 402–403
resource controls, 558, 563
scatter plots, 78

706 Index

Disk I/O (continued)
simple model for I/O requests, 397
sizing, 403–404
slow disk case study, 9–11
summarizing disk I/O size, 444–445
summarizing I/O seek distances, 445–446
summarizing I/O size, 444–445
summarizing latency, 446–447
summarizing per-disk statistics (iostat), 432
summarizing per-disk statistics on Linux,

433–436
summarizing per-disk statistics on Solaris,

436–440
time measurements (response time, service

time, and wait time), 399–400
time scales, 400–401
top analysis of (disktop.stp), 454
top analysis of (iotop), 452–454
tracing with (iosnoop), 455–457
USE method applied to, 625–626
workload characterization, 424–426

Disk offset, random vs. sequential I/O and, 402–403
Disks

analysis of, 353, 431–432
analyzing disk controllers with MegaCli,

459–460
architecture, 407
block device interface, 418–421
caching, 397–398
command for non-data transfer, 404
controller for, 398–399
counting I/O requests (I/O stack frequency),

448–449
defined, 684
disk I/O caches, 401–402
disk I/O vs. application I/O, 407
dynamic tracing, 450
event tracing, 427–428
event tracing applied to disk I/O, 444
event tracing applied to SCSI events, 449–450
examining disk I/O events with DTrace,

442–443
exercise solutions, 677
exercises and references, 470–472
experimentation, 465–467
heat maps, 462–465
interfaces, 414
io provider (DTrace) for visibility of block

device interface, 443–444
I/O sizing, 403–404
I/O wait, 406
IOPS (I/O per second), 404
latency analysis, 426–427

line charts/graphs, 461
magnetic rotational disks, 408–411
methodologies, 421
micro-benchmarking, 429–430
NAS (network-attached storage), 417–418
operating system disk I/O stack, 418
overview of, 395–396
perf analysis of, 451–452
performance monitoring, 423–424
printing disk I/O statistic with pidstat,

441–442
RAID architecture, 415–417
random vs. sequential I/O, 402–403
read/write ratio, 403
reporting/archiving current activity (sar),

440–441
resource controls, 429
saturation, 405–406
scaling solutions, 431
scatter plots, 462
simple model for I/O requests, 397
solid-state disks, 411–413
static performance tuning, 428–429
storage arrays, 417
storage devices, 415
storage types, 415
storing file system content, 100
summarizing disk I/O latency, 446–447
summarizing disk I/O seek distances,

445–446
summarizing disk I/O size, 444–445
summarizing per-disk I/O statistics (iostat),

432
summarizing per-disk I/O statistics on Linux,

433–436
summarizing per-disk I/O statistics on

Solaris, 436–440
synchronous vs. asynchronous operation and,

407
SystemTap, 451
terminology regarding, 396
time measurements (response time, service

time, and wait time), 399–400
time scales for disk I/O, 400–401
tools method, 422
top analysis of disk I/O (disktop.stp), 454
top analysis of disk I/O (iotop), 452–454
tracing block device events on Linux

(blktrace), 457–459
tracing disk I/O with (iosnoop), 455–457
tunables of disk controllers, 469–470
tunables of disk devices, 469
tunables of operating system, 467–469

Index 707

tuning, 467
tuning cache, 429
types of, 408
USE method, 422–423
utilization, 404–405
viewing health statistics with smartctl,

460–461
visualizations, 461
workload characterization, 424–426

disktop.stp, for top analysis of disks with
SysTap, 454

Dispatcher-queue latency, 192
Distribution, of file system latency, 383
Distribution of data

multimodal distributions, 73–74
standard deviation, percentiles, and

medians, 72
dladm

for network analysis, 513–514
replacing ifconfig on Solaris, 511

DNLC (directory lookup cache), 341
DNS latency, 19
Documentation/resources

DTrace, 143–144
SystemTap, 149

Dom0, Xen, 557
Domains, Xen, 557
DoS (denial-of-service) attacks, 49
Double data rate synchronous dynamic random-

access memory (DDR SDRAM), 274
Double-hull virtualization, 572
DRAM (dynamic random-access memory)

as common type of main memory, 273
defined, 685

Drill-down analysis
analyzing and tuning applications, 182
overview of, 50–51
reasons to perform, 500–501

DTrace
actions, 138–139
advanced observability for KVM with, 578–579
analysis phase of drill-down analysis, 51
arguments, 137
built-in variables, 137–138
cloud-wide analysis tool, 81
CR3 profiling in, 579–580
D language and, 137
documentation and resources, 143–144
DTraceToolkit, 143
dynamic tracing with, 7–8
overhead, 143
overview of, 133–134
probes, 135–136

profiling tools, 119
providers, 136
scripts, 141–143
static and dynamic tracing with, 134
system-wide tracing, 118
variable types, 139–141

DTrace, analyzing applications
buffered tracing, 177
CPU profiling, 171–173
drill-down analysis, 182
I/O profiling, 180–181

DTrace, analyzing CPUs
cross calls, 241
function tracing, 240–241
interrupts, 241–242
kernel profiling, 236–237
one-liners, 237–238
overview of, 236
profiling, 218–219
scheduler tracing, 242–243
user profiling, 238–240

DTrace, analyzing disks
counting I/O requests (I/O stack frequency),

448–449
dynamic tracing, 450
event tracing, 444
event tracing applied to SCSI events, 449–450
examining disk I/O events, 442–443
io provider for visibility of block device

interface, 443–444
summarizing disk I/O seek distances,

445–446
summarizing disk I/O size, 444–445
summarizing disk latency, 446–447

DTrace, analyzing file systems
advanced tracing, 373–375
block device I/O stacks, 370–371
measuring system latency, 367–368
measuring VFS latency, 368–370
operation counts, 365–367
overview of, 365
summarizing event counts, 367
tracing slow events, 372–373
tracing ZFS read latency, 371–372

DTrace, analyzing memory
allocation tracing, 308–311
fault tracing, 311–312
for tracing page-out daemon, 312

DTrace, analyzing networks
advanced network tracking scripts, 531–533
backlog drops, 529–531
network providers, 520–521
overview of, 495

708 Index

DTrace, analyzing networks (continued)
packet transmission, 527–528
retransmit tracing, 528–529
socket connections, 521–523
socket internals, 525
socket I/O, 523–524
socket latency, 524–525
TCP events, 525–526

DTrace, analyzing Redis application
interrogating kernel, 629–631
measuring file system syscalls, 628–629
measuring read latency, 627
selecting kernel events for investigation,

622–623
DTrace, converting to SystemTap

built-in variables, 667
count syscalls by process name, 670–671
count syscalls by syscall name, 671–672
functionality, 665–666
functions, 668
listing syscall entry probes, 668
overview of, 665
probes, 666–667
references, 674
sample kernel stacks at 100 hz, 674
summarize read() latency for "mysqld"

processes, 672–673
summarize read() returned size, 668–670
terminology, 666
trace file open()s with process name/path

name, 672
trace new processes with process name/

arguments, 673
DTrace: Dynamic Tracing in Oracle Solaris,

Mac OS X and Free BSD (Gregg), 143
DTrace one-liners

allocation tracing and, 310–311
buffered tracing and, 177–179
converting to SystemTap. see DTrace,

converting to SystemTap
fbt provider, 658–659
io provider, 660
ip provider, 661–662
overview of, 141
pid provider, 659–660
proc provider, 655
profile provider, 655–657
sampling CPU usage, 237–238
sched provider, 657
syscall provider, 651–654
sysinfo provider, 660–661
tcp provider, 662

udp provider, 663
vminfo provider, 661

dtruss
buffered tracing, 177
system-wide tracing, 118

Duplicate ACK detection, TCP, 485
Dynamic priority, scheduling classes and, 210
Dynamic random-access memory (DRAM)

as common type of main memory, 273
defined, 685

Dynamic sizing, in cloud capacity planning, 549
Dynamic ticks, 88
Dynamic tracing

analyzing disks, 450–451
analyzing file systems, 373–375
applying to slow disk case study, 10
defined, 685
DTrace options, 134–135
as performance metric, 7–8

Dynamic Tracing Guide, 143

E
ECC (error-correcting code)

defined, 685
magnetic rotational disks, 410

Elevator seeking
algorithm, 397, 419–420, 457
magnetic rotational disks and, 410

Encapsulation, 478
End-to-end arguments, for buffering, 481
Enterprise systems, cloud computing simulating,

57–58
Entire stack, defined in terms of systems

performance, 1
EPT (extended page tables), 569
Erlang's C formula, 62
Error-correcting code (ECC)

defined, 685
magnetic rotational disks, 410

Errors
analyzing, 495
applying USE method to applications,

181–182
applying USE method to CPUs, 216
benchmarking, 593
interpreting metrics, 48
passive benchmarking and, 604
performance monitoring of, 498
USE method and, 42–43

etc (configuration files), in top-level directories,
100

Index 709

Ethereal, 520
Ethernet

defined, 685
physical network interfaces and, 487

Event tracing. see also Tracing
disk I/O events, 427–428, 442–444
file system events, 358–359
overview of, 53–54
SCSI events, 449–450
slow events, 372–373
TCP events, 525–526

Event-based concurrency, 160
Exceptions, kernel handling, 89
exec()

function of key system calls, 95
in process execution, 93

execsnoop
buffered tracing, 177
system-wide tracing, 118

Expander card, 685
Experimentation

experimental analysis, 57
experimental tools, 535–536
quantifying performance issues, 70
testing CPU performance, 254–255

Experimentation, disk-related
ad hoc tests of sequential performance, 465
custom load generators, 465
micro-benchmarking tools, 466
random read example, 466–467

Experimentation, file system-related
ad hoc tests of sequential performance, 384
cache flushing, 387
micro-benchmarking tools, 384–386
overview of, 383–384

ext file systems
architecture of, 347–348
exposing ext4 file system internals, 371–372
tuning, 389

Extended page tables (EPT), 569

F
FACK (forward acknowledgement) algorithm,

486, 539
Factor analysis

in capacity planning, 68
changing multiple benchmark factors, 594

Fair-share scheduler, CPU, 572
Fair-share scheduler (FSS), for CPU shares, 556
False sharing, hash tables and, 162
Fast recovery, TCP, 484
Fast retransmit, TCP, 484

fbt provider, DTrace
one-liners for, 658–659
tracing socket internals, 525
tracing TCP events, 525–526

fcachestat, printing cache activity on UFS,
379–380

FFS, 345–347
File descriptor

defined, 685
examining software resources, 48

File store, for persistent storage, 550
File system cache, 11, 271, 325–326
File system check. see fsck (file system check)
File systems

access timestamps, 336
ad hoc tests of sequential performance, 384
analysis tools, 362–363
analyzing (ksat), 381–382
analyzing file system cache with vmstat,

376–377
analyzing file system statistics with sar,

377–378
analyzing kernel memory usage on Solaris

systems, 379
analyzing kernel slab caches related to file

systems, 378–379
application calls for tuning, 387–388
architecture, 337
block device I/O stacks, 370–371
btrfs, 351
buffer cache, 339–340, 341
cache flushing, 387
cache tuning, 360
cache types, 339
caching, 327–328
capacity, 337
causes of slow disks, 11
checking capacity, 563
checking resource controls, 562
checking syscalls, 628–629
COW (copy-on-write) strategy, 344
debugging syscall interface, 364–365
dentry (Dcache) cache, 343
disk analysis, 353
DNLC (directory lookup cache), 341
DTrace analysis of, 365
dynamic tracing, 373–375
event tracing, 358–359
exercise solutions, 676
exercises and references, 391–393
experimentation, 383–384
ext, 347–348
features, 344–345

710 Index

File systems (continued)
FFS, 345–347
file system cache, 11, 271, 325–326
file system statistics (fsstat), 364
free analysis, 376
inode cache, 343
interfaces, 325
I/O stack model, 101, 337
latency, 327, 354–356
LatencyTOP tool, 375
logical vs. physical I/O, 333–335
measuring system latency with DTrace,

367–368
measuring VFS latency with DTrace, 368–370
memory summary using mdb::memstat,

380–381
memory summary with /proc/meminfo, 380
memory-based, 360–361
memory-mapped files, 332–333
metadata, 333
methodologies, 353
micro-benchmarking, 361–362, 384–386,

598–599
non-blocking I/O, 332
operation counts with DTrace, 365–366
operation performance and, 335–336
organization of files, 99
other tools, 382–383
overhead in OS virtualization, 555
overview of, 99–100, 323
page cache, 340–341, 342–343
paging, 268
performance monitoring, 358
performance tuning targets, 22
prefetch feature, 329–330
printing cache activity on UFS using

fcachestat, 379–380
random vs. sequential I/O, 328
raw and direct I/O, 331–332
record size and performance trade-offs, 21
resource controls, 557–558, 574
second-level cache, 326
special, 336
static performance tuning, 359–360
summarizing event counts with DTrace, 367
synchronous writes, 331
SystemTap analysis of, 375
terminology regarding, 324
top analysis, 376
tracing slow events, 372–373
tracing ZFS read latency, 371–372
tuning, 387, 389–391
types of, 345

UFS (Unix File System), 347
VFS (virtual file system), 100–101, 337–338
virtual file system statistics (vfsstat),

363–364
visualizations, 383
volumes and pools, 351–352
workload characterization, 356–358
workload separation, 360
write-back caching, 330
ZFS, 348–351

FileBench, 386
fio (Flexible IO Tester), 385–386
First-byte latency, 480, 524
Five Whys, in drill-down analysis, 51
Flame graphs, 253–254
Flash disks, 402
Flash-memory, 412
Flexible IO Tester (fio), 385–386
Floating-point operations per second (FLOPS),

601
FLOPS (floating-point operations per second),

601
fmdump, checking CPU with USE method, 623
fop_write() time, interrogating kernel, 630
fork() system call

creating processes, 93
function of, 95

Forward acknowledgement (FACK) algorithm,
486, 539

Fragmentation, as cause of slow disks, 11
Frames

defined, 474
physical network interfaces sending, 487

free command, showing memory and swap
statistics, 376

Free lists
defined, 278
freeing memory, 280–281

FreeBSD jails, OS virtualization and, 552
Freeing memory

free lists, 280–281
overview of, 278–280
page scanning for, 282–284
reaping for, 281–282

Friendly fire issues, benchmarks, 595
Front-side bus, in Intel processors, 204–205
fsck (file system check)

defined, 685
journaling avoiding need for, 348
Linux ext4 file system with faster, 348
log replay avoiding need for, 347

FSS (fair-share scheduler), for CPU shares, 556
fsstat, for file system statistics, 364

Index 711

fsync(), 630–633
Full distribution latency, 498
Full virtualization, in hardware virtualization,

555
Full-duplex mode, 482
Fully preemptable kernels, 104
Functional block diagrams, in USE method, 45
Functional unit, CPU processing instructions,

193–194
Functions, DTrace to SystemTap, 668

G
Garbage collection, 166–167
gbd, in per-process tracing, 119
Geometric mean, 70–71
GLDv3 software, 491
glibc allocator, 288
Global zone, in OS virtualization, 551–552
Google Compute Engine, 557
Guests

comparing virtualization technology
complexity, 582

exits mitigating hardware virtualization
overhead, 567–569

limits in OS virtualization, 558
multiple server instances running as, 546
multitenancy and, 551
observability in hardware virtualization, 580
observability in hardware virtualization for

privileged guest/host, 576–577
observability in OS virtualization, 561–562
resource controls in OS virtualization, 555–558
zones in OS virtualization, 551–552

Gunther, Dr. Neil, 61

H
halt instruction, mitigating hardware

virtualization overhead, 568–569
handle_halt(), mitigating hardware

virtualization overhead, 568
Hardware

events, 206
monitoring resource limits, 66
thread, 190

Hardware, CPU-related
cache, 200–204
CPCs (CPU performance counters), 206–208
interconnects, 204–206
MMU (memory management unit), 204
overview of, 199
processors, 199–200

Hardware, memory-related
busses, 274–276
main memory, 273–274
MMU (memory management unit), 276–277
overview of, 273

Hardware, network-related
controllers, 487
interfaces, 487
others, 488
overview of, 486
switches and routers, 487–488

Hardware virtualization
comparing virtualization technology

performances, 581
hardware-assisted virtualization, 566
hypervisors and, 564–565
implementations of, 565
observability, 574–581
OS virtualization vs., 552
overhead, 566–571
resource controls, 572–574
types of, 563–564

Harmonic mean, 70–71
Hash collisions, 162
Hash tables, 161–162
HBAs (host bus adaptors). see Disk controllers
HDD (hard disk drives). see Magnetic rotational

disks
hdparm, for setting disk device tunables, 469
Heap growth, 286
Heat maps

in CPU visualization, 251–252
in file system visualization, 383
latency heat maps, 463
offset heat maps, 462–463
subsecond-offset heat maps, 252–253
utilization heat maps, 463–465
for visualizations, 79–80

Hertz (Hz), 685
High-priority traffic, resource controls for, 502
Histograms, for visualization, 73–74
Historical statistics, archiving and reporting,

509–511
Hit ratio, of cache, 30–31
Horizontal scaling

cloud architecture based on, 547–548
scaling solutions, 69

Host bus adaptors (HBAs). see Disk controllers
Hosts

comparing virtualization technology
complexity, 582

defined, 685
guests of physical, 546

712 Index

Hosts (continued)
observability in hardware virtualization for

privileged guest/host, 576–577
observability in OS virtualization, 559–560
switches providing communication path

between, 487
Hot cache, 32
HT (HyperTransport) interconnect, 205
httpd processes, 672
Hubs, 487
Huge pages, Linux

MPSS (multiple page size support), 277
tuning multiple page sizes, 317–318

Hybrid virtualization, hardware virtualization,
556

HyperTransport (HT) interconnect, 205
Hypervisors

advanced observability of, 578–579
analyzing hardware virtualization overhead,

567
comparing complexity of virtualization

technologies, 582
observability in hardware virtualization,

575–578
types of, 556–557

Hz (hertz), 685

I
IaaS (infrastructure as a service), 546
ICMP

“can’t fragment” error, 479
ping latency in, 479–480
testing network connectivity, 514

Identification, in drill-down analysis, 50
Idle memory, 278
Idle threads

load balancing and, 210
prioritization of, 213

ifconfig
network analysis with, 494
overview of, 511
tuning network interface on Linux, 539

Ignoring errors, issues in benchmarking, 593
Ignoring perturbations, issues in benchmarking,

593–594
Ignoring variance, issues in benchmarking, 593
illumos, 685
Industry-standard benchmarks

overview of, 56
SPEC, 602
TPC, 601–602
understanding, 601

Infrastructure as a service (IaaS), 546
Inode cache, 343
inotify, in analyzing file systems, 382
Instructions, CPU. see CPU instructions
Instructions per cycle (IPC), CPU metric,

194–195
Intel VTune Amplifier XE profiling tool, 119
Interconnects, for multiprocessor architectures,

204–206
Interfaces

block device, 418–421
defined, 474
disk, 414
file system, 325
io provider (DTrace) for visibility of block

device interface, 443–444
negotiation, 482
netstat statistics for, 504–509
physical network, 487
utilization, 487

Interpreted languages, 165–166
Inter-process communication (IPC)

connecting via IP to localhost with IP sockets,
483

defined, 685
interrupt coalescing mode, 10 GbE networking,

493
Interrupt latency, 92
Interrupt priority level (IPL), 92–93
Interrupt request (IRQ), 490, 685
Interrupt service routine, 92
Interrupt threads, 92
Interrupts

CPU cross calls, 103
defined, 86
DTrace analysis of, 241–242
IPL (interrupt priority level), 92–93
IRQ (interrupt request), 490, 685
overview of, 91–92

I/O (input/output). see also Disk I/O
analyzing block device I/O stacks, 370–371
analyzing sockets with DTrace, 523–524
comparing virtualization technologies, 581
CPU-bound vs. I/O bound, 99
defined, 396
I/O latency, 396, 420
I/O profiling, 180–181
I/O sizing, 158–159, 403–404
I/O stack, 101, 337
I/O throttling, 557
I/O wait as performance metric, 406
IOPS (I/O per second), 7
logical vs. physical I/O, 333–335

Index 713

mitigating hardware virtualization overhead,
570–571

non-blocking I/O, 162–163, 332
overhead in OS virtualization, 554–555
random vs. sequential I/O, 328
raw and direct I/O, 331–332
resource controls, 557–558, 574
resources studied as queueing systems, 45
slow disk case study, 9–11

io provider, DTrace
one-liners for, 660
for visibility of block device interface,

443–444
ioctl(), function of key system calls, 96
ionice, for scheduling and prioritizing

processes, 468
IOPS (I/O per second)

calculating disk service time, 400
characterizing disk I/O workload, 424–425
defined, 16, 685
factors in comparing devices and workloads,

404
limitations as latency metric, 7
metrics of systems performance, 27
in micro-benchmarking disks, 430
purchasing rate for network storage, 550
read/write ratio and, 403

iosnoop
system-wide tracing, 118
tracing disk I/O with, 455–457
tracing storage device with, 53

iostat
checking disks, 625–626
summarizing per-disk I/O statistics, 432
summarizing per-disk I/O statistics on Linux,

433–436
summarizing per-disk I/O statistics on

Solaris, 436–440
system-wide counters, 117

iotop, top analysis of disks, 452–454
ip, 491, 511–512
IP header, 477
IP protocol, 478–479
ip provider, DTrace, 661–662
IP QoS (Quality of Service), resource controls for,

502
IP sockets, inter-process communication and, 483
IP stack, tuning in Solaris, 539–540
ipadm

replacing ifconfig on Solaris, 511
tuning with, 539–540

IPC (instructions per cycle), CPU metric,
194–195

IPC (inter-process communication)
connecting via IP to localhost with IP sockets,

483
defined, 685

iperf experimental tool, for network analysis,
535–536

IPL (interrupt priority level), 92–93
IRIX, 685
IRQ (interrupt request), 490, 685
irqbalancer process, 490

J
JBOD (just a bunch of disks), 415
Jiffies, unit of time in Linux, 89
Joyent Cloud Analytics, 81, 383
Joyent public cloud

OS virtualization, 552
resource controls in OS virtualization,

555–558
using KVM hardware virtualization, 557, 565

Joyent SmartOS, 553
Jumbo frames

for packet size, 478
tuning network performance with, 542

Just a bunch of disks (JBOD), 415

K
Keep-alive strategy, for network connections, 481
Kendall's notation, in categorizing factors of

queueing systems, 63–64
Kernel

analyzing memory usage, 379
clock, 88–89
comparing Solaris and Linux, 112–113
defined, 86
DTrace to SystemTap conversion example, 674
execution, 88
file system support, 99
interrogating in Redis case study, 629–631
Linux-based, 109–112
mode, 88–89, 154, 196
overview of, 87
preemption, 103–104
profiling, 236–237
schedulers, 98–99
selecting events for investigation, 622
Solaris-based, 106–109
stacks, 90–91, 674
tracing, 131
Unix kernel, 106
versions, 105

714 Index

Kernel level, 685
Kernel mode

analysis of time in, 196
determining CPU mode of application, 154
overview of, 88–89

Kernel-space, 86
kmastat, analyzing kernel memory usage on

Solaris systems, 302–303, 379
Knee point

modeling scalability, 57
in scalability, 24–25
visualizing scalability profiles, 60

Known workloads, verifying observations, 150
Known-knowns, in performance analysis, 26
Known-unknowns, in performance analysis, 26
kstat (kernel statistics)

analyzing file systems, 381–382
checking CPU, 623
overview of, 127–130

kswapd, page-out daemon in Linux, 282–283
KVM

advanced observability in, 578–579
observability in hardware virtualization for

privileged guest/host, 575–577
kvm_emulate_halt(), mitigating hardware

virtualization overhead, 569

L
Language virtual machines, 166
Large segment offload, improving performance of

MTU frames, 479
Latency

analysis in general, 51–52
application performance objectives, 155
vs. completion time, 78–80
connection latency, 480–481
CPU cache latency, 202
defined, 16, 474
disk analysis, 426–427
disk I/O latency, 399–401
distribution of, 73
DTrace to SystemTap example, 672–673
in expressing application performance, 35
in extreme environments, 23
file system analysis, 354–356
file system latency, 327
first-byte latency, 480
heat maps of, 463
interrupt latency, 92
I/O latency policies, 420
line chart visualization of, 77
main memory and, 273

measuring, 27, 479
name resolution and, 479
network analysis and, 497–498
network storage access increasing, 550
overview of, 18–19
perf for checking scheduler latency, 245–246
as performance metric, 6–7
ping latency, 479–480
ramping load and measuring, 610–611
reporting on file system latency, 375
round-trip time and, 481
scheduler latency, 192
in slow disk case study, 10
socket analysis, 524–525
summarizing disk latency with DTrace,

446–447
targets for workload analysis, 34
tick latency, 88
time scale of, 19–20

Latency, in Redis application
causes of read latency, 626–627
measuring file system syscalls, 628–629
problem statement, 618–619

Latency outliers
baseline statistics and, 54
defined, 396
garbage collection and, 167

LatencyTOP tool, 375
Layer terminology, of protocol stack, 476
Leak detection, 293–294
Least recently used (LRU)

cache management algorithm, 31
defined, 686

LFU (least frequently used), cache management
algorithm, 31

lgrps (locality groups), Solaris, 214
libc allocator, 288
libumem slab allocator, 288, 309–310
Limits, in OS virtualization, 555, 558
Line charts

applied to disks, 461
for visualizations, 77–78

Linear scalability, 59
Link aggregation, tuning network performance

with, 542
Linux

analyzing file system cache, 376
analyzing file system statistics, 377–378
block device interface and, 419–420
breakpoint tracing on, 173–175
comparing Solaris and Linux kernels,

112–113
configuring network interfaces, 511

Index 715

CPU performance tools, 250
debugging syscall interface, 364–365
delay accounting, 130–131
flushing system cache, 387
free lists, 281
freeing memory, 279
history of Linux kernel, 109–110
huge pages, 277, 317–318
interface statistics, 504–506
investigating library calls, 182
kernel versions and syscall counts, 105
load averages in uptime analysis, 226
lxc containers in OS virtualization, 552
mapping process memory, 307–308
measuring VFS latency with DTrace, 369–370
memory management, 98
memory performance tools, 312–313
memory summary with /proc/meminfo, 380
monitoring, 120
network analysis tools, 503
network stack, 489–490
observability sources, 121
other network performance tools, 534
overcommit supported by, 270
page scanning methods, 282–283
performance features of Linux kernel,

110–112
/proc file system, 122–124
process binding, 259
process status (ps), 304
processor sets, 222
profiling tools, 119
resource control groups (cgroups), 104
resource controls, 260, 318
scheduler options, 257
scheduling and prioritizing processes

(ionice), 468
scheduling classes, 211–212
scheduling domains, 214
scheduling priority and class, 256
setting disk device tunables (hdparm), 469
slab cache usage (slabtop), 302
summarizing per-disk I/O statistics (iostat),

433–436
/sys file system, 126–127
system activity reporters (sar), 299–300,

440–441, 509–511, 649–650
thread-state analysis in, 170
time sharing on, 210
top analysis of disk I/O (iotop), 452–453
tracing block device events on (blktrace),

457–459
tuning, 536–539

tuning memory, 315–316
tuning multiple page sizes, 317
USE method checklist for physical resources,

637–641
USE method checklist for software resources,

641–642
virtual memory statistics (vmstat), 296–297
voluntary kernel preemption in, 104

Linux Performance Events (LPE). see perf
Listen backlog, TCP, 492
Little's Law, 62
Live patching, of kernel address space, 135
LNU (not frequently used), cache management

algorithm, 32
Load. see Workload
Load averages, in analyzing CPUs, 224–226
Load balancing

cloud architecture, 547
idle threads and, 210
key functions of CPU scheduler, 209
scaling solutions and, 69

Load generators
in disk-related experimentation, 465
micro-benchmarking with, 56

Local connections
network, 482–483
networks, 482–483

Local disks, 686
Local memory, 274
Localhost

connections, 482
defined, 477

Lock analysis, analyzing and tuning applications,
182–185

lockstat, 183, 185
Logical CPU, 190
Logical I/O, 333–335
Logical processor, 686
Logs/logging

applications, 154
packet capture logs, 498–500
system logs, 118

Loopback, localhost connections using, 482
Low-priority traffic, resource controls for, 502
LPE (Linux Performance Events). see perf
LRU (least recently used)

cache management algorithm, 31
defined, 686

LSI MegaCli
analyzing disk controllers, 459–460
tuning disk controllers, 469–470

ltrace, investigating library calls on Linux, 182
lx Branded Zones, 552

716 Index

lxc Linux Containers, in OS virtualization, 552
lxproc, Linux-like proc on Solaris, 126

M
Macro-benchmarks, 599. see also Simulations
madvise(), application calls, 388
Magnetic rotational disks

defined, 685
overview of, 408
types of disks, 395

Main board (or system board), 686
Main memory

architecture, 273–274
busses, 274–276
as capacity resources, 45
checking resource controls, 562
defined, 266
DRAM, 273
oversubscription of, 267
utilization and saturation, 271–272

Maintenance, comparing virtualization
technologies for, 583

Major fault, 686
malloc, in allocation tracing, 308
Marketing, benchmarking during, 588
Markov model, of stateful workload simulation,

600
Markovian arrivals, (M/D/1,M/M/1, M/M/c, and

M/G/1), 64–65
Maximum transmission unit (MTU)

improving frame performance, 479
limiting packet size, 478

mdb, Solaris
analyzing kernel memory usage (kmastat),

302–303, 379
per-process tracing, 119
setting tunable parameters, 539
summarizing memory usage (memstat),

380–381
Mean, in statistics, 70–71
Medians

plotting, 77–78
in statistics, 72

MegaCli
analyzing disk controllers, 459–460
tuning disk controllers, 469–470

meminfo, memory summary with /proc/
meminfo, 380

Memory
allocators, 272, 286–289
analysis tools, 295
architecture, 272–273

busses, 274–276
characterizing usage of, 291–292
checking resource controls, 562
comparing virtualization technology

performance overhead, 581–582
CPU memory cache, 191–192
cycle analysis, 293
demand paging, 269–270
DTrace for allocation tracing, 308–311
DTrace for fault tracing, 311–312
DTrace for tracing page-out daemon, 312
exercise solutions, 676
exercises and references, 319–321
file system cache and, 271
free lists, 280–281
freeing, 278–280
growth, 166–167
hardware, 273
heap growth and, 286
improving performance of multithreaded

applications, 318
kernel memory on Solaris systems (kmastat),

302–303
leak detection, 293–294
main memory, 273–274
managing, 97–98
mapping process memory (pmap), 306–308
methodologies, 289
micro-benchmarking, 294–295
micro-benchmarking to check memory access,

223
mitigating hardware virtualization overhead,

569–570
MMU (memory management unit), 276–277
overcommit support in Linux, 270
overview of, 265–266
page scanning for freeing, 282–284
paging, 268–269
performance monitoring, 293
performance tools for analyzing, 312–314
performance trade-offs between CPU and, 21
primary, secondary, and virtual, 97
process address space and, 284–285
process status (ps), 304–305
reaping for freeing memory, 281–282
regulating access to, 161
resource controls, 294
resource controls in hardware virtualization,

573–574
resource controls in OS virtualization, 556
resource controls in tuning, 318
showing statistics with free, 376
slab cache usage (slabtop), 302

Index 717

software, 278
static performance tuning, 294
swapping, 271
system activity reporters (sar), 298–301
SystemTap, 312
terminology regarding, 266
tools method, 289–290
top running processes, 305–306
tunable parameters, 314–317
tuning multiple page sizes, 317–318
USE method for improving performance,

290–291
utilization and saturation, 271–272
virtual memory, 267–268
virtual memory statistics (vmstat), 295–298
word size and, 272

Memory, in Redis application case study
checking for memory errors, 624–625
conclusions regarding, 626–627
epilogue, 633

Memory locality, NUMA system, 192
Memory management unit. see MMU (memory

management unit)
Memory nodes, 274
Memory-based file systems, 360–361
Memory-mapped files, 332–333
memstat, memory summary using

mdb::memstat, 380–381
Metadata, 333
Method R, in performance analysis, 52
Methodologies

ad hoc checklists, 38–39
anti-methods, 36–38
baseline statistics, 54
cache tuning, 55–56
capacity planning, 65–69
categorizing types of, 35–36
cloud computing and, 48
diagnosis cycle, 41
drill-down analysis, 50–51
event tracing, 53–54
exercise solutions, 675
exercises and references, 82–83
Five Whys, 51
functional block diagrams in USE method, 45
interpreting metrics, 48
latency analysis, 51–52
Method R, 52
metrics of USE method, 43–47
micro-benchmarking, 56–57
modeling, 17–18, 57–64
monitoring, 74–76
overview of, 15

problem statement, 39
resource lists in USE method, 44–45
scientific method, 39–41
software resource examination, 47–48
static performance tuning, 55
statistics, 69–74
tools method, 41–42
USE method, 42–43
visualizations, 76–81
workload characterization, 49–50

Methodologies, application-related
breakpoint tracing, 173–177
buffered tracing, 177–179
CPU profiling, 171–173
drill-down analysis applied to, 182
I/O profiling, 180–181
lock analysis applied to, 182–185
overview of, 167–168
static performance tuning, 185–186
syscall analysis, 173
thread-state analysis, 168–171
USE method, 181–182
workload characterization, 181

Methodologies, benchmark-related
active benchmarking, 604–606
CPU profiling, 606–607
custom benchmarks, 608
overview of, 602–603
passive benchmarking, 603–604
ramping load, 608–611
sanity check, 611
statistical analysis, 612–613
USE method, 607–608
workload characterization, 608

Methodologies, CPU-related
CPU binding, 222
cycle analysis, 219–220
micro-benchmarking, 222–223
overview of, 214–215
performance monitoring, 220
priority tuning, 221–222
profiling, 218–219
resource controls, 222
scaling, 223–224
static performance tuning, 220–221
tools method, 215
USE method, 216
workload characterization, 216–218

Methodologies, disk-related
cache tuning, 429
event tracing, 427–428
latency analysis, 426–427
micro-benchmarking, 429–430

718 Index

Methodologies, disk-related (continued)
overview of, 421
performance monitoring, 423–424
resource controls, 429
scaling solutions, 431
static performance tuning, 428–429
tools method, 422
USE method, 422–423
workload characterization, 424–426

Methodologies, file system-related
cache tuning, 360
disk analysis, 353
event tracing, 358–359
latency analysis, 354–356
memory-based, 360–361
micro-benchmarking, 361–362
overview of, 353
performance monitoring, 358
static performance tuning, 359–360
workload characterization, 356–358
workload separation, 360

Methodologies, memory-related
characterizing memory usage, 291–292
cycle analysis, 293
leak detection, 293–294
micro-benchmarking, 294–295
overview of, 289
performance monitoring, 293
resource controls, 294
static performance tuning, 294
tools method, 289–290
USE method, 290–291

Methodologies, network performance
drill-down analysis, 500–501
latency analysis, 497–498
micro-benchmarking, 502–503
packet sniffing, 498–500
performance monitoring, 498
resource controls, 501
static performance tuning, 501
TCP analysis, 500
tools method, 494–495
USE method, 495–496
workload characterization, 496–497

Metrics. see also Statistics
application, 154
CPI (cycles per instruction), 194–195
disk I/O, 423–424
dynamic tracing and, 7–8
latency as, 6–7
quantifying performance issues, 6
for resource analysis, 33
types of, 27

of USE method, 43–48
verifying observations, 150–151
for workload analysis, 35

MFU (most frequently used), cache management
algorithm, 31

M/G/1 Markovian arrivals, 64
Micro-benchmarking

applying to CPUs, 222–223
applying to disks, 429–430
applying to file systems, 361–362
comparing virtualization technologies with,

582
design example, 598–599
in determining speed of main memory,

294–295
in disk-related experimentation, 466
network analysis with, 502–503, 535
overview of, 56–57
tools, 384–386
understanding, 597–598
variance in, 593

Microprocessors, 488. see also CPUs (central
processing units); Processors

Microstate accounting, Solaris, 131, 170–171
Millions of instructions per second (MIPS),

industry benchmark metric, 601
Minor fault, 686
MIPS (millions of instructions per second),

industry benchmark metric, 601
Mirroring, RAID-1, 416
Misleading issue, in benchmarking, 595–596
M/M/1 Markovian arrivals, 64
M/M/c Markovian arrivals, 64
MMU (memory management unit)

mitigating hardware virtualization memory
mapping overhead, 569

overview of, 276–277
virtual to physical address translation, 204

Models, network-related
controller, 475
network interface, 474–475
protocol stack, 476

Models/modeling
creating theoretical model of Redis

application, 623
first steps in performance engineering, 2
I/O stack model, 101
Markov model in workload simulation, 600
non-blocking I/O model, 162–163
overview of, 57
queuing model, 17–18
queuing theory, 61–65
scalability and, 60–62

Index 719

simulating enterprise systems using cloud
computing, 57–58

sparse-root zones model, 555
SUT (system under test), 17
visual identification, 58–60
wireframe models, 80

Model-specific registers (MSR), 207
Monitoring

baseline statistics and, 54
CPU performance, 220
disk performance, 423–424
in drill-down analysis, 50
events, 206
file system performance, 358
key metrics for, 498
memory metrics, 293
network analysis with, 498
overview of, 74
software in OS virtualization, 555
summary-since-boot values and, 76
third-party products for, 76
time-based patterns, 74–76
tools, 120

Most frequently used (MFU), cache management
algorithm, 31

Most recently used (MRU), 31
mount, analyzing file systems, 382
Mount points, directory, 99
Mounting file system, to directory, 99
MPSS (Multiple page size support), 277
mpstat

analyzing CPUs, 227–229
checking for CPU errors in Redis application,

623
observability in OS virtualization, 561
system-wide counters, 117

MR-IOV (Multi Root I/O Virtualization), 570–571
MRU (most recently used), 31
MSR (model-specific registers), 207
mtmalloc allocator, 288
MTU (maximum transmission unit)

improving frame performance, 479
limiting packet size, 478

Multi Root I/O Virtualization (MR-IOV), 570–571
Multicast transmission, 477
Multichannel architecture, in memory buses,

275–276
Multimodal distributions, in statistics, 73–74
Multiple page size support (MPSS), 277
Multiprocessors. see also CPUs (central

processing units)
CPU scalability and, 197–198
interconnects for, 204–206

multiprocessor statistics (mpstat), 227–229
parallelism and, 160
support for, 103

Multitenancy, 546, 550–551
Multithreading

allocators for improving performance, 318
CPU scalability and, 197–198
lock analysis applied to, 182–183
overview of, 160
scaling hardware, 190

Mutex (MUTually EXclusive) locks
examining software resources, 47
types of synchronization primitives, 161

mysqld, 672–673, 686

N
Nagle algorithm, for TCP congestion control,

485–486
name resolution latency, 479
NAS (network-attached storage), 417–418
Native (bare-metal) hypervisor, 556
ndd, Solaris, 539
Nested page tables (NPT), 569
netstat

checking Redis application for network errors,
626

interface statistics on Linux, 504–506
interface statistics on Solaris, 507–509
investigating Redis application performance

issues, 620–622
network analysis with, 494
overview of, 503–504
studying statistics for areas to investigate,

622
system-wide counters, 117

Network devices
drivers, 493
tuning on Solaris, 541

Network interface, 102
checking Redis application for network errors,

626
negotiation, 482
overview of, 474–475
tuning on Linux, 539
utilization, 482
workload characterization of, 496

Network interface card. see NIC (network
interface card)

Network I/O, 563. see also Disk I/O
Network latency, 497
Network packets. see Packets
Network protocols, 102

720 Index

Network stack
Linux, 489–490
overview of, 488–489
Solaris, 491

Network-attached storage (NAS), 417–418
Networks/networking

advanced network tracking, 531–533
analysis, 503
buffering, 481
capturing and inspecting packets (snoop),

517–520
capturing and inspecting packets (tcpdump),

516–517
configuring network interfaces, 511
configuring network interfaces and routes

(ip), 512
connection backlog, 481
drill-down analysis, 500–501
DTrace analysis of backlog drops, 529–531
DTrace analysis of packet transmission,

527–529
DTrace analysis of sockets, 521–525
DTrace analysis of TCP events, 525–526
DTrace network providers, 520–521
encapsulation, 478
exercises and references, 542–544
experimental tools, 535–536
hardware, 486–488
interface negotiation, 482
latency, 479–481
latency analysis, 497–498
local connections, 482–483
methodologies, 493–494
micro-benchmarking, 502–503
models, 474–476
other performance tools, 534
overview of, 102
packet size, 478–479
packet sniffing, 498–500
perf for static and dynamic event tracing,

533–534
performance monitoring, 498
printing network interface statistics

(nicstat), 512–513
protocols, 477–478, 483–486
providing interface statistics on Solaris

(dladm), 513–514
reporting on network activity (sar), 509–511
reporting on network statistics (netstat),

503–509
resource controls, 502

routing, 476–477
software, 488–493
static performance tuning, 501
statistics, 509–511
SystemTap analysis of file system events, 533
TCP analysis, 500
terminology, 474
testing network connectivity (ping), 514
testing routes and bandwidth between routes

(pathchar), 515–516
testing routes (traceroute), 514–515
tools method, 494–495
tuning Linux, 536–539
tuning Solaris, 539–542
USE method, 495–496
utilization, 482
Wireshark tool for packet capture and

analysis, 520
workload characterization, 496–497

NFS, 100
NIC (network interface card)

housing network controller, 475
improving performance of MTU frames, 479
overview of, 102

nice, for scheduling priority and class, 256–257
nicstat

checking Redis application for network errors,
626

network analysis tool, 512–513
nmap(), function of key system calls, 96
Nodes, 274
Noisy neighbors, 551
Non-blocking I/O, 162–163, 332
Non-idle time, utilization and, 29
Non-regression testing, testing hardware or

software changes, 11
Non-uniform memory access. see NUMA (non-

uniform memory access)
Noop (no-operation) policy, I/O latency, 420
Normal distribution, 72
Not frequently used (LNU), cache management

algorithm, 32
NPT (nested page tables), 569
NUMA (non-uniform memory access)

groups for scheduling and memory placement,
214

interconnects and, 204–206
main memory architecture, 273–274
memory locality and, 192

Numbers without analysis, benchmark issues,
591–592

Index 721

O
Object store, persistent storage, 550
Objectives, application performance

Big O notation applied to performance
analysis, 156–158

optimizing common code path, 156
overview of, 155–156
role of observability in eliminating

unnecessary work, 156
Objectives, in performance engineering, 2
Observability

comparing virtualization technology
performances, 582–583

eliminating unnecessary work in applications,
156

in hardware virtualization, 574–581
in OS virtualization, 558–563
OSs (operating systems) and, 104
in quantifying performance issues, 69–70
of RAID disks, 415–416

Observability tools
baseline statistics and, 54
counters, 116–117
DTrace tool. see DTrace
exercises and references, 151
identification process in drill-down analysis, 50
Linux delay accounting, 130–131
Linux /proc files, 122–124
Linux /sys file system, 126–127
monitoring tools, 120
overview of, 115
perf, 149
/proc file system, 121
profiling tools, 119–120
Solaris kstat files, 127–130
Solaris microstate accounting, 131
Solaris /proc files, 124–126
sources of performance statistics, 120–121,

131–133
SystemTap. see SystemTap
tracing tools, 118–119
types of, 116
verifying observations, 150–151

Offset heat maps, 462–463
On-disk cache, magnetic rotational disks, 410
One-liners

DTrace. see DTrace one-liners
SystemTap, 146–148

OOM (out of memory), 266
OOM (out of memory) killer

freeing memory, 279
searching for out of memory, 290

open(), function of key system calls, 95
Open VZ (Open Virtuozzo), 552
opensnoop

analyzing file systems, 367
buffered tracing, 177

Operation counts, applying DTrace to file
systems, 365–366

Operation performance, in file systems, 335–336
Operation rate

defined, 686
throughput and, 16

Operation time, latency and, 18
Oprofile profiling tool, 119
Optimizing, for the benchmark, 596–597
Oracle Solaris Studio profiling tools, 119
OS virtualization

comparing virtualization technologies, 581
observability and, 558–563
overhead of, 553–555
overview of, 48
partitioning in, 551–553
resource controls, 555–558

OSI model, 476
OSs (operating systems)

caching, 101–102
comparing Solaris and Linux kernels, 112–113
device drivers, 103
disk I/O stack, 418–421
exercise solutions, 675
exercises and references, 113–114
file systems, 99–101
interrupts and interrupt threads, 91–92
IPL (interrupt priority level), 92–93
kernel, 87–89, 105
kernel preemption, 103–104
Linux-based kernels, 109–112
memory management, 97–98
micro-benchmarking operations, 223
multiprocessor support, 103
networking and, 102
observability and, 104
overview of, 85
processes, 93–95
resource management, 104
schedulers, 98–99
Solaris-based kernels, 106–109
stacks, 89–91
system calls, 95–96
terminology regarding, 86
tuning, 467–469
Unix kernel, 106
virtual memory, 97

722 Index

Out of memory (OOM), 266
Out of memory (OOM) killer

freeing memory, 279
searching for out of memory, 290

Outliers
in heat maps, 79
latency outliers, 54, 167
in statistics, 74

Overcommit
defined, 268
Linux supported, 270

Overhead
comparing virtualization technologies, 581
DTrace, 143
hardware virtualization, 566–571
OS virtualization, 553–555
of performance metrics, 27
SystemTap, 148
tick overhead, 88

Overprovisioning, dynamic sizing in cloud and, 549
Oversubscription, of main memory, 267

P
Packet drops, in Redis application

investigating, 620–622
Joyent analysis of, 619–620
in problem statement, 618–619

Packets
capture and inspection with snoop, 517–520
capture and inspection with tcpdump,

516–517
capture logs, 498–500
communicating by transferring, 478
defined, 474
event tracing, 53
managing, 477
monitoring out-of-order, 498
reducing overhead of, 478
round-trip time of, 481
router role in delivery, 488
size of, 478–479
sniffing, 115, 132, 498–500
tracing transmission, 527–528

Padding hash locks, 162
Page cache, 279, 340–343
Page faults

defined, 266
page mapping and, 269–270
tracing, 311–312

Page scanning
checking with tools method, 290
for freeing memory, 282–284

Page tables, reading, 204
Page-out daemon

page scanning methods, 282–283
tracing, 312

Pages
as memory unit, 266
MPSS (multiple page size support), 277
tuning multiple page sizes, 317–318

Paging
anonymous paging, 268–269
defined, 266
demand paging, 269–270
file system paging, 268
moving small units of memory, 97–98, 267
Solaris methods for freeing memory, 279
thread-state analysis and, 170
tools method for checking, 290

PAPI (Processor Application Programmers
Interface), 207

Parallelism
application performance and, 160–162
defined, 686
lock analysis applied to, 182–183

Paravirtualization, hardware virtualization
defined, 566
mitigating I/O overhead, 570–571
overview of, 555–556

Passive benchmarking, 603–605
Passive TCP connection rate, 484, 496
pathchar, for network analysis, 515–516
pbind, process binding in Solaris, 259
PC (program counter), 686
PCI pass-through, 570–571
PDP (Programmed Data Processor), 686
Percentiles, in statistics, 72, 77–78
perf

advanced observability with, 577–578
analysis phase of drill-down analysis, 51
analyzing CPUs, 243–244
analyzing disks, 451–452
analyzing networks, 495
block trace points in disk analysis, 451–452
checking scheduler latency, 245–246
documentation, 249
drill-down analysis, 182
overview of, 149, 243, 533–534
profiling with, 119, 244–245
subcommands, 243
summarizing CPU cycle behavior (stat),

246–247
system-wide tracing with, 118
tools method for checking memory, 290
tracing software, 247–249

Index 723

Performance engineers, 2
Performance instrumentation counters (PICs),

206, 249–250
Performance isolation

cloud computing and, 9
resource controls in cloud computing for, 551

Performance monitoring units (PMU), 206
Per-interval average latency, 498
Per-operation latency, 498
Per-process observability tools

counters, 117
Linux /proc file system, 122–123
overview of, 116
profiling, 119
Solaris /proc files, 124–126
tracing, 118–119, 131

Perspectives
overview of, 32
performance analysis, 4
resource analysis, 33–34
workload analysis, 34–35

Perturbations, benchmarking, 593–594
Physical I/O, 333–335
Physical resources

USE method checklist in Linux, 637–640
USE method checklist in Solaris, 643–645

PICs (performance instrumentation counters),
206, 249–250

PID (process ID), 93–94
pid provider, DTrace, 659–660
pidstat

analyzing CPU usage by process or thread, 234
printing disk I/O statistics, 441–442

ping, analyzing network connectivity, 514
Ping latency, 479–480
Pluggable device drivers, 103
pmap (mapping process memory), 117, 306–308
PMU (performance monitoring units), 206
Point-in-Time recommendations, for

performance, 23
Policies

I/O latency, 420
scheduling, 210, 212

poll() syscall, 159–160
pollsys(), 628, 633
Pools

file systems, 351–352
observing ZFS pool statistics, 382–383

POSIX (Portable Operating System Interface)
standard, 99, 686

posix_fadvise(), application calls, 387–388
Preemption

high priority threads and, 196

kernel, 103–104
key functions of CPU scheduler, 209
triggering in Linux and Solaris, 210

Prefetch feature, file systems, 329–330
Price/performance ratio

cloud computing and, 546
comparing benchmarking systems, 589
industry-standard benchmarks measuring, 601

printf(), 670–672
Prioritization

inheritance in Solaris, 197
resource controls in hardware virtualization,

572–573
resource controls in OS virtualization, 555
scheduling classes, 210–211, 256–257
scheduling processes, 256–257
threads and priority inversion, 196–197
tuning priorities, 221–222

Privileged guest/host, observability in hardware
virtualization, 575–578

probefunc(), 671–672
Probes

CPU scheduler, 242
DTrace, 135–136
DTrace to SystemTap, 666–667
SystemTap, 145

Problem statement
overview of, 39
for Redis application case study, 618–619

/proc file system
Linux, 122–124
Solaris, 124–126
sources of performance statistics, 121

proc provider, DTrace, 655
Process address space, 284–285
Process binding, 222, 259
Process ID (PID), 93–94
Process virtual machines, 166
Processes

creating, 93
defined, 86, 686
DTrace to SystemTap examples, 671–673
environment, 94–95
life cycle of, 94
monitoring. see ps (process status)
moving between main and secondary memory,

97–98
multiple, 160
process accounting, 132
running in user mode, 89
scheduling, 98–99, 256–257
viewing top running. see top (top running

processes on Linux)

724 Index

Processor Application Programmers Interface
(PAPI), 207

Processor ring, 686
Processors. see also CPUs (central processing

units)
binding, 163
CPUs and, 199–200
defined, 86, 190
microprocessors, 488
MSR (model-specific registers), 207
multiprocessor support, 103
multiprocessors. see Multiprocessors
options, 260
parallelism and, 160
processor groups, 214
processor sets, 222
virtual processor, 190
word size, 198–199

Process/thread capacity, examining software
resources, 48

/proc/meminfo, providing summary of memory,
380

procsystime, for buffered tracing, 177
profile provider, DTrace, 655–657
Profiling

CPU profiling, 171–173, 218–219
DTrace applied to kernel profiling, 236–237
I/O profiling, 180–181
perf for process profiling, 245
perf for system profiling, 244–245
sampling and, 30
tools, 119–120
types of observability tools, 116
user profiling, 238–240
visualization of scalability profiles, 59

Program counter (PC), 686
Programmed Data Processor (PDP), 686
Programming languages

compiled languages, 164–165
garbage collection, 166–167
interpreted languages, 165–166
micro-benchmarking higher-level languages,

223
overview of, 163–164
virtual machines and, 166

Proof of concepts, benchmarking and, 588
Protocols, network

overview of, 102
performance characteristics of, 477–478
performance features of TCP, 483–484
protocol stack, 476

Providers, DTrace, 135–136

Providers, IaaS, 546
prstat (top running processes in Solaris)

analyzing CPUs, 232–234
analyzing memory usage, 290
checking Redis application for memory errors,

624
monitoring top running processes, 305–306
observability in OS virtualization, 562

ps (process status)
analyzing CPUs, 230–231
analyzing memory usage, 304–305
per-process counters, 117

psrset, creating CPU sets in Solaris, 259
ptime, reporting on CPU usage, 235–236
public cloud providers, 546

Q
QEMU (Quick Emulator), KVM

advanced observability with, 578–579
observability in hardware virtualization for

privileged guest/host, 576
overview of, 557

QPI (Quick Path Interconnect), 205–206
Quantification, of performance issues, 6, 69–70
quantize() action, DTrace, 528
Queries, latency analysis applied to, 51–52
Queueing model, 17–18
Queueing networks, 61
Queueing systems

applied to M/D/1, 64–65
commonly studied, 64
I/O resources studied as, 45
Kendall's notation applied to categorizing

factors of, 63
modeling hardware and software components,

61–62
Queueing theory

creating theoretical model of Redis
application, 623

overview of, 61–65
statistical analysis of, 613

Queues, TCP backlog, 492
Quick Emulator (QEMU), KVM. see QEMU

(Quick Emulator), KVM
Quick Path Interconnect (QPI), 205–206

R
RAID (redundant array of independent disks)

cache, 417
observability of, 415–416

Index 725

overview of, 415
read-modify-write, 416
types of, 415–416

RAM
factor analysis, 68
as primary memory, 97

Ramping load, benchmark analysis methodology,
608–611

Random change anti-method, 37
Random disk I/O workload, 402–403, 424–425
Random I/O, 328
Raw (character) devices, 103
Raw I/O, 331–332, 418
read()

DTrace to SystemTap examples, 668–670,
672–673

function of key system calls, 95
Reads. see RX (receive)
Read/write (RW) synchronization primitive, 161
Read/write ratio, disks, 403, 424–425
Real-time workload, 686
Reaping

defined, 278
for freeing memory, 281–282

Receive. see RX (receive)
Receive buffers, TCP, 492–493, 500
Receive flow steering (RFS), Linux network

stack, 493
Receive packet steering (RPS), Linux network

stack, 493
Receive side scaling (RSS), Linux network stack,

493
Redis application, as troubleshooting case study

additional information, 634
checking for CPU errors, 623
checking for disk errors, 625–626
checking for memory errors, 624–625
checking for network errors, 626
comments on process, 633–634
DTrace for measuring read latency, 627–629
DTrace interrogation of kernel, 629–631
getting started in problem solving, 620–622
overview of, 617
problem statement, 618–619
reasons for read latency, 631–633
references, 634–635
review of performance issues found, 633
reviewing available syscalls, 628
selecting approach to, 623

Redundant array of independent disks. see RAID
(redundant array of independent disks)

Registers, 686

Remote disks, 686
Remote hosts, 477
Remote memory, 274
Reno algorithm, for TCP congestion control, 485
Replay, benchmarking as, 600
Reporting/archiving current activity. see sar

(system activity reporter)
Request for Comments (RFC), 687
Requests, targets for workload analysis, 34
Resident memory, 266
Resident set size (RSS), of allocated main

memory, 270, 557
Resource analysis

overview of, 33–34
perspectives for performance analysis, 4

Resource controls
allocating disk I/O resources, 429
allocating memory, 294
comparing virtualization technologies, 582
for CPU in OS virtualization, 556–557
CPUs and, 222
for CPUs in hardware virtualization, 572–573
for disk I/O in OS virtualization, 558
for file system I/O in OS virtualization,

557–558
managing disk or file system I/O, 468
for memory capacity in OS virtualization,

557
for multitenancy effects, 551
network analysis with, 502
for network I/O in OS virtualization, 558
observability and, 558–563
resource management options in OSs, 104
strategies for checking, 562–563
tuning CPUs, 260
tuning memory, 318
tuning on Linux, 539
tuning on Solaris, 542

Resource controls facility, 557
Resource isolation, in cloud computing, 551
Resources

capacity planning and, 66–67
cloud computing and limits on, 48
examining software resources, 47–48
management options in OSs, 104
resource list step of USE method, 44–45
USE method and, 42

Response time
defined, 16
latency and, 18, 35
monitoring disk performance, 423–424
for storage devices, 399–400

726 Index

Retransmits, TCP
monitoring, 498
tracing, 528–529

Return on investment (ROI), 22, 687
RFC (Request for Comments), 687
RFS (receive flow steering), Linux network stack,

493
Ring buffers, 159, 493
ROI (return on investment), 22, 687
Roles, in systems performance, 2–3
Round-trip time

defined, 481
determining route to host, 514–515
testing network connectivity, 514

Routers
buffering with, 481
overview of, 488

Routing, on networks, 476–477
RPS (receive packet steering), Linux network

stack, 493
RSS (receive side scaling), Linux network stack,

493
RSS (resident set size), of allocated main

memory, 270, 557
Run queues

defined, 190
overview of, 192–193
schedulers and, 98

Run-queue latency, 192
RW (read/write) synchronization primitive, 161
rwsnoop, analyzing file systems, 367
rwtop, analyzing file systems, 367
RX (receive)

advanced workload characterization/checklist,
497

defined, 687
network analysis with USE method, 495
workload characterization of, 496

S
SACK (selective acknowledgement) algorithm

for congestion control, 486
TCP and, 484
tuning TCP on Linux, 539

Sampling, profiling and, 30
Sanity check, in benchmark analysis, 611
sar (system activity reporter)

analyzing CPUs, 230
analyzing file systems, 377–378
analyzing memory, 298–301
key options and metrics, 649–650
monitoring with, 120

overview of, 509–511
reporting/archiving disk activity, 440–441
system-wide counters, 117

SAS (Serial Attached SCSI), 414
SATA (Serial ATA), 414
Saturation

analyzing CPUs, 196, 216
analyzing disk devices, 405–406
analyzing main memory, 271–272
analyzing networks with USE method, 495
checking Redis application for memory errors,

624–625
defined, 16
indicating with netstat on Linux, 504–506
interpreting metrics of USE method, 48
measuring network connections, 481
memory metrics, 293
metrics, 43, 181–182
overview of, 29–30
USE method and, 42

Saturation point, scalability and, 25
Scalability

Amdahl's Law of Scalability, 60–61
capacity planning and, 69
cloud computing, 547–548
under increasing load, 24–26
lock analysis and, 182
modeling in analysis of, 57
multiple networks providing, 476–477
multiprocessing/multithreading and,

197–198
statistical analysis of, 613
Universal Scalability Law, 61
visualization of scalability profiles, 59–60

Scalability ceiling, 60
Scaling methods

applied to CPUs, 223–224
capacity planning and, 69

Scatter plots
applied to disks, 462
for visualizations, 78–79

sched provider, DTrace, 657
Schedulers

class tuning, 258
config options, 257–258
defined, 190
hypervisor CPU, 572
key functions of CPU scheduler, 209–210
latency, 192, 196
overview of, 98–99
perf for checking scheduler latency, 245–246
priority and class schedules, 256–257
tracing, 242–243

Index 727

Scheduling classes
kernel support for, 99
managing runnable threads, 210–213
in real-time, 221

Scheduling domains, Linux, 214
Scientific method, 39–41
Scripts, DTrace

advanced network tracking, 531–533
overview of, 141–143

SCSI (Small Computer System Interface)
interface, 414
tracing SCSI events, 449–450

Second-level cache, 326
Sectors

defined, 687
disk, 396
magnetic rotational disks, 409–410

SEDF (simple earliest deadline first), hypervisor
CPU scheduler, 572

Seek and rotation time, magnetic rotational
disks, 408–409

Segments
defined, 266
of process address space, 285

Selective acknowledgement algorithm. see SACK
(selective acknowledgement) algorithm

Self-Monitoring Analysis and Reporting
Technology (SMART), 460

Send buffers, TCP, 492–493, 500
Sequential I/O

characterizing disk I/O workload, 424–425
disk I/O workload, 402–403
overview of, 328

Serial ATA (SATA), 414
Serial Attached SCSI (SAS), 414
Serialization queue (Squeue), GLDv3 software,

491
Server instances

cloud capacity planning with, 548–549
cloud computing provisioning framework for,

546
defined, 546
dynamic sizing in cloud, 549

Servers, 687
Service time

response time and, 16
for storage devices, 399–400

Shadow page tables, 569–570
Shards

defined, 547–548
scaling solution for databases, 69

Shares, CPU, 556–557

Shell scripts, 165
Short-stroking, magnetic rotational disks,

409–410
Shrinking, freeing memory with, 278
Simple earliest deadline first (SEDF), hypervisor

CPU scheduler, 572
Simple Network Monitoring Protocol (SNMP),

50, 76
Simulations

as benchmarking type, 599–600
inputs for simulation benchmarking, 49–50
workload, 57

Single Root I/O Virtualization (SR-IOV), 570–571
Slab allocator, 287, 310
slabtop (slab cache usage)

analyzing kernel slab caches related to file
systems, 378–379

analyzing slab cache usage in Linux, 302
Sliding window, TCP, 483–484
Sloth disks, magnetic rotational disks, 411
Slow-start, TCP, 484
Slub allocator, 288
Small Computer System Interface (SCSI)

interface, 414
tracing SCSI events, 449–450

SMART (Self-Monitoring Analysis and Reporting
Technology), 460

smartctl, viewing disk health statistics,
460–461

SmartOS see also: Solaris
backlog drops, 529–531
defined, 687
resource controls in OS virtualization, 555
retransmit tracing, 529
Zones, 48

SMP (symmetric multiprocessing), 103, 273
SNMP (Simple Network Monitoring Protocol),

50, 76
snoop

network analysis with, 495
overview of, 517–520
system-wide tracing, 118

Sockets
analyzing connections, 521–523
analyzing duration, 524
analyzing internals, 525
analyzing I/O, 523–524
analyzing latency, 524–525
options for tuning network performance, 542
tuning buffers on Linux, 537

sockfs kernel module, Solaris, 491
soconnect.d script, 522–523

728 Index

Software
change management case study, 11–13
monitoring in OS virtualization, 555
monitoring resource limits, 66
tracing, 247–249

Software, CPU-related
idle threads, 213
NUMA groups, 214
overview of, 209
processor resource-aware, 214
schedulers, 209–210
scheduling classes, 210–213

Software, memory-related
free lists, 280–281
methods for freeing memory, 278–280
overview of, 278
page scanning for freeing memory, 282–284
reaping for freeing memory, 281–282

Software, network-related
Linux network stack, 489–490
network device drivers, 493
network stack, 488–489
Solaris network stack, 491
TCP protocol, 492–493

Software resources
examining in USE method, 47–48
USE method checklist in Linux, 641–642
USE method checklist in Solaris, 646–647

Software stack, diagram of, 1–2
Solaris

analysis tools, 503
analyzing file system cache, 377
analyzing file system statistics, 378
analyzing kernel memory usage, 302–303, 379
block device interface and, 420–421
breakpoint tracing on, 176–177
comparing Solaris and Linux kernels,

112–113
configuring network interfaces, 511
CPU performance tools, 251
debugging syscall interface, 364
defined, 687
dynamic polling, 493
fault tracing, 311
free lists, 281
freeing memory on, 279
history of Solaris kernel, 106–107
interface statistics, 507–509
investigating library calls, 182
kernel versions and syscall counts, 105
lgrps (locality groups), 214
mapping process memory, 307
measuring VFS latency, 368–369

memory performance tool, 313
memory summary, 380–381
microstate accounting, 131
monitoring, 120
network analysis tools, 503
network stack, 491, 493
observability sources, 121
other network performance tools, 534
page scanning methods, 283–284
performance features of Solaris kernel,

107–109
printing cache activity on UFS, 379–380
priority inheritance feature, 197
/proc file system, 124–126
process binding, 259
process status, 304–305
processor sets, 222
profiling tools, 119
resource controls, 104, 260, 318
scheduler options, 257–258
scheduling classes, 212–213
scheduling priority and class, 256–257
sources of performance statistics, 127–130
summarizing per-disk I/O statistics, 436–440
system activity reporter, 300–301, 441, 650
TCP fusion on, 483
thread-state analysis, 170–171
time sharing on, 210
top analysis of disk I/O, 453–454
top running processes, 562, 624
tuning, 539–542
tuning memory, 316–317
tuning multiple page sizes, 317–318
USE method checklist in, 646–647
virtual memory statistics, 297–298
visibility of block device interface, 443–444
zones in OS virtualization, 552

Solaris IP Datapath Refactoring project, 491
Solaris Performance and Tools (McDougall), 50
Solaris Tunable Parameters Reference Manual,

539
Solid-state disks. see SSDs (solid-state disks)
SONET (synchronous optical networking), 687
Sources, of performance statistics

Linux delay accounting, 130–131
Linux /proc files, 122–124
Linux /sys file system, 126–127
other sources, 131–133
overview of, 120–121
/proc file system, 121
Solaris kstat files, 127–130
Solaris microstate accounting, 131
Solaris /proc files, 124–126

Index 729

SPARC, 687
Sparse-root zones model, for overhead in OS

virtualization, 555
SPEC (Standard Performance Evaluation

Corporation), 602
Speedup

calculating, 19
estimating maximum in approach to latency,

6–7
Spin locks

lock analysis and, 183
types of synchronization primitives, 161

Squeue (serialization queue), GLDv3 software,
491

SR-IOV (Single Root I/O Virtualization), 570–571
SSDs (solid-state disks)

architecture of, 411–413
defined, 687
random vs. sequential I/O and, 402
types of disks, 395

Stable providers, DTrace, 520–521
Stack fishing, 627
Stacks

CPU profiling, 171–173
defined, 687
how to read, 90
overview of, 89–90
user and kernel stacks, 90–91

Stalled execution, of CPU instructions, 194
Standard deviation, in statistics, 72, 77–78
Standard Performance Evaluation Corporation

(SPEC), 602
Standards, industry-standard benchmarks,

601–602
stap

analyzing memory, 290
analyzing networks, 495

stat
function of key system calls, 95
for summarizing CPU cycle behavior,

246–247
Stateful workload simulation, 600
Stateless workload simulation, 600
Static performance tuning

checking applications, 185–186
checking CPUs, 220–221
checking disks, 428–429
checking file systems, 359–360
checking memory performance, 294
checking networks, 501
overview of, 55, 501

Static priority, scheduling classes and, 210
Static probes, 8

Static tracing
defined, 687
with DTrace, 134

Statistics
analyzing benchmark data, 612–613
averages, 70–71
baselines, 54
CoV (coefficient of variation), 72
means, 71
multimodal distributions and, 73–74
outliers, 74
overview of, 69
quantifying performance issues, 69–70
standard deviation, percentiles, and medians,

72
Storage

cloud computing for, 550
as performance tuning target, 22

Storage arrays, 417, 687
Storage devices

disks, 415
I/O stack for storage-device based file

systems, 101
NAS (network-attached storage), 417–418
overview of, 415
RAID architecture, 415–417
response, service, and wait times, 399–400
as secondary memory, 97
storage arrays, 417, 687
storing file system content, 100

strace
analysis phase of drill-down analysis, 51
breakpoint tracing on Linux, 173–175
debugging syscall interface on Linux, 364–365
in event tracing, 54
per-process tracing, 118

Streaming disk I/O workload, 402–403
Streetlight anti-method, 36–37
Striping, RAID-0, 415–416
Stub domains, Xen, 573
Summary-since-boot values, for monitoring, 76
Sun Microsystems DTrace tool. see DTrace
Sunny day performance testing, benchmarks for,

599
Super-serial model, 61
Surface plots, for visualizations, 80–81
SUT (system under test), modeling, 17
Swap area, 266
Swapping

defined, 266
Linux methods for freeing memory, 279
moving processes between main and

secondary memory, 97–98

730 Index

Swapping (continued)
overview of, 271
showing swap statistics with free, 376
Solaris methods for freeing memory, 279
thread-state analysis and, 170
tools method for checking, 290

Switches
buffering with, 481
overview of, 487–488

Symmetric multiprocessing (SMP), 103, 273
SYN

backlog, 492
defined, 687

Synchronization primitives, 161
Synchronous operations, disk I/O and, 407
Synchronous optical networking (SONET), 687
Synchronous writes, 331
/sys file system, Linux, 126–127
SysBench tool, for micro-benchmarking, 255, 386
Syscall (system calls)

analysis, 173
breakpoint tracing on Linux, 173–175
breakpoint tracing on Solaris, 176–177
buffered tracing, 177–179
in creating/executing processes, 93
debugging syscall interfaces, 364–365
defined, 86
kernel versions and, 105
list of key, 95–96
measuring system latency with DTrace,

367–368
observability sources, 132
overview of, 173
performance tuning targets and, 22
polling with poll() syscall, 159–160

syscall (system calls)
DTrace to SystemTap examples, 668–672
examining Redis application, 627–629

syscall provider, DTrace, 651–654
sysctl, tuning Linux, 536–537
sysinfo provider, DTrace, 660–661
System activity reporter. see sar (system activity

reporter)
System administrators, 33
System calls. see Syscall (system calls)
System design, benchmarking during, 588
System logging, 118
System performance case study. see Redis

application, as troubleshooting case study
System performance metrics, 27
System timer interrupt, 88
System under test (SUT), modeling, 17

System virtual machine instances, 555
Systems performance, introduction

activities, 3–4
challenging aspect of, 4
cloud computing and, 8–9
complexity of systems, 5–6
dynamic tracing, 7–8
latency and, 6–7
multiplicity of performance issues, 6
overview of, 1–2
perspectives, 4
roles, 2–3
slow disk case study, 9–11
software change case study, 11–13
subjective nature of performance, 5
who's who in, 679–682

SystemTap
actions and built-ins, 146
analyzing memory, 312
analyzing networks, 533
converting DTrace to. see DTrace, converting

to SystemTap
documentation and resources, 149
drill-down analysis, 182
dynamic tracing of disks, 451
dynamic tracing of file system events, 533
dynamic tracing of file systems, 375
examples, 146–148
overhead, 148
overview of, 144–145
probes, 145
profiling tools, 119
system-wide tracing, 118
tapsets, 145–146
top analysis of disks (disktop.stp), 454
tracing scheduler events, 243

System-wide commands, 561
System-wide observability tools

counters, 117
Linux /proc file system, 123
overview of, 116
profiling, 119
Solaris kstat files, 127–130
tracing, 118

T
Tahoe algorithm, for TCP congestion control, 485
Tapsets, grouping SystemTap probes, 145–146
Tasklets, interrupt handling and, 92
Tasks, 86, 688
taskset, process binding in Linux, 259

Index 731

TCP (Transmission Control Protocol)
advanced workload characterization/checklist,

497
analyzing networks, 500
backlog queues, 492–493
buffers, 481, 492–493
congestion control, 485
connection latency, 19, 480, 484–485
event tracing, 525–526
improving performance of MTU frames with

TCP offload, 479
performance features of, 483–484
performance monitoring, 498
retransmits in Redis application, 620
three-way handshakes, 484
tuning backlog queue on Linux, 537–538
tuning backlog queue on Solaris, 541
tuning buffers on Linux, 537
tuning congestion control on Linux, 538
tuning options on Linux, 538–539
tuning options on Solaris, 541

TCP data transfer time, 19
TCP fusion, Solaris, 483
tcp provider, DTrace, 662
tcp_retransmit_skb() function, DTrace, 528
tcp_sendmsg(), DTrace, 527–528
tcp_tw_recycle, tuning TCP on Linux, 539
tcp_tw_reuse, tuning TCP on Linux, 539
tcpdump

network analysis with, 495
overview of, 516–517
packet-by-packet inspection with, 53
system-wide tracing, 118
timestamp used with, 54

TCP/IP sockets, 483
TCP/IP stack, 102, 476
tcpListenDrop, netstat, 508
tcpListenDropQ0, netstat, 508
Teams, roles in systems performance, 2
Technologies, comparison of virtualization,

581–583
Tenants

defined, 546
mitigating hardware virtualization overhead,

571–572
overhead in OS virtualization, 555
resource controls in hardware virtualization,

571
TENEX, 688
Thread pools, examining software resources, 47
Thread-local variables, DTrace, 139
Thread-state analysis

in Linux, 170

overview of, 168
six states, 168–169
in Solaris, 170–171
testing effect of software change, 13
two states, 168

Threads/threading
defined, 86, 688
idle threads, 213
interrupt threads, 92
load vs. architecture in analysis of

performance issues, 24
lock analysis applied to multithreaded

applications, 182–183
multiple threads, 160
preemption, 103–104, 196
priority inversion, 196–197
processes containing one or more threads, 93
schedulers and, 98
scheduling classes managing runnable

threads, 210–213
state analysis. see Thread-state analysis

Three-way handshakes, TCP, 484
Throttle, on resources, 49
Throughput

application performance objectives, 155
defined, 16, 688
disk I/O workload, 424–425
disk terminology, 396
magnetic rotational disks, 409
metrics of systems performance, 27
micro-benchmarking in determination of, 430
network analysis with, 494
networking terminology, 474
performance monitoring of, 498
ramping load and measuring, 610
read/write ratio and, 403
workload characterization of, 496

Tick latency, 88
Tick overhead, 88
Ticks, kernel clock, 88
time, reporting on CPU usage, 235–236
Time scales, in analyzing performance, 19–20
Time series, statistics over time, 74
Time sharing

key functions of CPU scheduler, 209
on Linux and Solaris, 210

Time slices (time quantum), CPU time, 210
Time to first byte (TTFB) latency, 480
Time to live (TTL), determining current route to

host with traceroute, 514–515
Time-based metrics, latency as, 19
Time-based patterns, monitoring, 74–76
Time-based utilization, 28

732 Index

Timestamps
access timestamps, 336
in event tracing, 54
iosnoop, 456–457

TIME-WAIT sessions, tuning TCP on Linux, 539
TLB (translation lookaside buffer)

CPU cache options, 277
tuning multiple page sizes and, 317

tmp (temporary files), in top-level directories,
100

/tmp file system, 361
Tools method

applied to CPUs, 215
applied to disks, 422
applied to memory, 289–290
applied to networks, 494–495
overview of, 41–42

top (top running processes on Linux)
analyzing CPUs, 231–232
analyzing file system cache, 376
analyzing memory, 290
monitoring, 305
per-process counters, 117

TPC (Transaction Processing Performance
Council), 596–597, 601–602

TPS (transactions per second), 601
Trace file, DTrace to SystemTap example, 672
Trace log replay, 600
traceroute

applying to Redis application, 618–619
determining current route to host with

traceroute, 514–515
pathchar vs., 515–516

Tracing
analyzing file systems, 373–375
block device events on Linux (blktrace),

457–459
breakpoint tracing on Linux, 173–175
breakpoint tracing on Solaris, 176–177
buffered tracing, 177–179
disk I/O events, 427–428, 442–444
disks with iosnoop, 455–457
event tracing, 53–54
file systems events, 358–359
function tracing, 240–241
memory allocation tracing, 308–311
memory fault tracing, 311–312
page-out daemon, 312
perf for software tracing, 247–249
per-process observability tools, 131
scheduler events, 242–243
SCSI events, 449–450
slow events, 372–373

static and dynamic, 134–135
tools, 118–119

Tracing, dynamic
analyzing disks, 450
analyzing file systems, 373–375
applying to slow disk case study, 10
DTrace options, 134–135
as performance metric, 7–8

Trade-offs, in performance, 20–21
Transaction Processing Performance Council

(TPC), 596–597, 601–602
Transactions per second (TPS), 601
Translation lookaside buffer (TLB)

CPU cache options, 277
tuning multiple page sizes and, 317

Translation storage buffer (TSB), CPU cache
and, 204

Transmission Control Protocol. see TCP
(Transmission Control Protocol)

Transmit (TX). see TX (transmit)
Transmit packet steering (XPS), 493
Transport bus, physical bus used for

communication, 396
Traps, 86
truss

analysis phase of drill-down analysis, 51
breakpoint tracing on Solaris, 176–177
debugging syscall interface on Solaris, 364
in event tracing, 54
per-process tracing, 118

TSB (translation storage buffer), CPU cache and,
204

TTFB (time to first byte) latency, 480
TTL (time to live), determining current route to

host with traceroute, 514–515
Tuning

benchmarking during, 588
cache tuning, 55–56, 360
overview of, 21–22
static performance tuning. see Static

performance tuning
Tuning, application-related

static performance tuning, 185–186
targets of, 22

Tuning, CPU-related
compiler options, 256
exclusives CPU sets (cpuset), 259
overview of, 256
process binding, 259
processor options (BIOS), 260
resource controls, 260
scheduler options, 257–258
scheduling priority and class, 256–257

Index 733

Tuning, disk-related
disk controllers, 469–470
disk devices, 469
operating system, 467–469
overview of, 467
tunable parameters of operating system,

467–469, 688
Tuning, file system-related

application calls, 387–388
overview of, 387
tuning ext systems, 389
tuning ZFS systems, 389–391

Tuning, memory-related
allocators for improving performance of

multithreaded applications, 318
overview of, 314
resource controls, 318
tunable parameters, 314–317
tunable parameters in memory tuning,

314–317
tuning multiple page sizes, 317–318

Tuning, network-related
Linux, 536–539
overview of, 536
Solaris, 539–542

TX (transmit)
advanced workload characterization/checklist,

497
defined, 688
network analysis with USE method, 495
workload characterization of, 496

Type 1 hypervisor, 556
Type 2 hypervisor, 557

U
UDP (User Datagram Protocol), 486, 497
udp provider, DTrace, 663
UDS (Unix domain sockets), 483
UFS (Unix File System)

architecture, 347
printing cache activity, 379–380
storing file system content, 100

UID (user ID), 94
UMA (uniform memory access)

interconnects and, 204–206
main memory architecture, 273

Unicast transmission, 477
Universal Scalability Law (USL), 61
Unix

history and Unix kernel, 106
memory management, 98
overhead in OS virtualization, 554

resource controls, 104
schedulers, 98

Unix domain sockets (UDS), 483
Unix File System. see UFS (Unix File System)
Unknown-unknowns, in performance analysis, 26
Unstable providers, DTrace, 520–521
uptime analysis, in analyzing CPUs, 224–225
USE method

analyzing and tuning applications, 181–182
analyzing CPUs, 216
analyzing disks, 422–423
analyzing memory, 290–291
analyzing networks, 495–496
applying to Redis application, 623–626
benchmark analysis with, 607–608
checking resource bottlenecks, 10
checking software resources, 47–48
checking system health, 622
cloud computing and, 48
creating resource list, 44–45
functional block diagrams in, 45
Linux checklist for, 637–641
metrics, 43–48
overview of, 42–43
procedure flow in, 44
Solaris checklist for, 643–647

User Datagram Protocol (UDP), 486, 497
User ID (UID), 94
User level, 688
User mode

analysis of time in, 196
determining CPU mode of application, 154
user programs running in, 89

User stacks, 90–91
User-level CPU profiling

benchmark analysis, 606–607
calculating with prstat, 234

User-space, 86
USL (Universal Scalability Law), 61
usr (user programs and libraries), in top-level

directories, 100
Ustack helpers, in DTrace, 172
Utilization

analyzing applications with USE method,
181–182

analyzing CPUs with USE method, 216
analyzing networks with USE method, 495
application performance objectives, 155
averages over time, 71
capacity-based, 28–29
checking Redis application for memory errors,

624–625
of CPUs, 195

734 Index

Utilization (continued)
defined, 16
of disk devices, 404–405
heat maps visualizing, 251–252, 463–465
of interfaces and, 487
interpreting metrics of USE method, 48
of main memory, 271–272
M/D/1 mean response time vs., 64–65
memory metrics, 293
monitoring disk performance, 423–424
of networks, 482
non-idle time and, 29
overview of, 27
resource analysis focus on, 33
saturation and, 29–30
in slow disk case study, 10–11
in software change case study, 12–13
surface plots for per-CPU utilization, 80–81
systems performance metrics, 27
time-based, 28
USE method and, 42–43
of virtual disks, 405

V
var (varying files), in top-level directories, 100
Variables, DTrace

built-in, 137–138, 667
types of, 139–141

Variance
benchmarking, 593
CoV (coefficient of variation), 72

vCPUs (virtual CPUs)
CR3 profiling, 579–580
resource controls in hardware virtualization,

572
Vertical perimeters, GLDv3 software, 491
Vertical scaling, 69
VFS (virtual file system), 337–338

interrogating kernel, 629–631
measuring latency with DTrace, 368–370
statistics, 363–364

vfsstat, for virtual file system statistics,
363–364, 562

Vibration issues, magnetic rotational disks,
410–411

Virtual disks
defined, 396
utilization, 405

Virtual machine control structure (VMCS),
579–580

Virtual machines (VMs), 166
Virtual memory

available swap, 271–272
defined, 266
OSs (operating systems) and, 97
overview of, 267–268
states, 270
vmstat analysis, 226–227

Virtual Memory System (VMS), 688
Virtual memory (VM), 557
Virtual processor, 190
Virtualization

as basis of cloud computing, 8–9
hardware virtualization. see Hardware

virtualization
OS virtualization. see OS virtualization
technologies, 581–583

Visual identification, in modeling, 58–60
Visualizations

of CPUs, 251–254
of disks, 461
of distributions, 73–74
of file systems, 383
functional block diagrams used in USE

method, 45
heat maps for, 79–80, 462–465
line charts for, 77–78, 461
overview of, 76
scatter plots for, 78–79, 462
surface plots for, 80–81
tools for, 81–82

VM (virtual memory), 557
VMCS (virtual machine control structure),

579–580
vminfo provider, DTrace, 661
VMs (virtual machines), 166
VMS (Virtual Memory System), 688
vmstat (virtual memory statistics)

analyzing CPUs, 226–227
analyzing file system cache, 376–377
analyzing memory, 295–298
checking available memory, 290
checking Redis application for memory errors,

624
observability of guest in hardware

virtualization, 580
system-wide counters, 117

VMware ESX, 557
Volumes, file system, 351–352
Voluntary kernel preemption, in Linux, 104
VTune Amplifier XE profiling tool, 119

Index 735

W
Wait time, for storage devices, 399–400
Warm cache, 32
Web servers, in cloud architecture, 547
Wireframe models, 80
Wireshark, for network analysis, 520
Word size

memory performance and, 272
processor design and, 198–199

Work queues, interrupt handling and, 92
Working set size, micro-benchmarking and, 361
Workload

analysis, 4, 34–35
benchmark analysis by ramping, 608–611
CPU-bound vs. I/O bound, 99
defined, 16
latency analysis, 51–52
load vs. architecture in analysis of

performance issues, 24
planning capacity for. see Capacity planning
scalability under increasing load, 24–26
separation, 360
simulating, 57

Workload characterization
advanced checklist, 497
analyzing and tuning applications, 181
applied to CPUs, 216–218
applied to disk I/O, 424–426
applied to file system, 356–358
applied to networks, 496–497
benchmark analysis methodology, 608
overview of, 49–50
studying workload requests, 34

Workload simulator, testing effect of software
change, 11–12

write(), function of key system calls, 95
Write-back cache, 330, 397
Writes. see TX (transmit)
Write-through cache, 398

X
x86, 688
Xen

advanced observability in, 578–579
hardware virtualization, 557
observability in hardware virtualization for

privileged guest/host, 577–578
xentop tool, 577–578
xentrace tool, 578
XPS (transmit packet steering), 493

Z
ZFS

architecture, 348–351
exposing internals, 370–371
observing pool statistics, 382–383
tracing read latency, 371–372
tracing slow events, 372–373
tuning, 389–391

ZFS ARC, Solaris methods for freeing memory,
279

zoneadmd property, 557
Zone-aware commands, 561
Zone-aware observability tools, 561
zone.max-physical-memory, 557
zone.max-swap property, 557
Zones, Joyent public cloud, 552, 554–555

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 6 CPUs
	6.1 Terminology
	6.2 Models
	6.2.1 CPU Architecture
	6.2.2 CPU Memory Caches
	6.2.3 CPU Run Queues

	6.3 Concepts
	6.3.1 Clock Rate
	6.3.2 Instruction
	6.3.3 Instruction Pipeline
	6.3.4 Instruction Width
	6.3.5 CPI, IPC
	6.3.6 Utilization
	6.3.7 User-Time/Kernel-Time
	6.3.8 Saturation
	6.3.9 Preemption
	6.3.10 Priority Inversion
	6.3.11 Multiprocess, Multithreading
	6.3.12 Word Size
	6.3.13 Compiler Optimization

	6.4 Architecture
	6.4.1 Hardware
	6.4.2 Software

	6.5 Methodology
	6.5.1 Tools Method
	6.5.2 USE Method
	6.5.3 Workload Characterization
	6.5.4 Profiling
	6.5.5 Cycle Analysis
	6.5.6 Performance Monitoring
	6.5.7 Static Performance Tuning
	6.5.8 Priority Tuning
	6.5.9 Resource Controls
	6.5.10 CPU Binding
	6.5.11 Micro-Benchmarking
	6.5.12 Scaling

	6.6 Analysis
	6.6.1 uptime
	6.6.2 vmstat
	6.6.3 mpstat
	6.6.4 sar
	6.6.5 ps
	6.6.6 top
	6.6.7 prstat
	6.6.8 pidstat
	6.6.9 time, ptime
	6.6.10 DTrace
	6.6.11 SystemTap
	6.6.12 perf
	6.6.13 cpustat
	6.6.14 Other Tools
	6.6.15 Visualizations

	6.7 Experimentation
	6.7.1 Ad Hoc
	6.7.2 SysBench

	6.8 Tuning
	6.8.1 Compiler Options
	6.8.2 Scheduling Priority and Class
	6.8.3 Scheduler Options
	6.8.4 Process Binding
	6.8.5 Exclusive CPU Sets
	6.8.6 Resource Controls
	6.8.7 Processor Options (BIOS Tuning)

	6.9 Exercises
	6.10 References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

