
Optimizing C++/Print Version
Optimizing C++/Cover

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

1 of 85 05/02/2012 03:38 PM

Introduction
One of the main reason for preferring C++ over simpler, higher-level programming
languages is that C++ allows the construction of complex software in a way that makes
more efficient use of hardware resources than when using these other languages. The
language does not guarantee efficient code automatically, but provides a toolchest that
aids programmers in the pursuit of efficiency. Sloppy C++ code may be no more
efficient than higher-level implementations of the same algorithms, but a good C++
programmer with knowledge of the language can write software that is efficient from
the first cut and then optimize the code further. This book provides techniques
guidelines for writing efficient code and optimizing existing software.

Often, there is no single solution to a programming problem that is optimal for all cases.
Thus, optimization generally does not mean writing optimally performing software;
rather, it means incrementally changing (refactoring) software to increase it's
performance, bringing it closer to optimality.

Such optimization requires, first, that the software source is written in a sufficiently
modular way, to isolate the performance critical parts, and then to use tools, libraries,
knowledge, and time, to change those parts in a way to increase the overall execution
speed of the overall software.

Nowadays, many optimizations are already performed by compilers, and then they are
no longer a programmer's burden. This book discusses higher-level optimizations that
present compilers are not (yet) able to perform.

This book is aimed at readers already familiar with the C++ language, who want to use
it to develop high performance application software or software libraries.

Almost all the optimization techniques presented are platform independent, and
therefore there will be few references to specific operating systems, processor
architectures, or compilers. Though, some of the presented techniques come out to be
ineffective or not applicable in some combinations of operating system/processor
/compiler.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

2 of 85 05/02/2012 03:38 PM

Optimization life cycle
The construction of an efficient application should perform the following development
process:

Design. At first, the algorithms and data structures are designed in such a way as
makes sense for the application logic, and that is reasonably efficient, but without
considering optimization. Where a data structure of wide usage is to be defined,
whose optimal implementation is not obvious (for example, it is arguable if is better
to use an array or a linked list), an abstract structure is defined, whose
implementation may be changed at the optimization stage.

1.

Implementation. Then the code that implements the designed algorithms is
written, following the guidelines to avoid some inefficient operations, and to
encapsulate the operations that will probably require optimization.

2.

Functional testing. Then the resulting software is tested, to increase the
probability that it doesn't have crippling defects.

3.

Optimization (aka Tuning). After having completed the development of a correctly
working application, the optimization stage begins, having the following
sub-stages:

Performance testing. The commands with inadequate performance are
spotted, that is the commands that, when processing typical data, require
more time or more storage space than what it is specified by requirements are
singled out.

1.

Profiling (aka Performance analysis). For every command with inadequate
performance, a profiler is used to determine which portions of code are the
so-called bottlenecks for that command. Bottlenecks are the portions of code
where a disproportionately large amount of time is spent or memory space
allocated.

2.

Algorithmic optimization. In bottlenecks, optimization techniques
substantially independent from the programming language and totally
independent from the platform are applied. They are the techniques that can
be found in algorithm theory textbooks. This optimization consists in
attempting to decrease the number of the executed machine instructions, and,
in particular, the number of the calls to costly routines, or to transform the
expensive instructions to equivalent but less costly instructions. For example,
the quick sort sorting algorithm is chosen instead of the selection sort
algorithm. If this optimization makes the program fast enough, the
optimization stage is complete.

3.

Platform independent optimization. In bottlenecks, optimization
techniques that are dependent on the programming language and its standard
library, but independent both on the software platform and on the hardware
platform are applied. For example, integer operations are used instead of
floating point operations, or the more appropriate container class is chosen
among the ones available in the standard library. If this makes the program
fast enough, the optimization stage is complete.

4.

Software platform dependent optimization. In bottlenecks, optimization
techniques that are dependent both on the programming language and on the
software platform, but independent on the hardware platform are applied. For
example, compiler options, pragma compiler directives, language extensions,
non-standard libraries, direct calls to the operating system are exploited. If

5.

4.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

3 of 85 05/02/2012 03:38 PM

this makes the program fast enough, the optimization stage is complete.
Hardware platform dependent optimization. In bottlenecks, optimization
techniques that are dependent on the hardware platform are applied, like
machine instructions existing only on a specific processor family or high level
features that, even being allowed for every processor architecture, come out
to be advantageous only for some processor types.

6.

This development process follows two criteria:

Principle of diminishing returns. The optimizations giving big results with little
effort should be applied first, as this minimizes the time needed to reach the
performance goals.
Principle of diminishing portability. It is better to apply first the optimizations
applicable to several platforms, as they remain applicable even when changing
platform, and as they are more understandable by other programmers.

In the rare cases of software that will have to be used with several compilers and
several operating systems but just one processor architecture, the stages 4.5 and 4.6
should be swapped.

This stage sequence is not meant to be a one-way sequence, that is such that when a
stage is reached, the preceding stage is no more reached. In fact, every stage may
succeed or fail. If it succeeds, the next stage is reached, while if it fails, the previous
stage is reached, in a sort of backtracking algorithm.

In addition, a partial performance test should be performed after every optimization
attempt, just to check whether the attempt comes out to be useful, and, in the positive
case, to check if it comes out to be ultimate, that is whether some more optimizations
are needed or not.

At last, after having completed the optimization, both the functional testing and the
complete performance testing are to be repeated, to guarantee that the new optimized
version of the software hasn't worsened either its correctness nor its general
performance.

This book is about only three of the above stages:

Stage 2, specifically to the usage of the C++ language, in chapter "Writing efficient
code".
Some general techniques for the stage 4.3, with examples in C++, in chapter
"General optimization techniques".
Stage 4.4, specifically to the usage of the C++ language, in chapter "Code
optimization".

Conventions

By object, it is meant an allocated region of memory. In particular, a piece of data
associated to a variable of a fundamental type (like bool, double, unsigned long, or a pointer)
is an object, as it is such the data structure associated to an instance of a class. With
every variable an object is associated, whose size is given by the sizeof C++ operator,
but an object could have no variable associated with it, or several variables associated

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

4 of 85 05/02/2012 03:38 PM

with it. For example, a pointer is an object, but it can point to another object; this
pointed object is not associated with any variable. On the other hand, in the following
code, both the variable a and the variable b are associated with the same object:

int a;
int& b = a;

Arrays, structs, and class instances are objects which, if not empty, contain sub-objects.
Therefore, they will be called aggregate objects.

We say that an object owns another object when the destruction of the former object
causes the destruction of the latter. For example, a non-empty vector object typically
contains a pointer to a buffer containing all the elements; the destruction of the vector
causes the destruction of such buffer, and therefore we say that this buffer is owned by
the vector object.

Some optimizations are useful only for short data sequences, others for longer
sequences. Later on, the following classification will be used for objects sizes:

Tiny: No more than 8 bytes. It fits in one or two 32-bit registers or in one 64-bit
register.
Small: More than 8 bytes, but no more than 64 bytes. It doesn't fit in a processor
register, but it fits in a processor data cache line, and it can be wholly referenced
by very compact machine instructions using an offset from the start address.
Medium: More than 64 bytes, but no more than 4096 bytes. It doesn't fit in a
processor data cache line, and it cannot be wholly referenced by compact machine
instructions, but it fits in the processor first-level data cache, it fits in a virtual
memory page, and it fits in a mass storage cluster of blocks.
Large: More than 4096 bytes. It doesn't fit in the processor first-level data cache, it
doesn't fit in a single virtual memory page, and it doesn't fits in a single mass
storage cluster of blocks.

For example, an array of doubles is considered tiny only if it contains exactly one element,
small if it has 2 to 8 elements, medium if it has 9 to 512 numbers, large if it has more
than 512 of them.

Because there are very different hardware architectures, the given numbers are only an
indication. Though, such numbers are rather realistic, and can be taken as serious
criteria to develop software covering the main architectures in a rather efficient way.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

5 of 85 05/02/2012 03:38 PM

Writing
Efficient Code

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

6 of 85 05/02/2012 03:38 PM

Writing efficient code
In this chapter, guidelines are presented to program in C++ avoiding inefficient
operations and preparing the source code for a possible successive optimization stage,
but without jeopardizing code safety or maintainability.

Such guidelines could give no performance advantage, but quite probably they don't
give any disadvantage either, and therefore you can apply them without worrying of
their impact on performance. You are advised to accustom yourself to follow always
such guidelines, even in code portions that have no particular efficiency requirements.

Performance improving features1.
Performance worsening features2.
Constructions and destructions3.
Allocations and deallocations4.
Memory access5.
Thread usage6.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

7 of 85 05/02/2012 03:38 PM

Performance improving features
Some features of the C++ language, if properly used, allow to increase the speed of the
resulting software.

In this section guidelines to exploit such features are presented.

The most efficient types

When defining an object to store an integer number, use the int or the unsigned int
type, except when a longer type is needed; when defining an object to store a
character, use the char type, except when the wchar_t type is needed; and when
defining an object to store a floating point number, use the double type, except
when the long double type is needed. If the resulting aggregate object is of
medium or large size, replace all the integer types with the smallest integer
type that is long enough to contain it, but without using bit-fields, and replace
the floating point types with the float type, except when greater precision is
needed.

The int and unsigned int types are by definition the most efficient ones on any platform.

The double type is two to three times less efficient than the float type, but it has greater
precision.

Some processor types handle more efficiently signed char objects, while others handle
more efficiently unsigned char objects. Therefore, both in C and in C++, the char type,
different from signed char type, has been introduced as the most efficient character type
for the target processor.

The char type can contain only small character sets; typically up to a maximum of 255
distinct characters. To handle bigger character sets, you should use the wchar_t type,
although that is obviously less efficient.

In case of numbers contained in a medium or large aggregate object, or in a collection
that will be probably be of medium or large size, it is better to minimize the size in bytes
of the aggregate object or collection. This can be done by replacing the ints with shorts
or signed chars, replacing the unsigned ints with unsigned shorts or unsigned chars, and
replacing the doubles with floats. For example, to store an integer number with a range of
0 to 1000, you can use an unsigned short, while to store an integer number with a range of
-100 to 100, you can use a signed char.

Bit-fields could contribute to minimize the size in bytes of the aggregate object, but
their handling causes a slow down that could be counterproductive; therefore, postpone
their introduction to the optimization stage.

Function-objects

Instead of passing a function pointer as an argument to a function, pass a

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

8 of 85 05/02/2012 03:38 PM

function-object (or, if using the C++0x standard, a lambda expression).

For example, if you have the following array of structures:

struct S {
 int a, b;
};
S arr[n_items];

… and you want to sort it by the b field, you could define the following comparison
function:

bool compare(const S& s1, const S& s2) {
 return s1.b < s2.b;
}

… and pass it to the standard sort algorithm:

std::sort(arr, arr + n_items, compare);

However, it is probably more efficient to define the following function-object class (aka
functor):

struct Comparator {
 bool operator()(const S& s1, const S& s2) const {
 return s1.b < s2.b;
 }
};

… and pass a temporary instance of it to the standard sort algorithm:

std::sort(arr, arr + n_items, Comparator());

Function-objects functions are usually expanded inline, and therefore they are just as
efficient as in-place code, while functions passed by pointers are rarely inlined. Lambda
expressions are implemented as function-objects, so they have the same performance.

qsort and bsearch functions

Instead of the qsort and bsearch C standard library functions, use the std::sort and
std::lower_bound C++ standard library functions.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

9 of 85 05/02/2012 03:38 PM

The former two functions require a pointer to function as argument, as the latter two
may get a function-object argument (or, using the C++0x standard, a lambda
expression). Pointers to function often are not expanded inline, and therefore they are
less efficient than function-objects that are almost always inlined.

Encapsulated collections

Encapsulate in specific classes the collections that are accessible from several
compilation units, to make easily interchangeable the implementation.

At design time, it is difficult to decide which data structure will have optimal
performance in the actual use of the software. At optimization time, you can measure
whether by changing the type of a container, for example passing from std::vector to
std::list, you can improve the performance. Though, such a change of implementation
causes the change of most source code that uses directly the collection whose type has
been changed.

If a collection is private to one compilation unit, such change will impact only the source
code contained in this unit, and therefore it is not necessary to encapsulate that
collection. If instead that collection isn't private, that is it is directly accessible from
other compilation units, in the future there could be a huge amount of code to change
for such a collection type change. Therefore, to make feasible such optimization, you
should encapsulate that collection in a class whose interface does not change when the
container implementation is changed.

STL containers already pursue this principle, but some operations are still available only
for some containers (like operator[], existing for std::vector, but not for std::list).

STL containers usage

When using an STL container, if several equivalent expressions have the same
performance, choose the more general expression.

For instance, call a.empty() instead of a.size() == 0, call iter != a.end() instead of iter <
a.end(), and call distance(iter1, iter2) instead of iter2 - iter1. The former expressions are
valid for every container kind, while the latter are valid only for some kinds, and the
former are no less efficient than the latter.

Unfortunately, it is not always possible to write code that is equally correct and efficient
for every type of container. Nevertheless, decreasing the number of statements that are
dependent on the container type will decrease the number of statements have to be
changed if the type of the container is later changed.

Choice of the default container

When choosing a variable-length container, if in doubt, choose a vector.

For set up to 8 elements, vector is the most efficient variable-length container for any
operation.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

10 of 85 05/02/2012 03:38 PM

For larger collections, other containers may become more efficient for certain
operations, but vector remains the one that has the least space overhead (as long as
there is no excess capacity), and the greatest locality of reference.

Inlined functions

If you use compilers that allow whole program optimization and the automatic
inline expansion of functions, use such options, and do not declare any
functions inline. If such compiler features are not available, declare, in header
files only, functions inline that contain no more than three lines of code and have
no loops.

Functions that are expanded inline avoid the overhead of function calls, which grows as
the number of function arguments. In addition, since inline code is near caller code, it
has better locality of reference. And lastly, as the intermediate code generated by the
compiler for inlined functions is merged with the caller code, it can be more easily
optimized by the compiler.

Expanding inline a tiny function, such as a function containing only a simple assignment
or a simple return statement, can result in a decrease in the size of the generated
machine code.

Conversely, every time a function containing substantial code is inlined the machine
code is duplicated, and therefore the total size of the program is increased.

Inlined code is more difficult to profile. If a non-inlined function is a bottleneck, it can be
found by the profiler. But if that function is inlined in all the places where it is called, its
running time is scattered among many functions and the bottleneck situation cannot be
detected by a profiler.

For functions containing substantial amounts of code, only the performance critical ones
should be be declared inline at the optimization stage.

Symbols representation

To represent internal symbols, use enumerations instead of strings.

For example, instead of the following code:

const char* directions[] = { "North", "South", "East", "West" };

use the following code:

enum directions { North, South, East, West };

An enumeration is implemented as an integer. Compared to an integer, a string occupies
more space and is slower to copy and compare. (In addition, using strings instead of

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

11 of 85 05/02/2012 03:38 PM

integers for representation of internal state may introduce string comparison errors in
code that deals with multiple locales.)

if and switch statements

If you have to compare an integer value with a set of constant values, instead of
a sequence of if statements, use a switch statement.

For example, instead of the following code:

if (a[i] == 1) f();
else if (a[i] == 2) g();
else if (a[i] == 5) h();

write the following code:

switch (a[i]) {
case 1: f(); break;
case 2: g(); break;
case 5: h(); break;
}

Compilers may exploit the regularity of switch statements to apply some optimizations, in
particular if the guideline "Case values for switch statements" in this section is applied.

Case values of switch statements

As constants for switch statements cases, use compact sequences of values, that
is sequences with no gaps or with few small gaps.

Optimizing compilers, when compiling a switch statement whose case values comprise
most of the values in an integer interval, instead of generating a sequence of if
statements, generate a jump-table, that is an array of the start addresses of the code for
every case, and when executing the switch statement, they use the table to jump to the
code associated to the case number.

For example, the following C++ code:

switch (i) {
case 10:
case 13:
 func_a();
 break;
case 11:
 func_b();
 break;

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

12 of 85 05/02/2012 03:38 PM

}

probably generates machine code corresponding to the following pseudo-code:

// N.B.: This is not C++ code
static address jump_table[] = { case_a, case_b, end, case_a };
unsigned int index = i - 10;
if (index > 3) goto end;
goto jump_table[index];
case_a: func_a(); goto end;
case_b: func_b();
end:

Instead, the following C++ code:

switch (i) {
case 100:
case 130:
 func_a();
 break;
case 110:
 func_b();
 break;
}

probably generates machine code corresponding to the following code:

if (i == 100) goto case_a;
if (i == 130) goto case_a;
if (i == 110) goto case_b;
goto end;
case_a: func_a(); goto end;
case_b: func_b();
end:

For so few cases, probably there is little difference between the two situations, but as
the case count increases, the former code becomes more efficient, as it performs only
one computed goto instead of a sequence of branches.

Cases order in switch statement

In switch statements, put the most typical cases before.

If the compiler does not use a jump-table, the cases are evaluated in order of
appearance; therefore, fewer comparisons are performed for the more frequent cases.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

13 of 85 05/02/2012 03:38 PM

Grouping function arguments

Instead of calling a function in a loop which uses more variables than there are
registers, use a function that is passed a struct or object.

For example, instead of the following code:

for (int i = 0; i < 1000; ++i) {
 f(i, a1, a2, a3, a4, a5, a6, a7, a8);
}

write the following:

struct {
 int i;
 type a1, a2, a3, a4, a5, a6, a7, a8;
} s;
s.a1 = a1; s.a2 = a2; s.a3 = a3; s.a4 = a4;
s.a5 = a5; s.a6 = a6; s.a7 = a7; s.a8 = a8;
for (int i = 0; i < 1000; ++i) {
 s.i = i;
 f(s);
}

If all the function's arguments can be placed directly into a processor's registers, the
arguments can be passed and manipulated quickly. If there are more arguments then
registers, all the arguments or the arguments which couldn't be placed into registers
may require being pushed onto a stack at the start of every function call and popped off
a stack at the end of every function call, even if the arguments have not changed. If a
structure or object is passed, a register may be used and after initialization of the
structure or object, only the parts of the structure or object which have changed
between successive calls must be updated.

Use of containers member functions

To search for an element in a container, use a member function of the
container, instead of an STL algorithm.

If such a specific member function has been created, when a generic STL algorithm was
already existing, it is only because such member functions is more efficient.

For example, to search a std::set object, you can use the std::find generic algorithm, or
the std::set::find member function; but the former has linear complexity (O(n)), while the
latter has logarithmic complexity (O(log(n))).

Search in sorted sequences

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

14 of 85 05/02/2012 03:38 PM

To search a sorted sequence, use the std::lower_bound, std::upper_bound, std::equal_range,
or std::binary_search generic algorithms.

Given that all the cited algorithms use a logarithmic complexity (O(log(n))) binary
search, they are faster than the std::find algorithm, that uses the linear complexity
(O(n)) sequential scan.

static member functions

In every class, declare every member function that does not access the
non-static members of the class as static .

In other words, declare all the member functions that you can as static.

In this way, the implicit this argument is not passed.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

15 of 85 05/02/2012 03:38 PM

Performance worsening features
With respect to C language, C++ has some features, that worsen efficiency if used
inappropriately.

Some of them are anyway rather efficient, and therefore you can use them liberally
when they are useful, but you should also avoid to pay their cost when you don't need
them.

Other features are instead quite inefficient, and so you should use them sparingly.

In this section, guidelines are presented to avoid the costs of C++ features that worsen
performance.

The throw operator

Call the throw operator only when you want notify a user of the failure of the
current command.

The raising of an exception has a very high cost, compared to a function call. It is
thousands of processor cycles. If you perform this operation only when a message is
displayed on the user interface or written into a log file, you have the guarantee that it
will not be performed too often without notice.

Instead, if exception raising is performed for algorithmic purposes, even if such
operation is initially thought to be performed rarely, it may end up to be performed too
frequently.

virtual member functions

Define the destructor as virtual if and only if the class contains at least one other
virtual member function or if the class might be derived from. Except for
constructors and destructors, do not declare functions as virtual unless you
intend to override them.

Classes that have some virtual member functions occupy more storage space than those
classes without them. Instances of classes having at least one virtual member function
occupy more space (typically, a pointer and possibly some padding) and their
construction requires more time (typically, to set the pointer) than the instances of
classes without virtual member functions.

In addition, every virtual member function has a slower call time than an identical
non-virtual member function.

virtual inheritance

Use virtual inheritance only when several classes must share the representation
of a common base class.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

16 of 85 05/02/2012 03:38 PM

For example, consider the following class definitions:

class A { ... };
class B1: public A { ... };
class B2: public A { ... };
class C: public B1, public B2 { ... };

With such definitions, every C class object contains two distinct class A objects, one
inherited from the B1 base class, and the other from the B2 class.

This is not a problem if class A has no non-static member variables.

If instead such class A contains some member variables, and you mean that such
member variables are unique for every class C instance, you must use virtual
inheritance, in the following way:

class A { ... };
class B1: virtual public A { ... };
class B2: virtual public A { ... };
class C: public B1, public B2 { ... };

This situation is the only case when virtual derivation is necessary.

The member functions of the class A are somewhat slower to call on a C class object if
virtual inheritance is used.

Templates of polymorphic classes

Do not define templates of polymorphic classes.

In other words, don't use the "template" and the "virtual" keywords in the same class
definition.

Class templates, every time they are instantiated, generate a copy of all the member
functions used, and if such classes contain virtual functions, even their vtable and RTTI
data is replicated. This data bloats the code.

Use of automatic deallocators

Use a memory manager based on garbage-collection or a kind of reference-
counted smart-pointer (like shared_ptr in the Boost (http://www.boost.org/)
library) only if you can prove its expediency for the specific case.

Garbage collection, or automatic reclamation of unreferenced memory, allows the
programmer to leave out calls for memory deallocation and prevents memory leaks.
However, one must implement garbage collection through a non-standard library since
these features are not included in C++. In addition, garbage collection typically causes

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

17 of 85 05/02/2012 03:38 PM

slower execution than that of explicit deallocation (when the delete operator is explicitly
called). In addition, when the garbage collector runs the rest of the program is stopped,
therefore increasing the variance of the time taken by the commands.

The C++98 standard library contains only one smart-pointer kind, auto_ptr, that is quite
efficient. Other smart-pointers provided by non-standard libraries, like Boost, will be
provided by the C++0x standard library. The smart-pointer is based on reference-count
but is less efficient than a simple pointer. For example, shared_ptr is the standard Boost
smart pointer. However, if the thread-safe version of Boost is used, the library has very
poor performance for creation, destruction and copying of these pointers since it must
guarantee mutual exclusion for these operations.

Usually, you should try to assign every dynamically allocated object to an owner at
design time. When such an assignment is difficult, for example if several objects tend to
bounce the responsibility to destroy the object, it becomes expedient to use a reference-
counted smart-pointer to handle the object.

The volatile modifier

Define volatile only those variables that are changed asynchronously by
hardware devices.

The usage of the volatile modifier prevents the compiler to allocate a variable in a
register, even for a short time. This guarantees that all the devices see the same
variable, but slows down much the operations that access this variable.

volatile does not guarantee that other threads will see the same values, as it does not
force the compiler to generate the necessary memory barrier and lock instructions.
Therefore read and write accesses to a volatile value may be made out of order even on
the same CPU (important in the case of interrupts and signals) and especially out of
order across the memory cache and bus to other CPUs. You must use a proper thread or
atomic memory API or write machine code to guarantee the proper order of operations
for safe threading.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

18 of 85 05/02/2012 03:38 PM

Constructions and destructions
Construction and destruction of an object requires time, especially if the object owns
other objects.

This section will provide guidelines to decrease the number of object constructions and
corresponding destructions.

Variable scope

Declare variables as late as possible.

To do so, the programmer must declare all variables in the most local scope. By doing
so, the variable is not constructed or destructed if that scope is never reached. To
postpone the declaration as far as possible inside a scope causes that if before such
declaration there is an early exit, using a return or break or continue statement, the object
associated to the variable is not constructed nor destructed.

In addition, often at the beginning of a routine you haven't yet an appropriate value to
initialize the object associated to the variable, and therefore you must initialize it with a
default value, and then assign an appropriate value to it. Instead, if you declare such
variable when you have available an appropriate value, you can initialize the object
using such value, without needing a successive assignment, as advised by the guideline
"Initializations" in this section.

Initializations

Use initializations instead of assignments. In particular, in constructors, use
initialization lists.

For example, instead of writing:

string s;
...
s = "abc"

write:

string s("abc");

Even if an instance of a class is not explicitly initialized, it is anyway automatically
initialized by the default constructor.

To call the default constructor followed by an assignment with a value may be less
efficient than to call only a constructor with the same value.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

19 of 85 05/02/2012 03:38 PM

Increment/decrement operators

Use prefix increment (++) or decrement (--) operators instead of the
corresponding postfix operators, if the expression value is not used.

If the incremented object is a primitive type, there is no difference between prefix and
postfix operators. However, if it is a composite object, the postfix operator causes the
creation of a temporary object, while the prefix operator does not.

Because every object that is a primitive type may become a composite object in the
future, it is better to use the prefix operator whenever possible, especially when writing
generic (templatized) code that operates on iterators.

Use the postfix operator only when the variable is in a larger expression and must be
incremented only after the expression is evaluated.

Assignment composite operators

Use the assignment composite operators (like in a += b) instead of simple
operators combined with assignment operators (like in a = a + b).

For example, instead of the following code:

string s1("abc");
string s2 = s1 + " " + s1;

write the following code:

string s1("abc");
string s2 = s1;
s2 += " ";
s2 += s1;

Typically a simple operator creates a temporary object. In the example, the operator +
creates temporary strings, whose creation and destruction require much time.

On the contrary, the equivalent code using the += operator do not create temporary
objects.

Function argument passing

When you pass an object x of type T as argument to a function, use the following
criterion:

If x is a input-only argument,
if x may be null,

pass it by pointer to constant (const T* x),

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

20 of 85 05/02/2012 03:38 PM

otherwise, if T is a fundamental type or an iterator or a function-object,
pass it by value (T x) or by constant value (const T x),

otherwise,
pass it by reference to constant (const T& x),

otherwise, i.e. if x is an output-only or input/output argument,
if x may be null,

pass it by pointer to non-constant (T* x),
otherwise,

pass it by reference to non-constant (T& x).

Pass by reference is more efficient than pass by pointer as it facilitates variable
elimination by the compiler, and as the callee hasn't to check if the reference is valid or
null; though, the pointer has the advantage of being able to represent a null value, and
it is more efficient to pass just a pointer, than to pass a reference to a possibly dummy
object and a boolean indicating whether the reference is valid.

For objects that may be contained in one or two registers, pass by value is more efficient
or equally efficient than pass by reference, as such objects may be contained in
registers and don't have indirection levels; therefore, this is the fastest way to pass
surely tiny objects, as the fundamental types, the iterators and the function-objects. For
objects that are larger than a couple of registers, pass by reference is more efficient
than pass by value, as pass by value causes the copy into the stack of such objects.

A composite object that is fast to copy could be efficiently passed by value, but, except it
is an iterator or a function-object, for which it is assumed the efficiency of the copy, this
technique is risky, as in the future the object could become slower to copy. For example,
if an object of class Point contains only two floats, it could be efficiently passed by value;
but if in the future a third float is added, or if the two floats become two doubles, it could
become more efficient pass by reference.

explicit declaration

Declare explicit all the constructors that may receive only one argument, except
the copy constructors of concrete classes.

Non-explicit constructors may be called automatically by the compiler when it performs
an automatic type conversion. The execution of such constructors may take much time.

If such conversion is made compulsorily explicit, and it new class name is not specified
in the code, the compiler could choose another overloaded function, avoiding to call the
costly constructor, or generate an error, so forcing the programmer to choose another
way to avoid the constructor call.

For copy constructors of concrete classes a distinction must be made, to allow their pass
by value. For abstract classes, even copy constructors may be declared explicit, as, by
definitions, abstract classes cannot be instantiated, and so objects of such type should
never be passed by value.

Conversion operators

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

21 of 85 05/02/2012 03:38 PM

Declare conversion operators only to keep compatibility with an obsolete library
(in C++0x, declare them explicit).

Conversion operators allow implicit conversions, and so incur in the same problem of
implicit constructors, described in the guideline "explicit declaration" in this section.

If such conversions are needed, provide instead an equivalent member function, as it
may be called only explicitly.

The only acceptable remaining usage for conversion operators is when a new library
must coexist with an older similar library. In such case, it may be convenient to have
operators that convert automatically objects from the old library into the corresponding
types of the new library, and vice versa.

The Pimpl idiom

Use the Pimpl idiom only when you want to make the rest of the program
independent from the implementation of a class.

The Pimpl idiom (meaning Pointer to implementation) consists in storing in the object
only a pointer to a data structure containing all the useful information about such
object.

The main advantage of such idiom is that it speeds up incremental compilation of the
code, that is it makes less likely that a small change in source code causes the need to
recompile a large number of code lines.

Such idiom allows also to speed up some operations, like the swap of two objects, but in
general it slows down every access to the object data because of the added indirection
level, and causes an added memory allocation for every creation or copy of such object.
Therefore it shouldn't be used for classes whose public member functions are called
frequently.

Iterators and function objects

Ensure that custom iterators and function objects are tiny and do not allocate
dynamic memory.

STL algorithms pass such objects by value. Therefore, if their copy is not extremely
efficient, STL algorithms are slowed down.

If an iterator of function object for some reason needs elaborate internal state, allocate
it dynamically and use a shared pointer. For example, say you want to implement an
STL-compliant 32-bit Random Number Generator (http://www.sgi.com/tech/stl
/RandomNumberGenerator.html) on top of the Linux/OpenBSD /dev/urandom device:

#include <boost/shared_ptr.hpp>
#include <fstream>

class urandom32 {

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

22 of 85 05/02/2012 03:38 PM

 boost::shared_ptr<std::ifstream> device;

 public:
 urandom32() : device(new std::ifstream("/dev/urandom")) { }

 uint32_t operator()()
 {
 uint32_t r;
 device->read(reinterpret_cast<char *>(&r), sizeof(uint32_t
 return r;
 }
};

In this case, the use of a pointer was actually necessary because the ifstream class is
non-copyable: its copy constructor is declared private. This example uses the
boost::shared_ptr smart pointer; for more speed, intrusive reference counting could be
used.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

23 of 85 05/02/2012 03:38 PM

Allocations and deallocations
Dynamic memory allocation and deallocation are very slow operations, compared with
automatic memory allocation and deallocation. In other words, the heap is much slower
than the stack.

In addition, such kind of allocation causes a per-allocation overhead, causes virtual
memory fragmentation, and causes bad data locality of reference, with ensuing bad
usage of both processor data cache and virtual memory space.

Dynamic memory allocation/deallocation was performed in C language using the malloc
and free standard library functions. In C++, although such functions are still available,
usually for such purpose the new, new[], delete, and delete[] operators are used.

Obviously, a way to decrease the allocation count is to decrease the number of
constructed objects, and therefore the section "Constructions and destructions" in this
chapter is indirectly useful also for the purpose of this section.

Yet, here guidelines are presented to decrease the allocations count for a given number
of new operator calls.

Fixed length arrays

If a static or non-large array has compile-time constant length, instead of a
vector object, use a C-language array or an array object from the Boost
(http://www.boost.org) library.

vectors stores the data in a dynamically allocated buffer, while the other solutions
allocate data inside the object itself. This avoids repeated allocations/deallocations of
dynamic memory and favor data locality.

If the array is large, such advantages are diminished, and instead it becomes more
important to avoid using too much stack space.

Allocating many small objects

If you have to allocate many objects of the same size, use a block allocator.

A block allocator (aka pool allocator) allocates medium to large memory blocks, and
provides the service to allocate/deallocate fixed size smaller blocks. It allows high
allocation/deallocation speed, low memory fragmentation, an efficient usage of data
caches and of the virtual memory.

In particular, an allocator of this kind can greatly improve the performance of the
std::list, std::set, std::multiset, std::map, and std::multimap standard containers.

If your standard library implementation does not already use a block allocator for such
containers, you should get one and specify it as template parameter of the instances of
such containers templates. Boost provides two customizable block allocators,

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

24 of 85 05/02/2012 03:38 PM

pool_allocator and fast_pool_allocator (http://www.boost.org/doc/libs/1_38_0/libs/pool
/doc/interfaces/pool_alloc.html) . Other pool allocator libraries can be found on the
World Wide Web. Always measure first to find the fastest allocator for the job at hand.

Appending elements to a collection

When you have to append elements to a collection, use push_back to append a
single element, use insert to append a sequence of elements, and use back_inserter
to cause an STL algorithm append elements to a sequence.

The push_back functions guarantees an amortized linear time, as, in case of vectors, it
increases exponentially the capacity.

The back_inserter class calls internally the push_back function.

The insert function allows to insert a whole sequence in an optimized way, and therefore
a single call to it is faster than many calls to push_back.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

25 of 85 05/02/2012 03:38 PM

Memory access
This section presents guidelines to improve main memory access performance, by
exploiting the features of the processor caches and of the secondary memory swapping
by the operating system virtual memory manager.

Memory access order

Access memory in increasing addresses order. In particular:

scan arrays in increasing order;
scan multidimensional arrays using the rightmost index for innermost
loops;
in class constructors and in assignment operators (operator=), access
member variables in the order of declaration.

Data caches optimize memory access in increasing sequential order.

When a multidimensional array is scanned, the innermost loop should iterate on the last
index, the innermost-but-one loop should iterate on the last-but-one index, and so on. In
such a way, it is guaranteed that array cells are processed in the same order in which
they are arranged in memory. For example, the following code is optimized:

float a[num_levels][num_rows][num_columns];
for (int lev = 0; lev < num_levels; ++lev) {
 for (int r = 0; r < num_rows; ++r) {
 for (int c = 0; c < num_columns; ++c) {
 a[lev][r][c] += 1;
 }
 }
}

Memory alignment

Keep the compiler default memory alignment.

Compilers use by default an alignment criterion for fundamental types, for which objects
may have only memory addresses that are a multiple of particular factors. Such
criterion guarantees top performance, but it may add paddings (or holes) between
successive objects.

If it is necessary to avoid such paddings for some structures, use the pragma directive
only around such structure definitions.

Grouping functions in compilation units

Define in the same compilation unit all the member functions of a class, all the

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

26 of 85 05/02/2012 03:38 PM

friend functions of such class, and all the member functions of friend classes of
such class, except when the resulting file become unwieldy for its size.

In such a way, both the machine code resulting by the compilation of such functions and
the static data defined in such classes and functions will have addresses near each
other; in addition, even compilers that do not perform whole program optimization may
optimize the calls among these functions.

Grouping variables in compilation units

Define every global variable in the compilation unit in which it is used more
often.

In such a way, such variables will have addresses near to each other and to the static
variables defined in such compilation units; in addition, even compilers that do not
perform whole program optimization may optimize the access to such variables from the
functions that use them more often.

Private functions and variables in compilation units

Declare in an anonymous namespace the variables and functions that are global
to compilation unit, but not used by other compilation units.

In C language and also in C++, such variables and functions may be declared static.
Though, in modern C++, the use of static global variables and functions is not
recommended, and should be replaced by variables and functions declared in an
anonymous namespace.

In both cases, the compiler is notified that such identifiers will never be used by other
compilation units. This allows the compilers that do not perform whole program
optimization to optimize the usage of such variables and functions.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

27 of 85 05/02/2012 03:38 PM

Thread usage

Worker thread

Every time in an interactive application you must perform an operation that can
take more than few seconds, assign this operation to a specific worker thread,
having less than normal priority.

In such a way, the main thread is ready to handle other user commands. By assigning to
the worker thread a less than normal priority, the user interface remains almost just as
fast.

Strictly speaking, this guidelines does not improves the speed of the application, but
only its responsiveness. Though, this is perceived by users as a speed improvement.

Multiple worker threads

In a multicore system, if you can split an operation in several threads, use as
many worker threads as are the processor cores.

In such a way, every core can process a worker thread. If the worker threads are more
than the cores, there would be a lot of thread switching, and this would slow down the
operation. The main thread does not slow down the operation, as it is almost inactive.

Use of multi-threaded libraries

If you are developing a single-threaded application, don't use libraries designed
only for multi-threaded applications.

The techniques to make thread-safe a library may have memory and time overhead. If
you don't use threads, avoid to pay their cost.

Creation of multi-threaded libraries

If you are developing a library, handle correctly the case it is used by multi-
threaded applications, but optimize also the case it is used by single-threaded
applications.

The techniques to make thread-safe a library may have memory and time overhead. If
the users of your library don't use threads, avoid forcing your users to pay the cost of
threads.

Mutual exclusion

Use mutual exclusion primitives only when several threads access concurrently
the same data, and at least one of the accesses is for writing.

Mutual exclusion primitives have a overhead.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

28 of 85 05/02/2012 03:38 PM

If you are sure that in a given period no thread is writing in a memory area, there is no
need to synchronize read accesses for such area.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

29 of 85 05/02/2012 03:38 PM

General
Optimization

Techniques

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

30 of 85 05/02/2012 03:38 PM

General optimization techniques
In this section we present some of most common techniques for algorithmic
optimization. These techniques should be mostly independent from any specific
programming language, software or hardware platform. When optimizing, always start
by considering different algorithms before resorting to lower-level optimizations to
retain generality, maintainability and portability of your code.

Some of the proposed techniques will have an implementation in C++.

Input/Output1.
Memoization2.
Sorting3.
Other techniques4.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

31 of 85 05/02/2012 03:38 PM

Output

Binary format

Instead of storing data in text mode, store them in a binary format.

On average, binary numbers occupy less space than formatted numbers, and so it is
faster to transfer them from memory to disk or vice versa. Also, if the data is transferred
in the same format used by the processor there is no need of costly conversions from
text format to binary format or vice versa.

Some disadvantages of using a binary format are that data is not human-readable and
that the format may be dependent on the processor architecture.

Open files

Instead of opening and closing an often needed file every time you access it,
open it only the first time you access it, and close it when you are finished using
it.

To close and reopen a disk file takes a variable time, but about the same time to read 15
to 20 KB from the disk cache.

Therefore, if you need to access a file often, you can avoid this overhead by opening the
file only one time before accessing it, keeping it open by hoisting its handle wrapper to
an external scope, and closing it when you are done.

I/O buffers

Instead of doing many I/O operations on single small or tiny objects, do I/O
operations on a 4 KB buffer containing many objects.

Even if the run-time support I/O operations are buffered, the overhead of many I/O
functions costs more than copying the objects into a buffer.

Larger buffers do not have a good locality of reference.

Memory-mapped file

Except in a critical section of a real-time system, if you need to access most
parts of a binary file in a non-sequential fashion, instead of accessing it
repeatedly with seek operations, or loading it all in an application buffer, use a
memory-mapped file, if your operating system provides such feature.

When you have to access most parts of a binary file in a non-sequential fashion, there
are two standard alternative techniques:

Open the file without reading its contents; and every time a data is demanded,
jump to the data position using a file positioning operation (aka seek), and read

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

32 of 85 05/02/2012 03:38 PM

that data from the file.
Allocate a buffer as large as the whole file, open the file, read its contents into the
buffer, close the file; and every time a data is demanded, search the buffer for it.

Using a memory-mapped file, with respect to the first technique, every positioning
operation is replaced by a simple pointer assignment, and every read operation is
replaced by a simple memory-to-memory copy. Even assuming that the data is already in
disk cache, both memory-mapped files operations are much faster than the
corresponding file operations, as the latter require as many system calls.

With respect to the technique of pre-loading the whole file into a buffer, using a
memory-mapped file has the following advantages:

When file reading system calls are used, data is usually transferred first into the
disk cache and then in the process memory, while using a memory-mapped file the
system buffer containing the data loaded from disk is directly accessed, thus saving
both a copy operation and the disk cache space. The situation is analogous for
output operations.
When reading the whole file, the program is stuck for a significant time period,
while using a memory-mapped file such time period is scattered through the
processing, as long as the file is accessed.
If some sessions need only a small part of the file, a memory-mapped file loads only
those parts.
If several processes have to load in memory the same file, the memory space is
allocated for every process, while using a memory-mapped file the operating
system keeps in memory a single copy of the data, shared by all the processes.
When memory is scarce, the operating system has to write out to the swap disk
area even the parts of the buffer that haven't been changed, while the unchanged
pages of a memory-mapped file are just discarded.

Yet, usage of memory-mapped files is not appropriate in a critical portion of a real-time
system, as access to data has a latency that depends on the fact that the data has
already been loaded in system memory or is still only on disk.

Strictly speaking, this is a technique dependent on the software platform, as the
memory-mapped file feature is not part of C++ standard library nor of all operating
systems. Though, given that such feature exists in all the main operating systems that
support virtual memory, this technique is of wide applicability.

Here are two classes that encapsulate the access to a file through a memory-mapped
file, followed by a small program demonstrating the usage of such classes. They are
usable both from Posix operating systems (like Unix, Linux, and Mac OS X) and from
Microsoft Windows. The MemoryFile class allows both to write and to read a file, and
also to change its size. The InputMemoryFile class allows only to read a file, but it is
simpler and safer, and therefore it is recommended in case you don't need to change the
file contents.

File "memory_file.hpp":

#ifndef MEMORY_FILE_HPP
#define MEMORY_FILE_HPP

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

33 of 85 05/02/2012 03:38 PM

#include <cstring> // for size_t

/*
 Read-only memory-mapped file wrapper.
 It handles only files that can be wholly loaded
 into the address space of the process.
 The constructor opens the file, the destructor closes it.
 The "data" function returns a pointer to the beginning of the file,
 if the file has been successfully opened, otherwise it returns 0.
 The "size" function returns the length of the file in bytes,
 if the file has been successfully opened, otherwise it returns 0.
*/
class InputMemoryFile {
public:
 InputMemoryFile(const char *pathname);
 ~InputMemoryFile();
 const char* data() const { return data_; }
 size_t size() const { return size_; }
private:
 const char* data_;
 size_t size_;
#if defined(__unix__)
 int file_handle_;
#elif defined(_WIN32)
 typedef void* HANDLE;
 HANDLE file_handle_;
 HANDLE file_mapping_handle_;
#else
 #error Only Posix or Windows systems can use memory-mapped files.
#endif
};

/*
 Read/write memory-mapped file wrapper.
 It handles only files that can be wholly loaded
 into the address space of the process.
 The constructor opens the file, the destructor closes it.
 The "data" function returns a pointer to the beginning of the file,
 if the file has been successfully opened, otherwise it returns 0.
 The "size" function returns the initial length of the file in bytes,
 if the file has been successfully opened, otherwise it returns 0.
 Afterwards it returns the size the physical file will get if it is closed now.
 The "resize" function changes the number of bytes of the significant
 part of the file. The resulting size can be retrieved
 using the "size" function.
 The "reserve" grows the phisical file to the specified number of bytes.
 The size of the resulting file can be retrieved using "capacity".
 Memory mapped files cannot be shrinked;
 a value smaller than the current capacity is ignored.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

34 of 85 05/02/2012 03:38 PM

 The "capacity()" function return the size the physical file has at this time.
 The "flush" function ensure that the disk is updated
 with the data written in memory.
*/
class MemoryFile {
public:
 enum e_open_mode {
 if_exists_fail_if_not_exists_create,
 if_exists_keep_if_dont_exists_fail,
 if_exists_keep_if_dont_exists_create,
 if_exists_truncate_if_not_exists_fail,
 if_exists_truncate_if_not_exists_create,
 };
 MemoryFile(const char *pathname, e_open_mode open_mode);
 ~MemoryFile();
 char* data() { return data_; }
 void resize(size_t new_size);
 void reserve(size_t new_capacity);
 size_t size() const { return size_; }
 size_t capacity() const { return capacity_; }
 bool flush();
private:
 char* data_;
 size_t size_;
 size_t capacity_;
#if defined(__unix__)
 int file_handle_;
#elif defined(_WIN32)
 typedef void * HANDLE;
 HANDLE file_handle_;
 HANDLE file_mapping_handle_;
#else
 #error Only Posix or Windows systems can use memory-mapped files.
#endif
};
#endif

File "memory_file.cpp":

#include "memory_file.hpp"
#if defined(__unix__)
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#elif defined(_WIN32)
#include <windows.h>
#endif

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

35 of 85 05/02/2012 03:38 PM

InputMemoryFile::InputMemoryFile(const char *pathname):
 data_(0),
 size_(0),
#if defined(__unix__)
 file_handle_(-1)
{
 file_handle_ = ::open(pathname, O_RDONLY);
 if (file_handle_ == -1) return;
 struct stat sbuf;
 if (::fstat(file_handle_, &sbuf) == -1) return;
 data_ = static_cast<const char*>(::mmap(
 0, sbuf.st_size, PROT_READ, MAP_SHARED, file_handle_, 0));
 if (data_ == MAP_FAILED) data_ = 0;
 else size_ = sbuf.st_size;
#elif defined(_WIN32)
 file_handle_(INVALID_HANDLE_VALUE),
 file_mapping_handle_(INVALID_HANDLE_VALUE)
{
 file_handle_ = ::CreateFile(pathname, GENERIC_READ,
 FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
 if (file_handle_ == INVALID_HANDLE_VALUE) return;
 file_mapping_handle_ = ::CreateFileMapping(
 file_handle_, 0, PAGE_READONLY, 0, 0, 0);
 if (file_mapping_handle_ == INVALID_HANDLE_VALUE) return;
 data_ = static_cast<char*>(::MapViewOfFile(
 file_mapping_handle_, FILE_MAP_READ, 0, 0, 0));
 if (data_) size_ = ::GetFileSize(file_handle_, 0);
#endif
}

InputMemoryFile::~InputMemoryFile() {
#if defined(__unix__)
 ::munmap(const_cast<char*>(data_), size_);
 ::close(file_handle_);
#elif defined(_WIN32)
 ::UnmapViewOfFile(data_);
 ::CloseHandle(file_mapping_handle_);
 ::CloseHandle(file_handle_);
#endif
}

#include <iostream>
MemoryFile::MemoryFile(const char *pathname, e_open_mode open_mode):
 data_(0),
 size_(0),
#if defined(__unix__)
 file_handle_(-1)
{
 int posix_open_mode = O_RDWR;
 switch (open_mode)

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

36 of 85 05/02/2012 03:38 PM

 {
 case if_exists_fail_if_not_exists_create:
 posix_open_mode |= O_EXCL | O_CREAT;
 break;
 case if_exists_keep_if_dont_exists_fail:
 break;
 case if_exists_keep_if_dont_exists_create:
 posix_open_mode |= O_CREAT;
 break;
 case if_exists_truncate_if_not_exists_fail:
 posix_open_mode |= O_TRUNC;
 break;
 case if_exists_truncate_if_not_exists_create:
 posix_open_mode |= O_TRUNC | O_CREAT;
 break;
 default: return;
 }
 const size_t min_file_size = 4096;
 file_handle_ = ::open(pathname, posix_open_mode, S_IRUSR | S_IWUSR |
 if (file_handle_ == -1) return;
 struct stat sbuf;
 if (::fstat(file_handle_, &sbuf) == -1) return;
 size_t initial_file_size = sbuf.st_size;
 size_t adjusted_file_size = initial_file_size == 0 ? min_file_size :
 ::ftruncate(file_handle_, adjusted_file_size);
 data_ = static_cast<char*>(::mmap(
 0, adjusted_file_size, PROT_READ | PROT_WRITE, MAP_SHARED, file_handle_,

if (data_ == MAP_FAILED) data_ = 0;
 else {
 size_ = initial_file_size;
 capacity_ = adjusted_file_size;
 }
#elif defined(_WIN32)
 file_handle_(INVALID_HANDLE_VALUE),
 file_mapping_handle_(INVALID_HANDLE_VALUE)
{
 int windows_open_mode;
 switch (open_mode)
 {
 case if_exists_fail_if_not_exists_create:
 windows_open_mode = CREATE_NEW;
 break;
 case if_exists_keep_if_dont_exists_fail:
 windows_open_mode = OPEN_EXISTING;
 break;
 case if_exists_keep_if_dont_exists_create:
 windows_open_mode = OPEN_ALWAYS;
 break;
 case if_exists_truncate_if_not_exists_fail:
 windows_open_mode = TRUNCATE_EXISTING;

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

37 of 85 05/02/2012 03:38 PM

 break;
 case if_exists_truncate_if_not_exists_create:
 windows_open_mode = CREATE_ALWAYS;
 break;
 default: return;
 }
 const size_t min_file_size = 4096;
 file_handle_ = ::CreateFile(pathname, GENERIC_READ | GENERIC_WRITE,
 0, 0, windows_open_mode, FILE_ATTRIBUTE_NORMAL, 0);
 if (file_handle_ == INVALID_HANDLE_VALUE) return;
 size_t initial_file_size = ::GetFileSize(file_handle_, 0);
 size_t adjusted_file_size = initial_file_size == 0 ? min_file_size :
 file_mapping_handle_ = ::CreateFileMapping(
 file_handle_, 0, PAGE_READWRITE, 0, adjusted_file_size, 0);
 if (file_mapping_handle_ == INVALID_HANDLE_VALUE) return;
 data_ = static_cast<char*>(::MapViewOfFile(
 file_mapping_handle_, FILE_MAP_WRITE, 0, 0, 0));
 if (data_) {
 size_ = initial_file_size;
 capacity_ = adjusted_file_size;
 }
#endif
}

void MemoryFile::resize(size_t new_size) {
 if (new_size > capacity_) reserve(new_size);
 size_ = new_size;
}

void MemoryFile::reserve(size_t new_capacity) {
 if (new_capacity <= capacity_) return;
#if defined(__unix__)
 ::munmap(data_, size_);
 ::ftruncate(file_handle_, new_capacity);
 data_ = static_cast<char*>(::mmap(
 0, new_capacity, PROT_READ | PROT_WRITE, MAP_SHARED, file_handle_,
 if (data_ == MAP_FAILED) data_ = 0;
 capacity_ = new_capacity;
#elif defined(_WIN32)
 ::UnmapViewOfFile(data_);
 ::CloseHandle(file_mapping_handle_);
 file_mapping_handle_ = ::CreateFileMapping(
 file_handle_, 0, PAGE_READWRITE, 0, new_capacity, 0);
 capacity_ = new_capacity;
 data_ = static_cast<char*>(::MapViewOfFile(
 file_mapping_handle_, FILE_MAP_WRITE, 0, 0, 0));
#endif
}

MemoryFile::~MemoryFile() {

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

38 of 85 05/02/2012 03:38 PM

#if defined(__unix__)
 ::munmap(data_, size_);
 if (size_ != capacity_)
 {
 ::ftruncate(file_handle_, size_);
 }
 ::close(file_handle_);
#elif defined(_WIN32)
 ::UnmapViewOfFile(data_);
 ::CloseHandle(file_mapping_handle_);
 if (size_ != capacity_)
 {
 ::SetFilePointer(file_handle_, size_, 0, FILE_BEGIN);
 ::SetEndOfFile(file_handle_);
 }
 ::CloseHandle(file_handle_);
#endif
}

bool MemoryFile::flush() {
#if defined(__unix__)
 return ::msync(data_, size_, MS_SYNC) == 0;
#elif defined(_WIN32)
 return ::FlushViewOfFile(data_, size_) != 0;
#endif
}

File "memory_file_test.cpp":

#include "memory_file.hpp"
#include <iostream>

bool CopyFile(const char* source, const char* dest, bool overwrite)
{
 InputMemoryFile source_mf(source);
 if (! source_mf.data()) return false;
 MemoryFile dest_mf(dest, overwrite ?
 MemoryFile::if_exists_truncate_if_not_exists_create :
 MemoryFile::if_exists_fail_if_not_exists_create);
 if (! dest_mf.data()) return false;
 dest_mf.resize(source_mf.size());
 if (source_mf.size() != dest_mf.size()) return false;
 std::copy(source_mf.data(), source_mf.data() + source_mf.size(),
 dest_mf.data());
 return true;
}

int main() {

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

39 of 85 05/02/2012 03:38 PM

 if (! CopyFile("memory_file_test.cpp", "copy.tmp", true)) {
 std::cerr << "Copy failed" << std::endl;
 return 1;
 }
}

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

40 of 85 05/02/2012 03:38 PM

Memoization
Memoization techniques (aka caching techniques) are based on the principle that if you
must repeatedly compute a pure function, that is a referentially transparent function
(aka mathematical function), for the same argument, and if such computation requires
significant time, you can save time by storing the result of the first evaluation and
retrieve that result the other times.

Look-up table

If you often have to call a pure function that has a small integer interval as
domain, pre-compute (at compile time or at program start-up time) all the
values of the function for every value of the domain and put them in a static
array called lookup table. When you need the value of the function for a
particular value of the domain, read the corresponding value of such array.

For example, to compute the square root of an integer between 0 and 9, the following
function is faster:

double sqrt10(int i) {
 static double lookup_table[] = {
 0, 1, sqrt(2.), sqrt(3.), 2,
 sqrt(5.), sqrt(6.), sqrt(7.), sqrt(8.), 3,
 };
 assert(0 <= i && i < 10);
 return lookup_table[i];
}

Array access is very fast, mainly if the accessed cell is in processor data cache.
Therefore, if the lookup table is not large, almost surely its access is faster than the
function to evaluate.

If the lookup table is large, it may be no more efficient, for the memory footprint, for the
time to pre-compute all the values, if it doesn't fit the processor data cache. But if the
function to evaluate is slow, it is called many times and you can afford to use much
memory, consider using a lookup table up to several hundreds of kilobytes. It is rarely
efficient to exceed one megabyte.

One-place cache

If you often have to call a pure function with the same arguments, the first time
the function is called save the arguments and the result in static variables.
When the function is called again, compare the new arguments with the saved
ones; if they match, return the saved result, otherwise compute the result and
store the new arguments and the new result.

For example, instead of the following function:

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

41 of 85 05/02/2012 03:38 PM

double f(double x, double y) {
 return sqrt(x * x + y * y);
}

you can use this function:

double f(double x, double y) {
 static double prev_x = 0;
 static double prev_y = 0;
 static double result = 0;
 if (x == prev_x && y == prev_y) {
 return result;
 }
 prev_x = x;
 prev_y = y;
 result = sqrt(x * x + y * y);
 return result;
}

Notice that, for faster processing it isn't necessary that the function be called with the
same arguments for the entire program session. It is enough that it is called some times
with the same arguments, then some other times with other arguments. In such cases,
the computation is performed only when the arguments change.

Obviously, instead of increasing the speed, this technique may decrease it if the function
is called with almost always changing arguments or if the comparison between the new
arguments and the old ones requires more time than the computation of the function
itself.

Notice that if you use static variables this function is not thread-safe and cannot be
recursive. If this function must be called concurrently by several threads, it is necessary
to replace the static variables with variables that are distinct for every thread.

Notice also that in the example it is assumed that the function has zero value when both
arguments are zero. Failing this, you should choose another solution, such as one of the
following:

Initialize the variable result with the value that corresponds to all-zero arguments.
Initialize the variables prev_x and prev_y with values that will never be passed as
arguments.
Add a static flag indicating whether the static variables keep valid values and check
that flag at every call.

N-places cache

If you often have to call a pure function with arguments that in most cases
belong to a small domain, use a static map (aka dictionary) that is initially

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

42 of 85 05/02/2012 03:38 PM

empty. When the function is called, search the map for the function argument.
If you find it, return the associated value, otherwise compute the result and
insert the pair argument-result into the map.

Here is an example in which the map is implemented using an array. The same function
was used for the example of the guideline "One-place cache" in this section:

double f(double x, double y) {
 static const int n_buckets = 8; // should be a power of 2
 static struct {
 double x; double y; double result;
 } cache[n_buckets];
 static int last_read_i = 0;
 static int last_written_i = 0;
 int i = last_read_i;
 do {
 if (cache[i].x == x && cache[i].y == y) {
 return cache[i].result;
 }
 i = (i + 1) % n_buckets;
 } while (i != last_read_i);
 last_read_i = last_written_i = (last_written_i + 1) % n_buckets;
 cache[last_written_i].x = x;
 cache[last_written_i].y = y;
 cache[last_written_i].result = sqrt(x * x + y * y);
 return cache[last_written_i].result;
}

Some functions, although they have a theoretically large domain, are called most often
with few distinct arguments.

For example, a word processor may have many installed fonts, but in a typical document
only a few fonts are used for most characters. A rendering function that has to handle
the font of every character of the document will be called typically with few distinct
values. For such cases, an N-places cache is preferable to a one-place cache, as in the
example.

The remarks about static variables, in guideline "One-place cache" in this section, apply
also to this case.

For small caches (in the example, having 8 places) the most efficient algorithm is a
sequential scan on an array. To implement a larger cache, though, a search tree or a
hash table could be more efficient. In addition, the cache of the example has fixed size,
but it could be expedient to have a variable-size cache.

Usually, the last read element is the most likely for the next call. Therefore, as in the
example, it may be expedient to save its position and to begin the search from that
position.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

43 of 85 05/02/2012 03:38 PM

If the cache does not expand itself indefinitely, there is the problem choosing the
element to replace. Obviously, it would be better to replace the element that is the least
likely to be requested by the next call. In the example, it is assumed that, among the
elements in the cache, the first inserted element is the least probable for the next call.
Therefore, the write scans cyclically through the array. Often, a better criterion is to
replace the least recently read element instead of the least recently written element. To
implement such criterion, a more complex algorithm is required.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

44 of 85 05/02/2012 03:38 PM

Sorting
The C++ Standard Template Library (STL) provides the template function sort that
implements a comparison sort algorithm. Because sort is templatized, it can be used for
various types of sequences holding any type of key, as long as the keys are comparable
(implement the < operator). A good compiler can generate code optimized for the
various kinds of sequence/key combinations.

The reference implementation of the STL uses the introsort algorithm (since the 2000
release; the GNU C++ library uses the reference implementation). This algorithm is a
very fast combination of quicksort and heapsort with a specially designed selection
algorithm.

The sort template function is not guaranteed to be stable. When a stable sort is required,
use the stable_sort template function instead.

This section suggests alternatives to the sort and stable_sort template functions that may
be faster in specific cases.

Sorting with small ranges of keys

To sort a data set according an integer key having a small range, use the
counting sort algorithm.

The counting sort algorithm has O(N+M) complexity, where N is the number of
elements to sort and M is the range of the sort keys, that is the difference between the
highest key and the lowest key. In case N elements are to be sorted whose key is an
integer number belonging to an interval containing no more than two times N values (i.e
when M <= 2 * N holds), this algorithm may be quite faster than sort. In some cases it is
faster even with larger ranges.

This algorithm may be used also for a partial ordering; for example, if the keys are
integers between zero and one billion, you can still sort them using only the most
significant byte, so to get an order for which the formula
holds.

Example: sorting 8-bit integers

Say you want to sort an array of arbitrary char elements. These take on values in the
range 0..CHAR_MAX (inclusive), accounting for CHAR_MAX+1 different values.
CHAR_MAX is defined in the header <climits>.

#include <climits>

void count_sort(char *a, char *const end)
{
 size_t freq[CHAR_MAX+1] = {0};

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

45 of 85 05/02/2012 03:38 PM

 char *p;

 for (p = a; p < end; ++p)
 freq[*p] += 1;

 char c;
 for (c = 0, p = a; c < UINT8_MAX; ++c)
 while (freq[c]-- > 0)
 *p++ = c;
}

The counting_sort function implements the pigeonhole sort algorithm. It takes a pointer to
the first element of the input array and a pointer that points one element beyond the
end of the array. Why? Because we don't have to stop here.

We can generalize counting_sort to a template function that also works for string,
vector<char> and other sequence types, without loss of efficiency. When doing so, we need
to work with iterators rather than pointers.

#include <climits>

template <typename OutputIter>
void counting_sort(OutputIter const &begin, OutputIter const &end)
{
 size_t freq[CHAR_MAX+1] = {0};
 OutputIter it;

 for (it = begin; it < end; ++it)
 freq[*it] += 1;

 char c;
 for (c = 0, it = begin; c < CHAR_MAX; ++c)
 while (freq[c]-- > 0)
 *it++ = c;
}

Partial sorting

Partitioning

If you have to split a sequence according a criterion, use a partitioning
algorithm, instead of a sorting one.

In STL there is the std::partition algorithm, that is faster than the std::sort algorithm, as
it has O(N) complexity, instead of O(N log(N)).

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

46 of 85 05/02/2012 03:38 PM

Stable partitioning and sorting

If you have to partition or sort a sequence for which equivalent entities may be
swapped, don't use a stable algorithm.

In STL there is the std::stable_partition partitioning algorithm, that is slightly slower than
the std::partition algorithm; and there is the std::stable_sort sorting algorithm, that is
slightly slower than the std::sort algorithm.

Order partitioning

If you have to pick out the first N elements from a sequence, or the Nth element
in a sequence, use an order partitioning algorithm, instead of a sorting one.

In STL there is the std::nth_element algorithm, that, although slightly slower than the
std::stable_partition algorithm, is quite faster then the std::sort algorithm, as it has O(N)
complexity, instead of O(N log(N)).

Sorting only the first N elements

If you have to sort the first N elements of a much longer sequence, use an order
statistic algorithm, instead of a sorting one.

In STL there are the std::partial_sort and std::partial_sort_copy algorithms, that, although
slower than the std::nth_element algorithm, are so much faster than the std::sort algorithm
as the partial sequence to sort is shorter than the whole sequence.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

47 of 85 05/02/2012 03:38 PM

Other techniques

Query cursor

Instead of defining a function that returns a collection (aka snapshot), define a
function that returns an iterator (aka cursor or dynaset), with which you can
generate or possibly change the required data.

This technique is particularly useful for database queries, but is applicable also to
internal data structures.

Let's assume you have a collection (or a set of collections) encapsulated in a class. Such
class exposes one or more member functions to extract (or filter) a subset from such
collection.

A way to get it is to construct a new collection, to copy the extracted data into it, and to
return such collection. In the database jargon, such collection is called snapshot.

This technique is effective but inefficient, as the allocation and copy of the snapshot
takes a lot of time and a lot of storage space. In addition, it has the shortcoming that,
until all the data has been extracted, you cannot proceed to process the already
extracted data.

Here is an equivalent but more efficient technique.

The query function returns an iterator. In database jargon, such iterator is called cursor
or dynaset. The caller uses such iterator to extract, one at a time, the data filtered, and
possibly to change them.

Notice that this solution is not exactly equivalent, as if during the iterator use the
collection is changed by another function call, possibly coming from another thread, it
may happen that the iterator is invalidated, or just that the filtered collection do not
corresponds to the specified criteria. Therefore, you can apply this technique only when
you are sure that the underlying collection is not changed in any way, except by the
iterator itself, during the whole life of the iterator.

This technique is independent of the programming language, as the iterator concept is
an abstract design pattern.

Binary search

If you have to do many searches in a rarely changed collection, instead of using
a search tree or a hash table, you can get a speed up if you put the data in an
array, sort the array, and do binary searches on it.

A binary search on an array has logarithmic complexity, like search trees, but has the
advantage of compactness and locality of reference typical of arrays.

If the array is changed, this algorithm may still be competitive, as long as the changes
are much less frequent than searches.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

48 of 85 05/02/2012 03:38 PM

If every collection change consists in very few insertions or changes or deletions of
elements, it is better to shift the array at every change operation. Instead, if a collection
change is more bulky, it is better to recreate and sort the whole array.

In C++, if the array length is not a compile-time constant, use a vector.

Singly-linked lists

If for a list you don't need bidirectional iterators, you don't need to insert
elements at the end or before the current element, and you don't need to know
how many elements there are in the list, use a singly-linked list, instead of a
doubly-linked list.

Such container, although it has many shortcomings, occupies less space and it is faster.

Typically, the heading of a doubly-linked list contains a pointer to the head of the list, a
pointer to the back, and the counter of elements, while the heading of a singly-linked list
contains only a pointer to the head of the list. In addition, typically, every node of a
doubly-linked list contains a pointer to the previous node and a pointer to the next node,
while every node of a singly-linked list contains only a pointer to the next node. At last,
every element insertion into a doubly-linked list must update four pointers and
increment a counter, while every element insertion into a singly-linked list must only
update two pointers.

In the C++ standard library, the std::list container is implemented by a doubly-linked
list. The slist container, non-standard but available in various libraries, and the
forward_list container, that will be in C++0x standard library, are implemented by singly-
linked lists.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

49 of 85 05/02/2012 03:38 PM

Code
Optimization

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

50 of 85 05/02/2012 03:38 PM

Code optimization
In this chapter some techniques, specific for C++ language, are proposed. They are to
be applied only in bottlenecks, as, although they may speed up execution, they also
make more complex and less maintainable the source code.

In addition, such guidelines in some cases could worsen the performance instead of
improving it, and therefore their effect should be always measured before releasing
them.

The optimization techniques are grouped according their goal.

Allocations and deallocations1.
Run-time support2.
Instruction count3.
Constructions and destructions4.
Pipeline5.
Memory access6.
Faster operations7.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

51 of 85 05/02/2012 03:38 PM

Allocations and deallocations
Even using a very efficient allocator, the allocation and deallocation operations take a
significant time, and often the allocator is not very efficient.

In this section some techniques are described to decrease the total number of memory
allocations, and their corresponding deallocations. They are to be applied only in
bottlenecks, that is after having measured that the large number of allocations has a
significant impact on performance.

The alloca function

In non-recursive functions, to allocate variable-size but not large memory
space, use the alloca function.

It is very efficient, as it allocates space on the stack.

It is a non-standard function, but it is available with many compilers for several
operating systems.

It may be used even to allocate an array of objects having constructors, as long as the
placement-new operator is called on the allocated space, but it shouldn't be used for an
array of objects having a destructor or which, directly or indirectly, contain member
variables having a destructor, as such destructors would never be called.

Though, it is rather dangerous, as, if called too many times or with a too big value, it
overflows the stack, and, if called for objects having a destructor, it causes resource
leaks. Therefore this function is to be used sparingly.

Move allocations and deallocations

Move before bottlenecks memory allocations, and after bottlenecks the
matching deallocations.

Variable length dynamic memory management is much slower than automatic memory
management.

Analogous optimization is to be done for operations causing allocations indirectly, as the
copy of objects which, directly or indirectly, own dynamic memory.

The reserve function

Before adding elements to a vector or to a string object, call its member function
reserve with a size big enough for most cases.

If objects are repeatedly added to a vector or string object, several costly reallocations
are performed. To avoid such reallocations, it is enough to initially allocate the required
space.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

52 of 85 05/02/2012 03:38 PM

Keep vectors capacity

To empty a vector<T> x object without deallocating its memory, use the statement
x.resize(0);; to empty it and deallocate its memory, use the statement vector<T>
().swap(x);.

To empty a vector object, there also exists the clear() member function, but, the C++
standard does not specify whether or not this function preserves the allocated capacity
of the vector.

If you are repeatedly filling and emptying a vector object, and thus you want to to avoid
frequent reallocations, perform the emptying by calling the resize member function,
which, according to the standard, preserves the capacity of the object. If instead you
have finished using a large vector object, and you may not use it again or you are going
to use it with substantially fewer elements, you should free the object's memory by
calling the swap function on a new empty temporary vector object.

swap function overload

For every copyable concrete class T which, directly or indirectly, owns some
dynamic memory, redefine the appropriate swap functions.

In particular, add to the class public member function having the following signature:

void swap(T&) throw();

and add the following non-member function in the same namespace that contains the
class T:

void swap(T& lhs, T& rhs) { lhs.swap(rhs); }

and, if the class is not a class template, add also the following non-member function in
the same file that contains the class T definition:

namespace std { template<> swap(T& lhs, T& rhs) { lhs.swap(rhs); } }

In the standard library, the swap function is called frequently by many algorithms. Such
function has a generic implementation and specialized implementations for various
types of the standard library.

If objects of a non-standard class are used in a standard library algorithm that calls swap
on them, and the swap function is not overloaded, the generic implementation is used.

The generic implementation of the swap function causes the creation and destruction of a
temporary object and the execution of two object assignments. Such operation take

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

53 of 85 05/02/2012 03:38 PM

much time if applied to objects that own dynamic memory, as such memory is
reallocated three times.

The ownership of dynamic memory may be even only indirect. For example, if a member
variable is a string or a vector, or is an object that contains a string or vector object, the
memory owned by these objects is reallocated every time the object that contains them
is copied. Therefore, even in these cases the swap function is to be overloaded.

If the object doesn't own dynamic memory, the copy of the object is much faster, and
however it is not noticeably slower than using other techniques, and so no swap overload
is needed.

If the class is not copyable or abstract, the swap function must never be called on object
of such type, and therefore also in these cases no swap function is to be redefined.

To speed up the function swap, you have to specialize it for your class. There are two
possible ways to do that: in the same namespace of the class (that may be the global
one) as an overload, or in the namespace std as a specialization of the standard
template. It is advisable to define it in both ways, as, first, if it is a class template only
the first way is possible, an then some compilers do not accept or accept with a warning
a definition only in the first way.

The implementations of such functions must access all the members of the object, and
therefore they need to call a member function, that by convention is called again swap,
that does the actual work.

Such work consists in swapping all the non-static members of the two objects, typically
by calling the swap function on them, without qualifying its namespace.

To put the function std::swap into the current scope, the function must begin with the
statement:

using std::swap;

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

54 of 85 05/02/2012 03:38 PM

Run-time support
C++ run-time support routines obviously have a significant cost, because otherwise
such behavior would have be inlined. Here techniques are presented to avoid the
language features that cause an implicit call to costly run-time support routines.

The typeid operator

Instead of using the typeid operator, use a virtual function.

Such operator may take more time than a virtual function call.

The dynamic_cast operator

Instead of the dynamic_cast operator, use the typeid operator, or, better, a virtual
function call.

Such operator may take a time noticeably longer than a virtual function call, and longer
also than the typeid operator.

Empty exception specification

Use the empty exception specification (that is, append throw() to the declaration)
for the functions you are sure will never throw exceptions.

Some compilers use such information to simplify the bookkeeping needed to handle
exceptions.

The try/catch statement

For every bottleneck, move before the bottleneck the try keywords, and after the
bottleneck the matching catch clauses.

In other words, hoist try/catch statements out of bottlenecks.

The execution of a try/catch statement sometimes is free of charge, but other times
causes as a slowdown. Avoid the repeated execution of such block inside bottlenecks.

Floating point vs integer operations

If the target processor does not contain a floating point unit, replace floating
point functions, constants and variables with the corresponding integer
functions, constants and variables; if the target processor contains only a single
precision floating point unit, replace double functions, constants and variables
with their float correspondents.

Present processors for desktop or server computers contain dedicated hardware for
floating point arithmetic, both at single and at double precision, and therefore such

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

55 of 85 05/02/2012 03:38 PM

operations are almost as fast as their integer correspondents.

Instead, some processors for embedded systems do not contain dedicated hardware for
floating point arithmetic, or contain hardware able to handle only single precision
numbers. Therefore, in such systems, the operation that cannot be performed by
hardware are emulated by very slow library functions. In such case, it is much more
efficient to use integer arithmetic, or, if available in hardware, single precision floating
point arithmetic.

To handle fractional numbers by using integer operations, every number is to be meant
as multiplied by a scale factor. To do that, every number is multiplied by such factor at
input, and is divided by the same factor at output, or vice versa.

Number to string conversion

Use optimized functions to convert numbers to strings.

The standard functions to convert an integer number to a string or a floating point
number to string are rather inefficient. To speed up such operations, use non-standard
optimized function, possibly written by yourself.

Use of cstdio functions

To perform input/output operations, instead of using the C++ streams, use the
old C functions, declared in the cstdio header.

C++ I/O primitives have been designed mainly for type safety and for customization
rather than for performance, and many library implementation of them turn out to be
rather inefficient. In particular, the C language I/O functions fread and fwrite are more
efficient than the fstream read and write member functions.

If you have to use C++ streams, use "\n" instead of std::endl since std::endl also flushes
the stream.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

56 of 85 05/02/2012 03:38 PM

Instruction count
Even the language features that generate inlined code may have a significant cost, as
such instruction are anyway to be executed. In this section some techniques are
presented to decrease the total number of machine instructions that the processor will
have to execute to perform a given operation.

Cases order in switch statement

In switch statements, sort the cases by decreasing probability.

In the guideline "Cases order in switch statement" in section 3.1, it was already
suggested to put before the most typical cases, that is those that were presumed to be
more probable. As further optimization, you can count, in typical runs, the actual
number of times every case is chosen, and sort the cases from the most frequent to the
less frequent.

Template integer parameters

If an integer value is a constant in the application code, but is a variable in
library code, make it a template parameter.

Let's assume you are writing the following library function, in which both x and y do not
have a known value when the library is developed:

int f1(int x, int y) { return x * y; }

Such function may be called from the following application code, in which x does not
have a constant value, but y is the constant 4:

int a = f1(b, 4);

If, when you write the library, you know that the caller will surely pass a constant for the
argument y, you can transform your function into the following function template:

template <int Y> int f2(int x) { return x * Y; }

Such function may be called from the following application code:

int a = f2<4>(b);

Such a call instantiates automatically the following function:

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

57 of 85 05/02/2012 03:38 PM

int f2(int x) { return x * 4; }

The latter function is faster than the former function f1, for the following reasons:

Only one argument is passed to the function (x) instead of two (x and y).
The multiplication by an integer constant (4) is always faster than a multiplication
by an integer variable (y).
As the constant value (4) is a power of two, the compiler, instead of performing an
integer multiplication, performs a bit shift.

In general, the integer template parameters are constants for those who instantiate the
template and therefore for the compiler, and constants are handled more efficiently than
variables. In addition, some operations involving constants are pre-computed at
compilation-time.

If, instead of a normal function, you already have a function template, it is enough to
add a further parameter to that template.

The Curiously Recurring Template Pattern

If you have to write a library abstract base class such that in every algorithm in
the application code only one class derived from such base class will be used,
use the Curiously Recurring Template Pattern.

Let's assume you are writing the following library base class:

class Base {
public:
 void g() { f(); }
private:
 virtual void f() = 0;
};

In this class, the function g performs an algorithm that calls the function f as an abstract
operation for the algorithm. In design patterns terminology, g is a template method
design pattern. The purpose of such class is to allow to write the following application
code:

class Derived1: public Base {
private:
 virtual void f() { ... }
};
...
Base* p1 = new Derived1;
p1->g();

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

58 of 85 05/02/2012 03:38 PM

In such a case, it is possible to transform the previous library code into the following:

template <class Derived> class Base {
public:
 void g() { f(); }
private:
 void f() { static_cast<Derived*>(this)->f(); }
};

As a consequence, the application code will become the following:

class Derived1: public Base<Derived1> {
private:
 void f() { ... }
};
...
Derived1* p1 = new Derived1;
p1->g();

In such a way, the call to f in the function Base<Derived1>::g is statically bound to the
member function Derived1::f, that is the call to such function is no more virtual, and can
be inlined.

Though, let's assume you want to add the following definition:

class Derived2: public Base<Derived2> {
protected:
 void f() { ... }
};

With this technique it wouldn't be possible to define a pointer or a reference to a base
class that is common to both Derived1 and Derived2, as such base classes are two unrelated
types; as a consequence, this technique is not applicable when you want to allow the
application code to define a container of arbitrary objects derived from the class Base.

Other limitations are:

Base is necessarily an abstract type;
an object of type Derived1 cannot be converted into an object of type Derived2 or
vice versa;
for every derivation of Base, all the machine code generated for Base is duplicated.

The Strategy design pattern

If an object that implements the Strategy design pattern (aka Policy) is a
constant in every algorithm of the application code, eliminate such an object,

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

59 of 85 05/02/2012 03:38 PM

make static all its members, and add its class as a template parameter.

Let's assume you are writing the following library code, that implements the Strategy
design pattern:

class C;
class Strategy {
public:
 virtual bool is_valid(const C&) const = 0;
 virtual void run(C&) const = 0;
};

class C {
public:
 void set_strategy(const Strategy& s) { s_ = s; }
 void f() { if (s_.is_valid(*this)) s_.run(*this); }
private:
 Strategy s_;
};

This library code has the purpose to allow the following application code:

class MyStrategy: public Strategy {
public:
 virtual bool is_valid(const C& c) const { ... }
 virtual void run(C& c) const { ... }
};
...
MyStrategy s; // Object representing my strategy.
C c; // Object containing an algorithm with customizable strategy.
c.set_strategy(s); // Assignment of the custom strategy.
c.f(); // Execution of the algorithm with assigned strategy.

In such a case, it's possible to convert the previous library code into the following:

template <class Strategy>
class C {
public:
 void f() {
 if (Strategy::is_valid(*this)) Strategy::run(*this);
 }
};

As a consequence, the application code will become the following:

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

60 of 85 05/02/2012 03:38 PM

class MyStrategy {
public:
 static bool is_valid(const C<MyStrategy>& c) { ... }
 static void run(C<MyStrategy>& c) { ... }
};
...

C<MyStrategy> c; // Object with statically assigned strategy.
c.f(); // Execution with statically assigned strategy.

In such a way, the object-strategy is avoided, and the member functions
MyStrategy::is_valid and MyStrategy::run are statically bound, that is calls to virtual functions
are avoided.

Though, such solution does not allow to choose the strategy at run-time, and of course
neither to change it during the object life. In addition, the algorithm code is duplicated
for every instantiation of its class.

Bitwise operators

If you have to perform boolean operations on a set of bits, put those bits in an
unsigned int object, and use bitwise operators on it.

The bitwise operators (&, |, ^, <<, and >>) are translated in single fast instructions, and
operate on all the bits of a register in a single instruction.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

61 of 85 05/02/2012 03:38 PM

Constructions and destructions
Often it happens that, while processing an expression, a temporary object is created,
which is destroyed at the end of that expression. If such object is of a fundamental type,
almost always the compiler succeeds in avoiding its creation, and anyway the creation
and destruction of an object of a fundamental type are quite fast. Instead, if the object is
of a composite type, its creation and destruction have an unlimited cost, as they cause
the call of a constructor and the call of the destructor, that may take any time.

In this section some techniques are presented to avoid that composite temporary objects
are created, and therefore that their constructors and destructors are called.

Functions return value

For non-inlined functions, try to declare a return type for which an object copy
moves no more than 8 bytes. If unfeasible, at least construct the result object in
the return statement.

While compiling a non-inlined function, the compiler cannot know if the return value will
be used, and therefore it must generate it anyway. To generate and assign an object
whose copy moves no more than 8 bytes has little or no cost, but to generate and assign
more complex object takes time. If the temporary object owns resources, the taken time
is enormously bigger, but even without allocations, the taken time grows with the
number of machine words used by such object.

However, if the object to return is constructed in the return instructions themselves,
therefore without assigning such value to a variable, the language standard guarantees
an optimization called Return Value Optimization, that prevents the creation of
temporaries.

Some compilers succeeds to avoid creating temporaries, even when the returned object
is associated to a local variable (with the so-called Named Return Value Optimization),
but this is not generally guaranteed and has anyway some limitations. C++ FAQ
(http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.9)

To check whether one of the above optimizations is applied, increment a static container
in every constructor, destructor, and in assignment operators of the returned object
class. In case no optimization is applied, resort to one of the following alternative
techniques:

Make void the function return type, and add to it a passed-by-reference argument,
acting as return value.
Transform the function into a constructor of the return type, taking the same
function arguments.
Make the function return an object of an auxiliary type, that steals the resources
from the return object and passes them to the destination object, without copying
their contents.
Use an expression template, that is an advanced technique, part of the
programming paradigm called template metaprogramming.
If using the C++0x standard, use an rvalue reference.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

62 of 85 05/02/2012 03:38 PM

Moving declarations outside loops

If a variable is declared in the body of a loop, and an assignment to it costs less
than a construction plus a destruction, move that declaration before the loop.

If the variable is declared in the body of a loop, the associated object is constructed and
destructed at every iteration, while if it is outside the loop, such object is constructed
and destructed only once, but is presumably assigned one more time in the body of the
loop.

Though, in many cases, an assignment costs exactly as much as a pair
construction+destruction, and thus in such cases there is no gain in moving the
declaration outside the loop and adding an assignment inside.

Assignment operator

In an assignment operator overload (operator=), if you are sure that it will
never throw exceptions, copy every member variable, instead of using the
copy&swap idiom.

The most efficient way to copy an object is to imitate an appropriate initialization list of
a copy constructor, that is, first, to call the analogous member functions of the base
classes, and then to copy every member variable, in declaration order.

Unfortunately, such technique is not exception-safe, that is if during this operation an
exception is thrown, the destructors of some already constructed sub-objects could
never be called. Therefore, if there is the chance that during the copy an exception is
thrown, you must use an exception-safe technique, although it won't have optimal
performance.

The most elegant exception-safe assignment technique is the one called copy&swap. It
is exemplified by the following code, in which C represents the name of the class, and C a
member function to define:

C& C::operator=(C new_value) {
 swap(new_value);
 return *this;
}

Overload to avoid conversions

To avoid costly conversions, define overloaded functions for the most typical
argument types.

Let's assume you wrote the following function:

int f(const std::string& s) { return s[0]; }

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

63 of 85 05/02/2012 03:38 PM

whose purpose is to allows to write the following code:

std::string s("abc");
int n = f(s);

But it can be used also by the following code:

int n = f(string("abc"));

And, thanks to the implicit conversion from char* to std::string, it can be used also by the
following code:

int n = f("abc");

Both the last two calls to the f function are inefficient, as they create a temporary
non-empty std::string object.

To keep the efficiency of the first example call, you have to define also the following
function overload:

int f(const char* s) { return s[0]; }

In general, if a function is called by passing to it an argument of an unexpected type but
that can be implicitly converted to an expected type, a temporary of the expected type is
created.

To avoid such temporary object, you have to define an overload of the original function
that takes an argument of the type of the actual passed object, thus avoiding the need of
a conversion.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

64 of 85 05/02/2012 03:38 PM

Pipeline
The conditional jump machine language instructions (aka branches), may be generated
by many C++ language features, among which there are the if-else, for, while, do-while,
and switch-case statements, and by boolean and conditional expressions operators.

Modern processors handle branches efficiently only if they can predict them. In case of
prediction error, the steps already done by the pipeline on the following instructions are
useless and the processor must restart from the branch destination instruction.

The branch prediction is based on the previous iterations on the same instruction. If the
branches follow a regular pattern, the prediction are successful.

The best cases are those in which a branch instruction has always the same effect; in
such cases, the prediction is almost always correct. The worst case is that in which the
branch instruction has a random outcome, with about a 50% probability to jump; in such
case, the prediction in the average is correct half of the times, but it is not impossible
that it is always wrong.

In bottlenecks, the hard-to-predict branches should be avoided. If a branch is predicted
very badly, even replacing it with a rather slow sequence of instructions may result in a
speed up.

In this section, some techniques are presented to replace branches with equivalent
instructions.

Integer interval check

If you have to check whether an integer number i is between two integer
numbers min_i and max_i included, and you are sure that min_i <= max_i, use the
following expression:

unsigned(i – min_i) <= unsigned(max_i – min_i)

In the given conditions, the above formula is equivalent to the following, more intuitive
formula:

min_i <= i && i <= max_i

The former formula performs two differences and one comparison, while the latter
formula performs no difference and two comparisons. For pipelined processors,
comparisons are slower than differences, because they imply a branch.

In addition, if min_i is a constant expression with zero value, the two differences
disappear.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

65 of 85 05/02/2012 03:38 PM

In particular, to check whether an integer i is a valid index for an array of size elements,
that is to perform array bounds checking, use the following expression:

unsigned(i) < unsigned(size)

Obviously, if the expressions are already of an unsigned type, conversions are unneeded.

The binary look-up table

Instead of a conditional expression in which both cases are constants, use a
look-up table with two-places.

If you have a statement like the following, where c and d represent constant expressions,
and b represents a boolean expression:

a = b ? c : d;

that is equivalent to the following code:

if (b) a = c;
else a = d;

try to replace it with the following code, equivalent but perhaps faster:

static const type lookup_table[] = { d, c };
a = lookup_table[b];

The conditional expression is compiled into a branch. If such a branch is not well
predicted, it takes longer than the lookup-table.

This technique may be applied also to a sequence of conditional expressions. For
example, instead of the following code:

a = b1 ? c : b2 ? d : b3 ? e : f;

that is equivalent to the following code:

if (b1) a = c;
else if (b2) a = d;
else if (b3) a = e;
else a = f;

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

66 of 85 05/02/2012 03:38 PM

try to see if the following code is faster:

static const type lookup_table[] = { f, e, d, d, c, c, c, c };
a = lookup_table[b1 * 4 + b2 * 2 + b3];

Early address calculation

Try to calculate the value of a pointer or iterator somewhat before when you
need to access the referenced object.

For example, in a loop, the following statement:

a = *++p;

may be a bit less efficient than the following:

a = *p++;

In the first case, the value of the pointer or iterator is calculated just before it is used to
access the referenced object, while in the second case it is computed in the previous
iteration. In a pipelined processor, in the second case, the increment of the pointer may
be performed simultaneously with the access of the referenced object, while in the first
case the two operations must be serialized.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

67 of 85 05/02/2012 03:38 PM

Memory access
When the application accesses main memory, it implicitly uses both the various
processor caches and the disk swapping mechanism by the virtual memory manager of
the operating system.

Both the processor caches and the virtual memory manager process data block-wise,
and therefore the software is faster if the few memory blocks contain the code and the
data used by a single command. The principle that the data and the code processed by a
command should reside in near regions of memory is called locality of reference.

This principle becomes even more important for performance in multi-threaded
applications on multi-core systems, as if several threads running on different cores
access the same cache block, the contention causes a performance degradation.

In this section techniques are proposed to optimize usage of the processor caches and of
the virtual memory, by incrementing the locality of reference of code and data.

Nearing the code

Put near in the same compilation unit all the function definitions belonging to
the same bottleneck.

In such a way, the machine code generated by compiling such functions will have near
addresses, and so greater code locality of reference.

Another positive consequence is that the local static data declared and used by such
functions will have near addresses, and so greater data locality of reference.

unions

In medium or large arrays or collections, use unions.

unions allow to save memory space in variable type structures, and therefore to make
them more compact.

Though, don't use them for small or tiny objects, as there are no significant space gains,
and with some compilers the objects put in a union are not kept in processor registers.

Bit-fields

If a medium or large object contains several integer numbers with a small
range, transform them in bit-fields.

Bit-fields decrease the object size.

For example, instead of the following structure:

struct {

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

68 of 85 05/02/2012 03:38 PM

 bool b;
 unsigned short ui1, ui2, ui3; // range: [0, 1000]
};

that takes up 8 bytes, you can define the following structure:

struct {
 unsigned b: 1;
 unsigned ui1: 10, ui2: 10, ui3: 10; // range: [0, 1000]
};

that takes up only (1 + 10 + 10 + 10 = 31 bits, 31 <= 32) 4 bytes.

For another example, instead of the following array:

unsigned char a[5]; // range: [-20, +20]

that takes up 5 bytes, you can define the following structure:

struct {
 signed a1: 6, a2: 6, a3: 6, a4: 6, a5: 6; // range: [-20, +20]
};

that takes up only (6 + 6 + 6 + 6 + 6 = 30 bits, 30 <= 32) 4 bytes.

Though, there is a performance penalty in packing and unpacking the field. In addition,
in the last example, the field can no more be accessed by index.

Template code independent of parameters

If in a class template a non-trivial member function does not depend on any
template parameter, define a non-member function having the same body, and
replace the original function body with a call to the new function.

Let's assume you wrote the following code:

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

69 of 85 05/02/2012 03:38 PM

template <typename T>
class C {
public:
 C(): x_(0) { }
 int f(int i) { body(); return i; }
private:
 T x_;
};

Try to replace the above code with the following:

template <typename T>
class C {
public:
 C(): x_(0) { }
 void f(int i) { return f_(i); }
private:
 T x_;
};

void f_(int i) { body(); return i; }

For every instantiation of a class template that uses a function of that class template,
the whole code of the function is instantiated. If a function in that class template do not
depend on any template parameters, at every instantiation the function machine code is
duplicated. Such code replication bloats the program.

In a class template or in a function template, a big function could have a large part that
do not depend on any template parameters. In such a case, first, factor out such a code
portion as a distinct function, and then apply this guideline.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

70 of 85 05/02/2012 03:38 PM

Faster operations
Some elementary operations, even being conceptually as simple as others, are much
faster for the processor. A clever programmer can choose the faster instructions for the
job.

Though, every optimizing compiler is already able to choose the fastest instructions for
the target processor, and so some techniques are useless with some compilers.

In addition, some techniques may even worsen performance on some processors.

In this section some techniques are presented that may improve performance on some
compiler/processor combinations.

Structure fields order

Arrange the member variables of classes and structures in such a way that the
most used variables are in the first 128 bytes, and then sorted from the longest
object to the shortest.

If in the following structure the msg member is used only for error messages, while the
other members are used for computations:

struct {
 char msg[400];
 double d;
 int i;
};

you can speed up the computation by replacing the structure with the following one:

struct {
 double d;
 int i;
 char msg[400];
};

On some processors, the addressing of a member is more efficient if its distance from
the beginning of the structure is less than 128 bytes.

In the first example, to address the d and i fields using a pointer to the beginning of the
structure, an offset of at least 400 bytes is required.

Instead, in the second example, containing the same fields in a different order, the
offsets to address d and i are of few bytes, and this allows to use more compact
instructions.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

71 of 85 05/02/2012 03:38 PM

Now, let's assume you wrote the following structure:

struct {
 bool b;
 double d;
 short s;
 int i;
};

Because of fields alignment, it typically occupies 1 (bool) + 7 (padding) + 8 (double) + 2
(short) + 2 (padding) + 4 (int) = 24 bytes.

The following structure is obtained from the previous one by sorting the fields from the
longest to the shortest:

struct {
 double d;
 int i;
 short s;
 bool b;
};

It typically occupies 8 (double) + 4 (int) + 2 (short) + 1 (bool) + 1 (padding) = 16 bytes.
The sorting minimized the paddings (or holes) caused by the alignment requirements,
and so generates a more compact structure.

Floating point to integer conversion

Exploit non-standard routines to round floating point numbers to integer
numbers.

The C++ language do not provide a primitive operation to round floating point numbers.
The simplest technique to convert a floating point number x to the nearest integer
number n is the following statement:

n = int(floor(x + 0.5f));

Using such a technique, if x is exactly equidistant between two integers, n will be the
upper integer (for example, 0.5 generates 1, 1.5 generates 2, -0.5 generates 0, and -1.5
generates -1).

Unfortunately, on some processors (in particular, the Pentium family), such expression is
compiled in a very slow machine code. Some processors have specific instructions to
round numbers.

In particular, the Pentium family has the instruction fistp, that, used as in the following

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

72 of 85 05/02/2012 03:38 PM

code, gives much faster, albeit not exactly equivalent, code:

#if defined(__unix__) || defined(__GNUC__)
 // For 32-bit Linux, with Gnu/AT&T syntax
 __asm ("fldl %1 \n fistpl %0 " : "=m"(n) : "m"(x) : "memory");
#else
 // For 32-bit Windows, with Intel/MASM syntax
 __asm fld qword ptr x;
 __asm fistp dword ptr n;
#endif

The above code rounds x to the nearest integer, but if x is exactly equidistant between to
integers, n will be the nearest even integer (for example, 0.5 generates 0, 1.5 generates
2, -0.5 generates 0, and -1.5 generates -2).

If this result is tolerable or even desired, and you are allowed to use embedded
assembly, then use this code. Obviously, it is not portable to other processor families.

Integer numbers bit twiddling

Twiddle the bits of integer numbers exploiting your knowledge of their
representation.

A collection of hacks of this kind is here (http://www-graphics.stanford.edu/~seander
/bithacks.html) . Some of these tricks are actually already used by some compilers,
others are useful to solve rare problems, others are useful only on some platforms.

Floating point numbers bit twiddling

Twiddle the bits of floating point numbers exploiting your knowledge of their
representation.

For the most common operation, compilers generate already optimized code, but some
less common operation may become slightly faster if the bits are manipulated using
bitwise integer operators.

One of such operations is the multiplication or the division by a power of two. To
perform such operation, it is enough to add or subtract the exponent of the power of two
to the exponent part of the floating point number.

For example, given a variable f of type float, conforming to IEEE 754 format, and given
an integer positive expression n, instead of the following statement:

f *= pow(2, n);

you can use the following code:

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

73 of 85 05/02/2012 03:38 PM

if (*(int*)&f & 0x7FFFFFFF) { // if f==0 do nothing
 (int)&f += n << 23; // add n to the exponent
}

Array cells size

Ensure that the size (resulting from the sizeof operator) of non-large cells of
arrays or of vectors be a power of two, and that the size of large cells of arrays or
of vectors be not a power of two.

The direct access to an array cell is performed by multiplying the index by the cell size,
that is a constant. If the second factor of this multiplication is a power of two, such an
operation is much faster, as it is performed as a bit shift. Analogously, in
multidimensional arrays, all the sizes, except at most the first one, should be powers of
two.

This sizing is obtained by adding unused fields to structures and unused cells to arrays.
For example, if every cell is a 3-tuple of float objects, it is enough to add a fourth dummy
float object to every cell.

Though, when accessing the cells of a multidimensional array in which the last
dimension is an enough large power of two, you can drop into the data cache contention
phenomenon (aka data cache conflict), that may slow down the computation by a factor
of 10 or more. This phenomenon happens only when the array cells exceed a certain
size, that depends on the data cache, but is about 1 to 8 KB. Therefore, in case an
algorithm has to process an array whose cells have or could have as size a power of two
greater or equal to 1024 bytes, first, you should detect if the data cache contention
happens, e in such a case you should avoid such phenomenon.

For example, a matrix of 100 x 512 float objects is an array of 100 arrays of 512 floats.
Every cell of the first-level array has a size of 512 x 4 = 2048 bytes, and therefore it is at
risk of data cache contention.

To detect the contention, it is enough to add an elementary cell (a float) to every to
every last-level array, but keeping to process the same cells than before, and measure
whether the processing time decrease substantially (by at least 20%). In such a case,
you have to ensure that such improvement be stabilized. For that goal, you can employ
one of the following techniques:

Add one or more unused cells at the end of every last-level array. For example, the
array double a[100][1024] could become double a[100][1026], even if the computation will
process such an array up to the previous sizes.
Keep the array sizes, but partition it in rectangular blocks, and process all the cells
in one block at a time.

Prefix vs. Postfix Operators

Prefer prefix operators over postfix operators.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

74 of 85 05/02/2012 03:38 PM

When dealing with primitive types, the prefix and postfix arithmetic operations are likely
to have identical performance. With objects, however, postfix operators can cause the
object to create a copy of itself to preserve its initial state (to be returned as a result of
the operation), as well as causing the side-effect of the operation. Consider the following
example:

class IntegerIncreaser
{
 int m_Value;

public:
 /* Postfix operator. */
 IntegerIncreaser operator++ (int) {
 IntegerIncreaser tmp (*this);

 ++m_Value;
 return tmp;
 };

 /* Prefix operator. */
 void operator++ () {
 ++m_Value;
 };
};

Because the postfix operators are required to return an unaltered version of the value
being incremented (or decremented) — regardless of whether the result is actually
being used — they will most likely make a copy. STL iterators (for example) are more
efficient when altered with the prefix operators.

Explicit inlining

If you don't use the compiler options of whole program optimization and to
allow the compiler to inline any function, try to move to the header files the
functions called in bottlenecks, and declare them inline.

As explained in the guideline "Inlined functions" in section 3.1, every inlined function is
faster, but many inlined functions slow down the whole program.

Try to declare inline a couple of functions at a time, as long as you get significant speed
improvements (at least 10%) in a single command.

Operations with powers of two

If you have to choose an integer constant by which you have to multiply or
divide often, choose a power of two.

The multiplication, division, and modulo operations between integer numbers are much

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

75 of 85 05/02/2012 03:38 PM

faster if the second operand is a constant power of two, as in such case they are
implemented as bit shifts or bit maskings.

Integer division by a constant

When you divide an integer (that is known to be positive or zero) by a constant,
convert the integer to unsigned.

If s is a signed integer, u is an unsigned integer, and C is a constant integer expression
(positive or negative), the operation s / C is slower than u / C, and s % C is slower than u %
C. This is most significant when C is a power of two, but in all cases, the sign must be
taken into account during division.

The conversion from signed to unsigned, however, is free of charge, as it is only a
reinterpretation of the same bits. Therefore, if s is a signed integer that you know to be
positive or zero, you can speed up its division using the following (equivalent)
expressions: (unsigned)s / C and (unsigned)s % C.

Processors with reduced data bus

If the data bus of the target processor is smaller than the processor registers, if
possible, use integer types not larger than the data bus for all the variables
except for function parameters and for the most used local variables.

The types int and unsigned int are the most efficient, after they have been loaded in
processor registers. Though, with some processor families, they could not be the most
efficient type to access in memory.

For example, there are processors having 16-bit registers, but an 8-bit data bus, and
other processors having 32-bit registers, but 16-bit data bus. For processors having the
data bus smaller than the internal registers, usually the types int and unsigned int match
the size of the registers.

For such systems, loading and storing in memory an int object takes a longer time than
that taken by an integer not larger than the data bus.

The function arguments and the most used local variables are usually allocated in
registers, and therefore do not cause memory access.

Rearrange an array of structures as several arrays

Instead of processing a single array of aggregate objects, process in parallel
two or more arrays having the same length.

For example, instead of the following code:

const int n = 10000;
struct { double a, b, c; } s[n];
for (int i = 0; i < n; ++i) {

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

76 of 85 05/02/2012 03:38 PM

 s[i].a = s[i].b + s[i].c;
}

the following code may be faster:

const int n = 10000;
double a[n], b[n], c[n];
for (int i = 0; i < n; ++i) {
 a[i] = b[i] + c[i];
}

Using this rearrangement, "a", "b", and "c" may be processed by array processing
instructions that are significantly faster than scalar instructions. This optimization may
have null or adverse results on some (simpler) architectures.

GNU Free Documentation License
Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free
Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

77 of 85 05/02/2012 03:38 PM

placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
"you". You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

78 of 85 05/02/2012 03:38 PM

pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to
the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

79 of 85 05/02/2012 03:38 PM

onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

A.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

B.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

C.

Preserve all the copyright notices of the Document.D.
Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

E.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

F.

Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

G.

Include an unaltered copy of this License.H.
Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

I.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

80 of 85 05/02/2012 03:38 PM

Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

J.

For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

K.

Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the
section titles.

L.

Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified version.

M.

Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

N.

Preserve any Warranty Disclaimers.O.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

81 of 85 05/02/2012 03:38 PM

Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

82 of 85 05/02/2012 03:38 PM

include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version"
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

83 of 85 05/02/2012 03:38 PM

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means
any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

How to use this License for your
documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

84 of 85 05/02/2012 03:38 PM

Retrieved from "http://en.wikibooks.org/w/index.php?title=Optimizing_C%2B%2B
/Print_Version&oldid=2096369"

This page was last modified on 16 May 2011, at 22:17.
Text is available under the Creative Commons Attribution-ShareAlike License;
additional terms may apply. See Terms of Use for details.

Optimizing C++/Print Version - Wikibooks, open books fo... http://en.wikibooks.org/wiki/Optimizing_C++/Print_Version

85 of 85 05/02/2012 03:38 PM

