
Linux Applications Debugging
Techniques/Print Version

Linux Applications
Debugging
Techniques

Current, editable version of this book is available in Wikibooks, collection of
open-content textbooks at URL:

http://en.wikibooks.org/wiki/Linux_Applications_Debugging_Techniques

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the

Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

Documentation License".

Preamble

A hands-on guide to debugging applications under Linux, aiming to ease your life as a
debugging dog. Applicable to other Unices as well, as long as the tools are available on
the target platform.

Authors

Aurelian Melinte

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

1 of 68 05/02/2012 03:44 PM

Table of Contents

The debugger1.
The dynamic linker2.
Core files3.
The call stack4.
The interposition library5.
Memory issues

Leaks1.
Heap corruption2.
Stack corruption3.

6.

Deadlocks7.
Race conditions8.
Resource leaks9.
Aiming for and measuring performance10.
Appendices11.
References and further reading12.

Not a book title page. Please remove {{alphabetical}} from this page.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

2 of 68 05/02/2012 03:44 PM

The debugger

Preparations

A few preparations to ease the debugging trip:

Have a "symbol server"
Ship gdbserver with the application for remote debugging
Embed a breakpoint in the code, at the place of interest, then

Start the application
Attach to it with the debugger
Wait until the breakpoint is hit

The "symbol server"

One way to easily reach the right code from within the debugger is to build the binaries
within an auto-mounted folder, each build in its own sub-folder. The same auto-mount
share should be accessible from the machine you are debugging on.

Export the folder: edit /etc/exports
As root (RedHat): service autofs start
cd /net/<machine>/path/to/make && make

Embedding breakpoints in the source

On x86 platforms:

#define EMBEDDED_BREAKPOINT asm volatile ("int3;")

Or a more elaborate one:

#define EMBEDDED_BREAKPOINT \
 asm("0:" \
 ".pushsection embed-breakpoints;" \
 ".quad 0b;" \
 ".popsection;")

References

http://mainisusuallyafunction.blogspot.com/2012/01/embedding-gdb-breakpoints-
in-c-source.html

Attaching to a process

Find out the PID of the process, then:

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

3 of 68 05/02/2012 03:44 PM

GDB TUI

(gdb) attach 1045
Attaching to process 1045
Reading symbols from /usr/lib64/firefox-3.0.18/firefox...(no debugging symbols found
Reading symbols from /lib64/libpthread.so.0...(no debugging symbols found
[Thread debugging using libthread_db enabled]
[New Thread 0x448b4940 (LWP 1063)]
[New Thread 0x428b0940 (LWP 1054)]
....
(gdb) detach

The text user interface

GDB features a text user interface for code, disassembler
and registers. For instance:

Ctrl-x 1 will show the code pane
Ctrl-x a will hide the TUI panes

References

http://sourceware.org/gdb/onlinedocs/gdb/TUI.html

Remote debugging

On the machine where the application runs (appmachine):
If gdbserver is not present , copy it over.
Start the application.
Start gdbserver: gdbserver gdbmachine:2345 --attach program

On gdbmachine:
At the gdb prompt, enter: target remote appmachine:2345

Sometimes you may have to tunnel over ssh:

On gdbmachine:
ssh -L 5432:appmachine:2345 user@appmachine

At the gdb prompt: target remote localhost:5432

References

GDB Tunneling (http://www.cucy.net/lacp/archives/000024.html)

C++ support

Canned gdb macros:

gdb STL support (http://sourceware.org/gdb/wiki/STLSupport)
STL macros (and more) (http://www.yolinux.com/TUTORIALS
/GDB-Commands.html#STLDEREF)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

4 of 68 05/02/2012 03:44 PM

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

5 of 68 05/02/2012 03:44 PM

The dynamic linker

Dependencies

ldd -d -r /path/to/binary

A script to visualize libraries and their dependencies.
(http://domseichter.blogspot.com/2008/02/visualize-dependencies-of-binaries-
and.html)

Resolved symbols

To find out which dynamic library is a symbol coming from:

$ LD_DEBUG_OUTPUT=sym.log LD_DEBUG=bindings /bin/ls

$ cat sym.log.7688 | grep malloc
 7688: binding file /lib/i686/cmov/libc.so.6 [0] to /lib/i686/cmov
 7688: binding file /lib/i686/cmov/libc.so.6 [0] to /bin/ls [0]: normal symb
 7688: binding file /lib/i686/cmov/libc.so.6 [0] to /lib/i686/cmov
 7688: binding file /lib/ld-linux.so.2 [0] to /lib/i686/cmov/libc.so.6 [0]:
 7688: binding file /lib/i686/cmov/libc.so.6 [0] to /lib/i686/cmov
 7688: binding file /bin/ls [0] to /lib/i686/cmov/libc.so.6 [0]: normal symb

$ LD_DEBUG=help /bin/ls
Valid options for the LD_DEBUG environment variable are:

 libs display library search paths
 reloc display relocation processing
 files display progress for input file
 symbols display symbol table processing
 bindings display information about symbol binding
 versions display version dependencies
 all all previous options combined
 statistics display relocation statistics
 unused determined unused DSOs
 help display this help message and exit

To direct the debugging output into a file instead of standard output
a filename can be specified using the LD_DEBUG_OUTPUT environment variable.

References

man 8 ld.so

libc symbols visibility & linking (http://www.technovelty.org/linux/libc-symbol-
visibility.html)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

6 of 68 05/02/2012 03:44 PM

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

7 of 68 05/02/2012 03:44 PM

Core files
A core dump is a snaphot of the memory of the program, processor registers including
program counter and stack pointer and other OS and memory management information,
taken at a certain point in time. As such, they are invaluable for capturing the state of
rare occurring races and abnormal conditions. One can force a core dump from within
the program or from outside at chosen moments. What a core cannot tel is how the
application ended up in that state: the core is no replacement for a good log.

Prerequisites

For a process to be able to dump core, a few prerequisites have to be met:

the set core size limit should permit it (see the man page for ulimit). E.g.: ulimit -c
unlimited

the process to dump core should have write permissions to the folder where the
core is to be dumped to (usually the current working directory of the process)

Where is my core?

Usually the core is dumped in the current working directory of the process. But the OS
can be configured otherwise:

cat /proc/sys/kernel/core_pattern
%h-%e-%p.core

sysctl -w "kernel.core_pattern=/var/cores/%h-%e-%p.core"

Dumping core from outside the program

One possibility is with gdb, if available. This will let the program running:

(gdb) attach <pid>
(gdb) generate-core-file <optional-filename>
(gdb) detach

Another possibility is to signal the process. This will terminate it, assuming the signal is
not caught by a custom signal handler:

kill -s SIGABRT <pid>

Dumping core from within the program

Again, there are two possibilities: dump core and terminate the program or dump and

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

8 of 68 05/02/2012 03:44 PM

continue:

void dump_core_and_terminate(void)
{
 abort();
}

void dump_core_and_continue(void)
{
 pid_t child = fork();
 if (child < 0) {
 /*Parent: error*/
 }
 else if (child == 0) {
 dump_core_and_terminate(); /*Child*/
 }
 else {
 /*Parent: continue*/
 }
}

Shared libraries

To obtain a good call stack, it is important that the gdb loads the same libraries that
were loaded by the program that generated the core dump. If the machine we are
analyzing the core has different libraries (or has them in different places) from the
machine the core was dumped, then copy over the libraries to the analyzing machine, in
a way that mirrors the dump machine. For instance:

$ tree .
.
|-- juggler-29964.core
|-- lib64
| |-- ld-linux-x86-64.so.2
| |-- libc.so.6
| |-- libm.so.6
| |-- libpthread.so.0
| `-- librt.so.1
...

At the gdb prompt:

(gdb) set solib-absolute-prefix ./
(gdb) set solib-search-path .
(gdb) file ../../../../../threadpool/bin.v2/libs/threadpool/example/juggler
Reading symbols from /home/aurelian_melinte/threadpool/threadpool-0_2_5-src

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

9 of 68 05/02/2012 03:44 PM

(gdb) core-file juggler-29964.core
Reading symbols from ./lib64/librt.so.1...(no debugging symbols found)...done.
Loaded symbols for ./lib64/librt.so.1
Reading symbols from ./lib64/libm.so.6...(no debugging symbols found)...done.
Loaded symbols for ./lib64/libm.so.6
Reading symbols from ./lib64/libpthread.so.0...(no debugging symbols found
Loaded symbols for ./lib64/libpthread.so.0
Reading symbols from ./lib64/libc.so.6...(no debugging symbols found)...done.
Loaded symbols for ./lib64/libc.so.6
Reading symbols from ./lib64/ld-linux-x86-64.so.2...(no debugging symbols found
Loaded symbols for ./lib64/ld-linux-x86-64.so.2
Core was generated by `../../../../bin.v2/libs/threadpool/example/juggler
Program terminated with signal 6, Aborted.
#0 0x0000003684030265 in raise () from ./lib64/libc.so.6
(gdb) frame 2
#2 0x0000000000404ae1 in dump_core_and_terminate () at juggler.cpp:30

analyze-cores

Here is a script that will generate a basic report per core file. Useful the days when
cores are raining on you:

#!/bin/bash

#
A script to extract core-file informations
#

if [$# -ne 1]
then
 echo "Usage: `basename $0` <for-binary-image>"
 exit -1
else
 binimg=$1
fi

Today and yesterdays cores
cores=`find . -name '*.core' -mtime -1`

#cores=`find . -name '*.core'`

for core in $cores
do
 gdblogfile="$core-gdb.log"
 rm $gdblogfile

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

10 of 68 05/02/2012 03:44 PM

 bininfo=`ls -l $binimg`
 coreinfo=`ls -l $core`

 gdb -batch \
 -ex "set logging file $gdblogfile" \
 -ex "set logging on" \
 -ex "set pagination off" \
 -ex "printf \"**\n** Process info for $binimg - $core \n** Generated
 -ex "printf \"**\n** $bininfo \n** $coreinfo\n**\n\"" \
 -ex "file $binimg" \
 -ex "core-file $core" \
 -ex "bt" \
 -ex "info proc" \
 -ex "printf \"*\n* Libraries \n*\n\"" \
 -ex "info sharedlib" \
 -ex "printf \"*\n* Memory map \n*\n\"" \
 -ex "info target" \
 -ex "printf \"*\n* Registers \n*\n\"" \
 -ex "info registers" \
 -ex "printf \"*\n* Current instructions \n*\n\"" -ex "x/16i \$pc" \
 -ex "printf \"*\n* Threads (full) \n*\n\"" \
 -ex "info threads" \
 -ex "bt" \
 -ex "thread apply all bt full" \
 -ex "printf \"*\n* Threads (basic) \n*\n\"" \
 -ex "info threads" \

-ex "thread apply all bt" \
 -ex "printf \"*\n* Done \n*\n\"" \
 -ex "quit"
done

Canned user-defined commands

Same reporting functionality can be canned for gdb:

define procinfo
 printf "**\n** Process Info: \n**\n"
 info proc

 printf "*\n* Libraries \n*\n"
 info sharedlib

 printf "*\n* Memory Map \n*\n"
 info target

 printf "*\n* Registers \n*\n"
 info registers

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

11 of 68 05/02/2012 03:44 PM

 printf "*\n* Current Instructions \n*\n"
 x/16i $pc

 printf "*\n* Threads (basic) \n*\n"
 info threads
 thread apply all bt
end
document procinfo
Infos about the debugee.
end

define analyze
 procinfo

 printf "*\n* Threads (full) \n*\n"
 info threads
 bt
 thread apply all bt full
end

analyze-pid

A script that will generate a basic report and a core file for a running process:

#!/bin/bash

#
A script to generate a core and a status report for a running process.
#

if [$# -ne 1]
then
 echo "Usage: `basename $0` <PID>"
 exit -1
else
 pid=$1
fi

gdblogfile="analyze-$pid.log"
rm $gdblogfile

corefile="core-$pid.core"

gdb -batch \
 -ex "set logging file $gdblogfile" \

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

12 of 68 05/02/2012 03:44 PM

 -ex "set logging on" \
 -ex "set pagination off" \
 -ex "printf \"**\n** Process info for PID=$pid \n** Generated `date`
 -ex "printf \"**\n** Core: $corefile \n**\n\"" \
 -ex "attach $pid" \
 -ex "bt" \
 -ex "info proc" \
 -ex "printf \"*\n* Libraries \n*\n\"" \
 -ex "info sharedlib" \
 -ex "printf \"*\n* Memory map \n*\n\"" \
 -ex "info target" \
 -ex "printf \"*\n* Registers \n*\n\"" \
 -ex "info registers" \
 -ex "printf \"*\n* Current instructions \n*\n\"" -ex "x/16i \$pc" \
 -ex "printf \"*\n* Threads (full) \n*\n\"" \
 -ex "info threads" \
 -ex "bt" \
 -ex "thread apply all bt full" \
 -ex "printf \"*\n* Threads (basic) \n*\n\"" \
 -ex "info threads" \
 -ex "thread apply all bt" \
 -ex "printf \"*\n* Done \n*\n\"" \
 -ex "generate-core-file $corefile" \
 -ex "detach" \
 -ex "quit"

Thread Local Storage

TLS data is rather difficult to access with gdb in the core files, and __tls_get_addr() cannot
be called.

References

__thread variables (http://www.technovelty.org/linux/thread-variable-debug.html)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

13 of 68 05/02/2012 03:44 PM

The call stack
Sometimes we need the call stack at a certain point in the program. These are the API
functions to get basic stack information:

#include <execinfo.h>

int backtrace(void **buffer, int size);
char **backtrace_symbols(void *const *buffer, int size);
void backtrace_symbols_fd(void *const *buffer, int size, int fd);

#include <cxxabi.h>
char* __cxa_demangle(const char* __mangled_name, char* __output_buffer,

#include <dlfcn.h>
int dladdr(void *addr, Dl_info *info);

Notes:

C++ symbols are still mangled. Use abi::__cxa_demangle() (http://gcc.gnu.org
/onlinedocs/libstdc++/manual/ext_demangling.html) or something similar.
Some of the these functions do allocate memory - either temporarily either
explicitly - and this might be a problem if the program is instable already.
Some of the these functions do acquire locks (e.g. dladdr()).
Compile with -rdynamic
Link with -ldl

To extract more information, use libbfd.

class call_stack
{
public:

 static const int depth = 40;
 typedef std::array<void *, depth> stack_t;

 class const_iterator;
 class frame
 {
 public:

 frame(void *addr = 0)
 : _addr(0)
 , _dladdr_ret(false)
 , _binary_name(0)
 , _func_name(0)
 , _demangled_func_name(0)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

14 of 68 05/02/2012 03:44 PM

 , _delta_sign('+')
 , _delta(0L)
 , _source_file_name(0)
 , _line_number(0)
 {
 resolve(addr);
 }

 // frame(stack_t::iterator& it) : frame(*it) {} //C++0x
 frame(stack_t::const_iterator const& it)
 : _addr(0)
 , _dladdr_ret(false)
 , _binary_name(0)
 , _func_name(0)
 , _demangled_func_name(0)
 , _delta_sign('+')
 , _delta(0L)
 , _source_file_name(0)
 , _line_number(0)
 {
 resolve(*it);
 }

 frame(frame const& other)
 {
 resolve(other._addr);
 }

 frame& operator=(frame const& other)
 {
 if (this != &other) {
 resolve(other._addr);
 }
 return *this;
 }

 ~frame()
 {
 resolve(0);
 }

 std::string to_string() const
 {
 std::ostringstream s;
 s << "[" << std::hex << _addr << "] "
 << demangled_function()
 << " (" << binary_file() << _delta_sign << "0x" << std::hex
 << " in " << source_file() << ":" << line_number()
 ;
 return s.str();

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

15 of 68 05/02/2012 03:44 PM

 }

 const void* addr() const { return _addr; }
 const char* binary_file() const { return safe(_binary_name
 const char* function() const { return safe(_func_name)
 const char* demangled_function() const { return safe(_demangled_func_name
 char delta_sign() const { return _delta_sign; }
 long delta() const { return _delta; }
 const char* source_file() const { return safe(_source_file_name
 int line_number() const { return _line_number; }

 private:

 const char* safe(const char* p) const { return p ? p : "??"; }

 friend class const_iterator; // To call resolve()
 void resolve(const void * addr)
 {
 if (_addr == addr)
 return;

 _addr = addr;
 _dladdr_ret = false;
 _binary_name = 0;
 _func_name = 0;
 if (_demangled_func_name) {
 free(_demangled_func_name);
 _demangled_func_name = 0;
 }
 _delta_sign = '+';
 _delta = 0L;
 _source_file_name = 0;
 _line_number = 0;

 if (!_addr)
 return;

 _dladdr_ret = (::dladdr(_addr, &_info) != 0);
 if (_dladdr_ret)
 {
 _binary_name = safe(_info.dli_fname);
 _func_name = safe(_info.dli_sname);
 _delta_sign = (_addr >= _info.dli_saddr) ? '+' : '-';
 _delta = ::labs(static_cast<const char *>(_addr) - static_cast

 int status = 0;
 _demangled_func_name = abi::__cxa_demangle(_func_name,
 }
 }

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

16 of 68 05/02/2012 03:44 PM

 private:

 const void* _addr;
 const char* _binary_name;
 const char* _func_name;
 const char* _demangled_func_name;
 char _delta_sign;
 long _delta;
 const char* _source_file_name; //TODO: libbfd
 int _line_number;

 Dl_info _info;
 bool _dladdr_ret;
 }; //frame

 class const_iterator
 : public std::iterator< std::bidirectional_iterator_tag
 , ptrdiff_t
 >
 {
 public:

 const_iterator(stack_t::const_iterator const& it)
 : _it(it)
 , _frame(it)
 {}

 bool operator==(const const_iterator& other) const
 {
 return _frame.addr() == other._frame.addr();
 }

 bool operator!=(const const_iterator& x) const
 {
 return !(*this == x);
 }

 const frame& operator*() const
 {
 return _frame;
 }
 const frame* operator->() const
 {
 return &_frame;
 }

 const_iterator& operator++()
 {
 ++_it;

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

17 of 68 05/02/2012 03:44 PM

 _frame.resolve(*_it);
 return *this;
 }
 const_iterator operator++(int)
 {
 const_iterator tmp = *this;
 ++_it;
 _frame.resolve(*_it);
 return tmp;
 }

 const_iterator& operator--()
 {
 --_it;
 _frame.resolve(*_it);
 return *this;
 }
 const_iterator operator--(int)
 {
 const_iterator tmp = *this;
 --_it;
 _frame.resolve(*_it);
 return tmp;
 }

 private:

 const_iterator();

 private:

 frame _frame;
 stack_t::const_iterator _it;
 }; //const_iterator

 call_stack() : _num_frames(0)
 {
 _num_frames = ::backtrace(_stack.data(), depth);
 assert(_num_frames >= 0 && _num_frames <= depth);
 }

 std::string to_string()
 {
 std::string s;
 const_iterator itEnd = end();
 for (const_iterator it = begin(); it != itEnd; ++it) {
 s += it->to_string();
 s += "\n";
 }

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

18 of 68 05/02/2012 03:44 PM

 return std::move(s);
 }

 virtual ~call_stack()
 {
 }

 const_iterator begin() const { return _stack.cbegin(); }
 const_iterator end() const { return stack_t::const_iterator(&_stack

private:

 stack_t _stack;
 int _num_frames;
};

A canned command to resolve a stack address from within gdb:

define addrtosym
 if $argc == 1
 printf "[%u]: ", $arg0
 #whatis/ptype EXPR
 #info frame ADDR
 info symbol $arg0
 end
end
document addrtosym
Resolve the address (e.g. of one stack frame). Usage: addrtosym addr0
end

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

19 of 68 05/02/2012 03:44 PM

The interposition library
The dynamic liker allows for interception of any function call an application makes to
any shared library it uses. As such, interposition is a powerful technique allowing to
tune performance, collect runtime statistics, or debug the application without having to
instrument the code of that application.

As an example, we can use an interposition library to trace calls, with arguments' values
and return codes.

Call tracing

Note that part of code below is 32-bit x86 and gcc 4.1/4.2 specific.

Code intrumentation

In the library, we want to address the following points:

when a function/method is entered and exited.
what were the call arguments when the function is entered.
what was the return code when the function is exited.
optionally, where was the function called from.

The first one is easy: if requested, the compiler will instrument functions and methods
so that when a function/method is entered, a call to an instrumentation function is made
and when the function is exited, a similar intrumentation call is made:

 void __cyg_profile_func_enter(void *func, void *callsite);
 void __cyg_profile_func_exit(void *func, void *callsite);

This is achieved by compiling the code with the -finstrument-functions flag. The above two
functions can be used for instance to collect data for coverage; or for profiling. We will
use them to print a trace of function calls. Furthermore, we can isolate these two
functions and the supporting code in an interposition library of our own. This library can
be loaded when and if needed, thus leaving the application code basically unchanged.

Now when the function is entered we can get the arguments of the call:

 void __cyg_profile_func_enter(void *func, void *callsite)
 {
 char buf_func[CTRACE_BUF_LEN+1] = {0};
 char buf_file[CTRACE_BUF_LEN+1] = {0};
 char buf_args[ARG_BUF_LEN + 1] = {0};
 pthread_t self = (pthread_t)0;
 int *frame = NULL;
 int nargs = 0;

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

20 of 68 05/02/2012 03:44 PM

 self = pthread_self();
 frame = (int *)__builtin_frame_address(1); /*of the 'func'*/

 /*Which function*/
 libtrace_resolve (func, buf_func, CTRACE_BUF_LEN, NULL, 0);

 /*From where. KO with optimizations. */
 libtrace_resolve (callsite, NULL, 0, buf_file, CTRACE_BUF_LEN);

 nargs = nchr(buf_func, ',') + 1; /*Last arg has no comma after*/
 nargs += is_cpp(buf_func); /*'this'*/
 if (nargs > MAX_ARG_SHOW)
 nargs = MAX_ARG_SHOW;

 printf("T%p: %p %s %s [from %s]\n",
 self, (int*)func, buf_func,
 args(buf_args, ARG_BUF_LEN, nargs, frame),
 buf_file);
 }

And when the function is is exited, we get the return value:

 void __cyg_profile_func_exit(void *func, void *callsite)
 {
 long ret = 0L;
 char buf_func[CTRACE_BUF_LEN+1] = {0};
 char buf_file[CTRACE_BUF_LEN+1] = {0};
 pthread_t self = (pthread_t)0;

 GET_EBX(ret);
 self = pthread_self();

 /*Which function*/
 libtrace_resolve (func, buf_func, CTRACE_BUF_LEN, NULL, 0);

 printf("T%p: %p %s => %d\n",
 self, (int*)func, buf_func,
 ret);

 SET_EBX(ret);
 }

Since these two instrumentation functions are aware of addresses and we actually want
the trace to be readable by humans, we need also a way to resolve symbol addresses to
symbol names: this is what libtrace_resolve() does.

Binutils and libbfd

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

21 of 68 05/02/2012 03:44 PM

First, we have to have the symbols information handy. To achieve this, we compile our
application with the -g flag. Then, we can map addresses to symbol names and this
would normally require writing some code knowledgeable of the ELF format.

Luckily, the there is the binutils package which comes with a library that does just that:
libbfd; and with a tool: addr2line. addr2line is a good example on how to use libbfd and I
have simply used it to wrap around libbfd. The result is the libtrace_resolve() function.

Since the instrumentation functions are isolated in a stand-alone module, we tell this
module the name of the instrumented executable through an environment variable
(CTRACE_PROGRAM) that we set before running the program. This is needed to
properly init libbfd to search for symbols.

Stack layout

To address the first point the work has been architecture-agnostic (actually libbfd is
aware of the architecture, but things are hidden behind its API). However, to retrieve
function arguments and return values we have to look at the stack, write a bit of
architecture-specific code and exploit some gcc quirks. Again, the compilers I have used
were gcc 4.1 and 4.2; later or previous versions might work differently. In short:

x86 dictates that stack grows down.
GCC dictates how the stack is used - a "typical" stack is depicted below.
each function has a stack frame marked by the ebp (base pointer) and esp (stack
pointer) registers.
normally, we expect the eax register to contain the reurn code

 \
 +------------+ |
 | arg 2 | \
 +------------+ >- previous function's stack frame
 | arg 1 | /
 +------------+ |
 | ret %eip | /
 +============+
 | saved %ebp | \
 %ebp-> +------------+ |
 | | |
 | local | \
 | variables, | >- current function's stack frame
 | etc. | /
 | | |
 | | |
 %esp-> +------------+ /

In an ideal world, the code the compiler generates would make sure that upon
instrumenting the exit of a function: the return value is set, then CPU registers pushed
on the stack (to ensure the instrumentation function does not affects them), then call the
instrumentation function and then pop the registers. This sequence of code would
ensure we always get access to the

return value in the instrumentation function. The code generated by the compiler is a bit different...

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

22 of 68 05/02/2012 03:44 PM

Also, in practice, many of gcc's flags affect the stack layout and registers usage. The
most obvious ones are:

-fomit-frame-pointer. This flag affects the stack offset where the arguments are to
be found.
The optimization flags: -Ox; each of these flags aggregates a number of
optimizations. These flags did not affected the stack, and, quite amazingly,
arguments were always passsed to functions through the stack, regardless of the
optimization level. One would have expected that some arguments would pe passed
through registers - in which case getting these arguments would have proven to be
difficult to impossible. However, these flags did complicated recovering the return
code. However, on some architectures, these flags will suck in the -fomit-frame-
pointer optimization.

In any case, be wary: other flags you use to compile your application may reserve
surprises.

Function arguments

In my tests with the compilers, all arguments were invariably passed through the stack.
Hence this is trivial business, affected to a small extent by the -fomit-frame-pointer flag -
this flag will change the offset at which arguments start.

How many arguments a function has, how many arguments are on the stack? One way
to infer somehow the number of arguments is based on its signature (for C++, beware
of the 'this' hidden argument) and this is the technique used in
__cyg_profile_func_enter().

Once we know the offset where arguments start on the stack and how many of them
there are, we just walk the stack to retrieve their values:

 char *args(char *buf, int len, int nargs, int *frame)
 {
 int i;
 int offset;

 memset(buf, 0, len);

 snprintf(buf, len, "(");
 offset = 1;
 for (i=0; i<nargs && offset<len; i++) {
 offset += snprintf(buf+offset, len-offset, "%d%s",
 *(frame+ARG_OFFET+i),
 i==nargs-1 ? " ...)" : ", ");
 }

 return buf;
 }

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

23 of 68 05/02/2012 03:44 PM

Function return values

Obtaining the return value proved to be possible only when using the -O0 flag.

Let's look what happens when this method

 class B {
 ...
 virtual int m1(int i, int j) {printf("B::m1()\n"); f1(i); return
 ...
 };

is instrumented with -O0:

 080496a2 <_ZN1B2m1Eii>:
 80496a2: 55 push %ebp
 80496a3: 89 e5 mov %esp,%ebp
 80496a5: 53 push %ebx
 80496a6: 83 ec 24 sub $0x24,%esp
 80496a9: 8b 45 04 mov 0x4(%ebp),%eax
 80496ac: 89 44 24 04 mov %eax,0x4(%esp)
 80496b0: c7 04 24 a2 96 04 08 movl $0x80496a2,(%esp)
 80496b7: e8 b0 f4 ff ff call 8048b6c <__cyg_profile_func_enter@plt>
 80496bc: c7 04 24 35 9c 04 08 movl $0x8049c35,(%esp)
 80496c3: e8 b4 f4 ff ff call 8048b7c <puts@plt>
 80496c8: 8b 45 0c mov 0xc(%ebp),%eax
 80496cb: 89 04 24 mov %eax,(%esp)
 80496ce: e8 9d f8 ff ff call 8048f70 <_Z2f1i>

==> 80496d3: bb 14 00 00 00 mov $0x14,%ebx
 80496d8: 8b 45 04 mov 0x4(%ebp),%eax
 80496db: 89 44 24 04 mov %eax,0x4(%esp)
 80496df: c7 04 24 a2 96 04 08 movl $0x80496a2,(%esp)
==> 80496e6: e8 81 f5 ff ff call 8048c6c <__cyg_profile_func_exit@plt>
 80496eb: 89 5d f8 mov %ebx,0xfffffff8(%ebp)
==> 80496ee: eb 27 jmp 8049717 <_ZN1B2m1Eii+0x75
 80496f0: 89 45 f4 mov %eax,0xfffffff4(%ebp)
 80496f3: 8b 5d f4 mov 0xfffffff4(%ebp),%ebx
 80496f6: 8b 45 04 mov 0x4(%ebp),%eax
 80496f9: 89 44 24 04 mov %eax,0x4(%esp)
 80496fd: c7 04 24 a2 96 04 08 movl $0x80496a2,(%esp)
 8049704: e8 63 f5 ff ff call 8048c6c <__cyg_profile_func_exit@plt>
 8049709: 89 5d f4 mov %ebx,0xfffffff4(%ebp)
 804970c: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 804970f: 89 04 24 mov %eax,(%esp)
 8049712: e8 15 f5 ff ff call 8048c2c <_Unwind_Resume@plt>

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

24 of 68 05/02/2012 03:44 PM

==> 8049717: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 804971a: 83 c4 24 add $0x24,%esp
 804971d: 5b pop %ebx
 804971e: 5d pop %ebp
 804971f: c3 ret

Note how the return code is moved into the ebx register - a bit unexpected, since,
traditionally, the eax register is used for return codes - and then the instrumentation
function is called. Good to retrieve the return value but to avoid that the ebx register
gets clobbered in the instrumentation function, we save it upon entering the function
and we restore it upon exit.

When the compilation is done with some degree of optimization (-O1...3; shown here is
-O2), the code changes:

 080498c0 <_ZN1B2m1Eii>:
 80498c0: 55 push %ebp
 80498c1: 89 e5 mov %esp,%ebp
 80498c3: 53 push %ebx
 80498c4: 83 ec 14 sub $0x14,%esp
 80498c7: 8b 45 04 mov 0x4(%ebp),%eax
 80498ca: c7 04 24 c0 98 04 08 movl $0x80498c0,(%esp)
 80498d1: 89 44 24 04 mov %eax,0x4(%esp)
 80498d5: e8 12 f4 ff ff call 8048cec <__cyg_profile_func_enter@plt>
 80498da: c7 04 24 2d 9c 04 08 movl $0x8049c2d,(%esp)
 80498e1: e8 16 f4 ff ff call 8048cfc <puts@plt>

 80498e6: 8b 45 0c mov 0xc(%ebp),%eax
 80498e9: 89 04 24 mov %eax,(%esp)
 80498ec: e8 af f7 ff ff call 80490a0 <_Z2f1i>
 80498f1: 8b 45 04 mov 0x4(%ebp),%eax
 80498f4: c7 04 24 c0 98 04 08 movl $0x80498c0,(%esp)
 80498fb: 89 44 24 04 mov %eax,0x4(%esp)
==> 80498ff: e8 88 f3 ff ff call 8048c8c <__cyg_profile_func_exit@plt>
 8049904: 83 c4 14 add $0x14,%esp
==> 8049907: b8 14 00 00 00 mov $0x14,%eax
 804990c: 5b pop %ebx
 804990d: 5d pop %ebp
==> 804990e: c3 ret

 804990f: 89 c3 mov %eax,%ebx
 8049911: 8b 45 04 mov 0x4(%ebp),%eax
 8049914: c7 04 24 c0 98 04 08 movl $0x80498c0,(%esp)
 804991b: 89 44 24 04 mov %eax,0x4(%esp)
 804991f: e8 68 f3 ff ff call 8048c8c <__cyg_profile_func_exit@plt>
 8049924: 89 1c 24 mov %ebx,(%esp)
 8049927: e8 f0 f3 ff ff call 8048d1c <_Unwind_Resume@plt>

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

25 of 68 05/02/2012 03:44 PM

 804992c: 90 nop
 804992d: 90 nop
 804992e: 90 nop
 804992f: 90 nop

Note how the instrumentation function gets called first and only then the eax register is
set with the return value. Thus, if we absolutely want the return code, we are forced to
compile with -O0.

Sample output

Finally, below are the results. At at shell prompt type:

$ export CTRACE_PROGRAM=./cpptraced
$ LD_PRELOAD=./libctrace.so ./cpptraced

T0xb7c0f6c0: 0x8048d34 main (0 ...) [from]
./cpptraced: main(argc=1)
T0xb7c0ebb0: 0x80492d8 thread1(void*) (1 ...) [from]
T0xb7c0ebb0: 0x80498b2 D (134605416 ...) [from cpptraced.cpp:91]
T0xb7c0ebb0: 0x8049630 B (134605416 ...) [from cpptraced.cpp:66]
B::B()
T0xb7c0ebb0: 0x8049630 B => -1209622540 [from]
D::D(int=-1210829552)
T0xb7c0ebb0: 0x80498b2 D => -1209622540 [from]
Hello World! It's me, thread #1!
./cpptraced: done.
T0xb7c0f6c0: 0x8048d34 main => -1212090144 [from]
T0xb740dbb0: 0x8049000 thread2(void*) (2 ...) [from]
T0xb740dbb0: 0x80498b2 D (134605432 ...) [from cpptraced.cpp:137]
T0xb740dbb0: 0x8049630 B (134605432 ...) [from cpptraced.cpp:66]
B::B()
T0xb740dbb0: 0x8049630 B => -1209622540 [from]
D::D(int=-1210829568)
T0xb740dbb0: 0x80498b2 D => -1209622540 [from]
Hello World! It's me, thread #2!
T#2!
T0xb6c0cbb0: 0x8049166 thread3(void*) (3 ...) [from]
T0xb6c0cbb0: 0x80498b2 D (134613288 ...) [from cpptraced.cpp:157]
T0xb6c0cbb0: 0x8049630 B (134613288 ...) [from cpptraced.cpp:66]
B::B()
T0xb6c0cbb0: 0x8049630 B => -1209622540 [from]
D::D(int=0)
T0xb6c0cbb0: 0x80498b2 D => -1209622540 [from]
Hello World! It's me, thread #3!
T#1!
T0xb7c0ebb0: 0x80490dc wrap_strerror_r (134525680 ...) [from cpptraced.cpp:105]
T0xb7c0ebb0: 0x80490dc wrap_strerror_r => -1210887643 [from]
T#1+M2 (Success)
T0xb740dbb0: 0x80495a0 D::m1(int, int) (134605432, 3, 4 ...) [from cpptraced.cpp:141]
D::m1()
T0xb740dbb0: 0x8049522 B::m2(int) (134605432, 14 ...) [from cpptraced.cpp:69]
B::m2()
T0xb740dbb0: 0x8048f70 f1 (14 ...) [from cpptraced.cpp:55]
f1 14
T0xb740dbb0: 0x8048ee0 f2(int) (74 ...) [from cpptraced.cpp:44]
f2 74
T0xb740dbb0: 0x8048e5e f3 (144 ...) [from cpptraced.cpp:36]
f3 144
T0xb740dbb0: 0x8048e5e f3 => 80 [from]

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

26 of 68 05/02/2012 03:44 PM

T0xb740dbb0: 0x8048ee0 f2(int) => 70 [from]
T0xb740dbb0: 0x8048f70 f1 => 60 [from]
T0xb740dbb0: 0x8049522 B::m2(int) => 21 [from]
T0xb740dbb0: 0x80495a0 D::m1(int, int) => 30 [from]
T#2!
T#3!

Note how libbfd fails to resolve some addresses when the function gets inlined.

Resources

Code (http://freeshell.de/~amelinte/software.html)
Overview of GCC on x86 platforms (http://pdos.csail.mit.edu/6.828/2004/lec
/l2.html)
The Intel stack (http://dsrg.mff.cuni.cz/~ceres/sch/osy/text/ch03s02s02.php)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

27 of 68 05/02/2012 03:44 PM

Memory issues
Linux Applications Debugging Techniques/Memory issues

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

28 of 68 05/02/2012 03:44 PM

Leaks

What to look for

Memory can be allocated through many API calls:

malloc()1.
memalign()2.
realloc()3.
mmap()4.
brk() / sbrk()5.

To return memory to the OS:

free()1.
munmap()2.

Valgrind

Valgrind should be the first stop for any memory related issue. However:

it slows down the program by at least one order of magnitude, in particular C++
programs.
from experience, some versions might have difficulties tracking mmap() allocated
memory.
on amd64, the vex dissasembler is likely to fail (v3.7)
you need to write suppressions to filter down the issues reported.

If these are real drawbacks, lighter solutions are available.

LD_LIBRARY_PATH=/path/to/valgrind/libs:$LD_LIBRARY_PATH /path/to/valgrind
 -v \
 --error-limit=no \
 --num-callers=40 \
 --fullpath-after= \
 --track-origins=yes \
 --log-file=/path/to/valgrind.log \

--leak-check=full \
 --show-reachable=yes \
 --vex-iropt-precise-memory-exns=yes \
 /path/to/program program-args

mudflap

http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging

mtrace

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

29 of 68 05/02/2012 03:44 PM

The GNU C library comes with a built-in functionality to help detecting memory issues:
mtrace().

The basics

The malloc implementation in the GNU C library provides a simple but powerful way to
detect memory leaks and obtain some information to find the location where the leaks
occurs, and this, with rather minimal speed penalties for the program.

Getting started is as simple as it can be:

#include mcheck.h in your code.
Call mtrace() to install hooks for malloc(), realloc(), free() and memalign(). From this
point on, all memory manipulations by these functions will be tracked. Note there
are other untracked ways to allocate memory.
Call muntrace() to uninstall the tracking handlers.
Recompile.

 #include <mcheck.h>
...
21 mtrace();
...
25 std::string* pstr = new std::string("leak");
...
27 char *leak = (char*)malloc(1024);
...
32 muntrace();
...

Under the hood, mtrace() installs the four hooks mentioned above. The information
collected through the hooks is written to a log file.

Note: there are other ways to allocate memory, notably mmap(). These allocations will not
be reported, unfortunately.

Next:

Set the MALLOC_TRACE environment variable with the memory log name.
Run the program.
Run the memory log through mtrace.

$ MALLOC_TRACE=logs/mtrace.plain.log ./dleaker
$ mtrace dleaker logs/mtrace.plain.log > logs/mtrace.plain.leaks.log
$ cat logs/mtrace.plain.leaks.log

Memory not freed:

 Address Size Caller

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

30 of 68 05/02/2012 03:44 PM

0x081e2390 0x4 at 0x400fa727
0x081e23a0 0x11 at 0x400fa727
0x081e23b8 0x400 at /home/amelinte/projects/articole/memtrace/memtrace.v3

One of the leaks (the malloc() call) was precisely traced to the exact file and line number.
However, the other leaks at line 25, while detected, we do not know where they occur.
The two memory allocations for the std::string are buried deep inside the C++ library.
We would need the stack trace for these two leaks to pinpoint the place in our code.

We can use GDB to get the allocations' stacks:

$ gdb ./dleaker
...
(gdb) set env MALLOC_TRACE=./logs/gdb.mtrace.log

(gdb) b __libc_malloc
Make breakpoint pending on future shared library load? (y or [n])
Breakpoint 1 (__libc_malloc) pending.

(gdb) run
Starting program: /home/amelinte/projects/articole/memtrace/memtrace.v3/
Breakpoint 2 at 0xb7cf28d6
Pending breakpoint "__libc_malloc" resolved

Breakpoint 2, 0xb7cf28d6 in malloc () from /lib/i686/cmov/libc.so.6
(gdb) command
Type commands for when breakpoint 2 is hit, one per line.
End with a line saying just "end".
>bt
>cont
>end
(gdb) c
Continuing.

...

Breakpoint 2, 0xb7cf28d6 in malloc () from /lib/i686/cmov/libc.so.6
#0 0xb7cf28d6 in malloc () from /lib/i686/cmov/libc.so.6
#1 0xb7ebb727 in operator new () from /usr/lib/libstdc++.so.6
#2 0x08048a14 in main () at main.cpp:25 <== new std::string("leak");
...
Breakpoint 2, 0xb7cf28d6 in malloc () from /lib/i686/cmov/libc.so.6
#0 0xb7cf28d6 in malloc () from /lib/i686/cmov/libc.so.6
#1 0xb7ebb727 in operator new () from /usr/lib/libstdc++.so.6 <== mangled: _Znwj
#2 0xb7e95c01 in std::string::_Rep::_S_create () from /usr/lib/libstdc++.so.6
#3 0xb7e96f05 in ?? () from /usr/lib/libstdc++.so.6
#4 0xb7e970b7 in std::basic_string<char, std::char_traits<char>, std::allocator<char

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

31 of 68 05/02/2012 03:44 PM

#5 0x08048a58 in main () at main.cpp:25 <== new std::string("leak");
...

Breakpoint 2, 0xb7cf28d6 in malloc () from /lib/i686/cmov/libc.so.6
#0 0xb7cf28d6 in malloc () from /lib/i686/cmov/libc.so.6

#1 0x08048a75 in main () at main.cpp:27 <== malloc(leak);

A couple of improvements

It would be good to have mtrace() itself dump the allocation stack and dispense with gdb.
The modified mtrace() would have to supplement the information with:

The stack trace for each allocation.
Demangled function names.
File name and line number.

Additionally, we can put the code in a library, to free the program from being
instrumented with mtrace(). In this case, all we have to do is interpose the library when
we want to trace memory allocations (and pay the performance price).

Note: getting all this information at runtime, particularly in a human-readable form will
have a performance impact on the program, unlike the plain vanilla mtrace() supplied
with glibc.

The stack trace

A good start would be to use another API function: backtrace_symbols_fd(). This would print
the stack directly to the log file. Perfect for a C program but C++ symbols are mangled:

@ /usr/lib/libstdc++.so.6:(_Znwj+27)[0xb7f1f727] + 0x9d3f3b0 0x4
**[Stack: 8
./a.out(__gxx_personality_v0+0x304)[0x80492c8]
./a.out[0x80496c1]
./a.out[0x8049a0f]
/lib/i686/cmov/libc.so.6(__libc_malloc+0x35)[0xb7d56905]
/usr/lib/libstdc++.so.6(_Znwj+0x27)[0xb7f1f727] <=== here
./a.out(main+0x64)[0x8049b50]
/lib/i686/cmov/libc.so.6(__libc_start_main+0xe0)[0xb7cff450]
./a.out(__gxx_personality_v0+0x6d)[0x8049031]
**] Stack

For C++ we would have to get the stack (backtrace_symbols()), resolve each address
(dladdr()) and demangle each symbol name (abi::__cxa_demangle()).

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

32 of 68 05/02/2012 03:44 PM

A couple of caveats

The API functions we use to trace the stack can allocate memory. These allocations
are also going through the hooks we installed. As we trace the new allocation, the
hooks are activated again and another

 allocation is made as we trace this new allocation. We will run out of stack in this infinite loop. We break out of this pitfal

The API functions we use to trace the stack can deadlock. Suppose we would use a
lock while in our trace. We lock the trace lock and we call dladdr() which in turn
tries to lock a dynamic linker internal lock. If on another thread dlopen() is called
while we trace, dlopen() locks the same linker lock, then allocates memory: this will
trigger the memory hooks and we now have the dlopen() thread wait on the trace
lock with the linker lock taken. Deadlock.

What we got

Let's try again with our new library:

$ MALLOC_TRACE=logs/mtrace.stack.log LD_PRELOAD=./libmtrace.so ./dleaker
$ mtrace dleaker logs/mtrace.stack.log > logs/mtrace.stack.leaks.log
$ cat logs/mtrace.stack.leaks.log

Memory not freed:

 Address Size Caller
0x08bf89b0 0x4 at 0x400ff727 <=== here
0x08bf89e8 0x11 at 0x400ff727
0x08bf8a00 0x400 at /home/amelinte/projects/articole/memtrace/memtrace.v3

Apparently, not much of an improvement: the summary still does not get us back to line
25 in main.cpp. However, if we search for address 8bf89b0 in the trace log, we find this:

@ /usr/lib/libstdc++.so.6:(_Znwj+27)[0x400ff727] + 0x8bf89b0 0x4 <=== here
**[Stack: 8
[0x40022251] (./libmtrace.so+40022251)
[0x40022b43] (./libmtrace.so+40022b43)
[0x400231e8] (./libmtrace.so+400231e8)
[0x401cf905] __libc_malloc (/lib/i686/cmov/libc.so.6+35)
[0x400ff727] operator new(unsigned int) (/usr/lib/libstdc++.so.6+27) <== was: _Znwj
[0x80489cf] __gxx_personality_v0 (./dleaker+27f)
[0x40178450] __libc_start_main (/lib/i686/cmov/libc.so.6+e0) <=== here
[0x8048791] __gxx_personality_v0 (./dleaker+41)
**] Stack

This is good, but having file and line information would be better.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

33 of 68 05/02/2012 03:44 PM

File and line

Here we have a few possibilities:

Run the address (e.g. 0x40178450 above) through the addr2line tool. If the address
is in a shared object that the program loaded, it might not resolve properly.
If we have a core dump of the program, we can ask gdb to resolve the address. Or
we can attach to the running program and resolve the address.
The ultimate solution would be to use libbfd (binutils). An alternative to libbfd could
be to use libcwd instead.

The third solution could look something like:

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

#include <execinfo.h>
#include <signal.h>
#include <bfd.h>
#include <unistd.h>

/* globals retained across calls to resolve. */
static bfd* abfd = 0;
static asymbol **syms = 0;
static asection *text = 0;

static void resolve(char *address) {
 if (!abfd) {
 char ename[1024];
 int l = readlink("/proc/self/exe",ename,sizeof(ename));
 if (l == -1) {
 perror("failed to find executable\n");
 return;
 }
 ename[l] = 0;

 bfd_init();

 abfd = bfd_openr(ename, 0);
 if (!abfd) {
 perror("bfd_openr failed: ");
 return;
 }

 /* oddly, this is required for it to work... */

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

34 of 68 05/02/2012 03:44 PM

 bfd_check_format(abfd,bfd_object);

 unsigned storage_needed = bfd_get_symtab_upper_bound(abfd);
 syms = (asymbol **) malloc(storage_needed);
 unsigned cSymbols = bfd_canonicalize_symtab(abfd, syms);

 text = bfd_get_section_by_name(abfd, ".text");
 }

 long offset = ((long)address) - text->vma;
 if (offset > 0) {
 const char *file;
 const char *func;
 unsigned line;
 if (bfd_find_nearest_line(abfd, text, syms, offset, &file, &func
 printf("file: %s, line: %u, func %s\n",file,line,func);
 }
}

The downside is that it takes a quite heavy toll on the performance of the program.

Resources

The GNU C library manual (http://www.gnu.org/s/hello/manual/libc/Allocation-
Debugging.html)
Using libbfd (http://www.beowulf.org/archive/2007-June/018558.html)
Linux Programming Toolkit (http://freeshell.de/~amelinte/software.html)

mallinfo

The mallinfo() API is rumored to be deprecated. But, if available, it is very useful:

#include <malloc.h>

namespace process {

class memory
{
public:

 memory() : _meminfo(::mallinfo()) {}

 int total() const
 {
 return _meminfo.hblkhd + _meminfo.uordblks;
 }

 bool operator==(memory const& other) const

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

35 of 68 05/02/2012 03:44 PM

 {
 return total() == other.total();
 }

 bool operator!=(memory const& other) const
 {
 return total() != other.total();
 }

 bool operator<(memory const& other) const
 {
 return total() < other.total();
 }

 bool operator<=(memory const& other) const
 {
 return total() <= other.total();
 }

 bool operator>(memory const& other) const
 {
 return total() > other.total();
 }

 bool operator>=(memory const& other) const
 {
 return total() >= other.total();

}

private:

 struct mallinfo _meminfo;
};

} //process

#include <iostream>
#include <string>
#include <cassert>

int main()
{

 process::memory first;

 {
 void* p = ::malloc(1025);
 process::memory second;
 std::cout << "Mem diff: " << second.total() - first.total() << std

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

36 of 68 05/02/2012 03:44 PM

 assert(second > first);

 ::free(p);
 process::memory third;
 std::cout << "Mem diff: " << third.total() - first.total() << std
 assert(third == first);
 }
 {
 std::string s("abc");
 process::memory second;
 std::cout << "Mem diff: " << second.total() - first.total() << std
 assert(second > first);
 }

 process::memory fourth;
 assert(first == fourth);

 return 0;
}

References

mallinfo (http://www.gnu.org/software/libc/manual/html_node/Statistics-
of-Malloc.html)
mallinfo deprecated (http://udrepper.livejournal.com/20948.html)

/proc

Coarse grained information can be obtained from /proc:

#!/bin/ksh
#
Based on:
http://stackoverflow.com/questions/131303/linux-how-to-measure-actual-memory-usage-
#
Returns total memory used by process $1 in kb.
#
See /proc/PID/smaps; This file is only present if the CONFIG_MMU
kernel configuration option is enabled
#

IFS=$'\n'

for line in $(</proc/$1/smaps)
do
 [[$line =~ ^Private_Clean:\s+(\S+)]] && ((pkb += ${.sh.match[1]}))
 [[$line =~ ^Private_Dirty:\s+(\S+)]] && ((pkb += ${.sh.match[1]}))
 [[$line =~ ^Shared_Clean:\s+(\S+)]] && ((skb += ${.sh.match[1]}))

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

37 of 68 05/02/2012 03:44 PM

 [[$line =~ ^Shared_Dirty:\s+(\S+)]] && ((skb += ${.sh.match[1]}))
 [[$line =~ ^Size:\s+(\S+)]] && ((szkb += ${.sh.match[1]}))
 [[$line =~ ^Pss:\s+(\S+)]] && ((psskb += ${.sh.match[1]})
done

((tkb += pkb))
((tkb += skb))
#((tkb += psskb))

echo "Total private: $pkb kb"
echo "Total shared: $skb kb"
echo "Total proc prop: $psskb kb Pss"
echo "Priv + shared: $tkb kb"
echo "Size: $szkb kb"

pmap -d $1 | tail -n 1

References

Memory usage script (http://permalink.gmane.org
/gmane.comp.video.gstreamer.devel/10609)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

38 of 68 05/02/2012 03:44 PM

Heap corruption

Electric Fence

Electric Fence is still the reference for dealing with heap corruption, even if not
maintined for a while. RedHat ships a version that can be used as an interposition
library.

Drawback: might not work with code that uses mmap() to allocate memory.

Duma

Duma is a fork of Electric Fence.

glibc builtin

man (3) malloc: Recent versions of Linux libc (later than 5.4.23) and GNU libc (2.x) include
a malloc implementation which is tunable via environment variables. When MALLOC_CHECK_
is set, a special (less efficient) implementation is used which is designed to be tolerant
against simple errors, such as double calls of free() with the same argument, or
overruns of a single byte (off-by-one bugs). Not all such errors can be protected against,
however, and memory leaks can result. If MALLOC_CHECK_ is set to 0, any detected heap
corruption is silently ignored and an error message is not generated; if set to 1, the
error message is printed on stderr, but the program is not aborted; if set to 2, abort() is
called immediately, but the error message is not generated; if set to 3, the error
message is printed on stderr and program is aborted. This can be useful because
otherwise a crash may happen much later, and the true cause for the problem is then
very hard to track down.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

39 of 68 05/02/2012 03:44 PM

Stack corruption
Stack corruption is rather hard to diagnose. Luckily, gcc 4.x can instrument the code to
check for stack corruption:

-fstack-protector
-fstack-protector-all

gcc will add guard variables and code to check for buffer overflows upon exiting a
function. A quick example:

/* Compile with: gcc -ggdb -fstack-protector-all stacktest.c */

#include <stdio.h>
#include <string.h>

void bar(char* str)
{
 char buf[4];
 strcpy(buf, str);
}

void foo()
{
 printf("It survived!");
}

int main(void)
{
 bar("Longer than 4.");
 foo();
 return 0;
}

When run, the program will dump core:

$./a.out
*** stack smashing detected ***: ./a.out terminated
Aborted (core dumped)

Core was generated by `./a.out'.
Program terminated with signal 6, Aborted.
#0 0x0000003684030265 in raise () from /lib64/libc.so.6
(gdb) bt full
#0 0x0000003684030265 in raise () from /lib64/libc.so.6
No symbol table info available.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

40 of 68 05/02/2012 03:44 PM

#1 0x0000003684031d10 in abort () from /lib64/libc.so.6
No symbol table info available.
#2 0x000000368406a84b in __libc_message () from /lib64/libc.so.6
No symbol table info available.
#3 0x00000036840e8ebf in __stack_chk_fail () from /lib64/libc.so.6
No symbol table info available.
#4 0x0000000000400584 in bar (str=0x400715 "Longer than 4.") at stacktest.c:10
 buf = "Long"
#5 0x00000000004005e3 in main () at stacktest.c:19
No locals.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

41 of 68 05/02/2012 03:44 PM

Deadlocks

Analysis

Searching for a deadlock means reconstructing the graph of dependencies between
threads and resources (mutexes, semaphores, condition variables, etc.) - who owns what
and who wants to acquire what. A typical deadlock would look like a loop in that graph.
The task is tedious, as some of the parameters we are looking for have been optimized
by the compiler into registers.

Below is an analysis of an x86_64 deadlock. On this platform, register r8 is the one
containing the first argument: the address of the mutex:

(gdb) thread apply all bt
...
Thread 4 (Thread 0x419bc940 (LWP 12275)):
#0 0x0000003684c0d4c4 in __lll_lock_wait () from /lib64/libpthread.so.0
#1 0x0000003684c08e1a in _L_lock_1034 () from /lib64/libpthread.so.0
#2 0x0000003684c08cdc in pthread_mutex_lock () from /lib64/libpthread.so.0
#3 0x0000000000400a50 in thread1 (threadid=0x1) at deadlock.c:66
#4 0x0000003684c0673d in start_thread () from /lib64/libpthread.so.0
#5 0x00000036840d3d1d in clone () from /lib64/libc.so.6

Thread 3 (Thread 0x421bd940 (LWP 12276)):
#0 0x0000003684c0d4c4 in __lll_lock_wait () from /lib64/libpthread.so.0
#1 0x0000003684c08e1a in _L_lock_1034 () from /lib64/libpthread.so.0
#2 0x0000003684c08cdc in pthread_mutex_lock () from /lib64/libpthread.so.0
#3 0x0000000000400c07 in thread2 (threadid=0x2) at deadlock.c:111
#4 0x0000003684c0673d in start_thread () from /lib64/libpthread.so.0
#5 0x00000036840d3d1d in clone () from /lib64/libc.so.6
...

(gdb) thread 4
[Switching to thread 4 (Thread 0x419bc940 (LWP 12275))]#2 0x0000003684c08cdc in pthread_
 from /lib64/libpthread.so.0

(gdb) frame 2
#2 0x0000003684c08cdc in pthread_mutex_lock () from /lib64/libpthread.so.0

(gdb) info reg
...
r8 0x6015a0 6296992
...

(gdb) p *(pthread_mutex_t*)0x6015a0
$3 = {
 __data = {

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

42 of 68 05/02/2012 03:44 PM

 __lock = 2,
 __count = 0,
 __owner = 12276, <== T3
 __nusers = 1,
 __kind = 0, <== non-recursive
 __spins = 0,
 __list = {
 __prev = 0x0,
 __next = 0x0
 }
 },
 __size = "\002\000\000\000\000\000\000\000\364/\000\000\001", '\000'
 __align = 2
}

(gdb) thread 3
[Switching to thread 3 (Thread 0x421bd940 (LWP 12276))]#0 0x0000003684c0d4c4 in __lll_lo
 from /lib64/libpthread.so.0

(gdb) bt
#0 0x0000003684c0d4c4 in __lll_lock_wait () from /lib64/libpthread.so.0
#1 0x0000003684c08e1a in _L_lock_1034 () from /lib64/libpthread.so.0
#2 0x0000003684c08cdc in pthread_mutex_lock () from /lib64/libpthread.so.0
#3 0x0000000000400c07 in thread2 (threadid=0x2) at deadlock.c:111
#4 0x0000003684c0673d in start_thread () from /lib64/libpthread.so.0
#5 0x00000036840d3d1d in clone () from /lib64/libc.so.6
#2 0x0000003684c08cdc in pthread_mutex_lock () from /lib64/libpthread.so.0

(gdb) info reg
...
r8 0x6015e0 6297056
...

(gdb) p *(pthread_mutex_t*)0x6015e0
$4 = {
 __data = {
 __lock = 2,
 __count = 0,
 __owner = 12275, <=== T4
 __nusers = 1,
 __kind = 0,
 __spins = 0,
 __list = {
 __prev = 0x0,
 __next = 0x0
 }
 },
 __size = "\002\000\000\000\000\000\000\000\363/\000\000\001", '\000'
 __align = 2
}

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

43 of 68 05/02/2012 03:44 PM

Threads 3 and 4 are deadlocking over two mutexes.

Note: If gdb is unable to find the symbol pthread_mutex_t because it has not loaded the
symbol table for pthreadtypes.h, you can still print the individual members of the struct
as follows:

(gdb) print *((int*)(0x6015e0))
$4 = 2
(gdb) print *((int*)(0x6015e0)+1)
$5 = 0
(gdb) print *((int*)(0x6015e0)+2)
$6 = 12275

Automation

An interposition library can be built to automate deadlock analysis
(http://linuxgazette.net/150/melinte.html) .

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

44 of 68 05/02/2012 03:44 PM

Race conditions

Valgrind Helgrind (http://valgrind.org/docs/manual/hg-manual.html)

[v 3.7] On amd64 platforms it does not survive for long because of the vex
disassembler.

Valgrind Drd (http://valgrind.org/docs/manual/drd-manual.html)

Same.

Relacy (http://www.1024cores.net/home/relacy-race-detector)

C++0x/11 synchronization modeler/unit tests tool.

Promela (http://en.wikipedia.org/wiki/Promela)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

45 of 68 05/02/2012 03:44 PM

Resource leaks

Zombie threads

Any thread that has terminated but has not been joined or detached will leak OS
resources until the process terminates. Unfortunately, neither /proc nor gdb will show you
these zombie threads, at least not on some kernels.

One way to get them is with a gdb canned command:

#
#
#
define trace_call
 b $arg0
 commands
 bt full
 continue
 end
end
document trace_call
Trace specified call with call stack to screen. Example:
 set breakpoint pending on
 set pagination off
 set logging on
 trace_call __pthread_create_2_1
end

Using host libthread_db library "/lib/i686/cmov/libthread_db.so.1".
(gdb) trace_call __pthread_create_2_1
Function "__pthread_create_2_1" not defined.
Breakpoint 1 (__pthread_create_2_1) pending.
(gdb) trace_call __pthread_create_2_0
Function "__pthread_create_2_0" not defined.
Breakpoint 2 (__pthread_create_2_0) pending.
(gdb) r
Starting program: /home/amelinte/projects/articole/wikibooks/debug/plock foo bar bax
[Thread debugging using libthread_db enabled]
Breakpoint 3 at 0xb7f9b746
Pending breakpoint "__pthread_create_2_1" resolved
Breakpoint 4 at 0xb7f9c395
Pending breakpoint "__pthread_create_2_0" resolved
[New Thread 0xb7e48ad0 (LWP 8635)]
[Switching to Thread 0xb7e48ad0 (LWP 8635)]

Breakpoint 3, 0xb7f9b746 in pthread_create@@GLIBC_2.1 () from /lib/i686/
#0 0xb7f9b746 in pthread_create@@GLIBC_2.1 () from /lib/i686/cmov/libpthread.so.0

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

46 of 68 05/02/2012 03:44 PM

No symbol table info available.
#1 0x08048a7f in main (argc=4, argv=0xbfceb714) at plock.c:97
 s = 0
 tnum = 0
 opt = -1
 num_threads = 3
 tinfo = (struct thread_info *) 0x833b008
 attr = {__size = '\0' <repeats 13 times>, "\020", '\0' <repeats
 stack_size = -1
 res = (void *) 0x0
[New Thread 0xb7e47b90 (LWP 8638)]
Thread 1: top of stack near 0xb7e473c8; argv_string=foo

Another way is to use (again) an interposition library:

/*
 * Hook library. Usage:
 * gcc -c -g -Wall -fPIC libhook.c -o libhook.o
 * ld -o libhook.so libhook.o -shared -ldl
 * LD_PRELOAD=./libhook.so program arguments
 *
 * Copyright 2012 Aurelian Melinte.
 * Released under GPL 3.0 or later.
 */

#define _GNU_SOURCE
#include <dlfcn.h>

#include <signal.h>
#include <execinfo.h>

#include <errno.h>
#include <stdlib.h>
#include <stdio.h> /*printf*/
#include <unistd.h>

#include <pthread.h>

#include <assert.h>

typedef int (*lp_pthread_mutex_func)(pthread_mutex_t *mutex);
typedef int (*pthread_create_func)(pthread_t *thread,
 const pthread_attr_t *attr,
 void
static pthread_create_func _pthread_create_hook = NULL;

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

47 of 68 05/02/2012 03:44 PM

static int
hook_one(pthread_create_func *fptr, const char *fname)
{
 char *msg = NULL;

 assert(fname != NULL);

 if (*fptr == NULL) {
 printf("dlsym : wrapping %s\n", fname);
 *fptr = dlsym(RTLD_NEXT, fname);
 printf("next_%s = %p\n", fname, *fptr);
 if ((*fptr == NULL) || ((msg = dlerror()) != NULL)) {
 printf("dlsym %s failed : %s\n", fname, msg);
 return -1;
 } else {
 printf("dlsym: wrapping %s done\n", fname);
 return 0;
 }
 } else {
 return 0;
 }
}

static void
hook_funcs(void)
{
 if (_pthread_create_hook == NULL) {
 int rc = hook_one(&_pthread_create_hook, "pthread_create");
 if (NULL == _pthread_create_hook || rc != 0) {
 printf("Failed to hook.\n");
 exit(EXIT_FAILURE);
 }
 }
}

/*
 *
 */

int
pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine) (void *), void *arg)
{
#define SIZE 40
 void *buffer[SIZE] = {0};

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

48 of 68 05/02/2012 03:44 PM

 int nptrs = 0;

 int rc = EINVAL;

 rc = _pthread_create_hook(thread, attr, start_routine, arg);

 printf("*** pthread_create:\n");
 nptrs = backtrace(buffer, SIZE);
 backtrace_symbols_fd(buffer, nptrs, STDOUT_FILENO);

 return rc;
}

/*
 *
 */

void _init() __attribute__((constructor));
void
_init()
{
 printf("*** _init().\n");
 hook_funcs();
}

void _fini() __attribute__((destructor));
void
_fini()
{
 printf("*** _fini().\n");
}

The output is a bit rough but it can be refined down to file and line by replacing
backtrace_symbols_fd() with appropriate code:

*** pthread_create:
./libhook.so(pthread_create+0x8c)[0x400215d3]
./plock[0x8048a7f]
/lib/i686/cmov/libc.so.6(__libc_start_main+0xe0)[0x4006f450]
./plock[0x8048791]

File descriptors

As just about anything is a file (folders, sockets, pipes, etc, etc...), just about anything
can result in a file descriptor that needs to be closed. /proc can help:

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

49 of 68 05/02/2012 03:44 PM

tree /proc/26041
/proc/26041
...
|-- fd # Open files descriptors
| |-- 0 -> /dev/pts/21
| |-- 1 -> /dev/pts/21
| |-- 2 -> /dev/pts/21
| `-- 3 -> socket:[113497835]
|-- fdinfo
| |-- 0
| |-- 1
| |-- 2
| `-- 3
...

The trace_call command for gdb can help with the call stack.

If gdb is not available on the machine, an interposition library hooking open(), pipe(),
socket(), etc. can be built.

Other tools that can be used:

lsof
fuser

Ports

Which process is using a port? As root:

netstat -tlnp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:36510 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:2207 0.0.0.0:* LISTEN
...

lsof
COMMAND PID USER FD TYPE DEVICE SIZE N
init 1 root cwd DIR 253,0
...
python 3438 root 4u IPv4 11416 TCP

lsof -i :2207
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
python 3438 root 4u IPv4 11416 TCP localhost.localdomain:2207

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

50 of 68 05/02/2012 03:44 PM

Other tools:

fuser

IPC

For semaphores, shared memory and message queues.

ipcs

ipcrm

ipcs -spt
------ Semaphore Operation/Change Times --------
semid owner last-op last-changed
187826177 aurelian_m Fri Feb 10 09:37:26 2012 Fri Feb 10 09:33:39 2012
187858946 aurelian_m Fri Feb 10 09:52:11 2012 Fri Feb 10 09:50:44 2012

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

51 of 68 05/02/2012 03:44 PM

Aiming for and measuring performance

gprof & -pg

To profile the application with gprof:

Compile the code with -pg
Link with -pg
Run the application. This creates a file gmon.out in the current folder of the
application.
At the prompt, in the folder where gmon.out lives: gprof path-to-application

PAPI

The Performance Application Programming Interface (PAPI) (http://icl.cs.utk.edu/papi/)
offers the programmer access to the performance counter hardware found in most
major microprocessors. With a decent C++ wrapper (http://freeshell.de/~amelinte
/software.html) , measuring branch mispredictions and cache misses (and much more) is
literally one line of code away.

As an example, lets look a bit at these lines:

 const int nlines = 196608;
 const int ncols = 64;
 char ctrash[nlines][ncols];
 {
 int x;
 papi::counters<papi::stdout_print> pc("by column"); //<== the famous one-line
 for (int c = 0; c < ncols; ++c) {
 for (int l = 0; l < nlines; ++l) {
 x = ctrash[l][c];
 }
 }
 }

The code just loops over an array but in the wrong order: the innermost loop iterates on
the outer index. While the result is the same whether we loop over the first index first or
over the last one, theorically, to preserve cache locality, the innermost loop should
iterate over the innermost index. This should make a big difference for the time it takes
to iterate over the array:

 {
 int x;
 papi::counters<papi::stdout_print> pc("By line");
 for (int l = 0; l < nlines; ++l) {
 for (int c = 0; c < ncols; ++c) {
 x = ctrash[l][c];

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

52 of 68 05/02/2012 03:44 PM

 }
 }
 }

papi::counters is a class wrapping around PAPI functionality. It will take a snaphost of
some performance counters (in our case, we are interested in cache misses and in
branch mispredictions) when a counters object is instantiated and another snapshot
when the object is destroyed. Then it will print out the differences.

A first measure, with non-optimized code (-O0), shows the following:

Delta by column:

 PAPI_TOT_INS (Total instructions): 188744788 (380506167-191761379)
 PAPI_TOT_CYC (Total cpu cycles): 92390347 (187804288-95413941)
 PAPI_L1_DCM (L1 load misses): 28427 (30620-2193) <==
 PAPI_L2_DCM (L2 load misses): 102 (1269-1167)
 PAPI_BR_MSP (Branch mispredictions): 176 (207651-207475) <==

Delta By line:

 PAPI_TOT_INS (Total instructions): 190909841 (191734047-824206)
 PAPI_TOT_CYC (Total cpu cycles): 94460862 (95387664-926802)
 PAPI_L1_DCM (L1 load misses): 403 (2046-1643) <==
 PAPI_L2_DCM (L2 load misses): 21 (1081-1060)
 PAPI_BR_MSP (Branch mispredictions): 205934 (207350-1416) <==

While the cache misses have indeed improved, branch mispredictions exploded. Not
exactly a good tradeoff. Down in the pipeline of the processor, a comparison operation
translates into a branch operation. Something is funny with the unoptimized code the
compiler generated.

Maybe the optimized code (-O2) is behaving better? Or maybe not:

Delta by column:

 PAPI_TOT_INS (Total instructions): 329 (229368-229039)
 PAPI_TOT_CYC (Total cpu cycles): 513 (186217-185704)
 PAPI_L1_DCM (L1 load misses): 2 (1523-1521)
 PAPI_L2_DCM (L2 load misses): 0 (993-993)
 PAPI_BR_MSP (Branch mispredictions): 7 (1287-1280)

Delta By line:

 PAPI_TOT_INS (Total instructions): 330 (209614-209284)
 PAPI_TOT_CYC (Total cpu cycles): 499 (173487-172988)
 PAPI_L1_DCM (L1 load misses): 2 (1498-1496)
 PAPI_L2_DCM (L2 load misses): 0 (992-992)
 PAPI_BR_MSP (Branch mispredictions): 7 (1225-1218)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

53 of 68 05/02/2012 03:44 PM

This time the compiler optimized the loops out! It figured we do not really use the data
in the array, so it got rid of. Completely!

Let's see how this code behaves:

 {
 int x;
 papi::counters<papi::stdout_print> pc("by column");
 for (int c = 0; c < ncols; ++c) {
 for (int l = 0; l < nlines; ++l) {
 x = ctrash[l][c];
 ctrash[l][c] = x + 1;
 }
 }
 }

Delta by column:

 PAPI_TOT_INS (Total instructions): 62918492 (63167552-249060)
 PAPI_TOT_CYC (Total cpu cycles): 224705473 (224904307-198834)
 PAPI_L1_DCM (L1 load misses): 12415661 (12417203-1542)
 PAPI_L2_DCM (L2 load misses): 9654638 (9655632-994)
 PAPI_BR_MSP (Branch mispredictions): 14217 (15558-1341)

Delta By line:

 PAPI_TOT_INS (Total instructions): 51904854 (115092642-63187788)
 PAPI_TOT_CYC (Total cpu cycles): 25914254 (250864272-224950018)
 PAPI_L1_DCM (L1 load misses): 197104 (12614449-12417345)
 PAPI_L2_DCM (L2 load misses): 6330 (9662090-9655760)
 PAPI_BR_MSP (Branch mispredictions): 296 (16066-15770)

Both cache misses and branch mispredictions improved by at least an order of
magnitude. A run with unoptimized code will show the same order of improvement.

References

Locality of reference

OProfile

OProfile offers access to the same hardware counters as PAPI but without having to
instrument the code:

It is coarser grained than PAPI - at function level.
Some out of the box kernels (RedHat) are not OProfile-friendly.
You need root access.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

54 of 68 05/02/2012 03:44 PM

#!/bin/bash

#
A script to OProfile a program.
Must be run as root.
#

if [$# -ne 1]
then
 echo "Usage: `basename $0` <for-binary-image>"
 exit -1
else
 binimg=$1
fi

opcontrol --stop
opcontrol --shutdown

Out of the box RedHat kernels are OProfile repellent.
opcontrol --no-vmlinux
opcontrol --reset

List of events for platform to be found in /usr/share/oprofile/<>/events
opcontrol --event=L2_CACHE_MISSES:1000

opcontrol --start

$binimg

opcontrol --stop
opcontrol --dump

rm $binimg.opreport.log
opreport > $binimg.opreport.log

rm $binimg.opreport.sym
opreport -l > $binimg.opreport.sym

opcontrol --shutdown
opcontrol --deinit
echo "Done"

References

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

55 of 68 05/02/2012 03:44 PM

OP Manual (http://oprofile.sourceforge.net/doc/index.html)
IBM OP Intro (http://www.ibm.com/developerworks/systems/library/es-oprofile/)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

56 of 68 05/02/2012 03:44 PM

Appendices

Things to watch for

Interrupted calls

A number of API functions return an error code if the call was interrupted by a signal.
Usually this is not an error by itself and the call should be restarted. For instance:

int raccept(int s, struct sockaddr *addr, socklen_t *addrlen)
{
 int rc;

 do {
 rc = accept(s, addr, addrlen);
 } while (rc == -1 && errno == EINTR);

 return rc;
}

The list of interruptible function differs from Unix-like platform to platform. For Linux
see signal(7) (http://www.kernel.org/doc/man-pages/online/pages/man7/signal.7.html) .

Spurious wake-ups

Threads waiting on a pthreads condition variable can be waken up even if the condition
hs not been met. Upon waking up, the condition should be explicitly checked and return
waiting if it is not met.

/proc

A pseudo-filesystem exposing information about running processes:

tree /proc/26041
/proc/26041
...
|-- cmdline # Command line
|-- cwd -> /current/working/folder/for/PID
|-- environ # Program environment variables
|-- exe -> /bin/su
|-- fd # Open files descriptors
| |-- 0 -> /dev/pts/21
| |-- 1 -> /dev/pts/21
| |-- 2 -> /dev/pts/21
| `-- 3 -> socket:[113497835]
|-- fdinfo

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

57 of 68 05/02/2012 03:44 PM

| |-- 0
| |-- 1
| |-- 2
| `-- 3
|-- latency
|-- limits
|-- maps
|-- mem
|-- mountinfo
|-- mounts
|-- mountstats
...

cat /proc/26041/status
...
VmPeak: 103276 kB # Max virtual memory reached
VmSize: 103196 kB # Current VM
VmLck: 0 kB
VmHWM: 1492 kB
VmRSS: 1488 kB # Live memory used
...
Threads: 1
...

References

Man page (http://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html)
Kernel doc (http://www.kernel.org/doc/Documentation/filesystems/proc.txt)

sysstat, sar

Site (http://sebastien.godard.pagesperso-orange.fr/)

Other tools

addr2line

Given an address in an executable or an offset in a section of a relocatable object,
addr2line translates it into file name and line number.

c++filt

A tool to demangle symbol names.

objdump

Disassemble binary, with source code: objdump -C -S -r -R -l <binary>

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

58 of 68 05/02/2012 03:44 PM

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

59 of 68 05/02/2012 03:44 PM

References and further reading

Books & articles

Agar, Eric; Writing Reliable AIX Daemons (http://www.redbooks.ibm.com/redbooks
/pdfs/sg244946.pdf)
McKenney, Paul; Is Parallel Programming Hard (http://kernel.org/pub/linux/kernel
/people/paulmck/perfbook/perfbook.html) (git (git://git.kernel.org/pub/scm/linux
/kernel/git/paulmck/perfbook.git%20) , blog (http://paulmck.livejournal.com/) ,
other papers (http://www.rdrop.com/users/paulmck/))

Software

Linux Programming Tools (http://freeshell.de/~amelinte/software.html)

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

60 of 68 05/02/2012 03:44 PM

GNU Free Documentation License
Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free
Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
"you". You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

61 of 68 05/02/2012 03:44 PM

legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to
the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

62 of 68 05/02/2012 03:44 PM

included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

63 of 68 05/02/2012 03:44 PM

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

A.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

B.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

C.

Preserve all the copyright notices of the Document.D.
Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

E.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

F.

Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

G.

Include an unaltered copy of this License.H.
Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

I.

Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

J.

For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

K.

Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the
section titles.

L.

Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified version.

M.

Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

N.

Preserve any Warranty Disclaimers.O.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

64 of 68 05/02/2012 03:44 PM

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

65 of 68 05/02/2012 03:44 PM

the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

66 of 68 05/02/2012 03:44 PM

after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version"
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means
any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

67 of 68 05/02/2012 03:44 PM

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

How to use this License for your
documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

Retrieved from "http://en.wikibooks.org
/w/index.php?title=Linux_Applications_Debugging_Techniques/Print_Version&
oldid=2312880"

This page was last modified on 25 April 2012, at 23:17.
Text is available under the Creative Commons Attribution-ShareAlike License;
additional terms may apply. See Terms of Use for details.

Linux Applications Debugging Techniques/Print Version ... http://en.wikibooks.org/wiki/Linux_Applications_Debugg...

68 of 68 05/02/2012 03:44 PM

